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Abstract—With the rapid development of IoT applications and
multi-access edge computing (MEC) technology, massive amounts
of sensing data can be collected and transmitted to MEC servers
for rapid processing. On the other hand, as the number of
IoT devices grows, the MEC server cannot perform tremendous
computing tasks because of its limited computation capacity.
This paper introduces a vehicle-assisted MEC framework that
leverages vehicles to provide computational services for IoT
devices and overcome this challenge. The problem of latency
minimization was formulated by optimizing the sensing data rate,
offloading decisions, and resource allocation while considering en-
ergy consumption constraints. Nevertheless, achieving the global
optimal solution in polynomial time is challenging because the
formulated problem is mixed-integer nonlinear and non-convex.
This paper provides an efficient algorithm that adopts the block
coordinate descent technique to decompose the original problem
into four subproblems. These subproblems can be solved using
Lagrangian relaxation and the block successive upper-bound
minimization method. The superiority of the proposed approach
in reducing latency compared to baseline schemes is evident from
the simulation results.

Index Terms—Computation offloading, data sensing, edge com-
puting, resource allocation, vehicular network.

I. INTRODUCTION

INTERNET of things (IoT) devices are composed of a large
number of sensors. Their effectiveness is increasing contin-

uously, resulting in a diversity of intelligent IoT applications
(e.g., smart home, autonomous driving, augmented reality, and
healthcare) [1], [2]. This rapid growth has posed numerous
challenges for traditional cloud computing systems regarding
latency, bandwidth limitations, and energy consumption. Nev-
ertheless, IoT devices often have limited computing capacity
and batteries, making running specific applications that need
extensive processing difficult. Traditional cloud computing

This research was partly supported by the MSIT (Ministry of Science
and ICT), Korea, under the ITRC (Information Technology Research Center)
support program (IITP-2023-RS-2023-00258649) supervised by the IITP
(Institute for Information & Communications Technology Planning & Eval-
uation) and the MSIT (Ministry of Science and ICT), Korea, under the
Convergence security core talent training business support program (IITP-
2023-RS-2023-00266615) supervised by the IITP (Institute for Information &
Communications Technology Planning & Evaluation). (Corresponding author:
Eui-Nam Huh.)

Luan N. T. Huynh is with the Institute of Engineering Technology, Thu
Dau Mot University and also with the Department of Computer Science and
Engineering, Kyung Hee University, e-mail: luanhnt@tdmu.edu.vn.

Md. Delowar Hossain and Eui-Nam Huh are with the Department of
Computer Science and Engineering, Kyung Hee University, e-mail: {delowar,
johnhuh}@khu.ac.kr.

Quoc-Viet Pham is with the School of Computer Science and Statistics,
Trinity College Dublin, D02 PN40, Ireland, e-mail: viet.pham@tcd.ie.

Yan Kyaw Tun is with the Department of Electronic Systems, Aalborg
University, A. C. Meyers Vænge 15, 2450 København, e-mail: ykt@es.aau.dk.

models are being augmented with edge computing paradigms,
which bring computational resources closer to the network
edge to meet these requirements. In this context, MEC has
emerged as a promising solution by deploying computational
and storage capabilities at the network periphery, enabling
the execution of time-sensitive applications, and reducing the
burden on the centralized cloud. MEC provides computing
services, enabling the offloading of tasks from IoT devices to
the MEC servers stationed at the network periphery, greatly
relieving the energy limitations of the devices [3], [4].

IoT devices can be used to sense the physical world by
taking advantage of the sensors available [4]. With the rapid
development of various IoT applications, massive amounts
of data are gathered by sensing and transferred to servers
for further processing [5]. Previous research has explored
the integration of data sensing and offloading within MEC
systems. These studies aimed to optimize various aspects, such
as data throughput, average sensing rates, energy consumption,
and data utility in the context of multiuser MEC and crowd
sensing scenarios [6], [7]. Some research has focused on
reducing energy consumption by fine-tuning parameters like
compression ratios, sensing data sizes, and wireless power
allocation [8].

On the other hand, the computational capability of the
MEC server is restricted compared to that of a centralized
cloud. Nevertheless, many devices uploading data to the server
can cause overload and increase latency. Furthermore, the
extensive deployment of MEC servers could result in resource
inefficiency during off-peak times in scenarios where the
number of IoT devices grows substantially in specific places
and times, such as outdoor events. One of the potential solu-
tions for the limited computational capability issue is vehicle-
assisted MEC to extend the edge computing capabilities of
conventional MEC. Vehicle-assisted MEC networks introduce
a unique dimension to the optimization task offloading prob-
lem, leveraging the mobility of vehicles to serve as MEC
servers or relays. Vehicle-assisted MEC is a paradigm where
the underutilized resources of nearby vehicles are harnessed
to assist MEC servers in the execution of offloading tasks
[9]. These networks can enhance the performance of MEC
systems, particularly in highly dynamic and dense urban
environments, using the computational and communication
resources available in vehicles [10]. This solution requires no
additional infrastructure design or significant additional costs.

