1011.3943v1 [cond-mat.mes-hall] 17 Nov 2010

arXiv

Breakdown of counterflow superfluidity in a disordered quantum Hall bilayer

D. K. K. Lee,! P. R. Eastham,? and N. R. Cooper®

! Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom
2School of Physics, Trinity College, Dublin 2, Ireland.
3 Cavendish Laboratory, University of Cambridge, Cambridge CB3 OHE, United Kingdom
(Dated: September 1, 2010)

We present a theory for the regime of coherent interlayer tunneling in a disordered quantum Hall
bilayer at total filling factor one, allowing for the effect of static vortices. We find that the system
consists of domains of polarized superfluid phase. Injected currents introduce phase slips between
the polarized domains which are pinned by disorder. We present a model of saturated tunneling
domains that predicts a critical current for the breakdown of coherent tunneling that is extensive
in the system size. This theory is supported by numerical results from a disordered phase model
in two dimensions. We also discuss how our picture might be used to interpret experiments in the
counterflow geometry and in two-terminal measurements.

I. INTRODUCTION

In a quantum Hall bilayer at total Landau level fill-
ing v = 1, Coulomb interactions induce a state with
interlayer phase coherencel2. This state is expected to
be approximately the Halperin [111] state?, which can
be understood as a Bose-Einstein condensate of inter-
layer excitons®3. The motion of excitons corresponds to
counterflowing electrical currents in the layers, so that
excitonic supercurrents can give dissipationless electrical
transport. The superfluid properties of the [111] state
have been demonstrated theoretically by Wen and Zee%7.

This counterflow superfluidity can be probed in tunnel-
ing experiments. In the tunneling geometry (Fig. ), a
current I; is injected into the top layer at one corner and
removed from the bottom layer at the opposite corner.
These current flows may be written as superpositions of
layer-symmetric and layer-antisymmetric currents,

()= () o

where the two components refer to currents in the two
layers. Thus, the tunneling experiment corresponds to
a flow of layer-symmetric current, with equal counter-
flow currents Icyp = I;/2 injected by both the electron
source and drain. The symmetric component is trans-
ported by a dissipationless edge state, which does not
penetrate the bulk due to an energy gap to charged exci-
tations. However, the bulk can carry the counterflow
component as a charge-neutral excitonic supercurrent.
Since both these channels are dissipationless, we expect
dissipationless electrical transport. In particular, a fi-
nite interlayer current I at negligible interlayer voltage
V has been predicted®?. This has been recently con-
firmed by four-terminal measurements by Tiemann and
coworkersi®tl This phenomenon can be regarded as a
form of the Josephson effect’. Note that thermally acti-
vated quasiparticles and contact effects'2 can give rise to
complications in actual experiments.

The Josephson-like regime persists for interlayer cur-
rents up to a critical value I.. Above I., interlayer trans-

port becomes dissipative. Nevertheless, interlayer coher-
ence can still be detected in the interlayer IV characteris-
tics of the system. A strong peak is observed at zero bias
in the differential interlayer conductivity. This is followed
at low bias by a regime with negative differential con-
ductivity!3:14, This regime can be studied theoretically
treating the interlayer tunneling as a perturbationt® 27,

FIG. 1. Schematic diagram of tunneling experiment.

In this paper, we focus on the Josephson regime be-
low the critical current, and present a physical picture
of its breakdown. We have previously presented, in a
short papert®, a theory of this breakdown based on nu-
merical results on a one-dimensional model. The aim of
the present paper is to present numerical results for a
two-dimensional model, which directly demonstrate the
breakdown mechanism in a realistic geometry. The key
motivation of our work is to understand the observationt!
that the critical current I. is proportional to the sample
area. (Area scaling is also observed in the zero-bias peak
of the interlayer conductivityl?. We will discuss this in
section [VTl) The source and drain contacts for the ap-
plied current are located at opposite ends of the system.
If one models this system as a clean homogeneous bi-
layer using reasonable estimates of the tunnel splitting,
one finds that the injected current should have tunneled
across the bilayer within a few microns of the source con-
tact [Ay in Eq. [@)]. Such a current profile would suggest
that the critical value of the interlayer current should
not depend on the sample length in the direction of the
current!229:21 - Put another way, the area scaling of the
critical current could only be explained by a clean model
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of the bilayer if one accepts a tunnel splitting that is
anomalously small by several orders of magnitude!2.

