
Towards a Generic Architecture for Mobile
Object-Oriented Applications

Mads Haahr, Raymond Cunningham and Vinny Cahill
Distributed Systems Group

Department of Computer Science
University of Dublin, Trinity College

Dublin 2, Ireland

{Mads.Haahr,Raymond.Cunningham,Vinny.Cahill}~cs.tcd.ie

Alxtrucr-Our previous work in mobility support for CORBA appli-
cations resulted in the design and implementation of the Architecture for
Location-Independent CORBA Environments (ALICE). The first ver-
sion of A L I C E enabled CORBA objects running on mobile devices to
interact transparently with objects hosted by off-the-shelf CORBA im-
plementations without relying on a centralised location register to keep
track of their whereabouts. This paper presents the second version of
A L I C E on which work is currently ongoing. The improved architecture
retains the features of theoriginal and addssupport for disconnected op-
eration in the form of caching of server functionality on the client side.
Furthermore, the architecture is being generalised beyond CORBA in
order to make it applicable to other distribution infrastructures, such as
Java RMI and DCOM.

K~,~,r,orff..r-Mobile Computing, Middleware, CORBA.

I. INTRODUCTION

ALICE is an architectural framework that provides mobil-
ity support for a certain suite of clientlserver application-level
protocols whose characteristics are explained in section I-B.
ALICE enables implementations of such protocols to provide
their own support for mobile clients, servers (including ad-
dress translation and location management) and disconnected
operation (including replication and caching of server func-
tionality). In addition, ALICE includes connectivity manage-
ment features to address the difficult network characteristics
of wireless networks. Developers use the ALICE framework
by writing a series of software modules to interface with a
set of core ALICE modules. This paper describes the over-
all architecture and the core modules independently of any
particular application-level protocol.

A. Mobility Challenges

Our previous work [5] identified three areas where opera-
tion in mobile environments poses a challenge compared to
traditional (wired, fixed) environments:
DeviceLimitarions of the mobile host itself in the form of
limited processing power, battery life, memory restrictions,
etc. These limitations require software for mobile hosts to
use as few resources as possible.
Network Characteristics of mobile hosts are generally di-
verse and varying compared to those of fixed hosts. Even

0-7803-7133-X/OO/$10.00 0 2000 IEEE

small mobile devices (such as handheld PCs) typically have
at least two (and typically more) communications interfaces
that are not only connected to various physical endpoints at
various points in time but also vary dramatically with regards
to latency, bandwidth, reliability and usage cost.
Physical Host Mobility causes connection endpoints to wired
networks to change frequently. In the case of mobile servers
this can cause server references held by clients to become ob-
solete rapidly.

In general, addressing the latter two issues (by increasing
mobility support) is likely to increase the footprint on the mo-
bile host, and there is likely to always be a trade-off involved.
The approach taken in ALICE has been to solve these two in
separate protocol layers while keeping the footprint as small
as possible. For example, effort has been made to allow as
much functionality as possible to be placed in the fixed net-
work rather than on the mobile host.

B. Protocol Requirements

framework, it must support certain features:
1. The protocol must be clientlserver oriented.
2. The underlying transport must be TCP/IP.
3. A server reference needs to contain several endpoints at
which the server can be found. Clients should try endpoints
in order.
4. It must be possible to store some extra information in a
server reference.
5. Forwarding of client requests towards a different server
location must be possible.

An example of such a protocol is the CORBA Internet
Inter-Orb Protocol (IIOP) with which the first version of AL-
ICE [5] was tested. Work is currently ongoing on supporting
Java RMI and DCOM in a similar fashion.

For an application-level protocol to fit into the ALICE

C. Mobility Model

The model for communications used in the ALICE frame-
work is that mobile hosts connect to remote hosts via medi-
ators, or base stations, called mobility gateways, as shown in

91

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 4, 2009 at 08:10 from IEEE Xplore. Restrictions apply.

Mobile
Host - Mobility

: Connection

I Host I
\\

n
. \ \ -

/ I
LEGEND:

Wired connection
Wireless connection
Old Connection

Fig. 1. The ALICE Mobility Model

figure I . (Hence, we are not talking about ad-hoc type com-
muncation between mobile devices.) The terminology is as
follows:
MH Mobile Host. A device that moves between mobility
gateways and is disconnected while in transit. A MH can
hold programs that act as servers as well as clients.
MG Mobility Gateway. A fixed computer that acts as a base
station for MHs. It has at least one interface through which
a MH can connect in addition to a wired network connection
to a LAN or the Internet.
RH Remote Host. A computer with which the MH commu-
nicates via the MG as mediator. A RH can contain client as
well as server programs. It can be a fixed host or a mobile
host. In the latter case, it is assumed to communicate via a
MG .