Nevertheless, prior studies have not specifically addressed
the integration of IoT sensing within the domain of vehicular
networks. The present study introduces an innovative approach
that harnesses the computing power of vehicles to enhance
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MEC capabilities, focusing primarily on IoT devices equipped
with sensors. In contrast to previous studies, the present study
focuses on minimizing latency by optimizing the data sensing
rate, offloading decision, and resource allocation in vehicle-
assisted MEC. In summary, the contributions of this work can
be summarized as follows:

• First, vehicle-assisted edge computing networks were
considered, and a data sensing and offloading scheme was
proposed for this system. The latency of IoT devices was
decreased by mathematically formulating a joint problem
of data sensing rate, offloading fraction, offloading deci-
sion, and resource allocation (i.e., bandwidth allocation)
for latency minimization subject to various resource and
energy consumption constraints.

• Second, as the problem formulated falls into mixed-
integer nonlinear programming (MINLP), which is in-
herently NP-hard, achieving an optimal solution within a
polynomial time frame presents a substantial challenge.
This issue was addressed by developing an efficient algo-
rithm that decomposes the formulated problem into multi-
ple subproblems and solves them through the Lagrangian
relaxation method and the block successive upper-bound
minimization (BSUM) method. The proposed method can
converge to an optimal solution.

• Finally, the simulation outcomes affirm the effectiveness
of the proposed algorithms in converging toward the
final solution. In addition, the results obtained from
the simulations suggest that the introduced algorithms
outperformed the baseline scheme, particularly in terms
of latency reduction.

The subsequent sections of this paper were structured as
outlined below. Section II provides an overview of existing
research on computation offloading and optimization within
MEC networks. Section III outlines the network model and
the formulation of the problem. The proposed algorithms and
optimization strategies are expounded upon in Section IV. The
simulation results and their analysis are detailed in Section
V. Finally, Section VI provides the conclusions and discusses
future research directions.

II. RELATED WORKS

The primary focus of the studies lies in MEC systems,
particularly optimizing computational offloading and resource
allocation. The objective of these studies is to reduce both
completion latency and energy consumption. Ndikumana et al.
[2] examined integrating computing, communication, control,
and caching (4C) in big data MEC systems to mitigate
user latency and optimize the backhaul bandwidth utiliza-
tion. Aghapour et al. [11] introduced an offloading strategy
based on deep reinforcement learning (DRL) to optimize
energy consumption and processing time concurrently. An
intelligent offloading mechanism was introduced based on
a deep deterministic policy gradient (DDPG) scheme for a
multi-user scenario [12]. The system explicitly addresses an
optimization challenge to minimize the total energy con-
sumption for multiple tasks within a multi-user context. This
optimization accounts for factors, such as computing resource

allocation, power split ratio, uplink channel bandwidth, and
task offloading ratio to achieve optimal energy consumption
and delay. Wang et al. [13] focused on minimizing the total
cost by optimizing the computational offloading decisions and
resource allocation regarding the time delay and the charg-
ing aspects. This task was accomplished through optimized
decision-making for offloading and content-caching strategies.
A previous study [14] focused on the computation offloading
and allocation of resource challenges within the NOMA-MEC
system. They proposed the DRL technique to reduce the
overall computational overhead compared to other baseline
methods. Wu et al. [15] proposed an efficient algorithm for
optimizing workload, offloading, and downloading duration.

Some studies combined data sensing and offloading in MEC
systems. Liang et al. [6] studied coordinating offloading, data
sensing, and MEC server computation within a multi-user
system. Their objective was to maximize throughput. The
concept of data sensing has been discussed elsewhere [7],
where the authors optimized the long-term average sensing
rate of the wireless device, considering multiple factors. These
factors include maintaining data queue stability for both the
MEC server and the wireless device, adhering to the average
power restriction of the MEC server, and ensuring the quality
of service (QoS) threshold for the primary link. Another study
[8] introduced the concept of wirelessly powered crowd sens-
ing (WPCS), which combined mobile crowd sensing (MCS)
with wireless power transfer to tackle issues related to battery
life and user incentives. The study focused on optimizing a
multi-user WPCS system to minimize energy consumption
and maximize data utility. This optimization involved fine-
tuning various parameters, including compression ratios, sizes
of sensing data, and wireless power allocation. Zhou et al. [5]
addressed the challenges in MCS by optimizing the sensing
and transmission rates to reduce the energy used within a
single-user MCS system. The proposed approach decomposes
the problem into subproblems and employs efficient algorithms
for optimal solution finding.

