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In the search for novel intermetallic ternary alloys, much of the effort goes into performing a large
number of ab-initio calculations covering a wide range of compositions and structures. These are
essential to build a reliable convex hull diagram. While density functional theory (DFT) provides
accurate predictions for many systems, its computational overheads set a throughput limit on the
number of hypothetical phases that can be probed. Here, we demonstrate how an ensemble of
machine-learning spectral neighbor-analysis potentials (SNAPs) can be integrated into a workflow for
the construction of accurate ternary convex hull diagrams, highlighting regions fertile for materials
discovery. Our workflow relies on using available binary-alloy data both to train the SNAP models
and to create prototypes for ternary phases. From the prototype structures, all unique ternary
decorations are created and used to form a pool of candidate compounds. The SNAPs ensemble
is then used to pre-relax the structures and screen the most favourable prototypes, before using
DFT to build the final phase diagram. As constructed, the proposed workflow relies on no extra
first-principles data to train the machine-learning surrogate model and yields a DFT-level accurate
convex hull. We demonstrate its efficacy by investigating the Cu-Ag-Au and Mo-Ta-W ternary
systems.

I. INTRODUCTION

Systematic materials design aims to develop methods
that can help to accelerate the discovery of compounds
with tailor-made properties, fit for certain applications.
The large investment in the area, not least through the
materials genome initiative,1 underpins the importance
of searching for novel compounds to bolster technolog-
ical progress. Atomistic simulations provide a suitable
pathway to achieve this goal, since the search can be
performed systematically, at low cost and with a com-
plete control over structure and composition. Density
functional theory (DFT) calculations are notably used
to predict material properties in silico, such as material
stability or elastic responses. By performing property
predictions across a large range of prototype structures,
in the form of high-throughput studies,2 novel magnetic,3
high-hardness,4 and battery materials5 have been dis-
covered. Extensive databases, grouping large numbers
of such calculations, have been created and are open to
the community. These include AFLOWlib,6 Materials
Project,7 OQMD,8 and NOMAD.9 While such studies
remain faster than experimental investigations, the com-
position and structural spaces to be searched are incred-
ibly large, limiting the scope of application of pure DFT
workflows. Importantly, such a limitation in sampling
capacity becomes increasingly critical as the number of
elements per compound grows, despite the anticipation
that a majority of future compound discoveries would be
highly multi-elemental.10 In order to address this issue
and to harness the data available from existing ab-initio
calculations, machine learning (ML) has proved to be a
very powerful tool, as it typically comes at a fraction of
the DFT computational cost.

The first step in high-throughput computational stud-
ies consists in identifying stable compounds by finding
a stoichiometry and an associated structure that can be

formed. In order to assess the stability of a given struc-
ture, the appropriate convex hull diagram needs to be cal-
culated. The proximity between a compound’s enthalpy
of formation, ∆Hf , and the closest tie-line on the convex
hull serves as a criterion for evaluating its stability. Lower
values indicate a higher likelihood of stability. Threshold
values, typically up to ∼100 meV/atom, are used as sta-
bility cut-offs.11 In order to speed up electronic structure
methods such as DFT, one possibility is to predict this
quantity directly by using ML models, where compounds’
compositional and structural information is encoded and
mapped directly onto ∆Hf . This is otherwise known as
composition prediction, as it is used to identify which
stoichiometries are stable by fixing structural variations.
The ML models typically used include neural networks,
kernel ridge regression and random trees, while the train-
ing data are often taken from OQMD, AFLOWlib or Ma-
terials Project. For instance, models where the feature
vector is only based on compositional information have
been used to predict the stability of compounds form-
ing a set prototype structures (elpasolites, perovskites,
heuslers, etc.), which is fixed for the compounds in the
training set.11–14 Including structural information in the
definition of a model mainly improves the predictions,
if large training datasets (>105 data points) are used.15
Graph convolutional neural networks16–18 have notably
been used to predict convex hull distances accurately
and benefit greatly from structural features.19,20 Note
that these can also be constructed with compositional
information only.21,22 One downside to the inclusion of
structural information in the models is that the optimised
structure is not known prior to the search, so that data
for unrelaxed structures has to be used. This can notably
be corrected by using machine-learning interatomic po-
tentials (MLIAPs), that are capable of performing relax-
ations.

MLIAPs combine atomic fingerprints, representing in-
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dividual atomic environments in the form of feature vec-
tors, with ML algorithms, and effectively map the po-
tential energy surface of a collection of atoms.23 The
last decade has seen an immense expansion of the de-
velopment and application of such potentials.24–29 When
trained using active learning, MLIAPs have most no-
tably been able to extend the length and timescales of
ab-initio molecular dynamic simulations by several orders
of magnitude.30–34 Such potentials have been successfully
applied to predict the energy and forces of alloys,35 and
have been used to accelerate and assist the construction
or further exploration of binary and ternary convex hulls.
Workflows built on these potentials use MLIAPs as sur-
rogate models to first relax and then make energy pre-
dictions on a large library of prototype structures. The
lowest energy structures are then compared to a refer-
ence convex hull obtained from DFT calculations. This
process allows one to improve the reference convex hull
diagram by identifying structures lying below it. The
training of such potentials is crucial for adequate perfor-
mance, and studies insist on using high-energy structures
for the relaxations to be reliable.

Work in this area has broadly been split into two cat-
egories. In the first, specific MLIAPs are trained for a
given system,36–42 typically using active learning. In the
other, MLIAPs are trained on large generic databases,
and are used to scan over many phases.43,44 The former is
more accurate than the latter, but it is not transferable to
other phases. Due to their higher accuracy, phase-specific
MLIAPs can also be regarded as global structure optimis-
ers, in that not only they can be used to identify specific
stable compositions, but they can accurately predict their
structure as well. Many other ML global structure opti-
misers exist, either in the form of novel workflows45–48 or
by inserting MLIAPs into the pre-existing state-of-the-
art global structure optimisers.49–51

In this work, we demonstrate how a MLIAP can be
trained on data readily available on a mainstream repos-
itory, such as AFLOWlib,6 and used to screen a library
of ternary-alloy prototypes constructed from their as-
sociated binary systems. Recently, we have shown52

that an ensemble of spectral neighbor-analysis potential
(SNAPs)26 models, trained on the energy data of the
three binary subsystems associated with a ternary one,
was able to predict the energies of ternary compounds
with a mean absolute error (MAE) of ∼30 meV/atom, as
long as the structures were fully relaxed. This, not only
provides a fast energy-screening tool for ternary com-
pounds, which only requires existing ab-initio data on
binary structures, but it also gives the valuable insight
that chemical environments within binary and ternary
transition-metal alloys are similar. Such observation is
at the heart of the workflow introduced here. A selection
of binary structures, those close to their respective con-
vex hull tie-plane, are selected as templates for ternary
alloys. In a high-throughput set up, these are screened
using an ensemble of SNAP models, trained on binaries.
The lowest-energy compounds are then selected as the

most promising candidates, and their energies are calcu-
lated using high-fidelity DFT. The ternary convex hull is
thus updated.