This i s the general ALICE mobility model. It may some-
times be preferable to connect a MH directly to the network
rather than go through a mediator. In such situations, the MH
can act as its own MG.

a downcall API through which invocations from upper lay-
ers are received. If a layer receives upcalls (or callbacks)
from layers below it, the layer also has an upcall API through
which this happens. If a layer is runtime configurable (as
some of the ALICE layers are), it has an additional tuning
API for thi!j purpose.

The notation used for describing the interaction between
the ALICE layers is an extension of the traditional protocol
stack notation, where the layers are placed on top of each
other and communcation takes place vertically between adja-
cent layers. The notational extensions to this model include
adding edges onto the protocol boxes to illustrate the three
types of APIs. This is shown in figure 2 where two layers,
each having all three types of APIs, interact.

, Downcall API
'Tuning API

Protocol Layer

11. ALICE OVERVIEW

This section gives an overview of ALICE by first explain-
ing non-standard notation and terminology used to describe
the architecture and then presenting the architecture itself.
ALICE consists of three basic pieces of functionality which
are briefly introduced as part of the overview and treated in
more detail in sections I11 to V.

A. API Notation and Terminology

Each of the ALICE layers has up to three different APIs:
the downcall, upcall and tuning APIs. If a layer performs
services for layers above it in the protocol stack, it will have

Protocol Layer

Upcall API

Fig. 2. API Notation

92

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 4, 2009 at 08:10 from IEEE Xplore. Restrictions apply.

B. Layer Notation and Terminology

In total, ALICE consists of three different layers. Each of
these consists of a number of components residing in differ-
ent places. For example, the Mobility Layer (ML) consists
of two components: one residing on the MH and one on the
MG. When discussing an entire layer (say, the ML) it will be
referred to either by its full name (the mobility layer) or its
abbreviated name (the ML). When discussing a single com-
ponent of a layer, the location at which it resides will be sub-
scripted. For example, the part of the ML that resides on the
MH will be referred to as M L M H .

C. Sqftwnre Architecture

Figure 3 shows the ALICE architecture in its entirety. The
services offered by the architecture can be divided into three
distinct areas of functionality, each of which is addressed by
one of the architecture’s layers.
Connectivity Management between the MH and the MG is
handled by the Mobility Layer (ML). This layer hides the
complexity of the MH’s network characteristics from upper
layers by performing transparent reconnections and tunnel-
ing. This is explained in section 111.
Location Management of servers residing on mobile hosts is
handled by the Swizzling Layer. This layer is used to support
server mobility by translating (“swizzling”) server references
at various points in time and by redirecting clients with ob-
solete references towards more recent server locations. This
layer is described in section IV.
Disconnected Operation of MHs is handled by the Discon-
nected Operation Layer. This layer lets clients cache server
functionality during periods of disconnection. Support for
conflict detection and resolution is also provided, although
some issues are left to the application. This layer is described
in section V.

The swizzling and disconnected operations layers are de-
pendent on the protocol used between the client and server,
and separate instances of these layers must be implemented
for each protocol. The ML is protocol-independent and will
work with any application-level protocol. We use the terms
SIProtocol and DIProtocol to denote generic swizzling
and disconnected operation functionality and substitute the
name of an actual protocol when discussing implementations
of the layers. The S/IIOP layer-the swizzling layer for
the CORBA Internet Inter-Orb Protocol-is described in [SI.
Work on D/IIOP-the disconnected operation layer for the
same-is currently ongoing.

111. CONNECTIVITY MANAGEMENT

The MH has a set of physical communications interfaces
that are used to connect to one or more different MGs at var-
ious points in time. (Figure 3 shows three interfaces whose
transports are named TPI -TP3.) Typically, some interfaces

will be wired whereas others will be wireless. The Mobil-
ity Layer (ML) manages these interfaces and hides the unre-
liability of wireless media from applications by performing
transparent reconnections to MGs. In case the MH moves
from one MG to another (for example, because it is no longer
within range of the first) the two MGs negotiate to set up tun-
neling of any open connections there may exist between the
MH and the RH. All connection state (such as unsent data) is
transferred from the old to the new MG in a procedure called
handofl. This happens transparently to applications running
on the MG and the RH.

A. Mobility Layer API

The ML implements a superset of the BSD sockets API and
can be used instead of the standard TCP-layer. This makes it
simple to .add mobility support (in the form of reconnection
and tunneling) to legacy applications. For other applications,
however, it is relevant to know the current state of connectiv-
ity and be notified whenever that state changes. We call such
applications mobile-aware. For such applications, the AL-
ICE architecture offers mobility information in the form of
callbacks. Whenever there is a change in connectivity state
(such as the loss of a connection to a MG or the creation of
a connection to a new MG) the application receives a call-
back in the form of an invocation of a previously registered
function. Callback functions are registered via the extended
sockets API. The use of callbacks is optional, and applica-
tions need not use it.