A similar puzzle is found in the original observation
of dissipationless counterflow?2:22 in the counterflow ge-
ometry (Fig.Bl). Again, counterflow currents apparently
traverse the system over distances orders of magnitude
further than expected. We will return to this geometry
in the final section.

The resolution of this puzzle lies in the presence of
disorder. We shall see (Fig. [2) that, in the presence of
static phase disorder (pinned vortices), the supercurrent
profile can be pinned by disorder. The time-independent
supercurrents can then penetrate into the sample over
indefinitely large distances, limited only by the finite size
of the sample. In fact, we find that dissipation only
appears when supercurrents completely fill the sample.
This mechanism gives a critical current [Eq. (II)] which
is proportional to the area of the sample. The magnitude
of this critical current agrees with experiments, using rea-
sonable estimates of the parameters!S.

This paper is organized as follows. We will discuss
the origin of disorder in the bilayer in Section [l Then,
in section [IIl we will introduce the phase Hamiltonian
for the excitonic superfluid that describes the interlayer-
coherent phase of the quantum Hall bilayer. In section
[Vl we discuss how quenched vortices in the superfluid
affect the ground state of the system and its response
to injected currents. Then, in section [V] we present the
results of a numerical simulation of the bilayer in the
tunneling configuration to support the prediction of our
theory. In the final section, we discuss how our picture
can be used to interpret experiments for the bilayer in
other configurations.

II. MODEL OF DISORDER

Weak disorder, such as a spatially varying tunneling
splitting, does not affect the tunneling properties of the
system dramatically24. A tunneling mechanism based on
a disordered edge has been proposed by Rossi et al?2.
However, such a theory predicted linear scaling with the
sample length but not its area.

We consider here a bilayer with charge disorder in the
bulk. One common source for this disorder is the elec-
trostatic potential due to disordered dopant layers. We
expect the incompressible quantum Hall phase to occupy
only a fraction of the sample, with the remainder occu-
pied by puddles of compressible electron liquid. Thus, the
incompressible phase forms a network of channels sepa-
rating puddles of size £ ~ d4 ~ 200 nm, the distance to
the dopants. We suppose that the width of the channels
is of the order of the magnetic length {5 ~ 20 nm. This
coherent network model was first studied in the context
of the quantum Hall bilayer by Fertig and Murthy=28.

In a quantum Hall superfluid, excess charge nucleates
vortices in the exciton superfluidi®17:26-28 = For a bal-
anced bilayer with individual layer fillings v; = 15 = 1/2

these vortices are merons of charge +e/2. (In an un-
balanced bilayer the charges are2? +evy(z).) In previous
work2” we have studied how the vortex density is deter-
mined by a competition between the superfluid energy
cost of the vortex and the charging energy of each pud-
dle. We found that the bilayer can be strongly disordered
in the current experimental regimes. This suggests that
the random field due to the pinned vortices has an expo-
nentially decaying correlation function in space.

The above scenario provides a specific physical model
for quenched vortices with short-ranged correlations in
the exciton superfluid. The theory we present below de-
pends on the existence of trapped fractional e/2 charges
to create these vortices but does not depend crucially
on the details of the disorder distribution. Our results
should be valid as long as the vortices are dense enough
that their separation (~ &) is smaller than the clean tun-
neling length scale Ay [Eq. (@)].