What makes this workflow different to tailor-made
MLIAPs used for convex hull construction is that all the
data, both for the prototypes generation and for training
the SNAPs, are taken from the relevant binary phases
of the AFLOWlib database.6 In other words, there is
no need to generate any new data for the purpose of
training the MLIAPs. Despite its training database not
being specifically made, either by including important
configurations through physical intuition or through ac-
tive learning, it still has a low enough error on energy
predictions to enable a high-throughput search of novel
alloys. This is because stable binary and ternary phases,
at least for the materials class of transition-metal inter-
metallics investigated here, share similar local atomic en-
vironments. In some sense, the workflow enables an in-
terpolation of the data already available in AFLOWlib,
to scan ternary convex hulls and identify stable composi-
tions. Since only a few high-energy structures and no out-
of-equilibrium configurations are included in the SNAP
training dataset, additional features are introduced in the
workflow to increase the robustness of the predictions.
These include constraints on the SNAP-driven relaxation
(constant volume and the inclusion of a maximum num-
ber of steps), as well as using an ensemble of models.

In this paper, the workflow used to generate novel
ternary compounds is presented. The methodology Sec-
tion II details how ternary prototype structures are built
from their binary counterparts, and how binary com-
pound data from AFLOWlib6 is used to train an ensem-
ble of SNAP26 models. Such SNAPs are used to relax
and screen the ternary prototypes. Then, the results
Section III presents how the workflow is used to find
stable phases for the Cu-Ag-Au and Mo-Ta-W ternary
systems. The so-constructed convex hull diagrams are
subsequently compared with their available AFLOWlib
counterparts, and conclusions are drawn in Section IV.
Finally, Section V presents the computational methods
employed.

II. METHODS

The general methodology of our workflow, schemati-
cally introduced in Figure 1, is here described in detail.
From the AFLOWlib database of binary compounds and
their associated DFT-computed energies, an ensemble of
SNAP models is trained. A subsection of these struc-
tures, the ones with the lowest enthalpy of formation, are
also used as parent structures and form a library of pro-
totypes. Note that here, as is standard practice in many
DFT-based convex hull constructions, a compound’s en-
thalpy of formation is approximated solely by its ground-
state DFT energy. As such, the terms enthalpy and en-
ergy will be considered equivalent throughout the rest of
the manuscript. Candidate ternaries are then created, by
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generating all possible and unique derivative structures
of such prototypes53 at a fixed composition,54 up to a
maximum total number of atoms. These two parts are
then combined, as the ensemble of SNAP models is used
to relax the candidate ternaries. The final energies are
predicted through cross-validation within the ensemble of
models, while the standard deviation of the predictions is
also used to detect and remove geometries for which the
relaxation has failed. The resulting structures with the
lowest energy and standard deviation are selected as the
best candidates (closest to the convex hull). Finally, full
ab-initio relaxation is performed for these. The ternary
system Cu-Ag-Au is used to develop the methodology
and is employed here as an example in each subsection.
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FIG. 1. Diagram of the full stable ternary compounds search
workflow implemented in this work. Data available from the
three binary subsystems associated with a ternary one (box
at the top) is used for two tasks: i) the training of an en-
semble of SNAP models, and ii) the construction of a library
of parent prototype structures. Derivative structures of the
latter are created and all possible ternary decorations of these
are produced. Each of them is then relaxed with the SNAPs
model and the lowest-enthalpy structures are screened.

A. Generating Prototypes

The first step of the workflow consists in creating a
suitable library of ternary prototype materials. The driv-
ing idea of this work is that the local atomic environments
seen in binary intermetallic alloys are similar to those in
the associated ternaries, especially for structures close to
equilibrium.52 In the context of the current work, this
insight leads to choosing the binary structures as proto-
types for the ternaries. More specifically, the bottom of
the three binary convex hulls associated with a ternary
system (in our example Ag-Au, Cu-Ag and Cu-Au for
Cu-Ag-Au) are scanned to select the lowest-enthalpy
compounds. Those within a certain energy range from
the convex hull are then selected. All binary structures
considered here are taken from the AFLOWlib database.6
The threshold energy selected differs depending on the
system at hand, such as to ensure that roughly the same
number of structures are taken from each binary dia-
gram. For instance, in our test system, Cu and Ag are
immiscible.55 Therefore, all binaries have a positive en-
thalpy of formation and lie far from the Cu-Ag tie line
between the two elementary phases (fcc Cu and Ag). As
a consequence, the energy window above the hull for this
binary is larger than that of the other two. The con-
vex hulls of Ag-Au and Cu-Ag are compared in Figure 2
and Table I gives the energy window used as well as the
number of structures selected for each binary system.

TABLE I. Number of structures, Nstruct, selected from each
binary system, X − Y , to construct the ternary prototypes.
Here, we also report the energy window, ∆E, above the con-
vex hull used for the selection.

X − Y Nstruct ∆E (meV)
Ag - Au 24 1.7
Cu - Ag 25 65.4
Cu - Au 25 6.2

Once the prototypes are selected, the constituent
atoms are stripped of their chemical identity and all
structures are compared using the AFLOWlib symmetry
tool56 in order to curate redundancies. This is necessary,
since certain structure types (such as fcc or bcc) may be
present several times in the collected database, but may
be “decorated” in several different ways for different sto-
ichiometries and binaries. All structures are reduced to
their primitive cell at this stage. It is also important to
note that single-element structures are also included in
this analysis. This leads to a library of unique, undec-
orated prototypes, taken from the binary convex hulls.
For the Cu-Ag-Au system, this results in 40 prototypes.
Information on the prototype structures is provided in
Supplementary Table S1 in the Supporting Information.