B. Mobile Servers

For mobile clients, the standard ML functionality is suf-
ficient to operate without changes to the application. Outgo-
ing connections are proxied at the MG and tunnelled between
MGs in case the connections persist for longer than the MH
is connected to the MG through which the connections were
initially made.

For mobile servers, the situation is more complicated.
When a mobile server starts listening on a socket, a port is dy-
namically allocated on the MG and the listen operation takes
place on that socket. When a MH moves to a new MG, an-
other server socket is allocated on the new MG to replace that
on the old MG. Hence, a mobile server cannot itself choose
the endpoint (host name, port number) its clients need to con-
nect to. Furthermore, the endpoint will change with every
MH movement. The ALICE architecture addresses this prob-
lem with the Swizzling Layer described in section IV.

C. Interface Management

The ML continuously gathers statistics about the latency,
bandwidth and error rate of the MHs communications inter-
faces. This information is used to pick a new interface to use
for reconnection whenever the connection to a MG breaks.
The statistics are accessible to mobile-aware applications via

93

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 4, 2009 at 08:10 from IEEE Xplore. Restrictions apply.

-D
Layer (D/Protocol)

Swizzling Layer
(SIProtocol)

I

1

v v 1

f \

Protocol

I

1

V 1

f \

Protocol

Swizzling Layer I (S/Protocol) I

Fig. 3. The Abstract ALICE Architecture

the ML's tuning API. This API also allows a mobile-aware
application (such as a ML configuration tool) to implement its
own communications interface selection algorithm and con-
figure the ML to use it. The default algorithm is based on a
simple round-robin type scheme.

D. .Operation During Disconnection

In the ALICE mobility model, it is normal for a MH not
to be connected to a MG at all times. In this case, the
ALICE architecture's default mode of operation is to syn-
chronously queue unsent data between the MH and the MGs.
Asynchronous queueing is not explicitly supported by the
architecture but can be achieved by using application-level
multi-threading in conjunction with the synchronous queue-
ing mechanism.

IV. LOCATION MANAGEMENT
Although the ML performs handoff and tunnelling of con-

nections, a mobile server will change its connection endpoint
when its MH moves to a new MG. This may confuse clients
that hold references to old endpoints, especially because AL-

ICE does not assume these clients are aware that the server is
mobile. The swizzling layer addresses this problem by per-
forming swizzling (runtime translation) of server references
and by redirection of clients towards more recent server lo-
cations. The former is done on the MH and the latter on the
MG.

A. Swiuling

One function of the SIProtocol layer is to manage server
references held on the MH. The S / P ~ o t o c o l ~ H layer uses
the callback mechanism of the ML to keep track of the cur-
rent MG and uses this information to translate the server ref-
erences every time the MH moves to a new MG. No attempt
is made to update old references held by clients until they
are used. The S/ProtodMH layer relies on requirements 3
and 4 from section I-B to encode information about endpoints
in server references.
Swiuling a server reference occurs when a new reference i s
created and the MH is connected to a MG. In this case, each
endpoint re,ferring to a local interface is removed from the
reference, saved for later unswizzling and replaced by an end-

94

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 4, 2009 at 08:10 from IEEE Xplore. Restrictions apply.

point for S/PTotOcOlMG. The S/ProtOCOlMG layer listens
on a well-known port which allows swizzling to take place
on the MH without involvement of the MG. When the mobile
server starts listening on an endpoint, a logical connection be-
tween the MH and the S/PTotocOlMG layer is set up. This
allows connection attempts that arrive at the SIProtocolMG
layer to be forwarded to the server application on the MH.
Reswizzling a server reference occurs when a MH moves
from one MG to another. In this case, the SIProtocolMH
layer receives a callback from the ML that the MG ad-
dress has changed. The SIProtocolMH layer reswizzles
a server reference by replacing all endpoints referring to
the S/ProtodMG layer with endpoints referring to the
S/PmhxolMG layer on the new MG.
Unswizzling a server reference occurs if the mobility sup-
port layers are removed from the protocol stack, for exam-
ple in case the MH gets a direct connection to a LAN. In this
case, all server references known to the SIProtocol layer
are unswizzled. For each server reference, the endpoints re-
ferring to the SIProtocolMG layer are replaced by the local
endpoints that were saved during swizzling. Any endpoints
referring to remote interfaces are unchanged.