The last few years have witnessed several research works
dedicated to resolving vehicle-assisted MEC problems [9],
[10], [16]–[19]. Parked vehicle edge computing (PVEC) was
introduced to address task allocation challenges using the
resources from parked vehicles [9]. The container-based vir-
tualization was integrated with PVEC to achieve flexible
and fine-grained resource utilization, ensuring rapid response,
scalability, and efficiency in task execution on parked vehicles.
Moreover, their approach optimized social welfare for users
and parked vehicles simultaneously. Huang et al. [10] pro-
posed the concept of parked vehicle edge computing (PVEC)
to allocate workloads among parked vehicles and minimize
user costs.

On the other hand, parking edge computing using parked
vehicles to aid edge servers in handling offloaded tasks was
proposed [16]. A task scheduling algorithm that concurrently
decides resource allocation and edge server selection was de-
signed to optimize task offloading performance. Furthermore,
they developed a predictive model based on the random forest
approach to improve the accuracy of output result transmis-
sion. A collaborative approach that combines MEC and cloud
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Fig. 1: Illustration of system model.

computing for computation offloading in vehicular networks
was introduced [18], addressing a cloud-MEC collaborative
computation offloading problem by optimizing decision and
resource allocation. Another study [19] considered scenarios
where users can connect directly to the MEC server or vehicles
for task offloading. The primary aim of this study was to
optimize the overall utility of the system. These papers do
not specifically consider IoT devices equipped with sensors
in the context of vehicular networks. This paper introduced a
novel approach that leverages the computational capabilities
of vehicles to enhance MEC, focusing mainly on IoT devices
with sensors. This study examined the minimization of latency
in vehicle-assisted MEC by optimizing the data sensing rate,
offloading decision, and allocation of resources.

III. NETWORK MODEL AND PROBLEM FORMULATION

A. Network Model

As shown in Fig. 1, this study examined the MEC system
consisting of one base station (BS) installed with an MEC
server, a set K = {1, 2, . . . , k, . . . ,K} as IoT devices, and a
set N = {1, 2, . . . , n, . . . , N} as vehicles. Each IoT device
collects a large amount of sensing data, partially executed
locally and offloaded to the BS for remote processing. Owing
to the constrained computational capability of the MEC server,
the computation task can be transferred from the BS to the
vehicles for task execution. This study focused on sequential
sensing [8], local computing and offloading, and remote com-
puting. The entire procedure was separated into four stages.
This study neglects to download the computational result back
to the IoT devices (i.e., downloading latency and energy) as
the computation result data size is significantly smaller than
that of the input computational data.

B. Task Data Sensing Model

Denoting the sensing data size Dk, the sensing time T sen
k

of the IoT device k can be expressed as follows:

T sen
k =

Dk

sk
. (1)

where the sk data sensing rate of IoT device k [6].

According to the work in [5], the energy consumption on
data sensing for IoT device k can be obtained as

Esen
k = κ(sk)

2Dk(Wk)
2. (2)

where κ is a constant determined by the CPU chip architecture,
established at κ = 5×10−27. Wk is the number of CPU cycles
required for sensing a single bit of data.

C. Local Computation Model

Let αk ∈ [0, Dk] denote the fraction of task sensing data of
IoT device k that is offloaded to the BS. Thus, (Dk − αk) is
the fraction of task sensing data processed locally. The local
computing capability of user k is denoted by f loc

k . The local
processing latency of user n is represented as

T loc
k =

(Dk − αk)Ck

f loc
k

. (3)

where Ck signifies the number of CPU cycles required for
processing a single bit of data. The energy consumption linked
to the local processing of the IoT device k can be calculated
as follows:

Eloc
k = κ(Dk − αk)Ck(f

loc
k )2. (4)

D. Remote Computation Model

Each IoT device can offload a fraction of task sensing
data to the BS. Therefore, it is essential to consider wireless
channel access in the uploading and downlink processes. Thus,
orthogonal frequency-division multiple access (OFDMA) was
used for the proposed system model. The uplink transmission
rate from IoT device k to BS is defined as

R0,ul
k = βkB

ul log2

(
1 +

hkpk
σ2

)
, (5)

where hk represents the channel gain between IoT device k
and BS; pk is the transmission power of IoT device k during
offloading; βk is the proportion of bandwidth allocated to
offloading of IoT devices k; Bul is the total bandwidth for
uplink; σ2 denotes the additive Gaussian white noise (AGWN)
power.

