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Abstract

This technical note summarizes the current version of the population-level susceptible-
exposed-infected-removed (SEIR) model that is used by the Irish Epidemiological Modelling
Advisory Group (IEMAG) reporting to the National Public Health Emergency Team (NPHET).
The model is continuously updated, so this note supersedes previous versions, and will be su-
perseded by future updates.

1 Description of the model

Population-level SEIR models [1–3] assume fully-mixed, homogeneous populations. Despite this
simplification, they provide useful information for scenario-based planning, with the potential for
further extension of the structure (e.g., to disaggregated age cohorts) in more advanced models.

At each moment of time, each individual in the population is considered to be in one of a discrete
number of compartments. The structure of the compartments, and the timescales for individuals
to move in and out of compartments, are based on the current understanding of the epidemiology
of COVID-19, as evidenced by the extensive literature review and evidence synthesis conducted
by [4–6].

1.1 Compartments and parameters

The structure of the model compartments is shown in Figure 1. Informed by the literature review,
each parameter is chosen from a uniform distribution with upper and lower limits as listed below.
(All timescales are expressed in days. Day 0 of the Irish epidemic is February 28, 2020.)

• L: average latent period; range assumed is 3.9 to 5.9.

• C: average incubation period; range assumed is max(L, 4.8) to 6.8 (lower limit ensures C−L
is nonnegative).

• D: average infectious period; range assumed is max(C − L, 5.0) to 9.0 (lower limit ensures
D − (C − L) is nonnegative).

• h: multiplicative factor for reduction of effective transmission from the Asymptomatic Infected
compartment, relative to Symptomatic Infected; range assumed is 0.01 to 0.5.

• i: multiplicative factor for reduction of effective transmission from the Immediate Isolation
compartment, relative to Symptomatic Infected; range assumed is 0 to 0.1.

• j: multiplicative factor for reduction of effective transmission from the Post-test isolation
compartment, relative to Symptomatic Infected; range assumed is 0 to 0.1.
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• f : fraction of infected who are Asymptomatic; range assumed is 0.18 to 0.82.

• τ : fraction of symptomatic cases that are tested; range assumed is 0.5 to 1.0.

• q: fraction of symptomatic cases that self-quarantine from appearance of symptoms until
recovery; range assumed is 0 to 1− τ (upper limit ensures 1− q − τ is nonnegative).

• T : average wait for test results; range assumed is 1.0 to max(5.0, D − C + L) (upper limit
ensures D − C + L− T is nonnegative).

• N : population, assumed to be 4.9× 106.

The transmission rate β is assumed to be time-dependent, in order to model the impact of interven-
tions. The relationship between β and the basic reproductive number R0 for this model is derived
in the Appendix.

1.2 Equations

Each compartment in Figure 1 has a corresponding time-dependent variable, which gives the number
of individuals that are in that compartment at time t. The dynamics evolve according to the
following differential equations:

dS

dt
= −βS (Ip + hIa + iIi + It1 + jIt2 + In) /N (1)

dE

dt
= βS (Ip + hIa + iIi + It1 + jIt2 + In) /N − 1

L
E (2)

dIp
dt

=
(1− f)

L
E − 1

C − L
Ip (3)

dIa
dt

=
f

L
E − 1

D
Ia (4)

dIi
dt

=
q

C − L
Ip −

1

D − C + L
Ii (5)

dIt1
dt

=
τ

C − L
Ip −

1

T
It1 (6)

dIt2
dt

=
1

T
It1 −

1

D − C + L− T
It2 (7)

dIn
dt

=
(1− q − τ)

C − L
Ip −

1

D − C + L
In (8)

dR

dt
=

1

D
Ia +

1

D − C + L
Ii +

1

D − C + L− T
It2 +

1

D − C + L
In, (9)

where S(t) is the number of susceptible individuals, E(t) is the number who are exposed, Ip(t) is
the number who are pre-symptomatic infected, Ia(t) is the number who are asymptomatic infected,
Ii(t) is the number who are symptomatic and self-isolating (without testing), It1(t) is the number
who are symptomatic and waiting for testing, It2(t) is the number who are in post-test self-isolation,
In(t) is the number who are symptomatic and not isolating and R(t) is the number who are removed
(i.e., recovered from the virus or dead). In addition, we define Cc(t) to be the cumulative number
of new cases reported by time t, given by integrating the flux out of the It1 (waiting-for-test)
compartment:

dCc
dt

=
1

T
It1 (10)

and we also report the number of new daily cases on day n, defined by cc(n) = Cc(n)−Cc(n− 1).
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Figure 1: Model compartment structure.
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2 Calibration of the model

2.1 Data

The confirmed positive case data was extracted from the Computerised Infectious Disease Reporting
(CIDR) database hosted by the Heath Protection Surveillance Centre (HPSC). For each observa-
tion, the event date and lab specimen collected date were stored, however for 2.5% of cases the lab
specimen collected date were missing. For each sample with a missing lab specimen collected date,
the event date was considered and the missing value was imputed using the average lab specimen
collected date for all samples with that event date. The lab specimen collected date of the cases
was used for modelling purposes.

