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Alxtrucr-Our previous work in mobility support for CORBA appli- 
cations resulted in the design and implementation of the Architecture for 
Location-Independent CORBA Environments (ALICE). The first ver- 
sion of A L I C E  enabled CORBA objects running on mobile devices to 
interact transparently with objects hosted by off-the-shelf CORBA im- 
plementations without relying on a centralised location register to keep 
track of their whereabouts. This paper presents the second version of 
A L I C E  on which work is currently ongoing. The improved architecture 
retains the features of theoriginal and addssupport for disconnected op- 
eration in the form of caching of server functionality on the client side. 
Furthermore, the architecture is being generalised beyond CORBA in 
order to make it applicable to other distribution infrastructures, such as 
Java RMI and DCOM. 

K~,~,r,orff..r-Mobile Computing, Middleware, CORBA. 

I. INTRODUCTION 

ALICE is an architectural framework that provides mobil- 
ity support for a certain suite of clientlserver application-level 
protocols whose characteristics are explained in section I-B. 
ALICE enables implementations of such protocols to provide 
their own support for mobile clients, servers (including ad- 
dress translation and location management) and disconnected 
operation (including replication and caching of server func- 
tionality). In addition, ALICE includes connectivity manage- 
ment features to address the difficult network characteristics 
of wireless networks. Developers use the ALICE framework 
by writing a series of software modules to interface with a 
set of core ALICE modules. This paper describes the over- 
all architecture and the core modules independently of any 
particular application-level protocol. 

A. Mobility Challenges 

Our previous work [5] identified three areas where opera- 
tion in mobile environments poses a challenge compared to 
traditional (wired, fixed) environments: 
DeviceLimitarions of the mobile host itself in the form of 
limited processing power, battery life, memory restrictions, 
etc. These limitations require software for mobile hosts to 
use as few resources as possible. 
Network Characteristics of mobile hosts are generally di- 
verse and varying compared to those of fixed hosts. Even 
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small mobile devices (such as handheld PCs) typically have 
at least two (and typically more) communications interfaces 
that are not only connected to various physical endpoints at 
various points in time but also vary dramatically with regards 
to latency, bandwidth, reliability and usage cost. 
Physical Host Mobility causes connection endpoints to wired 
networks to change frequently. In the case of mobile servers 
this can cause server references held by clients to become ob- 
solete rapidly. 

In general, addressing the latter two issues (by increasing 
mobility support) is likely to increase the footprint on the mo- 
bile host, and there is likely to always be a trade-off involved. 
The approach taken in ALICE has been to solve these two in 
separate protocol layers while keeping the footprint as small 
as possible. For example, effort has been made to allow as 
much functionality as possible to be placed in the fixed net- 
work rather than on the mobile host. 

B. Protocol Requirements 

framework, it must support certain features: 
1. The protocol must be clientlserver oriented. 
2. The underlying transport must be TCP/IP. 
3. A server reference needs to contain several endpoints at 
which the server can be found. Clients should try endpoints 
in order. 
4. It must be possible to store some extra information in a 
server reference. 
5. Forwarding of client requests towards a different server 
location must be possible. 

An example of such a protocol is the CORBA Internet 
Inter-Orb Protocol (IIOP) with which the first version of AL- 
ICE [5] was tested. Work is currently ongoing on supporting 
Java RMI and DCOM in a similar fashion. 

For an application-level protocol to fit into the ALICE 

C. Mobility Model 

The model for communications used in the ALICE frame- 
work is that mobile hosts connect to remote hosts via medi- 
ators, or base stations, called mobility gateways, as shown in 
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Fig. 1. The ALICE Mobility Model 

figure I .  (Hence, we are not talking about ad-hoc type com- 
muncation between mobile devices.) The terminology is as 
follows: 
MH Mobile Host. A device that moves between mobility 
gateways and is disconnected while in transit. A MH can 
hold programs that act as servers as well as clients. 
MG Mobility Gateway. A fixed computer that acts as a base 
station for MHs. It has at least one interface through which 
a MH can connect in addition to a wired network connection 
to a LAN or the Internet. 
RH Remote Host. A computer with which the MH commu- 
nicates via the MG as mediator. A RH can contain client as 
well as server programs. It can be a fixed host or a mobile 
host. In the latter case, it is assumed to communicate via a 
MG . 