The uplink transmission latency for uploading the task
sensing data of the IoT device k to BS can be defined as

T 0,ul
k =

αk

R0,ul
k

. (6)

Therefore, the energy consumption of IoT device k for of-
floading the data to BS is given as

E0,ul
k = pkT

0,ul
k . (7)

The binary variable xk ∈ {0, 1} was established as a decision
parameter, where xk = 1 if the offloaded sensing task of IoT
device k is processed at the BS and xk = 0, otherwise.

The maximum CPU frequency of the MEC server is given
by fmax. The CPU frequency allocated to handle the offloaded
task of the IoT device k at the MEC server is represented as fk,
i.e., fk, the following constraint when allocating the computing
capacity of the MEC server must be satisfied

∑
i∈K xkfk ≤
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fmax. Based on the proportionate allocation described in [20],
it can be determined as follows:

fk =
Ck∑

i∈K

αk
fmax. (8)

The BS remote execution latency for processing sensing
data of IoT device k is as

T 0,comp
k =

αkCk

fk
. (9)

The latency of the IoT device in completing the execution
of its offloaded computational task at BS can be expressed as

T 0,exe
k = T 0,ul

k + T 0,comp
k . (10)

If the task sensing data is processed by vehicle n, the binary
variable is denoted ynk ∈ {0, 1} as a decision variable, where
ynk = 1 if the offloaded sensing task of IoT device k is
forwarded from BS to the vehicle n and ynk = 0, otherwise.

The downlink transmission rate from BS to vehicle n is

R0→ve
n = Bnlog2

(
1 +

gnqn
σ2

)
, (11)

where qn is the transmit power assigned by the BS for
downlink transmission to the vehicle n, gn is channel gain
between the BS server and vehicle n, and Bn is the bandwidth
between BS and vehicle n. The transmission latency from BS
to vehicle n can be expressed as

Tn,dl
k =

αk

R0→ve
n

. (12)

f ve
n is the computing capacity of the vehicle n, the execution

latency on the vehicle n for processing sensing data of IoT
device k is given as

Tn,comp
k =

αkCk

f ve
n

. (13)

Therefore, when the offloaded task of IoT device k is
calculated at the vehicle n, the total latency can be expressed
as

Tn,exe
k = T 0,ul

k + Tn,dl
k + Tn,comp

k . (14)

E. Problem Formulation

Let s = {sk} be the sensing rate vector, α = {αk} be the
portion of the offloaded sensing task vector, β = {βk} is the
bandwidth resource allocation vector, x = {xk} is a set vector
of the computation decision of BS that indicates whether or
not offloaded sensing task of IoT device k is performed at
BS, and y = {ynk } is a set of tasks offloading decisions of the
vehicles. The objective function aims to minimize the total
latency of IoT devices in the system by optimizing the data
sensing rate, task offloading, and resource allocation problem
as T (s,α,β,x,y) =

∑
k∈K

T k(s,α,β,x,y), where

T k(s,α,x,β,y) = T sen
k + T loc

k + xkT
0,exe
k +

∑
n∈N

ynkT
n,exe
k .

(15)

Thus, the optimization problem is given by

PA : min
s,α,β,x,y

T (s,α,β,x,y) (16a)

subject to
C1: 0 < sk ≤ Smax

k , ∀k ∈ K, (16b)
C2: 0 ≤ αk ≤ Dk, ∀k ∈ K, (16c)

C3:
∑

k∈K
βk ≤ 1, (16d)

C4: βk ∈ [0, 1], ∀k ∈ K, (16e)

C5: Esen
k + Eloc

k + E0,ul
k ≤ Emax

k , ∀k ∈ K, (16f)

C6: xk +
∑

n∈N
ynk = 1, ∀k ∈ K, (16g)

C7: xk ∈ {0, 1}, ∀k ∈ K, (16h)
C8: ynk ∈ {0, 1}, ∀k ∈ K,∀n ∈ N , (16i)

where Smax
k represents the maximum data sensing rate, and

Emax
k is the maximum allowable energy consumption of the

IoT device k. Constraint (16b) ensures that the sensing rate of
IoT devices does not exceed its maximum value. Constraint
(16c) states that the portion of the offloaded sensing task
of an IoT device must be smaller than the entire sensing
data size. Constraints (16d) and (16e) ensure that the total
communication resource, particularly the bandwidth, assigned
to all IoT devices remains within the bounds of the maximum
available bandwidth. Constraint (16f) is the energy consump-
tion requirement of IoT devices. Constraint (16g) ensures that
the offloaded sensing task of an IoT device is processed in one
location at most, i.e., at the BS or the vehicles. Constraints
(16h) and (16i) involve binary decision variables.

