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Upper bound for the conductivity of nanotube networks
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Films composed of nanotube networks have their conductivities regulated by the junction
resistances formed between tubes. Conductivity values are enhanced by lower junction resistances
but should reach a maximum that is limited by the network morphology. By considering ideal
ballistic-like contacts between nanotubes, we use the Kubo formalism to calculate the upper bound
for the conductivity of such films and show how it depends on the nanotube concentration as well
as on their aspect ratio. Highest measured conductivities reported so far are approaching this
limiting value, suggesting that further progress lies with metallic nanowires rather than carbon
nanotubes. © 2009 American Institute of Physics. [doi:10.1063/1.3236534]

The search for thin films that are flexible, transparent,
and conductive is driven by their potential as transparent
electrodes.'™ One common route is to use films made by a
disordered network of carbon nanotubes (NTs).4_9 In this
case, electrons move across the entire film by moving be-
tween NT in close proximity. The conductivity is limited by
the tunneling between tubes, which introduces a significant
inter-NT junction resistance. To make the films more con-
ductive, one needs to improve the coupling between NT,
which recently has been achieved with acid treatments.'*!!
Further attempts are being made to lower the junction resis-
tance and surpass the best conductivity reported so far, which
currently stands at o=~ 6X 10° S/m.> 0N

In addition to the junction resistance, the network mor-
phology also plays a role in limiting the film conductivity. In
fact, we have recently demonstrated how sensitive to the
network connectivity the conductivity can be.'? This means
that no matter how much progress is made in lowering the
junction resistance, there should be a maximum value for the
film conductivity, which is regulated by the network itself.
This is the goal of the present manuscript, i.e., to obtain an
upper bound for the conductivity of disordered NT networks.
The knowledge of this upper bound should avoid overopti-
mistic expectations for the transport properties of the films.
Furthermore, understanding the interplay between network
morphology and the intrinsic conductances of NT may be
explored to deal with films made of other nanowires
(NWs), 1314

Since we are interested in the best-case scenario in
which the electronic conductivity is at its maximum, we
must eliminate potential sources of scattering and decoher-
ence such as structural imperfections, impurities, and inter-
action with other quasiparticles. In this situation, it is appro-
priate to consider a purely ballistic regime of transport within
the NW, which calls for a quantum description of the con-
ductivity. NTs are known to behave as ballistic conductors
with two quanta of conductance'” and are often referred to as
possessing two conducting channels. How much interference
there is between these channels is what determines how the
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network affects the film conductivity. Furthermore, because
other quantum wires are populated by a different number of
conducting channels, the results here obtained are not exclu-
sive for NT and should be also applicable to other materials.
With this generality in mind, we introduce a model that de-
scribes the transport properties of a network of quantum
wires, each one of them capable of carrying M channels of
conductance. The model consists of two parts, one macro-
scopic in which geometrical constraints define the connectiv-
ity of the network, and another of microscopic origin that
accounts for the electronic structure of the wires.

We start with the macroscopic part of the model by as-
suming that a film in contact to two electrodes is represented
by a number of rods of length € and diameter d randomly
distributed inside a rectangular box of dimensions L XL
X 2L. The opposing square faces of the box are taken as the
electrodes. It is a simple task to count the number of rods
{ap) crossing the electrode walls as well as (), here defined
as the average number of contacts (per rod) between neigh-
boring rods. Geometrical arguments12 not involving any
wire-specific information other than their aspect ratio (£/d)
can be used to show that the latter quantity scales linearly
with VA€/d), V, being the volume fraction of the network,
whereas () scales with VA{/ d)?. The universality in these
scaling laws means that films composed of different values
of Vy, €, and d may have similar connectivities.

For the sake of generality and simplicity we choose to
represent individual wires by one-dimensional atomic chains
within the tight-binding model with M-fold degeneracy in
the orbital degrees of freedom. In this way, the Hamiltonian

ﬁj associated with a single wire labeled j corresponds to a

linear chain that carries M quanta of conductance, i.e., ﬁj
=Eny,,r,#|n,j,,u)t<n’ ,J» 1|, where the state |n,j,u) represents
an atomic orbital u localized at an atom numbered n within
wire j and the sum over n and n' is for nearest neighbors
only. The sum over u ranges from 1 to M, which guarantees
its M-fold degeneracy, and the parameter ¢ defines the band-
width of the individual wire. As we shall see, other Hamil-
tonians could have been chosen without major changes to
our conclusions.
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The Hamiltonian A associated with the network is not a

mere sum of the individual lAzj over the index j but it is
dependent on how they are connected to each other. To as-
semble the Hamiltonian of the full network we assume a
number N of finite-sized atomic chains, each one of which
containing 1.6 X 10* atomic sites.'® Bearing in mind that
these chains ultimately represent NW of length € and diam-
eter d, we can easily obtain the volume fraction vy and the
corresponding values for (@) and {ag). The network is then
created as follows. Chains are connected randomly so that
there is a total of N{a)/2 connections. The intrachain atomic
sites that make the connections are also randomly chosen.
The connection is introduced by a hopping probability vy in-
serted in the Hamiltonian connecting two different chains,
that is, by a potential V=|n,j,u)¥n’,j',ul. Attention is
given to the fact that j and j* must necessarily be different to
represent distinct wires. Notice that this contribution is diag-
onal in w indicating that the interwire coupling does not mix
the M conducting channels carried by each wire. Regarding
the role played by the electrodes, they act as charge reser-
voirs and can be mimicked by using semi-infinite chains.
Since {ag) gives the average number of contacts to the elec-
trodes (per unit area), we must include the appropriate num-
ber of semi-infinite chains Ny=2(ay) into the network. In
summary, our model consists of a network composed of N
finite chains randomly connected to each other plus N semi-
infinite ones, each of which connected to a single finite-sized
counterpart. The semi-infinite chains can be subgrouped into
two sets representing contacts to the left and right electrodes.
Furthermore, no finite-length chains are allowed to be con-
nected to more than a single semi-infinite one. This require-
ment is necessary to avoid short circuits.