IIT. PHASE MODEL

In the previous section, we have outlined a model
of disorder which induced quenched vortices in a quan-
tum Hall state. To describe this exciton superfluid with
quenched vortices, we start with an effective Hamilto-
nian for the phase 6 of the superfluid. We separate out
the component, #°, of the phase field that is due to the
quenched vortices. The remaining component, ¢ = 6—6°,
would have no vorticity in the ground state but may ac-
quire vorticity in the presence of injected currents and
other external perturbations. It can be shown that the
effective Hamiltonian can be written as a random field
XY model:
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which describes the low-energy phase fluctuations of a
bilayer containing pinned vortices. This form is a simple
extension of the form for a clean model®. The first term
describes the superfluid stiffness to phase twists while the
second describes the interlayer tunneling. We will assume
that the quenched phase field ° has a correlation length
of &.

In the Josephson regime, there is no quasiparticle flow
at zero temperature. All currents are accounted for by
superflow and coherent tunneling. The counterflow su-
percurrent density above the ground state, jor, and the
interlayer tunneling current density, J¢, are related to the
phase field by:
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A time-varying superfluid phase ¢(t) gives rise to an
interlayer voltage difference V' via the Josephson relation
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Therefore, a state with a finite interlayer current at zero
interlayer voltage is time-independent, corresponding to
a local minimum of the energy (2)). The stationary equa-
tion is simply the continuity equation stating that the
loss of counterflow current is accounted for by interlayer
tunneling: V - jor = J;. This can be written as

— psV2p+tsin(¢p+60°) =0. (5)

All states with zero interlayer voltage obey this equa-
tion. The dependence on the injected current arises as
the boundary conditions at the source and drain specify-
ing the injected counterflow component jop. In terms of
the phase field, this is a boundary condition on V¢.

We expect that the counterflow current injected at the
boundary will decay into the sample because interlayer
tunneling will recombine electrons and holes across the
two layers, as depicted in Fig.[Bl In the clean case (§° =
0), one expects?230 the static solution to show all the
injected counterflow current tunneling across the bilayer
over a “Josephson length” of

A= /oot (6)

This length scale is estimated to be of the order of a few
microns using realistic parameters.

Since the phase angle is compact, this implies a max-
imum injected current density of ps|V¢| ~ mps /A ;. For
higher injected currents, phase slips enter and propagate
through the system. This gives rise to a time-varying
phase and hence a non-zero interlayer voltage wvia the
Josephson relation ).

Note that this picture of current penetration into the
clean system gives a penetration depth as a microscopic
length scale independent of the injected current. We will
see below that the disordered system behaves qualita-
tively differently — the current can penetrate into an
indefinitely large area of the system. The reason is that
injected phase slips are pinned by disorder and therefore
a static solution to Eq. (Bl can persist to higher injected
currents. In the next section, we will discuss this picture
of pinning.

IV. PINNED SUPERFLUID

We will now review the heuristic theory of pinning pre-
sented in our previous work!® in order to provide the con-
text to interpret our simulation results. The quenched
vortices play a crucial role for the critical current. They
pin any injected supercurrents and sustain dissipationless
states. This is reminiscent of how disorder pins magnetic
flux in superconductors3! 32, or charge in charge-density
waves2?, However, we emphasize that there is a signifi-
cant difference in the bilayer compared to these other sys-
tems. In the superconductor, the depinning force arises
from the Lorentz force on the flux lines due to the bulk
transport current. In charge-density-wave systems, de-
pinning originates from the electric field in the bulk which

is an insulator when the charge density cannot slide. In
the quantum Hall bilayer, depinning arises from the in-
jected charge current which is applied only at the sample
boundary. Thus, in this case, the critical current will
depend on how the depinning “forces” are transmitted
through the system. In such a geometry, it is not im-
mediately obvious how the critical current I. would scale
with the area of the whole sample.

We will borrow from the Fukuyama-Lee theory3* of
disordered charge density waves and the Imry-Ma the-
ory3? for ferromagnets in random fields. We recall the
form of the ground states of the random field XY model,
Eq. @), in the weak disorder regime £ < \; relevant for
the bilayer. In this regime, it is energetically costly for
the phase 6 to follow the random field §° which varies over
the scale of the correlation length £. The ground state
consists of domains of polarized phase. These domains
cannot be arbitrarily large because the energy cost of
the mismatch between the phase and random field grows
with the domain size. The energy cost for a phase twist
that varies over the scale [ is Fs(l) ~ pslP~2 in D di-
mensions. The typical tunneling energy of a polarized
region of size [ is obtained by summing random energies
in the range +t£P for its (1/€)P correlation areas, giving
E(l) ~ teP(1/€)P/2. The phases will twist when F (1)
exceeds Es(l). Therefore, the ground state consists of
domains of size Lq determined by