2.2 Poisson model with rate following a Gompertz function

The daily case counts cc(t) at day t, as described in Section 2.1, is modelled by a Poisson random
variable

cc(t) ∼ Po(g(t)). (11)

To model the rate parameter of the Poisson distribution we first use a Gompertz growth function

G(t) = θ1e
−θ2θt3 , (12)

where θ1, θ2, θ3 > 0, to model the mean rate of accumulated cases each day. The derivative of G(t)
then models the daily rate of cases:

d

dt
G(t) = θ1θ2 log(1/θ3)(θ

t
3)e

−θ2θt3 . (13)

We employ a Bayesian model to infer the parameters θ1, θ2, θ3. To do so, we specify prior distribu-
tions for each parameter as

θ1 ∼ half-N(10000, 100000),

θ2 ∼ half-N(0, 100),

θ2 ∼ half-N(0, 10). (14)

The Bayesian model then yields the posterior distribution of θ1, θ2, θ3 given the daily data y0, . . . , yt.
The Rstan package [7] was used to generate samples from the posterior distribution

2.3 Calibration algorithm

We calibrate the SEIR model with data from February 29th to May 6th, using the Gompertz fit
described in Section 2.2. For each choice of parameter values, i.e., each realization G(t) of the data-
fitting function, the SEIR equations can be inverted to determine the time-varying transmission
rate β(t) that would yield precisely Cc(t) = G(t). The steps in this inversion algorithm are as
follows:

1. Assuming Cc(t) = G(t), solve the algebraic equation (10) for It1(t).

2. Using It1(t) from step 1, solve the differential equation (7) for It2(t).

3. Using It1(t) from step 1, solve the algebraic equation (6) for Ip(t).

4. Using Ip(t) from step 3, solve the differential equation (5) for Ii(t).
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5. Using Ip(t) from step 3, solve the differential equation (8) for In(t).

6. Using Ip(t) from step 3, solve the algebraic equation (3) for E(t).

7. Using E(t) from step 6, solve the differential equation (4) for Ia(t).

8. Combine equations (1) and (2) to give

dS

dt
= −dE

dt
− 1

L
E (15)

and, using E(t) from step 6, solve this differential equation for S(t).

9. Using the results of steps 2, 3, 4, 5, 7 and 8, solve equation (1) for the inferred time-dependent
transmission rate β(t):

β(t) = −N
S

dS

dt
(Ip + hIa + iIi + It1 + jIt2 + In)−1 . (16)

Using the linear relationship between transmission rate and reproductive number for this model,
given by equation (18) in the Appendix, each realization of the inferred β(t) can be converted to
an equivalent time-varying model-inferred reproductive number Rt. Figure 2 shows the results of
this calculation, using 10000 independent draws for the model parameters and for the Gompertz
fitting parameters. This method of estimating a reproductive number is specific to the model,
and the estimates should be understood as applying within the context of the SEIR model only.
Similar to more standard measures for reproductive number, when the model-inferred Rt exceeds
one the number of infections will rise exponentially, while the number of infections decays when
Rt is less than one. Note the very high values of this model-inferred Rt in the early stage of the
epidemic: this is because the SEIR model is not accurate in the early stages of an epidemic, and
the model-inferred Rt values should not be taken as indicative of the true value of the reproductive
number in the early stages. However, as the figures in Section 3 demonstrate, the SEIR approach
yields good fits to the data once the number of cases exceeds approximately 100, and so it can be
used for comparison of possible future scenarios.

3 Scenario analysis

For each set of model parameters, the calibration algorithm detailed in Section 2 yields a time-
varying transmission rate β(t) that is consistent with the Gompertz-fitted data up to the current
date. Forward predictions of the model may then be examined under assumptions about how the
transmission rate (or, equivalently, the reproductive number) may behave in the future.

To numerically solve the differential equations we require initial conditions that are consistent
with the data. Differential equation models for populations are known to be inaccurate when the
number of cases is low, so we aim to match the numerical solution for the cumulative number of
cases Cc(t) to the Gompertz fitting function G(t) at some time t1 > 0 (we choose t1 = 10 days).
We use the following two-step algorithm:

1. Set Ip(0) = ns, S(0) = N − ns and all other variables to be initially zero, with the number
of “seed” cases set to ns = 1. This models a situation where there is exactly one individual
who is pre-symptomatic infected on day 0. Solving the differential equations with this initial
condition gives a solution where the cumulative number of new cases is denoted C̃c(t).
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4

Model-inferred R as function of days from Feb 28th

Figure 2: Model-inferred Rt as described in Section 2. The curve indicates the mean (over 10000
parameter-set selections); shaded regions show the 50% (quantiles 0.25 to 0.75) and 95% (quantiles
0.025 to 0.975) intervals. In this and subsequent figures time is measured in days from February
28th, 2020.