This i s  the general ALICE mobility model. It may some- 
times be preferable to connect a MH directly to the network 
rather than go through a mediator. In such situations, the MH 
can act as its own MG. 

a downcall API through which invocations from upper lay- 
ers are received. If a layer receives upcalls (or callbacks) 
from layers below it, the layer also has an upcall API through 
which this happens. If a layer is runtime configurable (as 
some of the ALICE layers are), it has an additional tuning 
API for thi!j purpose. 

The notation used for describing the interaction between 
the ALICE layers is an extension of the traditional protocol 
stack notation, where the layers are placed on top of each 
other and communcation takes place vertically between adja- 
cent layers. The notational extensions to this model include 
adding edges onto the protocol boxes to illustrate the three 
types of APIs. This is shown in figure 2 where two layers, 
each having all three types of APIs, interact. 

, Downcall API 
'Tuning API 

Protocol Layer 

11. ALICE OVERVIEW 

This section gives an overview of ALICE by first explain- 
ing non-standard notation and terminology used to describe 
the architecture and then presenting the architecture itself. 
ALICE consists of three basic pieces of functionality which 
are briefly introduced as part of the overview and treated in 
more detail in sections I11 to V. 

A. API Notation and Terminology 

Each of the ALICE layers has up to three different APIs: 
the downcall, upcall and tuning APIs. If a layer performs 
services for layers above it in the protocol stack, it will have 

Protocol Layer 

Upcall API 

Fig. 2. API Notation 
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B. Layer Notation and Terminology 

In total, ALICE consists of three different layers. Each of 
these consists of a number of components residing in differ- 
ent places. For example, the Mobility Layer (ML) consists 
of two components: one residing on the MH and one on the 
MG. When discussing an entire layer (say, the ML) it will be 
referred to either by its full name (the mobility layer) or its 
abbreviated name (the ML). When discussing a single com- 
ponent of a layer, the location at which it resides will be sub- 
scripted. For example, the part of the ML that resides on the 
MH will be referred to as M L M H .  

C. Sqftwnre Architecture 

Figure 3 shows the ALICE architecture in its entirety. The 
services offered by the architecture can be divided into three 
distinct areas of functionality, each of which is addressed by 
one of the architecture’s layers. 
Connectivity Management between the MH and the MG is 
handled by the Mobility Layer (ML). This layer hides the 
complexity of the MH’s network characteristics from upper 
layers by performing transparent reconnections and tunnel- 
ing. This is explained in section 111. 
Location Management of servers residing on mobile hosts is 
handled by the Swizzling Layer. This layer is used to support 
server mobility by translating (“swizzling”) server references 
at various points in time and by redirecting clients with ob- 
solete references towards more recent server locations. This 
layer is described in section IV. 
Disconnected Operation of MHs is handled by the Discon- 
nected Operation Layer. This layer lets clients cache server 
functionality during periods of disconnection. Support for 
conflict detection and resolution is also provided, although 
some issues are left to the application. This layer is described 
in section V. 

The swizzling and disconnected operations layers are de- 
pendent on the protocol used between the client and server, 
and separate instances of these layers must be implemented 
for each protocol. The ML is protocol-independent and will 
work with any application-level protocol. We use the terms 
SIProtocol and DIProtocol to denote generic swizzling 
and disconnected operation functionality and substitute the 
name of an actual protocol when discussing implementations 
of the layers. The S/IIOP layer-the swizzling layer for 
the CORBA Internet Inter-Orb Protocol-is described in [SI. 
Work on D/IIOP-the disconnected operation layer for the 
same-is currently ongoing. 

111. CONNECTIVITY MANAGEMENT 

The MH has a set of physical communications interfaces 
that are used to connect to one or more different MGs at var- 
ious points in time. (Figure 3 shows three interfaces whose 
transports are named TPI -TP3.) Typically, some interfaces 

will be wired whereas others will be wireless. The Mobil- 
ity Layer (ML) manages these interfaces and hides the unre- 
liability of wireless media from applications by performing 
transparent reconnections to MGs. In case the MH moves 
from one MG to another (for example, because it is no longer 
within range of the first) the two MGs negotiate to set up tun- 
neling of any open connections there may exist between the 
MH and the RH. All connection state (such as unsent data) is 
transferred from the old to the new MG in a procedure called 
handofl. This happens transparently to applications running 
on the MG and the RH. 