Having defined the network Hamiltonian, we can now
use the Kubo formalism, to calculate the zero-bias conduc-
tance I' across the film.'”™" Absolutely equivalent to the
Landauer formalism, the Kubo formula for the conductance
involves only a few Green’s function (GF) matrix elements
evaluated at the Fermi energy, which can be easily obtained
by efficient inversion techniques.20 One of the advantages of
using this formalism is that any changes in the Hamiltonian
are automatically accounted for in the corresponding GF. As
we shall see, replacing the linear-chain Hamiltonian with an-
other that describes the detailed atomic structure of NT be-
comes a straightforward task, albeit more computationally
demanding. The coupling between wires is regulated by the
parameter y. Since we are interested in the upper bound for
the conductivity, we can increase 7y until the conductivity
reaches a maximum. At that point we can say, by inspection,
that the conductance across any two wires connected by this
value of vy matches the intrinsic conductance of the wires, i.e,
MTy, where T’ is the quantum of conductance. Inevitably,
there will be some degree of reduction on the conductance
when two NW are connected, particularly in the case of finite
sized wires but the best way to minimize this reduction is to
consider very large wires. In the case of atomic chains, y
=t is an excellent choice for the coupling parameter since it
reduces the conductance between two chains only by a very
small fraction.

With all the parameters defined, the upper bound for the
network conductance can now be calculated for different vol-
ume fractions and aspect ratios. Each calculation involves a
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FIG. 1. (Color online) Upper bound for the conductivity o, (in units of S/m)
as a function of the quantity )c:fo/d2 (in units of m™!). Line with square
symbols is for an array of linear chains, each one of which capable of
carrying 2I'y of conductance. Circles correspond to results for disordered
arrays of finite-sized NT in which the details of their electronic structure
have been fully taken into consideration. In this case, y=,, where 7, is the
tight-binding electronic hopping between nearest-neighbor carbon atoms of
the NT. Error bars account for the standard error in the configurational
average.

large configurational average in order to achieve statistical
significance. Rather than the calculated conductance values,
we present in Fig. 1 the respective conductivities plotted as a
function of x= fo /d*. With NT in mind, the number of
conducting channels is M =2. A wide range of lengths, diam-
eters, and volume fractions have been considered but be-
cause of the universality behavior of the connectivities, they
all fall onto a common straight line (square symbols) de-
scribed by o,=8yx, where By=M X4.25X107 S. It is
worth mentioning that the contribution to o, due to the num-
ber of contacts to the electrodes shows a similar scaling,
which indicates the major role played by this quantity.

The expression above provides the upper bound for the
conductivity of disordered networks in the case of wires ca-
pable of carrying M quanta of conductance. It is instructive
to test the expression for typical NT values, namely
=1 pm and d=1.2 nm. For V;=30%, the predicted upper
bound would be ¢,=1.8X 107 S/m if NT of these dimen-
sions could be fully dispersed to form the network. NT are,
however, known to bundle together, which means that in
reality wire diameters are considerably larger. On the other
hand, larger-diameter bundles have more NT on the surface
leading to more current-carrying channels per wire. Taking
all this into consideration, we can compare our expression
with the highest-conductivity case reported so far (V
~30%,{=5 um,d=20 nm).>'*"2! Our prediction of o,
=9X 10° S/m is only one order of magnitude superior to the
measured value of =6 X 10° S/m. Bearing in mind that the
upper bound here obtained assumes a number of ideal con-
ditions that are experimentally unavoidable, this might be a
clear indication that we are approaching a saturation point in
the conductivity of NT-network films.

No qualitative change is observed when the linear-chain

Hamiltonians / ; describing the individual NW is replaced
with another that accounts for the precise electronic structure
of NT. In this case, a straight line with circular symbols
depicts the conductivity of a network of realistic NT. The
difference in slope and the fact that individual values are
somewhat more staggered than the linear-chain results is eas-

ily explained by finite-size effects. In the case of h ; describ-
ing real NT, the number of atoms required to generate a wire
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of similar length ¢ is considerably larger. This introduces
undesirable fluctuations in the conductance of individual NT,
which on average lowers the overall conductivity. By making
the NT longer, the fluctuations are reduced and the results
tend to approach those for the linear chain. While we cannot
increase the NT size without paying hefty computational
penalties, we can reduce the size of the liner chains for the
sake of comparison. In doing so, the linear behavior ob-
served for linear-chain Hamiltonians coincides with that for
NTs. This suggests that the line with square symbols is there-
fore the most representative for the upper bound for the con-
ductivity of a NT network.

Finally, although our focus has been on disordered net-
works comprised of NT, we can extend our results to deal
with other wires. This could represent the case of networks
made of other conducting materials, such as noble-metal
wires, for instance. In this case the number of conducting
channels M depends linearly on the wire diameter and the
overall conductivity of the network is likely to scale in-
versely with d, with a proportionality constant that depends
on the specifics of the wire in question. If the conductivity of
NT-network films is approaching its saturation point, it is
likely that wires other than NT may occupy the post of ideal
components for disordered-network films.

In summary, we have calculated the upper bound for the
conductivity of NT-network films by assuming ideal contacts
between tubes. Our results may be used to indicate how
much room there is to lower the junction resistance within a
film. More importantly, when compared with the highest
measurements reported for NT-network films, the upper
bound presented here points to a situation in which the con-
ductivity is approaching its limiting value.
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