Es(Lq) ~ Et(Lq). (7)

This “Imry-Ma scale” for the domain is:

< ﬁ )\2 ﬁ
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In this ground state of polarized domains, the average
coarse-grained phase over a domain is chosen such that
the tunneling energy H; of each domain is minimized.
Since dH;/d¢(r) is the tunneling current at position r,
the total tunneling current over the domain vanishes.

In two dimensions, Lq = )\3/5. We see that, in the
experimentally relevant regime of A\; > &, this new
disorder-induced length scale is much larger than the
Josephson length. This is the length scale controlling
current penetration into the sample. However, as we see
below, this should not be interpreted simply as a renor-
malized length scale for how far counterflow currents pen-
etrate into the sample.

Consider now the effect of an injected counterflow
which imposes a phase twist at the boundary. The phase
will therefore twist away from its equilibrium configu-
ration. We assume that the domain at the boundary
remains polarized at short distances and so will rotate
uniformly on the scale of Lq. This generates a tunnel-
ing current which reduces the counterflow current. The
residual counterflow currents will be transmitted further
into the sample, causing the domains there to rotate in
a similar way.

This picture allows us to average over each domain.
The total tunneling current in a domain consists of a




similar random sum to that for the tunneling energy, E},

and is given by I4 f(¢) where

Iy — eEt(Ld) _ €pPs
AR

Ly~ (9)

¢ is the deviation of the coarse-grained phase from its
equilibrium value, and the range of f(¢) is typically
[-1,1]. To minimize the region pushed out of equilib-
rium by the injected current, each domain will rotate so
as to minimize the counterflow current transmitted into
the sample. This maximizes the tunneling current and
is achieved if we choose |f| ~ 1. Thus, we argue that
forcing at a boundary leads to a self-organized critical
state, in which the driven part of the system is saturated
at the threshold |f| ~ 1. This means that the area S,
of the system driven out of equilibrium to provide co-
herent tunneling is simply proportional to the number of
domains necessary to carry the injected current I. Each
domain can support a current of Iy and so

Si(I) T
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The critical current is reached when all domains in the
sample are saturated: S = S;(I.) for a 2D sample of area
S. Therefore the critical current for a sample of area S
is

eps S

S
IcNId?: h L_zla (11)

This formula also applies to the 1D case with S being the
sample length.

V. NUMERICAL RESULTS

We will now present numerical results to support the
theory in the previous section. Our numerical results are
obtained using the dissipative model

O0Hcg

75 —ps V2 + tsin(¢ + 6°), (12)
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whose stationary solutions ¢ =V =0 are the local min-
ima of Eq. [@)). This is performed on a lattice model. The
phase field 69 at site i is uncorrelated with the phase
field at any other site. This corresponds to taking the
lattice spacing to be the correlation length £ of the orig-
inal continuum model. The natural unit of current is
Iy = eps/h. The results that we present below are the
results for a 200x20 lattice, averaged over 500 realiza-
tions of the disorder. For this illustration, we take the
ratio of the tunneling strength to the superfluid stiffness
to be t&2/ps = 0.6. This corresponds to a Josephson
depth \; of the order of a lattice spacing and a domain
size Lq of 2 lattice spacings. Although this is not deep
in the weak-disorder regime considered in the previous

section, our results appear to support the conclusions in
that section.

The boundary conditions for Eq. (@) are determined
by the current flows through the sample!2. We consider a
tunneling geometry in which, as seen in Fig. 2 a current
I, is injected into the top layer at the bottom left corner
and removed from the bottom layer at the bottom right
corner. As already discussed [Eq. ()], the counterflow
component of the currents corresponds to equal counter-
flow currents Icp injected by both the electron source and
drain.