A. Mobility Layer API 

The ML implements a superset of the BSD sockets API and 
can be used instead of the standard TCP-layer. This makes it 
simple to .add mobility support (in the form of reconnection 
and tunneling) to legacy applications. For other applications, 
however, it is relevant to know the current state of connectiv- 
ity and be notified whenever that state changes. We call such 
applications mobile-aware. For such applications, the AL- 
ICE architecture offers mobility information in the form of 
callbacks. Whenever there is a change in connectivity state 
(such as the loss of a connection to a MG or the creation of 
a connection to a new MG) the application receives a call- 
back in the form of an invocation of a previously registered 
function. Callback functions are registered via the extended 
sockets API. The use of callbacks is optional, and applica- 
tions need not use it. 

B. Mobile Servers 

For mobile clients, the standard ML functionality is suf- 
ficient to operate without changes to the application. Outgo- 
ing connections are proxied at the MG and tunnelled between 
MGs in case the connections persist for longer than the MH 
is connected to the MG through which the connections were 
initially made. 

For mobile servers, the situation is more complicated. 
When a mobile server starts listening on a socket, a port is dy- 
namically allocated on the MG and the listen operation takes 
place on that socket. When a MH moves to a new MG, an- 
other server socket is allocated on the new MG to replace that 
on the old MG. Hence, a mobile server cannot itself choose 
the endpoint (host name, port number) its clients need to con- 
nect to. Furthermore, the endpoint will change with every 
MH movement. The ALICE architecture addresses this prob- 
lem with the Swizzling Layer described in section IV. 

C. Interface Management 

The ML continuously gathers statistics about the latency, 
bandwidth and error rate of the MHs communications inter- 
faces. This information is used to pick a new interface to use 
for reconnection whenever the connection to a MG breaks. 
The statistics are accessible to mobile-aware applications via 
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Fig. 3. The Abstract ALICE Architecture 

the ML's tuning API. This API also allows a mobile-aware 
application (such as a ML configuration tool) to implement its 
own communications interface selection algorithm and con- 
figure the ML to use it. The default algorithm is based on a 
simple round-robin type scheme. 

D. .Operation During Disconnection 

In the ALICE mobility model, it is normal for a MH not 
to be connected to a MG at all times. In this case, the 
ALICE architecture's default mode of operation is to syn- 
chronously queue unsent data between the MH and the MGs. 
Asynchronous queueing is not explicitly supported by the 
architecture but can be achieved by using application-level 
multi-threading in conjunction with the synchronous queue- 
ing mechanism. 

IV. LOCATION MANAGEMENT 
Although the ML performs handoff and tunnelling of con- 

nections, a mobile server will change its connection endpoint 
when its MH moves to a new MG. This may confuse clients 
that hold references to old endpoints, especially because AL- 

ICE does not assume these clients are aware that the server is 
mobile. The swizzling layer addresses this problem by per- 
forming swizzling (runtime translation) of server references 
and by redirection of clients towards more recent server lo- 
cations. The former is done on the MH and the latter on the 
MG. 

A. Swiuling 

One function of the SIProtocol layer is to manage server 
references held on the MH. The S / P ~ o t o c o l ~ H  layer uses 
the callback mechanism of the ML to keep track of the cur- 
rent MG and uses this information to translate the server ref- 
erences every time the MH moves to a new MG. No attempt 
is made to update old references held by clients until they 
are used. The S/ProtodMH layer relies on requirements 3 
and 4 from section I-B to encode information about endpoints 
in server references. 
Swiuling a server reference occurs when a new reference i s  
created and the MH is connected to a MG. In this case, each 
endpoint re,ferring to a local interface is removed from the 
reference, saved for later unswizzling and replaced by an end- 
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point for S/PTotOcOlMG. The S/ProtOCOlMG layer listens 
on a well-known port which allows swizzling to take place 
on the MH without involvement of the MG. When the mobile 
server starts listening on an endpoint, a logical connection be- 
tween the MH and the S/PTotocOlMG layer is set up. This 
allows connection attempts that arrive at the SIProtocolMG 
layer to be forwarded to the server application on the MH. 
Reswizzling a server reference occurs when a MH moves 
from one MG to another. In this case, the SIProtocolMH 
layer receives a callback from the ML that the MG ad- 
dress has changed. The SIProtocolMH layer reswizzles 
a server reference by replacing all endpoints referring to 
the S/ProtodMG layer with endpoints referring to the 
S/PmhxolMG layer on the new MG. 
Unswizzling a server reference occurs if the mobility sup- 
port layers are removed from the protocol stack, for exam- 
ple in case the MH gets a direct connection to a LAN. In this 
case, all server references known to the SIProtocol layer 
are unswizzled. For each server reference, the endpoints re- 
ferring to the SIProtocolMG layer are replaced by the local 
endpoints that were saved during swizzling. Any endpoints 
referring to remote interfaces are unchanged. 