IV. SOLUTION APPROACHES

The problem is categorized as an MINLP problem, a type
that is commonly recognized as NP-hard. These computational
difficulties were addressed by decomposing the problem into
four feasible subproblems. In this decomposition, the sub-
problems were transformed into convex problems and were
solved alternately. The optimal solution for each subproblem
can be obtained because of their convex nature. The proposed
approach involves decomposing the problem into four sub-
problems. The proposed solution framework is depicted in Fig.
2.

A. Optimal Data Sensing Rate (ODSR)
The sub-problem data-sensing rate for a given fraction of

offloaded task α, bandwidth allocation β, and computation
offloading decisions x and y is formulated as follows:

P1 : min
s
T (s) (17a)

subject to
0 < sk ≤ Smax

k , ∀k ∈ K, (17b)

Esen
k + Eloc

k + E0,ul
k ≤ Emax

k , ∀k ∈ K, (17c)

The problem in (17) is a convex optimization problem.
Lemma 1: With given values of (α,β,x,y), the first-order

derivatives of T (s) with respect to (w.r.t.) sk are taken as

∂T (s)

∂sk
= −Dk

s2k
,∀k ∈ K. (18)
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The second-order derivatives of T (s) w.r.t. sk are expressed
as

∂2T (s)

∂s2k
=

2Dk

s3k
≻ 0,∀k ∈ K. (19)

Hence, the objective function in equation (17) is convex.
Moreover, the constraints in equation (17) (i.e., C1 and C5)
are linear and convex. Therefore, problem (17) is a convex
optimization problem. Thus, it can be resolved using the dual
problem. The Lagrangian function of problem (17) can be
obtained as

L(s,λ,ν) =
∑

k∈K

Dk

sk
+
∑

k∈K
λk (sk − Smax

k )

+
∑

k∈K
νk

(
Esen

k + Eloc
k + E0,ul

k − Emax
k

)
(20)

where λ ⪰ 0 and ν ⪰ 0 are the vectors of the Lagrangian
multiplier given by constraints C1 and C5. The dual problem
of P1 is expressed as follows:

max min
s
L(s,λ,ν) (21a)

s.t. λ ⪰ 0, ν ⪰ 0.

The sub-gradient method can be used to resolve the dual
problem. The Lagrangian multipliers are updated as

λ
(i+1)
k =

[
λ(i) + µ1 (sk − Smax

k )
]+

, (22)

ν
(i+1)
k =

[
ν(i) + µ2

(
Esen

k + Eloc
k + E0,ul

k − Emax
k

)]+
, (23)

where µ1 and µ2 are positive step sizes. Under the
Karush–Kuhn–Tucker (KKT) conditions, the sensing rate vari-
able s in P1 is updated by solving the following:

∂L
∂sk

= −Dk

s2k
+ λk + 2νkκskDkWk = 0 (24)

Based on the aforementioned study, the optimal data sensing
rate (ODSR) algorithm is provided in Algorithm 1 using a
Lagrangian relaxation method.

Algorithm 1 ODSR algorithm

1: Initialization: i = 0, λk(0) = 0, νk(0) = 0, sk(0) =
0, ϵ > 0, and fixed step sizes µ1 and µ2;

2: repeat
3: Increase the iteration index i = i+ 1;
4: Update Lagrangian multipliers λ(i)k and ν

(i)
k according

to (22) and (23);
5: Update β(i)

k by solving (24);
6: until |s(i)k − s

(i−1)
k | ≤ ϵ;

7: Finally, set s∗k = s
(i)
k as the final solution;

B. Optimal Offloading Fraction (OOF)

The sub-problem offloading fraction for a given data sensing
rate s, bandwidth allocation β, and computation offloading
decisions x and y is formulated as follows:

P2 : min
α

T (α) (25a)

subject to
0 ≤ αk ≤ Dk, ∀k ∈ K, (25b)

Esen
k + Eloc

k + E0,ul
k ≤ Emax

k , ∀k ∈ K. (25c)

The problem in (25) is convex because of the linear objective
function and set constraints. Thus, existing software tools were
used, i.e., CVX package, to solve the problem (25).