From this set of prototypes, ternary alloys are gener-
ated. This task is performed at a fixed stoichiometry
and for cells up to a maximum number of atoms, Nmax.
For all the prototypes with a number of atoms compat-
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FIG. 2. Convex hull diagrams of the binary Ag-Au (top) and
Cu-Ag (bottom) binary systems. Each convex hull is defined
by the lower black tie-lines, while the green shadowed regions
up to the higher full lines show the energy windows chosen to
select the binary structures.

ible with the fixed stoichiometry, the set of all unique
derivative structures are created, by following the pro-
cedure introduced in references53,54,57 and by using the
associated open source enumlib code. The initial imple-
mentation of the algorithm begins from a parent lattice
and uses group theory to efficiently enumerate all the
unique ways to occupy the sites of supercells constructed
from that lattice.53 Further modifications of the scheme
allow for the starting structures to be defined by a lattice
and an atomic basis (multi-lattices)57 and for the gener-
ation of derivative geometries at a fixed stoichiometry.54
This completes the first step of the workflow (blocks in
the top right corner of Figure 1) and leads to a set of
unique ternary compounds, inspired by the structures of
the binaries. The energy of these is then screened using
a MLIAP.

B. Ensemble of SNAP Models

MLIAPs typically assume that the total energy, E, of
a N -atom system defined by the coordinates rN can be

written as a sum of atomic energies Ei,

E =

N∑
i=1

Ei . (1)

Such a partition, first proposed by Behler and
Parinello,25 is based on the principle of near-
sightedness.58,59 The MLIAP of choice for this work is
SNAP,26 which has proved to perform well regardless of
the nature of the chemical bond.60 In this model, the to-
tal energy of a compound is written as a sum of linear
combinations of the feature vectors describing the chemi-
cal environments of each atom i of type αi in the system.
SNAP then takes the bispectrum components, Bαi

i , as
feature vectors. The function, ESNAP, that returns the
SNAP-predicted total energy is thus defined as

ESNAP

(
rN

)
=

N∑
i=1

βαi
0 + βαi ·Bαi

i , (2)

where βαi
0 and βαi are the species-dependent linear co-

efficients of the ML model. Further details on this po-
tential can be found in Section V. SNAP’s linear form
allows one to obtain good performance with a small num-
ber of features, 56 per species in our case, and when
trained on small datasets (≤ 103 data points).61 Further-
more, the SNAP hyperparameters are easy to optimise,
since the range of optimal values for Jmax (the maxi-
mum angular momentum of the bispectrum) and rcut
(the cut-off radius) is wide and consistent for accurate
performance.26,35,62 In our experience, the optimisation
of the atomic weights, although generally useful, only
leads to modest improvements.52

As for our previous study, an ensemble of SNAP mod-
els is used to increase the robustness of the predictions.
Furthermore, this provides a means of estimating the pre-
diction uncertainty.52 The ensemble is defined as a set
of K functions,

{
Ek

SNAP

}K

k=1
, where each SNAP model,

Ek
SNAP, is trained differently, and hence has different lin-

ear coefficients. The predicted energy of a new system
with atomic positions, rN , is defined as the mean predic-
tion of the models, Ē, and its uncertainty is estimated
from the standard deviation, σ, of Ē, namely,

Ē
(
rN

)
=

∑K
k=1 E

k
SNAP

(
rN

)
K

, (3)

σ
(
rN

)
=

√∑K
k=1

[
Ek

SNAP (rN )− Ē (rN )
]2

K
. (4)

The training data only consists of binary alloys ob-
tained from the AFLOWlib database. In the case of
the Cu-Ag-Au system, the total energies have been re-
computed for consistency by single-point DFT calcula-
tion (no further relaxation is performed). Differently
from what was done when generating the prototypes,
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here all binaries, no matter their distance from the con-
vex hull, are included in the training dataset. The same
workflow is also used for Mo-Ta-W (the results are de-
scribed in Section III), for which we demonstrate that the
energy values taken directly from AFLOWlib are suitable
for training the SNAP models. The full details on the Cu-
Ag-Au binary subsystems can be found in reference.52

Previously, 10 different SNAP models within the en-
semble were obtained by training on different subsets
of the same size of the binary-alloy database.52 For this
work, 5 models are trained on the full database, but for
each one, a different set of atomic weights for Cu, Ag
and Au are used to compute the bispectrum components.
This difference is motivated by the need to distinguish
compounds with identical site positions in their structure
(e.g. the sites of a bcc supercell), but different atomic
site occupations. If the atomic weights for all species are
identical, for some of these structures, notably the high
symmetry ones, SNAP will predict identical energies for
different compounds. This is illustrated in Figure 3 for
two distinct compounds obtained as bcc derivative struc-
tures with composition Cu1Ag1Au2. Prototypes A and
B only differ by a permutation of the Ag and Cu atoms.
Hence, SNAP models using identical weights for these
two atomic types will fail to predict different energies for
the compounds. Therefore, by construction, in the en-
semble created, the two elements in each pair of atomic
types (e.g. Cu and Ag in Cu-Ag) have different weights
in at least one model.

Before selecting the values for the atomic weights, rcut
and Jmax are optimised manually and independently by
using 10-fold Monte-Carlo cross-validation for fixed iden-
tical weights, {1, 1, 1} and thus find: rcut = 3.5Å and
Jmax = 4. For these values, the optimal atomic weights
are set by performing a grid search, with the same cross-
validation method, and where all three atomic weights
are varied from -5 to 5 in steps of 1 (omitting 0). Within
this search space, the sets of weights used for the SNAP
models in the ensemble are chosen to minimise the cross-
validation root-mean squared error (RMSE). The train-
ing and cross-validation errors for each model of the en-
semble are given in Table II. The ensemble is then used to
predict which of the prototype structures have the lowest
enthalpy.

C. Energy Screening

The final aim of the workflow is to suggest low-energy
ternary structures at a given stoichiometry. Since many
compounds with a large energy spread are screened, the
suggestions made need to be accurate (must include low-
energy structures) and reliable (must not include high-
energy and unphysical systems). While the energy error
of the SNAP surrogate model is low, it is still prone to
making poor predictions on new systems that do not re-
semble the structures seen in training. As a result, the
construction of the workflow highly focuses on the ro-

wCu, wAg, wAu ETop(eV) EBottom(eV)

1 1 1 -25.640 -25.640
1 1 2 -25.879 -25.879
1 2 1 -25.717 -25.676
2 1 1 -26.162 -26.047
3 1 2 -25.640 -25.742

FIG. 3. SNAP performance for two structurally identical pro-
totypes. The upper two panels show two different possible
site occupations for a 3 × 1 × 1 bcc derivative structure with
Cu1Ag1Au2 stoichiometry. Here we show the z-axis view,
with bronze, silver, and gold spheres representing Cu, Ag,
and Au respectively. The table shows the SNAP-predicted
energies for the two prototypes, when the SNAP is trained
with different atomic weights, {wα}, as indicated in the first
column. Note that when the Cu and Ag weights are identi-
cal the two energies coincide by construction. All the crys-
tal structure visualizations are generated with the use of the
Atomic Simulation Environment (ase).63

bustness of the final predictions made. Note that choos-
ing parent prototypes from binary compounds already
increases the reliability of the predictions.