B. Redirection

A client may hold a swizzled reference identifying a mo-
bile server. The swizzled reference will contain one or more
endpoints identifying the S/ProtocdMG layer rather than
the server on the MH itself. A client attempting to invoke a
server with a swizzled reference will go through the follow-
ing steps.
1 . Attempt to connect to the first endpoint specified in the
reference. Because the reference is swizzled, this endpoint
belongs to the S/PTotocol&fG layer on the mobility gateway
to which the MH was connected when the reference was pub-
lished. If the MH is still connected to this MG, the connection
attempt will succeed.
2 . If the MH has moved and reconnected to a new MG (after
a handoff between MGs), the S/PTOtOCOlI!4G layer will redi-
rect the client to the S/ProtocolMG layer on the new MG.
The old MG will know about the new MG because it has been
involved in a handoff.
3. If the MH has not reconnected and no handoff has taken
place, the S/PTotoco~MG layer cannot redirect the client. In
this case, it passes the incoming connection to the underlying
ML which in turn waits for the MG to reconnect to this or
another MG. The client is blocked until this happens.’

in both directions) may be infeasible. The disconnected op-
eration layer DIProtocol allows clients to replicate server
objects and cache the replicas locally. While the client and
server are disconnected, client requests to the server are redi-
rected to the replica stored on the client side. This allows the
client to operate in spite of not having access to the server.
In figure 3, the client is shown as residing on the mobile host
and the server on the fixed host because we believe this to
be the typical case. The server could also reside on the mo-
bile host in which case the remote client would cache server
functionality from the mobile server. This is not shown in the
figure.

A. Client Side

The DIProtocol layer on the client side has two impor-
tant functions: to maintain a cache of server objects and to
redirect invocations to these cached objects. These two func-
tions are independent and can be used separately by clients.
For example, a simple client may not want to control which
server objects are cached but would still like to invoke a
cached copy if one happens to be available. A more com-
plex client could be in explicit control of which server ob-
jects it wishes to cache. A third type of client could be a
user-interactive ‘hoarding-tool’ which would interact with the
cache even though it would never itself need to invoke any of
the cached server objects.

B. Serverside

The replication of server objects is generally difficult to do
without application involvement. For this reason, the server-
side of the D/Protocol layer takes the form of a replication
support module rather than a separate layer in the protocol
stack. In figure 3 this is shown by integrating the applica-
tion layer, with the disconnected operation layer. The two
parts of the DIProtocol layer perform vastly different func-
tions. Whereas the client side performs cache management,
the server side handles requests for replication and reconcilia-
tion of server objects and also provides the server application
with support functions for performing conflict detection and
resolution.

VI. RELATED WORK

Related work in the area of mobile CORBA support in-
cludes the Dolmen Project [6] , the JumpingBeans system [3]
and the OnTheMove project [4]. More detailed discussion on
these can be found in [5] . The Object Management Group
(OMG) are also working on extending CORBA to deal bet-

V. DISCONNECTED OPERATION

When a MH is disconnected from MGs for a longer period
of time, the default action of the ML (to queue invocations

ter with mobile environments. The last Request for Proposal
Accepting connections while the mobile host is disconnected is a design

decision which may change in the future. Another approach could be to (RFP) [7i expired in May 2ooo and in two responses
refuse new connections. P I , [I].

95

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 4, 2009 at 08:10 from IEEE Xplore. Restrictions apply.

VII. CONCLUSION
This paper has presented the design of the second version

of the ALICE framework. Since the first version, the archi-
tecture has evolved towards a more generic form in order to
be applicable to other than CORBA environments. One fea-
ture retained from the original design is its modularity: the
structuring of functionality into layers that each solves a por-
tion of the problem space and can to a large extent be used
independently’ of the other layers when required.

ACKNOWLEDGEMENTS

The authors are very grateful to IONA Technologies plc for
their generous support.

REFERENCES
[I] Ke Jin (editor). Wireless Access and Terminal Mobility (telecod00-05-

OS). 2000.
[3] Kimmo Raatikainen (editor). Wireless Access and Terminal Mobility

(telecotn/OO-OS-O1). 2000.
[3] Ad Astra Engineering. Jumping Beans White Paper.

http://www.jumpingbeans.com/, December 1998.
[4] Peter Kemp et. al. Design o fMASE V2

http://www.sics.se/~onthemov~docs/OTM~d33.doc, 1996.
[SI Mads Haahr, Raymond Cunningham, and Vinny Chill. Supporting

corha applications in a mobile environment. In Proceedings r ~ t h e 5th
Inrcrnurionnl Conjkrence on Mobile Computing and Networking (Mobi-
Cont’99). pages 36-47. ACM. August 1999.

[6] P. Reynolds and R. Brangeon. Service Machine Development for an
Open Long-term Mobile and Fixed Network Environment. Project de-
liverable. DOLMEN Consortium, December 1996.

171 OMG Telecom TC. Wireless Access and Terminal Mobility RFP, May
1999.

‘The disconnected operation and swizzling layers depend on the ML, but
there are no other inter-layer dependencies.

96

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 4, 2009 at 08:10 from IEEE Xplore. Restrictions apply.

http://www.jumpingbeans.com

