
80 1541-1672/10/$26.00	©	2010	IEEE IEEE INtEllIgENt systEMs
Published by the IEEE Computer Society

Editor:	terry R. Payne, University	of	Liverpool,	t.r.payne@liverpool.ac.uk

A G E N T S

Adaptable, Organization-
Aware, Service-
Oriented Computing

Huib Aldewereld, Utrecht University
Julian Padget, University of Bath
Wamberto Vasconcelos, University of Aberdeen
Javier Vázquez-Salceda, Polytechnic University of Catalonia
Paul Sergeant, Calico Jack
Athanasios Staikopoulos, Trinity College Dublin

requirements,	does	of	course	not	make	it	easier	to	
use	or	to	control.	In	particular,	business	processes	
demand	resilience	and	real-time	adaptation	in	the	
face	of	 changing	business	 requirements,	 incorpo-
ration	of	alternative	services,	and	fi	nding	suitable	
substitutes	when	those	needed	are	unavailable.

The	European	Union-funded	Alive	project	(http://
www.ist-alive.eu)	 is	 prototyping	 ideas,	 driven	by	
commercial	and	industrial	use	cases,	that	utilize	re-
search	in	organizational	modeling,	software	agents,	
model-driven	engineering,	artifi	cial	intelligence,	the	
Semantic	Web,	and	Web	services	to	construct	tools	
and	 demonstrators	 to	 address	 these	 needs.	 This	
article	 outlines	 the	 Alive	 architecture	 for	 service-
oriented	 computing,	 describes	 some	of	 the	 innova-
tive	tools	we	have	developed	and	illustrates	it	all	with	
a	detailed	run-through	from	one	of	our	use	cases.

New Trends in Service-Oriented
Applications
The	 promising	 advances	 in	 service	 orientation	
have	 spawned	 a	 vision	 for	 the	 technologies	 that	
will	 power	 the	 Internet	 over	 the	 next	 few	 years	
and	 the	 new	 functionalities	 they	 will	 require.	
From	Web	3.0	 to	 the	 future	 Internet,	 from	cloud	
computing	to	the	Internet	of	things,	we	can	see	an	
emerging	 trend	of	distributed	networked	applica-
tions,	 some	of	 them	based	on	 software	 services.	
Such	 applications	 can	 be	 dynamically	 deployed,	

modifi	ed,	and	composed	so	as	 to	create	 radically	
new	 types	 of	 distributed	 software	 applications	
that	will	shape	the	Web	of	the	future.

To	 fulfi	ll	 the	vision,	 these	applications	must	be	
able	to	communicate,	reconfi	gure	at	runtime,	adapt	
to	 their	 environment,	 and	 dynamically	 combine	
sets	 of	 simple,	 specialized,	 independent	 services	
into	more	complex,	added-value	business	services.	
This	requires	profound	changes	in	the	way	we	de-
sign,	deploy,	and	manage	software	systems,	replac-
ing	 existing	 waterfall-like	 engineering	 techniques	
with	approaches	that	integrate	functionalities	and	
behaviors	into	running	systems	that	consist	of	ac-
tive,	distributed,	interdependent	processes.

Approaches	 (and	associated	methodologies	and	
tools)	for	designing	and	engineering	the	new	gen-
eration	of	open	software	should,	we	believe,	pos-
sess	several	key	features:

•	 They	should	scale	up	to	tackle	large-scale	appli-
cations	 consisting	of	hundreds	or	 thousands	of	
components.	

•	 Due	 to	 the	 sheer	 size	 of	 the	 applications	
being	 built,	 they	 should	 support	 self-governing	
software—that	 is,	 the	 engineered	 applications	
should	 “look	 after	 themselves.”	 Approaches	
should	 thus	 explicitly	 factor	 in	 feedback	 loops	
that	enable	the	connection	of	runtime	phenom-
ena	with	design-time	models	and	artifacts.	

•	 To	 increase	 application	 transparency,	 ap-
proaches	 should	 accommodate	 humans	 in	 the	
feedback	 and	 governance	 loops,	 allowing	 for	
potential	 human	 intervention	 in	 the	 software	
governance	processes.