TABLE II. Training and cross-validation (CV) errors for the
5 models, defined by different atomic weights {wα}, of the
ensemble. Here we report the mean absolute error (MAE) and
the root-mean squared error (RMSE). All values are given in
meV/atom.

wCu, wAg, wAu
Training

MAE
Training
RMSE

CV
MAE

CV
RMSE

1 1 2 8.0 13.4 27.1 83.5
1 2 2 8.7 13.5 24.8 64.7
-1 -2 -1 9.7 16.4 30.6 86.4
-1 -2 -2 8.5 13.2 23.5 64.3
-1 -1 -2 7.7 13.1 25.6 75.0

The first step in the energy-screening process consists
in setting the compounds’ unit-cell volume. This is cho-
sen by taking the weighted average of the elemental vol-
umes of the constituent atoms, an approximation that
reproduces the results from ab-initio-relaxed compounds
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quite well, as is illustrated in Figure 4. Then, the volume
and all lattice parameters are kept fixed during any relax-
ation driven by the SNAP models. This is because, while
the training database includes a diverse set of structures,
they are all at equilibrium, namely their forces and stress-
tensor elements are close to zero. Therefore, no configu-
rations are strongly compressed or expanded, a fact that
causes the SNAP models to perform poorly on the pre-
diction of equilibrium volumes and lattice parameters.
The volume is only allowed to change for the final, most
promising, structures selected for the DFT relaxation.

Each of the K SNAP models available is used to drive
an ionic relaxation, with a maximum of Ns steps, for all
of the prototypes, leading to K differently relaxed struc-
tures per prototype. A “cross-validated” energy predic-
tion is given for each relaxed structure. Given a can-
didate obtained by relaxing a prototype with the k-th
SNAP model, the energy prediction is made with K-1
models, namely all SNAPs bar the one used for the re-
laxation of the candidate at hand. The mean and stan-
dard deviation of the energy predictions of the K-1 mod-
els are then saved. For every prototype, one of the K
relaxed structures obtained is selected, namely the one
with lowest “cross-validated” standard deviation. This is
the structure whose final total energy has received the
largest consensus among the SNAP models. Therefore,
there is only one relaxed structure per prototype. This
procedure is illustrated in the flowchart in Figure 1.

The reason why this process is not a single ionic re-
laxation stems from the drive towards robustness of the
predictions. Without the inclusion of the Ns iteration
cutoff, some of the relaxations would lead to structures
that are trapped in unphysical local minima of the poten-
tial energy surface (PES) of the driving SNAP model. By
stopping the relaxation process at a low number of steps
(Ns = 10 in this study), this effect is mostly avoided, as
the structures cannot change too drastically. For the re-
laxations that are accurately driven by SNAP, the largest
drop in energy typically occurs during the first few steps
of the relaxation process. While accurate relaxations are
also cut before convergence, as they are not distinguished
from the inaccurate ones, the final structures are still
lower in energy than the initial prototypes. This reduces
the likelihood of obtaining high-energy structures and the
total run time of the workflow remains modest.

Using “cross-validated” energy predictions of the re-
laxed structures helps to remove the bias of specific
SNAP models. The SNAP driving the relaxation typi-
cally predicts the final structure to have a lower energy
than the initial one, since it moves the geometric config-
uration towards, an (at least) local minimum of its par-
ticular PES. If the relaxation is inaccurate, the resulting
structure will be, in fact, high in energy (as predicted
by DFT). The relaxation-driving SNAP model is, there-
fore, not used for energy predictions. Instead, the other
models of the ensemble are, since they are less likely to
present a bias towards that relaxed structure and there-
fore to predict it being low in energy. Note that since
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FIG. 4. Plot showing the initial unrelaxed volumes, Vunrelax,
and relaxed equilibrium ones, Vrelax, of a set of ternary pro-
totypes at the stoichiometry Cu2Ag1Au1. The unrelaxed vol-
umes are chosen from the volume of the binary associated
with each ternary compound’s structure. The dashed line in-
dicates the mean equilibrium volumes for these compounds,
V̄relax, while the full line shows the volume predicted by the
weighted average of the elemental volumes, Vpred.

the compounds used as training data are the same for
all the K models, they could also lead to biases for the
same structure. This is accounted for by using the “cross-
validated” standard deviation, rather than the mean en-
ergy, to select the “best” structure out of the K relaxed
ones. Indeed, even if several/all SNAP models are biased
towards a particular structure and collectively predict it
to have a low energy, the inaccurate predictions of each
model, will be different. This is because they are inaccu-
rate, extrapolated predictions. It has indeed been shown
that the standard deviation of SNAPs correlates with
the error of the ensemble’s prediction.52 Hence, while the
mean prediction of the ensemble may give a low energy
value, the standard deviation will be large.

Finally the “cross-validated” standard deviation pre-
diction for all structures must be lower than a cut-off
value, σcut, to be considered for the final energy screen-
ing. This typically excludes structures with low SNAP-
predicted energy that DFT returns to be high-energy,
as well as structures with high SNAP-predicted energy.
From the sample of structures selected, the ones with
the lowest “cross-validated” mean energy are chosen and
relaxed with DFT. In this study, 15 structures per stoi-
chiometry are selected through such a process.

In summary, the workflow described creates a set of
prototypes and uses an ensemble of ML potentials to re-
lax and screen the structures, which are most likely to
have low energy. This is done iteratively at fixed stoi-
chiometries. The final selected compounds are then re-
computed with full DFT relaxation. The workflow, there-
fore, allows one to perform all the computationally inten-
sive DFT calculations only on the most promising can-
didates. In the following section, this workflow will be
used to reconstruct the ternary-alloy convex hulls of Cu-
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Ag-Au and Mo-Ta-W.

III. RESULTS

This section, which is separated into two subsections,
presents the key outcomes of our method. Firstly, we ex-
amine the performance of our workflow against the well-
established and extensively studied Cu-Ag-Au phase di-
agram.64 Then, we provide a comparison between our
results and those of one of the better-characterised phase
diagrams available in AFLOWlib, specifically Mo-Ta-W.
By benchmarking the workflow phase diagram predic-
tions to the DFT created ones available in AFLOWlib,
we gain valuable insights into the effectiveness of our ap-
proach.

