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We present a theoretical study of the spin transport properties of monoatomic magnetic chains with a focus
on the spectroscopical features of the /-V curve associated with spin-flip processes. Our calculations are based
on the s-d model for magnetism with the electron transport treated at the level of the nonequilibrium Green’s
function formalism. Inelastic spin-flip scattering processes are introduced perturbatively via the first Born
approximation, and an expression for the associated self-energy is derived. The computational method is then
applied to describe the 7-V characteristics and its derivatives of one-dimensional chains of Mn atoms, and
the results are then compared to available experimental data. We find a qualitative and quantitative agreement
between the calculated and the experimental conductance spectra. Significantly we are able to describe the
relative intensities of the spin excitation features in the /-V curve, by means of a careful analysis of the spin
transition selection rules associated with the atomic chains.
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I. INTRODUCTION

Inelastic electron tunneling spectroscopy (IETS) has be-
come an important tool for investigating the elementary
excitations of nanoscale systems.! An excitation manifests
itself as an abrupt change in the differential conductance
of a two-probe device as the voltage sweeps across the
excitation energy. This is the result of the opening of a
new inelastic transport channel for the electron tunneling. As
the energy of the probed excitation sets the critical voltage
and the temperature range where to observe IETS, it is
not surprising that the first experiments were all related to
molecular vibrations of relatively high energy.”

More recently the continuous advances in low-temperature
scanning tunneling microscopy (STM) have enabled the
detection of excitations of different origin, namely, those
related to the spin degree of freedom. This different type
of spectroscopy is usually named spin-flip IETS (SF-IETS).
The first measurements of SF-IETS were for single atoms
randomly deposited on surfaces.> However, STM techniques
also open the possibility of assembling and manipulating
entire nanostructures* and of positioning magnetic ions on a
surface at a desired position. This enables the construction
of atomic magnetic nanostructures and the study of the
complex magnetic excitations, resulting from the exchange
interaction between the magnetic ions and the substrate, and
also between the magnetic atoms themselves. Such a unique
fabrication capability has produced a surge of experimental
studies on the spin excitations of magnetic nanostructures.
These comprise the investigation of the conductance spectra
of individual atomic spins,’ of Kondo-screened magnetic
dimers,® and of multiple chains of Mn atoms.” Interestingly
similar investigations have now been extended to molecular
chains composed of Co-phthalocyanines.?

The recent rapid growth in the experimental activity has
been matched by an equally fast explosion of theoretical
works. A general and now standard approach to calculating
the conductance spectra of the various possible magnetic
nanostructures is that of combining a master equation solver
for the quantum transport problem with a model Hamiltonian
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describing the magnetic interaction.” This is an intrinsic
many-body approach, which in principle contains all the
ingredients needed for solving the problem, once the various
transfer rates are known. As such it usually requires a large
number of parameters to be predictive. An alternative strategy
consists of treating the problem at the single-particle level,
by using a tunnel Hamiltonian and/or the standard Tersoff-
Hamann description'? for the STM current.!'~!* This second
class of computational schemes appears more amenable to be
implemented together with first-principles electron transport
methods. However, it still remains a hybrid theory, where the
dynamic part of the problem needs to be approached at the
model Hamiltonian level, although the level of sophistication
may include effects related to current generated nonequilib-
rium spin populations. '

A standard theoretical approach to quantum transport is
represented by the nonequilibrium Green’s function (NEGF)
formalism,'”'® whose mean-field version can be combined
with state-of-the-art electronic structure theories to produce
efficient and predictive algorithms.'>?" To the best of our
knowledge, this is, to date, the only fully quantitative quantum
transport approach capable of scaling to large systems,?! i.e.,
it is the only one capable of performing simulations for
materials sets of current technological relevance. Importantly
for this discussion, inelastic contributions to the elastic current
can also be included within the NEGF formalism. In the
case of scattering to phonons the problem is usually treated
perturbatively by constructing an appropriate self-energy at
the level of either the first (1BA) or the self-consistent Born
approximation (SCBA).?> To the best of our knowledge, a
similar approach to the case of spin excitations is currently not
available.