C. Optimal Communication Resource Allocation (OCRA)

The sub-problem communication resource allocation for a
given data sensing rate s, fraction of offloaded task α, and
computation offloading decisions x and y is formulated as

P3 : min
β

T (β) (26a)

subject to∑
k∈K

βk ≤ 1, (26b)

βk ∈ [0, 1], ∀k ∈ K, (26c)

Esen
k + Eloc

k + E0,ul
k ≤ Emax

k , ∀k ∈ K, (26d)

Problem in (26) is a convex optimization problem.
Lemma 2: With a given (s,α,x,y), the first-order deriva-

tives of T (β) w.r.t. βk may be represented as

∂T (β)

∂βk
=

−αk

β2
kB

ul log2 (1 + hkpk/σ2)
,∀k ∈ K. (27)

The second-order derivative of T (s) w.r.t. sk is

∂2T (β)

∂β2
k

=
2αk

β3
kB

ul log2 (1 + hkpk/σ2)
,∀k ∈ K. (28)

We can verify that ∂2T (β)/∂β2
k ≻ 0. Hence, the objec-

tive function as depicted in (26) is convex. Furthermore,
the constraints within C3, C4, and C5 are both linear and
convex. Consequently, the optimization problem in (26) can be
classified as convex. Therefore, it can be resolved effectively
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using the dual problem. The Lagrangian function of (26) can
be obtained as follows:

L(β,ψ,ϕ) =
∑

k∈K

αk

βkBul log2 (1 + hkpk/σ2)

+ ψ
(∑

k∈K
βk − 1

)
+
∑

k∈K
ϕk

(
Esen

k + Eloc
k + E0,ul

k − Emax
k

)
(29)

where ψ, and ϕ = {ϕk}k∈K are the non-negative Lagrangian
multiplier given by constraints C3, C4, and C5. The dual
problem of P3 can be expressed as follows:

max min
β

L(β,ψ,ϕ) (30a)

s.t. ψ ≥ 0,ϕ ⪰ 0.

The sub-gradient method can be used to solve the dual
problem. The Lagrangian multipliers are updated as

ψ(j+1) =
[
ψ(j) + ω1

(∑
k∈K

βk − 1
)]+

, (31)

ϕ
(j+1)
k =

[
ϕ
(j)
k + ω2

(
Esen

k + Eloc
k + E0,ul

k − Emax
k

)]+
, (32)

where ω1 and ω2 are positive step sizes. Under the KKT con-
ditions, the optimal solution for bandwidth resource allocation
β in P3 is given as

β∗
k =

√
αk(1 + ϕkpk)

ψBul log2 (1 + hkpk/σ2)
. (33)

Based on the aforementioned study, the optimal communi-
cation resource allocation (OCRA) algorithm is provided in
Algorithm 2 using a Lagrangian relaxation method.

Algorithm 2 OCRA algorithm

1: Initialization: j = 0, β
(0)
k = 0, ψ(0) = 0,ϕ

(0)
k = 0, ϵ > 0,

and fixed step sizes ω1 and ω2;
2: repeat
3: Increase the iteration index j = j + 1;
4: Update Lagrangian multipliers ψ(j) and ϕ(j)k according

to (31) and (32);
5: Update β(j)

k according to (33);
6: until |β(j)

k − βk
(j−1)| ≤ ϵ;

7: Finally, set β∗
k = β

(j)
k as the final solution;

D. Optimal Offloading Decision (OFD)

The sub-problem offloading decision for a given data sens-
ing rate s, fraction of offloaded task α, and bandwidth
allocation β can be expressed as

P4 : min
x,y

T (x,y) (34a)

subject to

xk +
∑
n∈N

ynk = 1, ∀k ∈ K, (34b)

xk ∈ {0, 1}, ∀k ∈ K, (34c)
ynk ∈ {0, 1}, ∀k ∈ K,∀n ∈ N . (34d)

From the optimization problem (34), decision variables are
coupled in (34) and C6. Furthermore, the decision variables
x,y are binary. As a result, (34) is an NP-hard problem. The
integer variable was handled by reformatting the optimization
problem (34) by relaxing the binary variables into continuous
variables and transforming the objective function as follows:

P4 : min
x,y

T (x,y) (35a)

subject to

xk +
∑
n∈N

ynk = 1, ∀k ∈ K, (35b)

xk ∈ [0, 1], ∀k ∈ K, (35c)
ynk ∈ [0, 1], ∀k ∈ K,∀n ∈ N , (35d)