The ground state of the system is found by evolving
from a random state using the dissipative dynamics (I2))
with the boundary condition of no injected current. From
Eq. @), this corresponds to i - V¢ = 0 everywhere on
the boundary with fn being the normal to the bound-
ary. To model the current injection in a tunneling exper-
iment, we then slowly increase the counterflow current at
the source and drain sites (1 and 2) to the final values
&n-Voly = &n- Voly = I/Iy. For the low values of
the injected current I, the dynamics reach a static solu-
tion, corresponding to the Josephson regime with vanish-
ing interlayer voltages. At higher currents, these time-
independent solutions break down and the phase winds
continuously in time. This corresponds to the break-
down of the d.c. Josephson regime and the appearance of
a state with finite interlayer voltages.
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FIG. 2. Spatial distribution of tunneling currents (left col-
umn) and interlayer voltages (right column), in a lattice
model of 200x20 sites, with current injection at the two
lower corners. The injected counterflow currents are I/l =
15,30, 45,60 for the four pairs of plots. Dark colours, left
column: high current. Dark colours, right column: low volt-
age. t§2/ps = 0.6. Results are averaged over 500 realizations;
tunneling currents are summed over blocks of 3x3 sites.



We expect that the counterflow current injected at the
boundary will decay into the sample because interlayer
tunneling will recombine electrons and holes across the
two layers. We find that the manner in which this occurs
is qualitatively different in clean and disordered bilay-
ers. As mentioned in section [l the penetration depth of
the injected current is simply the Josephson length A
in the clean case. We see in Fig. [ that, for the disor-
dered case, current penetrates further and further into
the sample as we increase the injected current from the
two ends. We see from the border of the regions with
finite tunneling (V - jor # 0) that the counterflow region
increases linearly in area (S;) with the injected current.
This is consistent with the prediction [Eq. ([I0)] for S; as
a function of the injected current from our theory.

At a high enough injected current (I/Iy ~ 50), the
current profiles from the contacts (lower left and right
corners) will meet in the middle of the lattice. Beyond
this point, further increases in current cannot be accom-
modated by coherent tunneling and an interlayer voltage
develops.

We emphasize that this interpretation of the threshold
for the breakdown of the stationary solutions is qualita-
tively different from the clean case. In the clean model,
the breakdown can be understood in terms of the in-
jection of phase solitons at the boundary2%:3% when the
injected current exceeds the superflow that can be sup-
ported by a static phase twist |V ¢| ~ /X ;. These phase
solitons propagate through the sample. Thus, the phase
at any point varies in time, and the system develops an
interlayer voltage by the a.c. Josephson effect. In this
language, we can say that these injected solitons can be
pinned by disorder so that stationary solutions exist even
when there are many solitons in the system.

VI. DISCUSSION

We have so far focused our discussion on the bilayer
in the tunneling geometry. Finally, we will discuss how
two other experimental situations can be interpreted in
our theory. The first setup is the transport in the bilayer
in a counterflow geometry where the source and drain
contacts are on the same side of the bilayer while the
other end is short-circuited to allow the current to flow
from the top layer to bottom without the need for tun-
neling. This is depicted schematically in Fig. This
was first investigated by Tutuc et al?2 and Kellogg et
al?2. A large current (Ijo0p in figure) was found passing
through the short circuit that join the top and bottom
layers. This seems to imply that there is no leakage by
tunneling across hundreds of microns. As we discussed in
section[[lfor the case of the tunneling geometry, a realistic
estimate of the tunneling rate based on a clean bilayer
predicts that the injected current would have tunneled
across the bilayer within a micron and no current should
remain at the far end.