In order to accurately evaluate the stability of our pre-
dicted prototypes and ensure consistency in our analy-
sis, we have used the QHull65 library to calculate the
convex hulls presented in this work. The stable, ground-
state compounds used to construct the reference convex
hull (a subset of the full database) were downloaded from
AFLOWlib. For both ternary systems studied, in order
to guarantee consistency, we have re-calculated the ener-
gies of these compounds with the Vienna Ab initio Simu-
lation Package (VASP).66 Throughout the entire process,
we have strictly followed the AFLOWlib standards as
outlined in reference,67 with an energy cut-off of 600 eV
to ensure tight convergence. More information regard-
ing the DFT calculations can be found in Section V A. It
should be noted that, for the Mo-Ta-W ternary system,
we directly use the AFLOWlib pre-computed energies for
the training of the SNAPs ensemble. For the Cu-Ag-Au
system, energy data are taken from a previous project,52
where they were re-calculated with VASP.

A. Cu-Ag-Au Ternary Convex Hull

In order to evaluate the performance of our workflow,
it is essential to select a well-studied phase diagram that
meets specific requirements. Another key consideration
is the availability of sufficient data to train an accurate
MLIAP. To facilitate the identification and correction of
any errors during the development of the workflow, it
is also beneficial to choose a relatively simple phase di-
agram. With these criteria in mind, we chose the Cu-
Ag-Au ternary system, a choice further supported by the
fact that the MLIAPs for this phase diagram have already
been optimized and trained in our previous work.52

As a proof of concept, we have focused on the
equiatomic Cu1Ag1Au1 ternary phase as well as phases
with stoichiometric ratios of 2-1-1a and 2-2-1. The rea-

a By this we mean all permutations of a stoichiometric ratio. For
a X-Y -Z ternary system, 2-1-1 refers to three compositions:
X2Y1Z1, X1Y2Z1, and X1Y1Z2.

son for this choice is that data at these stoichiometries
are available in AFLOWlib for comparison. The results
of the workflow are presented in Figure 5 and Table III.
In order to quantitatively assess the stability of the struc-
tures proposed by the workflow, we use, δ, the distance
from the reference convex hull (AFLOWlib). A negative
value indicates that the predicted structure lies below
the calculated convex hull, establishing its stability as
an intermetallic compound. Then, the convex hull needs
to be recalculated and corrected by taking into account
the newly predicted stable structure. In contrast, a pos-
itive distance from the convex hull provides a criterion
for assessing whether the structure is metastable or un-
stable. In Table III values predicted by the workflow
(AFLOWlib) are labelled as δWP (δAFLOW).

FIG. 5. Workflow predictions for the Cu-Ag-Au ternary sys-
tem across different stoichiometries. The graph presents the
different compositions and their corresponding enthalpy of
formation, ∆H f . The blue points are associated with the pre-
dictions from the proposed workflow, whereas the orange ones
represent the lowest-energy AFLOWlib points. The dashed
line (CH) marks the tie-plane position of the convex hull. The
proposed workflow manages to identify one stable intermetal-
lic phase among these, namely Cu1Ag1Au2. Furthermore, it
manages to outperform the AFLOW dictionary method in all
of the presented cases. The unit cell of the newly discovered
crystal structure on the convex hull is presented as well. Here,
Au atoms are in gold, Ag in silver, and Cu in bronze.

The scalability and speed of the algorithm allow us,
in principle, to investigate more regions of the phase di-
agram, in a single study, than a pure DFT phase dia-
gram construction scheme. This is exemplified by using
the proposed workflow to predict structures that are not
in AFLOWlib’s database, namely compounds with 3-1-1
stoichiometry. The results of the benchmark are pre-
sented in Table III, alongside the crystal structure of the
new stable phase, Cu1Ag1Au3, in Figure 6.

Our approach outperforms the AFLOW dictionary
method in all cases, demonstrating a better predictive ca-
pability, which arises from the exploration of a larger pool
of prototypes. Interestingly, the structures predicted by
the proposed workflow are consistently closer to the con-
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TABLE III. Workflow predictions for the Cu-Ag-Au ternary
system with 2-2-1 and 3-1-1 compositions. The stoichiome-
tries and their corresponding distance from the convex hull,
δWP, are presented. For the 2-2-1 compounds, the distance
from the convex hull of the phases available in the AFLOWlib
database, δAFLOW, are also given. Note that for all materi-
als, the distance from the AFLOWlib convex hull tie-plane
is used as reference. A new gold-heavy intermetallic, namely
Cu1Ag1Au3 is predicted as stable (see Fig. 6).

Stoichiometry δAFLOW (meV/atom) δWP (meV/atom)

Cu2Ag2Au1 208.95 25.99
Cu2Ag1Au2 205.69 37.45
Cu1Ag2Au2 90.27 17.21
Cu3Ag1Au1 – 20.35
Cu1Ag3Au1 – 31.05
Cu1Ag1Au3 – -0.02

FIG. 6. The unit cell of the crystal structure found on the
convex hull at the composition Cu1Ag1Au3 is presented in
both a top-view with respect to the z-axis (left), a side-view
along the x-axis (middle) and a tilted view (right). In this
structure, Au atoms are colored in gold, Ag atoms in silver,
and Cu atoms in bronze.

vex hull than those predicted by the AFLOW dictionary
method. This is to be expected, since the workflow effec-
tively selects the relevant structures for creating the pool
of ternary candidates. Furthermore, our model consis-
tently predicts structures with negative or almost neg-
ative (< 10 meV/atom) enthalpy of formation, a fact
that gives us confidence in the reliability of the pre-
dicted structures. Notably, we have been able to identify
two new gold-heavy stable phases, namely Cu1Ag1Au2

and Cu1Ag1Au3. This indicates that stable intermetallic
phases may exist on the gold side of the phase diagram.
We have confidence in our prediction, given the fact that
the dictionary method structure for Cu1Ag1Au2 is within
3 meV/atom of the convex hull, suggesting the possibility
of the existence of a stable phase. This is consistent with
the formation of the solid solutions in the gold-rich re-
gion of the experimental phase diagram.64 The rest of the
structures are considered to be potentially metastable,
with an average distance from the convex hull of around

30 meV/atom.68 Overall, our analysis demonstrates the
ability of the workflow introduced here to predict struc-
tures closer to the convex hull than those from the state-
of-the-art dictionary method and possibly uncover novel
phases, should these exist.

B. Mo-Ta-W ternary convex hull

As a second benchmark, we wish to explore a phase di-
agram that exhibits a variety of stable phases. Thus, the
main criterion for our selection, among all the possible
transition-metal ternary combinations, is the total num-
ber of stable compounds. The Mo-Ta-W ternary system
emerged as a good candidate, based on a search run with
the AFLOW REST-API.69 In fact, it exhibits the highest
number of stable ternary phases of the entire database of
transition metal alloys. In order to compare our proposed
workflow with the dictionary method, we have made pre-
dictions corresponding to the same stoichiometries pre-
sented in the previous section. Furthermore, we have
used our method to explore areas of the phase diagram
poorly covered in AFLOWlib.