Service-oriented	 computing	 is	 the	 new	 wave	

emerging	from	maturing	Web	services	and	the	

adoption	of	elements	from	Semantic	Web	technol-

ogy.	More	sophistication,	 in	response	 to	business	

IS-25-04-agents.indd 80 15/07/10 9:53 AM

July/August 2010	 www.computer.org/intelligent	 81

•	 Approaches should allow alterna-
tive points of entry in the design
process, both to accommodate ex-
isting systems—and let developers
add missing parts gradually—as
well as different development styles
and needs.

•	 They should provide a methodol-
ogy to support and guide the use of
(semi-)automatic tools.

•	 They should factor in and incor-
porate existing open standards, al-
lowing for extensions to be easily
integrated.

The goal of the Alive project is to
put forward new solutions to address
these challenges.

The Alive Approach
The Alive architecture combines model-
driven development (MDD) with coor-
dination and organizational mecha-
nisms, providing support for highly
dynamic and open systems of services. 	
Alive’s approach extends current
trends in engineering by defining three
levels in the design and management
of distributed systems: the service, 	

coordination, and organization levels
(see Figure 1).

The service level supports the
semantic description (SD) of services
and the selection of the most appro-
priate Web service (WS) for a given
task based on the semantic informa-
tion contained in the service descrip-
tion. This effectively supports higher
level, dynamic service composition.
For highly dynamic services, the se-
mantic description eases the process
of finding equivalent services when
a previously identified service is un-
available or when more suitable ser-
vices are registered subsequently.
This level is also responsible for mon-
itoring service activity.

The coordination level specifies
the patterns of interaction between
services, transforming the organiza-
tional representation (including in-
formation flows, constraints, tasks
and agents) coming from the orga-
nizational level into coordination
plans. Using proven planning tools,
we provide a mechanism to auto-
matically synthesize (linear) plans
to achieve organizational goals. 	

We enact these plans in a distributed
fashion, making use of the service
level, and analyze via logs the plans
already executed to give feedback
to the planning process and subse-
quently the organization level.

The organizational level provides
context for coordination and services
through an explicit representation of
the system’s organizational structure.
We achieve this by modeling the or-
ganizational stakeholders and their
relationships. Hence, we can derive
formal goals, requirements, and re-
strictions governing actors. Addition-
ally, there are tools and mechanisms
for the verifying and analyzing orga-
nizational specifications. We can also
handle changes to the organizational
structure (such as reorganization or
changes to the rules of governance)
arising from proposals by either the
coordination or the service level. 	
Finally, this level provides methods
for norm-oriented organizational
design, supporting flexible behav-
ioral governance in scenarios where
traditional approaches do not fit
well.

Figure 1. The Alive framework. We use model-driven engineering (MDE) to bind the service, coordination, and organization
levels of distributed system design and management.

IS-25-04-agents.indd 81 15/07/10 9:53 AM

82	 	 www.computer.org/intelligent	 IEEE INTELLIGENT SYSTEMS

We bind these three levels to-
gether using model-driven engineer-
ing (MDE), both at design time and
execution time. This provides au-
tomatic transformations from the
models at each of the three levels to
multiple target platforms, realizing a
form of feed-forward from design to
implementation. At execution time,
connections between the levels in the
opposite direction, realize feedback
from implementation to design, with
events at the service level feeding into
the coordination (leading to replan-
ning) and organizational (leading to
reorganization) levels.

This multilevel approach makes
the Alive framework especially suit-
able for scenarios where changes are
likely to occur at either an abstract or
concrete level. It also meets the needs
of highly dynamic services, with
new services entering the system and 	
existing services leaving it over the 	
lifetime of the service composition’s
execution. For example, when there is
a significant change in, say, the orga-
nizational structure, the service-level

orchestration is automatically reorga-
nized, effectively combining the exist-
ing services in new ways to reflect the
organizational changes. Another ex-
ample is the automatic adaptation of
more abstract levels when more con-
crete ones suffer significant changes
(such as due to the repeated failure
of a service). Furthermore, the Alive
framework lets more concrete levels 	
adapt within themselves, while keep-
ing the system’s overall goals and 	
objectives clear.