The optimization problem in (35) is difficult to solve because
of the coupling constraints in (35b). Therefore, the BSUM op-
timization approach [21] was applied to solve the optimization
problem in (35). Owing to its benefits, BSUM has been used
to solve various of complex optimization problems for which
it can offer a reliable approximation of the solution [2]. The
optimization problem was expressed succinctly as follows to
make the notation simpler:

min
x∈X ,y∈Y

T (x,y), (36)

where X ≜ {x : xk +
∑

n∈N ynk = 1, ∀k ∈ K, xk ∈
[0, 1], ∀k ∈ K}, and Y ≜ {y : xk +

∑
n∈N ynk = 1, ∀k ∈

K, ynk ∈ [0, 1], ∀k ∈ K,∀n ∈ N} are the feasible sets of
x and y, respectively. The upper-bound proximal function
Ti of the objective function in (36) was identified for each
iteration r, ∀r ∈ Br, where B is the set of indices. A quadratic
penalization was added to the objective function in (36) to
ensure that the proximal upper-bound function Ti is convex,
as follows:

Ti(xi;x
(r),y(r)) = T (xi; x̃, ỹ) +

ρi
2
∥(xi − x̃)∥2, (37)

where ρi > 0 is the positive penalty parameter. The quadratic
penalty term makes the problem in (36) strictly convex. The
variable y can also be included with the approximate function.
In other words, the approximation function returns distinct
minimizer vectors x̃, ỹ with respect to x, and y for each
iteration r, which is regarded as the answer to the preceding
step of (r− 1). The following sub-problems can be solved to
alter the solution for each iteration (t+ 1):

x
(r+1)
i = argmin

xi∈X
Ti(xi;x

(r),y(r)), (38)

y
(r+1)
i = argmin

yi∈Y
Ti(yi;y

(r),x(r+1)). (39)

We suggested BSUM approach can be used to resolve the
sub-problems in (38) and (39). The detail of the BSUM-based
offloading decision algorithm is stated in Algorithm 3.

E. Complexity Analysis

In this section, we analyze the complexity of the proposed
algorithm. We first use the Lagrangian relaxation-based algo-
rithm to solve P1. The Lagrangian multipliers, i.e., λ and ν,
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Algorithm 3 BSUM-based offloading decision algorithm

1: Initialization: Set the iteration index r = 0, find initial
feasible solutions (x(0),y(0)), and ϵ > 0;

2: repeat
3: Increase the iteration index r = r + 1;
4: Select index set Br.
5: Let x(r)

i = argmin
xi∈X

Ti(xi;x
(r−1),d(r−1));

6: Set x(r)
j = x

(r)
j ,∀j /∈ Br;

7: Similarly, solve the problem in (39) to obtain y(r)
i ;

8: until ∥T (r)
i −T (r−1)

i

T (r−1)
i

∥ ≤ ϵ;

9: Finally, set (x(r)
i ,y

(r)
i ) as the final solution;

are updated via the sub-gradient method to find the optimal
data sensing rate in Algorithm 1. Precisely, K sensing rate
prices and K energy prices of IoT devices are updated in each
iteration as expressed in (22) and (23). Thus, the computational
complexity of the sub-gradient method is O(K4) [22]. Then,
to solve convex problem P2, we use the CVX toolkit, in
which the interior point method is implemented. Thus, to solve
the problem with K variables, the computational complexity
of the CVX toolkit is O(K3.5). Furthermore, we use the
Lagrangian relaxation algorithm to find the solution to the
optimal resource allocation problem, as shown in Algorithm
3. Thus, the complexity of Algorithm 3 is O(K2). Addi-
tionally, we use the CVX toolkit to solve the sub-problems
in (38) and (39). As a result, the computational complex-
ity of the BSUM algorithm expressed in Algorithm 3 is
O(K3.5)+O(N3.5K3.5). Therefore, the overall computational
complexity of our proposed optimization framework illustrated
in Fig. 2 is O(Ĵ(K4+K3.5+K2+K3.5+N3.5K3.5)), where
Ĵ is the number of iterations.

V. PERFORMANCE EVALUATION

This section presents the simulation results to examine the
performance of the proposed algorithm and compares it with
other schemes. The benefits of the proposed approach were
compared with three benchmark schemes for decreasing the
total latency of IoT devices. The three benchmark schemes
are described below.

• Local only: In this approach, all IoT devices perform their
sensing tasks locally without any offloading (i.e., αk =
0);

• Uniform offloading: In this approach, resources are
equally allocated for each task by dividing the total
capacity of the bandwidth resource by the number of IoT
devices. Each sensing task is divided equally between
local execution and offloading to the BS;

• MEC only: In this approach, only the BS is used for
offloading. There is no vehicle assistance in the offloading
process, and all sensing tasks are processed locally or at
the BS.