We now perform a similar analysis as that described
in the previous section. The structure prototypes used
for the element decoration are extracted from those of the
binaries closest to their respective convex hulls. Informa-
tion on the prototype structures is provided in Supple-
mentary Table S2 in the Supporting Information. Then,
an ensemble of ML models relax the created structures
and order them based on their predicted energy. A set
of 15 structures for each stoichiometry, corresponding to
those with the lowest predicted energies, is sampled and
proceeds to the next stage. The latter consists in per-
forming a DFT relaxation and a static calculation for
each one of these predictions. A significant difference
with respect to the Cu-Ag-Au system is that we now use
AFLOWlib’s database to train the models without fur-
ther re-calculation. The AFLOW REST-API is used to
download the energies and the crystal structures for the
three binary convex hulls (Mo-W, Ta-W, and Mo-Ta).
The models are trained as explained in the Methods sec-
tion (see Section II). Recycling data already available on
AFLOWlib allows us to avoid about 1,500 DFT relax-
ation calculations, some of them for cells up to 46 atoms,
just for the training of the model.

The results for the 1-1-1 and 2-1-1 compositions, those
with stable phases in AFLOWlib, are presented first in
Figure 7. In this case as well we predict a new stable
intermetallic phase, Mo1Ta2W1. However, this time our
workflow does not consistently outperform the dictionary
method. In fact, for two out of the four stoichiometries
investigated in Figure 7, we obtain compounds with en-
ergies similar to the ones already present in AFLOWlib,
while for one, Mo2Ta1W1, our search delivers a com-
pound with a higher energy. Interestingly, in this last
case our newly found structure and the original one, con-
tained in AFLOWlib, belong to different space groups.
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FIG. 7. Workflow predictions for the Mo-Ta-W ternary sys-
tem across different stoichiometries, 1-1-1 and 2-1-1. The
graph presents the different compositions and their corre-
sponding enthalpy of formation, ∆H f . The blue points are
associated with the predictions from the proposed work-
flow, whereas the orange ones represent the lowest-energy
AFLOWlib data. The dashed line marks the tie-plane posi-
tion of the convex hull (CH). The proposed workflow has man-
aged to identify one previously unknown intermetallic phase,
namely Mo1Ta2W1, whose unit cell is shown as an inset. Here
Mo atoms are in purple, Ta in gold, and W in silver.

The AFLOW-predicted one has space group 107 (tetrag-
onal), while our scheme finds a low-symmetry monoclinic
crystal structure with space group 9. The final geome-
tries are not equivalent as determined by the AFLOW-
SYM tool.56 Nevertheless, the compound discovered with
the workflow only has an enthalpy of formation 14.91
meV/atom higher than the AFLOWlib compound.

As a force-field based approach, our workflow gets bet-
ter when the MLIAP improves. In this case, we have
extracted the data used to train the SNAPs from the
AFLOWlib repository, a detail that led to a less ac-
curate force-field than the one used for the Cu-Ag-Au
system. In fact, minor inconsistencies in the energy
data, due to unconverged results, may generate errors
in the force-field.70,71 That being understood, we have
still demonstrated that new phases can be predicted by
an almost DFT-free workflow, since our initial data for
model training are readily available in the AFLOWlib
database. The workflow systematically assesses a wide
range of compositions and potential compounds. Specifi-
cally, it involves the evaluation of 331,734 ternaries based
on their calculated SNAPs energies. Following this, the
15 lowest-enthalpy structures, for each stoichiometry, un-
dergo relaxation with DFT. Interestingly, the DFT anal-
ysis reveals that, on average, the most stable compound
ranks 7th among the suggested options. Additionally,
the ab-initio computations are shortened since all com-
pounds move closer to their equilibrium geometry after
the SNAP-guided relaxation, in contrast to their fully
unrelaxed counterparts.

Perhaps a more accurate force-field would also be able

to find the AFLOWlib minimum for Mo2Ta1W1 (see
Fig. 7). Nevertheless, our workflow is already able to
identify the majority of the structures close to the con-
vex hull. It should also be noted that this is the phase
diagram for which AFLOWlib’s dictionary method works
best, as it is able to detect four intermetallic phases, more
than for any other transition metal alloy phase diagram.

Then, we move to analyse stoichiometries poorly ex-
plored in AFLOWlib, namely 2-2-1 and 4-1-1. In Ta-
ble IV we provide a comparison of the distance from the
convex hull for the structures predicted with our method,
δWP, and the ones from AFLOWlib, δAFLOW. For these
compositions, the AFLOWlib compounds are unstable as
they all have a positive enthalpy of formation. In con-
trast, those found by our workflow all have a negative
enthalpy of formation and are found near or at the con-
vex hull. These results provide a comparison between
our method and AFLOWlib for structures predicted as
unstable by the latter.

TABLE IV. Workflow predictions for the Mo-Ta-W ternary
system with 2-2-1 and 4-1-1 compositions. The stoichiome-
tries and their corresponding distance from the convex hull, δ,
are presented (δWP is for compounds generated by our work-
flow, while δAFLOW is for the AFLOWlib compounds). Three
intermetallic phases are predicted as stable and two others
metastable. Surprisingly, our algorithm is able to find struc-
tures with an energy of up to 1 eV/atom lower than those
identified by the dictionary method of AFLOWlib.

Stoichiometry δAFLOW(meV/atom) δWP(meV/atom)

Mo2Ta2W1 880.90 0.00
Mo1Ta2W2 962.84 0.00
Mo2Ta1W2 1032.50 8.50
Mo4Ta1W1 320.95 46.56
Mo1Ta4W1 516.30 3.25
Mo1Ta1W4 334.16 0.00

The ability of our workflow to consistently predict
structures that (i) are close to the convex hull and (ii)
have a negative enthalpy of formation is thus demon-
strated. The former point means that we have an ef-
fective algorithm to use for structure search in regions
of interest. The latter validates our physical intuition
behind the assumption that the crystal structures of
the binary alloys close to the convex hull can be used
as a template for atomic decoration in the search for
ternary phases. This approach has allowed us to iden-
tify three new intermetallic compounds (see Table IV),
namely Mo2Ta2W1, Mo1Ta2W2, and Mo1Ta1W4. Such
positive results demonstrate the value of the enhanced
freedom in the structure search provided by our algo-
rithm with respect to dictionary methods.