There are two main reasons for this gap. On the one hand,
the adiabatic separation between the electronic degrees of
freedom and those responsible for the inelastic excitations
are well defined in the case of nuclear motion (phonons) but
less clear in the case of spins, since even extremely localized
spins have full electronic origin.”? On the other hand, it is also
unclear whether the perturbative approach is valid for spins,
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FIG. 1. (Color online) Schematic representation of the device
investigated in this work. A scattering region, comprising N spin-
carrying atoms (light-blue circles) and described by the Hamiltonian
Hs, is sandwiched in between two semi-infinite electrodes (red
circles). These mimic the substrate and the tip in a typical STM
experiment. The electrodes are nonspin polarized, and they are
described by the Hamiltonian Hy,, and Hyp,. In the scattering region
the transport electrons are exchange coupled to local quantum
spins S;.

i.e., whether a suitable expansion parameter can be found.
As such, as far as we know, an expression for a self-energy
describing inelastic spin-flip events has not been derived so
far.

In the present paper we undertake this challenge and
formulate a perturbative theory of spin-flip spectroscopy based
on the NEGF formalism for electron transport. Our theoretical
analysis is based on a tight-binding Hamiltonian for the trans-
port electrons, which are locally exchange coupled to quantum
spins. As such our formulation works by still assuming an
adiabatic separation between the transport electrons and the
local spins, and it is constructed over the s-d model for
magnetism.”* We then proceed in constructing an appropriate
self-energy for the spin degrees of freedom at the 1BA level
(note that for this particular problem little differences are
introduced by extending the treatment to the SCBA) and
use this in the standard NEGF scheme for transport. Our
methodology is then applied to describing SF-IETS in atoms
and atomic chains and results are favorably compared with
experiments.

II. INTERACTION HAMILTONIAN AND THE
SCATTERING SELF-ENERGY

The typical experimental setup considered in this work is
that of a STM measurement, i.e., it comprises a STM tip
positioned above one of the atoms of a magnetic nanostructure,
which in turn is weakly coupled to a metallic substrate across
an insulating barrier.

We model this system by using a pair of noninteracting
semi-infinite leads that are separated by a scattering region
as outlined in Fig. 1. The left-hand side lead, the scattering
region, and the right-hand side lead represent respectively the
STM tip, the spin-coupled nanostructure, and the substrate and
they are described by the Hamiltonian Hyp,, Hs, and Hgy,. For
simplicity we assume an identical electronic structure for both
the leads (i.e., they are made of the same material), which we
describe by a one orbital per site tight-binding Hamiltonian
with nearest-neighbor interaction.
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The scattering region consists of a one-dimensional chain
of N atoms. Each ith atom carries a quantum mechanical spin
S: and is characterized by an on-site energy €. We assume that
the tip and substrate can only couple to one atom at the time in
the scattering region, and we describe such a coupling by the
hopping integrals y;p—s and yun—s, respectively. This means
that the electronic states of the scattering region are broadened
by the interaction with the electrodes by I'jp_s = yﬁzp_s /Yo

and [gyp_s = yszube /%0, Where y; is the hopping parameter in
the leads. We assume that g9 > I'ip_s (and also g9 > I'syp—s),
leading to a constant density of states at the Fermi energy
(EF). This assumption has two main consequences. On the
one hand, we can neglect the electronic interaction among the
atoms in the scattering region (i.e., the creation of bonding
and antibonding levels), as this will generate states far enough
from the Fermi energy to ensure a constant density of states.
On the other hand, we can simplify the interaction between
the atoms in the chain and the substrate to an electronic
coupling to a single atom, as additional coupling (as far as
it remains weak) will not introduce additional density of states
around Ef.