B. Redirection 

A client may hold a swizzled reference identifying a mo- 
bile server. The swizzled reference will contain one or more 
endpoints identifying the S/ProtocdMG layer rather than 
the server on the MH itself. A client attempting to invoke a 
server with a swizzled reference will go through the follow- 
ing steps. 
1 .  Attempt to connect to the first endpoint specified in the 
reference. Because the reference is swizzled, this endpoint 
belongs to the S/PTotocol&fG layer on the mobility gateway 
to which the MH was connected when the reference was pub- 
lished. If the MH is still connected to this MG, the connection 
attempt will succeed. 
2 .  If the MH has moved and reconnected to a new MG (after 
a handoff between MGs), the S/PTOtOCOlI!4G layer will redi- 
rect the client to the S/ProtocolMG layer on the new MG. 
The old MG will know about the new MG because it has been 
involved in a handoff. 
3. If the MH has not reconnected and no handoff has taken 
place, the S/PTotoco~MG layer cannot redirect the client. In 
this case, it passes the incoming connection to the underlying 
ML which in turn waits for the MG to reconnect to this or 
another MG. The client is blocked until this happens.’ 

in both directions) may be infeasible. The disconnected op- 
eration layer DIProtocol allows clients to replicate server 
objects and cache the replicas locally. While the client and 
server are disconnected, client requests to the server are redi- 
rected to the replica stored on the client side. This allows the 
client to operate in spite of not having access to the server. 
In figure 3, the client is shown as residing on the mobile host 
and the server on the fixed host because we believe this to 
be the typical case. The server could also reside on the mo- 
bile host in which case the remote client would cache server 
functionality from the mobile server. This is not shown in the 
figure. 

A. Client Side 

The DIProtocol layer on the client side has two impor- 
tant functions: to maintain a cache of server objects and to 
redirect invocations to these cached objects. These two func- 
tions are independent and can be used separately by clients. 
For example, a simple client may not want to control which 
server objects are cached but would still like to invoke a 
cached copy if one happens to be available. A more com- 
plex client could be in explicit control of which server ob- 
jects it wishes to cache. A third type of client could be a 
user-interactive ‘hoarding-tool’ which would interact with the 
cache even though it would never itself need to invoke any of 
the cached server objects. 

B. Serverside 

The replication of server objects is generally difficult to do 
without application involvement. For this reason, the server- 
side of the D/Protocol layer takes the form of a replication 
support module rather than a separate layer in the protocol 
stack. In figure 3 this is shown by integrating the applica- 
tion layer, with the disconnected operation layer. The two 
parts of the DIProtocol layer perform vastly different func- 
tions. Whereas the client side performs cache management, 
the server side handles requests for replication and reconcilia- 
tion of server objects and also provides the server application 
with support functions for performing conflict detection and 
resolution. 

VI. RELATED WORK 

Related work in the area of mobile CORBA support in- 
cludes the Dolmen Project [6] ,  the JumpingBeans system [3] 
and the OnTheMove project [4]. More detailed discussion on 
these can be found in [5] .  The Object Management Group 
(OMG) are also working on extending CORBA to deal bet- 

V. DISCONNECTED OPERATION 

When a MH is disconnected from MGs for a longer period 
of time, the default action of the ML (to queue invocations 

ter with mobile environments. The last Request for Proposal 
Accepting connections while the mobile host is disconnected is a design 

decision which may change in the future. Another approach could be to (RFP) [7i expired in May 2ooo and in two responses 
refuse new connections. P I ,  [I]. 
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VII. CONCLUSION 
This paper has presented the design of the second version 

of the ALICE framework. Since the first version, the archi- 
tecture has evolved towards a more generic form in order to 
be applicable to other than CORBA environments. One fea- 
ture retained from the original design is its modularity: the 
structuring of functionality into layers that each solves a por- 
tion of the problem space and can to a large extent be used 
independently’ of the other layers when required. 
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