Finally, following the same spirit as for the analysis of
the Cu-Ag-Au system, we now turn our attention to pre-
viously unexplored areas of the ternary convex hull. Our
results for the Mo1Ta2W3 and 3-1-1 compositions are
shown in Figure 8. As one can observe, together with
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FIG. 8. Workflow predictions (blue points) of the enthalpy
of formation for the Mo-Ta-W ternary system across the
Mo1Ta2W3 and 3-1-1 compositions. The enthalpy of forma-
tion for each composition at the appropriate convex hull tie-
plane (CH) is shown as a dashed line. The unit cell of the
crystal structures found on the convex hull are presented as
well. Here, Mo atoms are in purple, Ta in gold, and W in
silver. Two new intermetallics alloys have been identified,
namely Mo1Ta2W3 and Mo1Ta3W1.

structures away from the tie-plane, we also find two new
stable compounds, namely Mo1Ta2W3 and Mo1Ta3W1.
Such new phases, together with the low-energy ones pre-
viously discussed, call for a modification of the ternary
convex hull that exists in AFLOWlib. The new dia-
gram is presented in the top panel of Figure 9. In or-
der to facilitate the comparison, the lower panel of the
same figure shows the difference between the AFLOW-
and our workflow-predicted convex hulls (positive values
mean that our predicted convex hull is lower in energy
than the original AFLOWlib one).

The new convex hull returns a picture, where most
of the stable ternary structures identified belong to the
Ta-W heavy area, and only one intermetallic alloy ex-
ists in the Mo-rich region of the compositional space.
The latter is the compound found on AFLOWlib. In-
terestingly, the new phases predicted by our workflow
undercut Mo1Ta1W1, Mo1Ta2W1 and Mo1Ta1W2, the
other intermetallic alloys initially predicted as stable by
AFLOWlib. These are now respectively, 2.59, 10.95 and
1.31 meV/atom, above their associated tie-planes and
have to be considered metastable. Experimentally, there
is evidence that the Mo-Ta-W system forms a ternary
solid solution72 at finite temperature across the entire
phase diagram. It should be noted that the Mo-Ta bi-
nary space is far better sampled by AFLOWlib than the
Ta-W and Mo-W ones. This could imply that it is more
difficult to reach the convex hull close to such a facet of
the diagram. In contrast, the Mo-W system only dis-
plays small enthalpies of formation for the stable binary
phases, implying that both Mo and W form more stable
phases with Ta than amongst themselves. These two rea-
sons could explain why it is more difficult to find stable

FIG. 9. Workflow-computed convex hull for the Mo-Ta-W
system (upper panel). The color heat map corresponds to the
calculated enthalpy of formation at a given stoichiometry. In
the lower panel, we present the difference between the con-
vex hull of AFLOWlib (reference) and that computed by our
workflow. Black crosses for the ternary region symbolize the
newly predicted intermetallic phases, and the red cross de-
notes the only stable intermetallic originally predicted by the
AFLOW dictionary method.

intermetallic phases in the Mo-rich part of the composi-
tion space.

In summary, the workflow developed provides a com-
prehensive scan across the ternary composition space,
enabling the construction of a convex hull with DFT-
accuracy and identifying areas prone to alloy stability
through the discovery of new hull points. This is accom-
plished by screening of the order of 105 candidate com-
pounds with the SNAPs ensemble. In the case of the Cu-
Ag-Au test system, two stable Au-rich compounds are
found, which are not present on the AFLOWlib convex
hull. The new Cu1Ag1Au2 (Figure 5) and Cu1Ag1Au3

(Figure 6) ternaries’ structures have space groups 123
and 63 respectively. They respectively resemble dis-
torted bcc and hcp structures. The workflow hence high-
lights the region in which Cu-Ag-Au alloys are likely to
form. The experimental structures for these phases are
fcc solid-state solutions.64,73,74 For the Mo-Ta-W sys-
tem, six novel compounds are identified, undercutting
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three of the AFLOWlib compounds, leaving only the
Mo2Ta1W1 intermetallic to lie on the convex hull. Ex-
perimentally, bcc solid-state solutions form across the
full compositional range.72 One of the phases discovered,
Mo1Ta1W4, possesses a tetragonally distorted bcc struc-
ture, while the others have space groups 74 (Mo1Ta2W1),
12 (Mo1Ta2W2 and Mo1Ta3W1), and 38 (Mo1Ta2Ta3
and Mo2Ta2W1). The results found here suggest that at
low temperatures the Mo-rich corner is dominated by an
intermetallic phase, Mo2Ta1W1. However, the regions
with lower Mo concentrations form many more differ-
ent intermetallics that lie close to each other in energy.
This region is thus more susceptible to forming solid-state
phases at finite temperatures. The convex hulls obtained
with this workflow suggest promising regions of material
stability, notably in the form solid-state solutions for the
two systems studied. This could help guide experimen-
tal studies in the synthesis of stable ternary alloys. Our
strategy resembles the MatLearn75 approach in spirit,
but is a more accurate method as it provides DFT-level
convex hulls. This is illustrated by the fact that no novel
ternary phases are predicted by MatLearn for Cu-Ag-
Au and Mo-Ta-W, and for the former, the only ‘known’
phase (from DFT) is in the Cu-rich region, which differs
from the experimental phase diagram.

IV. CONCLUSION

We have developed a workflow that predicts the crys-
tal structure and assesses the stability of ternary com-
pounds of a particular stoichiometry. A library of proto-
type structures is formed from the lowest-enthalpy alloys
of the associated binary subsystems. From this database,
derivative ternary structures are generated by site deco-
ration. Then, an ensemble of SNAP force-fields is used
to select the most promising structures among them, by-
passing the majority of the ab-initio calculations. There-
fore, the proposed workflow highly increases the through-
put in the search for stable ternary compounds without
compromising the quality of the predictions. This is used
here to map the ternary convex hull of transition-metal
alloys. The crucial aspect of the proposed scheme is that
both the training of the force-fields and the creation of
the prototype ternary structures are based solely on the
knowledge of the binary phases. As such, no additional
DFT calculations are required, since both the structures
and their corresponding energies are readily available on
the AFLOWlib database. Employing ab-initio calcula-
tions solely in the final stage of the workflow and focusing
them on the most promising candidates, allows us to per-
form a comprehensive exploration of the phase diagram
of a ternary system with only a few hundred DFT cal-
culations. This enables us to map previously unexplored
portions of the ternary space and to identify regions of
interest, thus driving the discovery of novel compounds.