In our theory, this situation can be simulated by solv-

|

FIG. 3. Schematic diagram of a counterflow experiment with
a short circuit to complete current loop for counterflow. Iioop
measures current through the short circuit. Diagram depicts
the Josephson regime where the loss of counterflow current
through tunneling means that I,op = 0. The current-carrying
region penetrates to the right as the injected current I is
increased, eventually reaching the other end at I..

ing Eq. (I2) with injected counterflow current at one end
only, say the left end of Fig. We expect the tunnel-
ing domains to saturate successively from this end, and
the current profile is the same as that found in Fig.
for this side of the sample. There will be no current
flow on the right side. In other words, we expect to see
zero current in the short-circuit loop (fioop = 0) in the
Josephson regime. As we increase the injected current [
to I., the current-carrying region reaches the other end
of the sample. Any further currents will pass through the
short circuit. For an ideal loop, we expect ligop = I — I.
However, the short circuit itself should have a finite resis-
tance. Therefore, the presence of a non-zero I implies
a small interlayer voltage at the end of the sample. In the
phase theory, the Josephson relation (@) means that the
superfluid phase must wind in time. Thus, a static solu-
tion to Eq. ([I2]) becomes impossible anywhere in the sys-
tem and the whole sample develops an interlayer voltage.
We expect that the phase dynamics will be complex and
chaotic. The nature of the steady state would depend on
details of the damping mechanisms. This provides a zero-
temperature picture of the counterflow geometry and is
consistent with the recent experiments of Yoon et al®?,
in which the loop current Iioop is negligible for tunnel
currents below a critical value. We should keep in mind
that, at finite temperatures, there may be in-plane re-
sistances associated with the flow of thermally activated
quasiparticles.

The second situation we wish to discuss is the two-
terminal measurements of zero-bias interlayer conduc-
tance, G(0), by Finck et alt? Within our theory, this
could be interpreted as the dissipative regime (i.e. no
static solutions for the phase) above the critical current.
We note that these measurements were performed close
to the phase boundary between the excitonic superfluid
with interlayer coherence and the incoherent v = 1/2
quantum Hall liquid. We expect the critical current to
vanish near the phase boundary!:18. Therefore, it is easy
to exceed the critical current in this region of the phase
diagram. Then, we see in Fig.2lthat a non-zero interlayer



voltage develops across the whole sample and the tunnel-
ing current exists over the whole sample. In other words,
G(0) should be proportional to the area of the sample, as
seen by Finck et al. We point out that, whereas this in-
terpretation gives an intrinsic zero-temperature source of
a finite conductance, there may be other sources of dissi-
pation. Even below I. there could be a finite dissipation
due to contact resistances and thermal activated vortex
motion. Fluctuations in the pinning energies could also
lead to very weakly pinned regions in large samples32,
which may lead to dissipation below I. even at T' = 0.

In summary, we have presented a theory of the Joseph-
son regime of coherent tunneling in a disordered quan-
tum Hall bilayer with static pinned vortices. We find
that, in the tunneling geometry, there are two current-
carrying regions emanating separately from the source
and drain contacts. In these regions, coherent tunnel-
ing is saturated. All injected counterflow current is lost
by tunneling at the edge of these regions. The area of
the saturated region S; grows linearly with the injected
current I. This linear relation is predicted by our the-
ory and is confirmed by the numerical results presented
here. This is analogous to the Bean critical state for flux
penetration into a disordered superconductor.

This picture tells us that the system reaches the criti-

cal current when the whole sample is saturated with co-
herent tunneling. This results in a critical current that is

extensive for sufficiently large samples that contain many
domains of polarized phase. In contrast, the clean limit2
sees area scaling for I. only for small samples (small com-
pared to the Josephson length).

Theoretically, our results are qualitatively different
from clean theories!2 because of the existence of these
pinned polarized domains. The size Lq of these domains
is a disordered-induced length scale that emerges in our
theory [Eq. (§)]. This scale has no counterpart in the
clean system. It would be therefore be useful if this
length scale can be probed in experiments. We note that,
for the area-scaling formula (1)) to apply, the sample
should be large enough to include many complete do-
mains. For sample dimensions smaller than Lq, the sys-
tem should cross over to a regime where I. scales with

the square-root of the sample dimension®:

€Ps L, L .
I, ~ : L_dL_Z (quasi-1D: L, <« Lq < L) .(13)
. (.
&P 2y (for L, L, < Lq). (14)
h L3 ‘

This crossover provides an experimental probe of the do-
main size Lg.
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