2. We update ns, the expected number of seed cases, to the value ns = G(t1)/C̃c(t1). Since the
system (1)-(10) is very close to being linear (this is because S(t)/N does not vary appreciably
from its initial value of 1), the scaling of the number of seeds causes an equal scaling in the
value Cc(t) of the cumulative number of cases.

Using this updated value for the initial number of seeds ns, we solve the differential equations under
several assumed scenarios by controlling the time-varying transmission rate β(t).

3.1 Scenario 1: R = 1.6 after May 18th

Figure 3 shows results for a scenario where the effective reproductive number Rt is given by the
inversion of the model (as in Fig. 2) up to May 11th, with Rt then assumed to be 0.6 until May
18th. On May 18th, the value of Rt is assumed to increase to 1.6, and to remain at this level for
four weeks, with restrictions being reimposed on June 15th to cause Rt to be held at 0.6 thereafter.

3.2 Scenario 2: R = 1.2 after May 18th

Scenario 2 has Rt changing value at the same dates as Scenario 1, but assumes that the value of Rt
from May 18th to June 15th is 1.2, which gives a slower growth in number of cases than Scenario
1.

3.3 Scenario 2: R = 0.9 after May 18th

In this scenario, the value of Rt from May 18th is assumed to be 0.9. As this number is below 1,
the number of cases continues to decay over time and no reimposition of restrictions is required.
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Figure 3: Scenario 1 assumes R = 1.6 from May 18th, for four weeks, with restrictions reimposed
(assumed to give R = 0.6) from June 15th. Top panel shows confirmed new cases per day; bottom
panel is the number of removed individuals (this includes both deaths and those who recovered from
the virus). The curve indicates the mean (over 10000 parameter-set selections); shaded regions show
the 50% (quantiles 0.25 to 0.75) and 95% (quantiles 0.025 to 0.975) intervals.
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Figure 4: Scenario 2 assumes R = 1.2 from May 18th, for four weeks, with restrictions reimposed
(assumed to give R = 0.6) from June 15th. Top panel shows confirmed new cases per day; bottom
panel is the number of removed individuals (this includes both deaths and those who recovered from
the virus). The curve indicates the mean (over 10000 parameter-set selections); shaded regions show
the 50% (quantiles 0.25 to 0.75) and 95% (quantiles 0.025 to 0.975) intervals.
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Figure 5: Scenario 3 assumes R = 0.9 from May 18th with no reimposition of restrictions. Top
panel shows confirmed new cases per day; bottom panel is the number of removed individuals (this
includes both deaths and those who recovered from the virus). The curve indicates the mean (over
10000 parameter-set selections); shaded regions show the 50% (quantiles 0.25 to 0.75) and 95%
(quantiles 0.025 to 0.975) intervals.
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The uncertainty shown with the quantiles in Figures 3 through 5 is due to the ranges of parame-
ter values as specified in Section 1.1. However, it is important to note that in each case it is assumed
that the reproductive number is exactly as specified in the scenario description. Comparing the
results for the three scenarios, it is clear that the effect of uncertainty in future R values dominates
the uncertainty due to the range of possible values for the other parameters of the model.
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Appendix

To calculate the basic reproductive ratio for the model we follow the approach explained in Sec-
tion 2.2 of [8]. The value of R0 is given by the spectral radius of the next generation matrix,
which can be written as FV −1. Defining the vector of relevant dynamical variables as x =
{E, Ip, Ia, Ii, It1, It2, In}, the matrix F is zero except for its first row, which is (0, β, hβ, iβ, β, jβ, β).
The corresponding matrix V is

1
L 0 0 0 0 0 0

− (1−f)
L

1
C−L 0 0 0 0 0

− f
L 0 1

D 0 0 0 0

0 − q
C−L 0 1

D−C+L 0 0 0

0 − τ
C−L 0 0 1

T 0 0

0 0 0 0 − 1
T

1
D−C+L−T 0

0 − (1−q−τ)
C−L 0 0 0 0 1

D−C+L



. (17)

Calculating the eigenvalues of FV −1 then yields the relationship

R0

β
= (f − 1)((i− 1)q(C − L) + (j − 1)τ(C − L+ T ))+

+D(f(h− iq − jτ + q + τ − 1) + (i− 1)q + (j − 1)τ + 1). (18)

It can prove useful to also consider this formula is terms of contributions from each of the
infected compartments. With a contribution to R0 defined as the fraction of infectives moving
through the compartment multiplied by the average time spend in the compartment multiplied by
the transmission rate for that compartment, the respective contribution from each compartment is
as follows:

• Contribution from Ia is fDhβ.

• Contribution from Ip is (1− f)(C − L)β.
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• Contribution from Ii is (1− f)q(D − C + L)iβ.

• Contribution from It1 is (1− f)τTβ.

• Contribution from It2 is (1− f)τ(D − C + L− T )jβ.

• Contribution from In is (1− f)(1− q − τ)(D − C + L)β.

Summing these contributions gives equation (18).
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