The Alive Tools
To support the Alive architecture, we
used the Eclipse Modeling Frame-
work to create a range of tools, which
we have combined into a single pack-
age called ALIVEclipse. The tool-
set integrates design tools for model
creation and the specification of sys-
tem functionalities, coupled with the
runtime tools required to deploy an
Alive system. ALIVEclipse contains
editors for modeling organizations
(to provide context), actions (to in-
dicate system capabilities), tasks (to

indicate action relations and depen-
dencies), plans (to represent abstract
workflows), agents (to represent the
acting components on the coordina-
tion level), and service descriptions
(to detail the available functionalities
provided by a service).

Figure 2 shows an example screen-
shot taken from the design phase.
The development methodology is di-
rectly supported by a dashboard that
guides system engineers through the
design process (see the bottom-right
pane). Because all the models in Alive
are metamodel-based, translations
between the different models are rela-
tively easy. The toolset contains a full
set of model-to-model transforma-
tions to generate parts of the mod-
els based on other models available.
Also, the toolset contains model-to-
text transformations to, for example,
generate the code for the agents and
services. The upper-right pane shows
the interaction structure (a workflow
on a high -level of abstraction that is
part of the organization model). The
left-hand pane shows a part of the 	

Figure 2. The ALIVEclipse design dashboard. The dashboard guides system engineers through the design and modeling
processes. The landmarks of the communication process include start, know possible channels, know appropriate channels,
and communication delivered.

IS-25-04-agents.indd 82 15/07/10 9:53 AM

July/August 2010	 www.computer.org/intelligent	 83

actions model, specifying the details
of a deliver messages action.

For execution, ALIVEclipse sup-
ports the remote set-up, deployment,
and running of Alive systems. More-
over, it contains components to eval-
uate and manage a running system by
means of event logs and monitoring
(to view the output of a running sys-
tem) and the workflow visualization
and analysis tools (to visualize and
evaluate the system functionalities).

An Alive Scenario
To illustrate aspects of the Alive ap-
proach, we examine a service com-
munications router (SCR) taken from
a scenario provided by Alive partner
Calico Jack. In the sample scenario,
Bob is in Second Life. He wants to
contact Alice so he uses Second Life’s
instant messaging (IM) facility. Al-
ice is not currently in Second Life,
but she is in Bob’s LinkedIn network.
She’s working away from the office.
How do we deliver the message?

At the organizational level, the
SCR requires expressions of roles
and access permissions for commu-
nication channels, such as those al-
lowing in-game friends access to in-
game voice over IP (VoIP) and IM,
and real-world telecommunications.

At the coordination level, the SCR re-
quires reasoning to determine service
selection for specific situations. This
reasoning might introduce external
resources, such as a representation of
the user’s diary and professional net-
work. At the service level, the SCR
requires specification of both in-game
and real-world communication chan-
nels and redundancy—for example,
using multiple SMS delivery services,
IM, VoIP, email, and so on.

More concretely, at the organi-
zational level in our example, Alice 	
allows in-game friends to communi-
cate with her via in-game IM, SMS
(on her real-world mobile phone), and
real-world email. At the coordina-
tion level, a communication request
within Second Life from Bob to Alice
is routed to Alice’s alternative chan-
nels because she is not currently in
Second Life. At the service level, if
Bob cannot send Alice an SMS mes-
sage via VoIP (for example, due to
a lack of software credits), then a 	
dynamic reconfiguration is required
to reroute his IM to Alice through
Bob’s real-life email and on to Alice’s
real-life email (see Figure 3).

Our framework uses the recipient’s
presence information to determine
his or her likely current role. This lets

us use the normative roles govern-
ing communication with the recipi-
ent in that role (in this case working
but traveling). In this example, the
salient rules are based on relation-
ships in the LinkedIn business social 	
network—being a contact within this 	
network will permit mobile communi-
cation while the recipient is in the role
“At work: Traveling.” Originators who
are not LinkedIn contacts will only be
permitted email communication.

As Figure 3 shows, once the set of
possible communication channels have
been determined (mobile voice, mobile
text, and email), the most suitable be-
comes the highest prioritized option
and then a request is made to construct
a workflow for delivering the message
from originator’s SL-IM channel the
recipient’s mobile-voice channel.