We have demonstrated that the proposed workflow
is able to predict crystal structures with negative en-

thalpy of formation and effectively identify the stable in-
termetallics, should they exist. In particular, we have
used the Cu-Ag-Au and Mo-Ta-W ternary systems as an
example. In the first case, we have predicted several new
phases that, although not all thermodynamically stable,
have an enthalpy of formation lower than those found
by the AFLOW dictionary method. In addition, we have
identified an Au-rich composition region, where stable in-
termetallic phases are expected, in accordance with the
location of solid solutions in the experimental phase dia-
gram.64 Interestingly, in the case of Mo-Ta-W, one of the
ternary systems with the largest number of stable inter-
metallics in AFLOWlib, our method is capable of identi-
fying a plethora of new phases, resulting in the correction
of the original DFT-calculated convex hull proposed by
AFLOW.

In summary, we have developed a novel way to inte-
grate machine learning to accelerate a DFT workflow.
Although the ML model introduced here does not per-
form as well as force-fields with tailor-made databases,
its construction requires no new DFT calculations and
simply recycles pre-existing results, already present on
large-scale databases. This represents an example of how
machine-learning interatomic potentials can be seam-
lessly integrated into a materials design pipeline without
the need to generate ad hoc large training sets.

V. COMPUTATIONAL METHODS

The details of the computational methods are pre-
sented in this section. The parameters used for the DFT
calculations run with VASP66 are first discussed. A brief
presentation of the SNAP26 is then given, along with de-
tails of the implementations used for the current work.

A. DFT Calculations

All DFT calculations are performed using the Vienna
Ab initio Simulation Package (VASP),66 version 5.4.4.
Projector augmented wave (PAW) pseudopotentials are
used for each element together with the Perdew-Burke-
Ernzerhof (PBE) functional.76 A plane wave cutoff of
600 eV is used for all calculations. The energy conver-
gence criterion for each self-consistent cycle is of 10−4 eV.
Full atomic relaxations are performed (update of atomic
positions, cell volume and lattice parameters) with a
stopping criterion on the forces of 10−3 eV/Å. A Fermi-
Dirac smearing of 0.2 eV is chosen for all calculations.

For the k-point sampling, a Gamma-centered mesh is
employed for all calculations. The density of the mesh
and the spacing between k-points is chosen based on
AFLOWlib’s convergence criteria.67 The mesh is system-
specific and determined from the NKPPRA (number of
k-points per reciprocal atom). The number of sampling
points along each direction is proportional to the norm
of the corresponding reciprocal lattice vector. The total



12

number of sampling points per reciprocal atom is then
minimised and NKPPRA is used as a lower bound. Values
of 10 × 103 and 6 × 103 are used for static calculations
and relaxations respectively.

B. Spectral Analysis Neighbor Potential

The Spectral Analysis Neighbor Potential (SNAP)26
is used as an energy predictor. As described in Sec-
tion II B, an ensemble of models is employed for predic-
tions. Equation (2) defines the expression of the function,
ESNAP, and combined with Equation (1), gives the en-
ergy of a system with N atoms. The atomic fingerprints
that define the chemical environments of each atom i in
the system, belonging to species αi, are the bispectrum
components.23 These are used to represent configurations
instead of seemingly more obvious choices (e.g. atomic
Cartesian coordinates), as they are invariant upon ro-
tation and permutations of identical atoms. Note that
invariance with respect to translations is guaranteed by
Eq. (1). For each atom, the vector Bαi

i , which collects
the first components up to a maximum index, is taken as
a feature for the machine-learning model (ridge regres-
sion in the case of SNAP). A short description of the
bispectrum components is given below.

The neighborhood of an atom i atom can be described
by a density function, ρi, centered at that atom with
delta functions at the sites of surrounding atoms, within
a sphere of radius rcut. It is defined in three dimensions
as

ρi (r) = δ (r− ri) +
∑
j

wαjδ (r− rj) fc (rij) , (5)

where the sum is over all atoms within rcut from the
central atom. Here, ri is the position of atom i, rij =
|ri − rj |, wαj is the specie-specific weight of atom j and
fc is a cut-off function that smoothly runs to zero as rij
approaches rcut, as defined in reference.25 In order to rep-
resent this density distribution as a vector, it is expanded
in a suitable basis. Atomic positions are first mapped
onto the 4D sphere, by switching to polar coordinates
(θ, ϕ, r) and by defining a third polar angle, θ0, from the
radial coordinate (see reference23 for details). The den-
sity function is then expanded in terms of hyperspherical
harmonics UJ

m′,m, the natural basis for expansion on the
4D sphere. Dropping the atomic index, ρ is written as

ρ (r) =

∞∑
J=0

J∑
m,m′=−J

cJm′,mUJ
m′,m (θ, ϕ, θ0) . (6)

The hyperspherical harmonic index, J , runs in half-
integer steps, while m and m′ run between −J and J in
integer steps. The outer sum is truncated in practice at a
value Jmax, treated as a hyperparameter. The expansion
coefficients, cJm′,m, cannot be used as descriptors, since
they are complex and are not invariant under system ro-
tation. From them, however, the rotationally-invariant

and real-valued bispectrum components BJ,J1,J2
are con-

structed

BJ,J1,J2
=

J1∑
m′

1,m1=−J1

cJ1

m′
1,m1

J2∑
m′

2,m2=−J2

cJ2

m′
2,m2

×
J∑

m′,m=−J

CJ,J1,J2
mm1m2

CJ,J1,J2

m′m′
1m

′
2

(
cJm′,m

)∗
.

(7)

Here, CJ,J1,J2
mm1m2

and CJ,J1,J2

m′m′
1m

′
2

are the Clebsch-Gordan co-
efficients, which possess the same symmetry invariances
as the system. After taking the non-zero and unique dis-
tinct components, the bispectrum vector is formed, de-
noted Bαi

i , with atomic and specie indices. The bispec-
trum components are a highly non-linear representation
of the local atomic coordinates and account for up to
four-body interactions. Their complexity is what makes
it possible for them to be effectively used together with
a simple regressor in SNAP to accurately map structures
to energies.

The fitting, testing and predictions of the SNAP mod-
els used are performed using an in-house python li-
brary built with scikit-learn77 and the Atomic Simula-
tion Environment (ase63) python libraries. The bispec-
trum components are computed using LAMMPS.78 The
pipeline is built in python to perform the API download
of binary structures and energies from the AFLOWlib79

database and to generate derivative structures from the
prototypes using enumlib.53 DFT calculations are man-
aged by using a combination of ase63 and pymatgen.80

DATA AND SOFTWARE AVAILABILITY

Data associated with this project, including the
AFLOWlib AUIDs for the training data, the AFLOWlib
labels of the structures used as prototypes, the parame-
ters of the SNAP models and the lowest values of the en-
thalpy of formation found at each composition are avail-
able on the Github repository (https://github.com/
HugoRossignol/Workflow_Ternary_ConvexHull).
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