A. Simulation Settings
The simulation parameters were as follows. A system con-

figuration with a BS installed with an MEC server in the

middle of a 200 × 200 m2 area had K = 20 IoT devices and
N = 5 vehicles. The total bandwidth for uplink from the IoT
devices to the BS was Bul = 20 MHz. The available bandwidth
for the vehicle n connection with the BS is Bn = 8 MHz. The
noise power was set to σ2 = −174 dBm/Hz. In this scenario,
the uplink transmit power of each IoT device to transfer the
offloaded sensing task to the BS was fixed at pk = 23 dBm,
and the downlink transmit power of the BS to each vehicle was
set to qn = 30 dBm. For the IoT device, the number of CPU
cycles for sensing and processing one-bit data was distributed
randomly with Wn ∈ [10, 20] cycles and Cn ∈ [30, 40] cycles,
respectively. The sensing data size of the IoT device k was dis-
tributed randomly with Dk ∈ [60, 80] Mb. Furthermore, each
IoT device has a maximum allowable energy consumption
limit set at Emax

k = 5J, and the maximum sensing rate for each
IoT device is sk = 108 bits/s. The local computing capacity
of the IoT devices and vehicles was distributed uniformly by
f loc
n ∈ [0.5, 0.7] GHz and f ve

n ∈ [4, 5] GHz, respectively.
The maximum computing resource of the MEC server was
fmax = 30 GHz.

B. Simulation Results

Fig. 3 illustrates the convergence of the proposed algorithm.
The algorithm converged to the stationary point after a rela-
tively small number of iterations, highlighting its effectiveness
in reaching the final solution. This demonstrates the efficacy
of the proposed approach.
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Proposed Approach

Fig. 3: Convergence of the proposed algorithm.

Fig. 4 shows the total latency versus the quantity of IoT
devices across different strategies. This visual representation
highlights how the augmentation of IoT devices corresponds to
increased latency across all schemes because the relationship
between the total latency of the IoT devices and their quantity
is linear. Nevertheless, the proposed approach achieves the
lowest latency. This is because the proposed approach opti-
mizes the joint problems of sensing rate, offloading decisions,
and resource allocation with the assistance of vehicles to
reduce the computational pressure at the MEC server. The
uniform offloading approach has the highest latency because
the offloaded sensing data and bandwidth resource allocation
are not optimized.

Fig. 5 compares the total energy consumption versus the
number of IoT devices. The proposed approach exhibited the
lowest energy consumption compared to other schemes. The
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Fig. 4: Comparison of the total latency versus the number of IoT devices.

Local only scheme consumes the most energy because the
IoT device needs to utilize it for sensing and computation
tasks. According to Fig. 4 and Fig. 5, the Local only scheme
is beneficial regarding latency but requires the IoT device to
consume more energy.
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Fig. 5: Comparison of the total energy consumption in relation to the quantity
of IoT devices.

The total latency regarding the sensing data size was in-
vestigated. The proposed strategy outperformed the alternative
approaches, as shown in Fig. 6. The total latency of all
approaches increased as the augmentation of sensing data size
increased. Among the various schemes, the uniform offloading
approach exhibited the highest latency. This is because the
sensing data are distributed equally between local execution
and offloading to the base station.

Fig. 7 shows the total latency experienced by IoT devices
in relation to the computational capacity of the MEC server.
In the Local only scheme, the total latency remained constant
regardless of the increasing computational capability of the
MEC server. This consistency arose because all IoT devices
perform their sensing tasks locally. Consequently, augmenting
the capacity of the MEC server does not affect the overall
latency of IoT devices. As the computing capacity of the
MEC increased, the total latency of the three schemes (i.e.,
MEC only, uniform offloading, and the proposed approach)
decreased because of the availability of more computing re-
sources. Fig. 7 shows that the proposed approach outperformed
Local only, uniform offloading, and MEC only.
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Fig. 6: Comparison of the total latency versus the sensing data size.
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Fig. 7: Comparison of the total latency versus computing capacity of the MEC
server.

VI. CONCLUSION

This study examined data sensing and computation of-
floading in a vehicle-assisted MEC system. By leveraging
vehicle resources, the latency of IoT devices was minimized
by optimizing a joint optimization problem that encompasses
sensing rate, offloading decision, partial offloading, and re-
source allocation. An algorithm that ensures convergence to
the optimal solution was introduced to address this chal-
lenge. The simulation results validated the effectiveness of
the proposed solution, which outperformed various benchmark
schemes. Future studies will integrate terrestrial and aerial
communications into the system to enhance its capabilities.
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