The upper-right pane in Figure 2
shows the interaction structure diagram
for this example and the expansion of
the landmarks of the communication
process. Landmarks, a key part of the
modeling process, identify sets of condi-
tions that hold at that point in the pro-
cess. Figure 3 expands on these land-
marks, capturing finer-grained actions,
including the constraints on the com-
munication imposed by the relationship
between the sender and recipient.

Figure 3. Service communications router. Dynamic reconfiguration allows for the expansion of communication landmarks.
In this case, because Bob and Alice have an established LinkedIn relationship, his instant message (IM) will be rerouted to
Alice’s real-life email through his real-life email.

At work: Traveling
Constraints from relationship

to sender

If LinkedIn contact→mobile-voice |
mobile-text | email

If not LinkedIn contact→email

...

Other → ignore

Determine
current role
of recipient

Get presence
for recipient

SL-IM
input

At work: Traveling
Communication

priorities

ignore
>

mobile voice
>

mobile text
>

email

Request SL-IM
to mobile-voice

workflow

IS-25-04-agents.indd 83 15/07/10 9:53 AM

84	 	 www.computer.org/intelligent	 IEEE INTELLIGENT SYSTEMS

Figure 4 illustrates how we map
the requirements to the levels of the
Alive architecture, starting from the
high-level organizational workflow,
the identification of candidate work-
flows at the coordination level, and
finally the actual execution at the ser-
vice level, including the fail-over from
workflow 1 that uses VoIP to work-
flow 2 using plain old telephony ser-
vices (POTS). Here an exception oc-
curs because the recipient is away from
the office, which the coordination
level resolves using the SMS delivery 	
workflow—which is permitted because 	

Bob and Alice have a LinkedIn 	
relationship—and the task is completed.
This process shows how the Alive ar-
chitecture demonstrates resilience and
adaptation in mapping designs onto a
changing real-world environment.

The Alive Consortium
The Alive consortium consists of the
Polytechnic University of Catalonia
(Spain), Utrecht University (the Neth-
erlands), University of Bath (UK),
Trinity College Dublin (Ireland), Uni-
versity of Aberdeen (UK), Thales B.V.
Nederland (the Netherlands), Tech

Media Telecom Factory SL (Spain),
and Calico Jack (UK). In addition
to the use-case scenario we describe
here, the project explores interactive
community displays to demonstrate
dynamic orchestration of services for
citizens and dynamic crisis manage-
ment to evaluate crisis management
policies.

Acknowlegdments
The Alive project (Coordination, Organi-
zation and Model Driven Approaches for
Dynamic, Flexible, Robust Software and
Services), FP7-215890, is funded by the Eu-
ropean Union’s Framework 7 Program (be-
tween February 2008 and October 2010).

Huib Aldewereld is a post-doctoral re-

searcher at Utrecht University. Contact him

at huib@cs.uu.nl.

Julian Padget is a senior lecturer at the

University of Bath. Contact him at jap@

cs.bath.ac.uk.

Wamberto Vasconcelos is a senior lec-

turer at the University of Aberdeen. Contact

him at w.w.vasconcelos@abdn.ac.uk.

Javier Vázquez-Salceda is a post-doctoral

researcher at the Polytechnic University of

Catalonia (UPC). Contact him at jvazquez@

lsi.upc.edu.

Paul Sergeant is the CEO of Calico Jack.

Contact him at paul@calicojack.co.uk.

Athanasios Staikopoulos is a post-

doctoral researcher at Trinity College Dublin. 	

Contact him at athanasios.staikopoulos@

cs.tcd.ie.

Figure 4. Service communications router. The Alive framework maps workflows onto a changing real-world environment.

Organization

Get
recipient
status

Determine
recipient

role

Request
exceptional

role

Coordination

Get IM text TTS VoIP

Workflow 1

Get IM text IM to English TTS POTS

Workflow 2: Failover
? Get IM text SMS

Workflow 3: Failover

Services

Get IM text IM to English

IM to English

TTS X Get IM text IM to English TTS X Get IM text SMS

Al
iv

e
SC

R
AP

I

From: Bob
To: Alice

“Hi Alice!”

From: Bob
To: Alice

“Hi Alice!”

SL-IM
client

SMS
client

IS-25-04-agents.indd 84 15/07/10 9:54 AM