The Hamiltonian of the scattering region contains three
parts Hs = H. + Hy, + H._gp, where H, is the tight-binding
electronic part, Hg, is the spin part, and H._g, describes
the electron-spin interaction. More explicitly these three
components write respectively as

He =& ZCLYCM[, (1)
Ao
N-—1 N
Hyp=2Ju ) S Sivi + ) {susB - Sy + D(S})

A )
+E[(S)) — ()1}, @
He—sI) = Jsd Z(Cia [O’)\]aa/ckw) . SA~ (3)

ra,of

The electronic part consists only of an on-site potential, i.e.,
we neglect electron hopping between the sites [the electron

ladder operators cj\'a /Cra create/annihilate an electron at site
A with spin @ (=1,)].

We model the spin-spin interaction between the localized
spins {S, } by a nearest-neighbor Heisenberg Hamiltonian with
coupling strength J,,;. Furthermore, we include interaction
with an external magnetic field B (ug is the Bohr magneton
and g the gyromagnetic ratio) and both uniaxial and transverse
anisotropy of magnitude D and E, respectively.5>

The electron-spin interaction Hamiltonian is constructed
within the s-d model,>* where the transport electron s
are locally exchanged coupled to quantum spins {S,} (“d”
indicates that the local moments originate from the atomic
d shell). The electronic spins are described by the operator
Cia[al]aa’cka” with o being the vector of Pauli matrices.
The use of the s-d model means that we implicitly assume
an adiabatic separation between the transport electrons and
those forming the local spins. As a consequence we can
define a single interaction parameter Jy;, which can be used
to develop a perturbation theory (note, however, that J;4 is not
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the perturbation expansion parameter, as it will be explained
later). Such an approximation is valid in the limit of weak
electronic coupling between the electron reservoirs and the
scattering region, as in the case of the STM measurements
that we aim to describe here. Note that going beyond such an
approximation will require formulating an entirely electronic
theory for inelastic spin transport. An Anderson-like impurity
model can be a starting Hamiltonian for such a task,2° but this
will require abandoning the perturbative approach and it is
outside the scope of the present work.

We now proceed to deriving the perturbation theory in the
electron-spin interaction (note that H, and Hg, independently
can be easily diagonalized). Our strategy is that of first
constructing the many-body Green’s function at the level
of 1BA,?30 and then, by Dyson’s equation, to evaluate
the interacting self-energy. In particular, we follow closely
the procedure laid out in Ref. 27. Since we consider a
nonequilibrium situation at zero temperature our starting point
is the Keldysh'” contour-ordered single-body Green’s function
in the many-body ground state,

[G(t,7)por = —i(|Teles (T)el (TH), 4)

where the time average is performed over the full interacting
ground state |) (note that for clarity we have dropped the
site index A, which will be explicitly included only where
necessary). Equation (4) can be expanded up to the nth order
in the interaction Hamiltonian H._g, as

/ (_i)n+l
(Gt =30 20— [dn - [ ax,

n C C
(Ol (Hep(T) - He_o(t,)co (T)ek (7)}10)
U(—00,— 00)

&)

where U is the time-evolution unitary operator and the time
averages are now over the known noninteracting (Js; = 0)
ground state |0). The time integration over t is ordered on the
contour C going from —oo to +00 and then returning from
400 to —oo0, since the ground state of the nonequilibrium
system can only be defined at —o0o.3! If the expansion is
truncated to the first order, one obtains a Zeeman-like term
which can be neglected as long as &9 > Yiip—s@ub—s).- The
first contribution of interest then appears at the second order.
This can be obtained by inserting the explicit expression for
He_(1) [Eq. (3)] into Eg. (4),

—_i)3
(2l|) Jszd Z /dl’] /dT2<0|Tc{CU(r)

i,a,a',j,B,p C C

[G(r,e)NS), =

x cl(tD)ca (el (T)ep (T)el (T)}10)
x (01 Tc{S"(T)S ()00 Jaw [0/ 155, (6)

where the indices i and j run over the Cartesian coordinates
x, y, and z (not to be confused with the site index).

A full contour-ordered expansion must now be performed
on both the electron bracket and the spin bracket. The electron
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bracket has six different time-ordering combinations, which
are explicitly listed in Eq. (7) below:

(01T {co (Del (T)ea (T1)e (T2)ep (T)el (T)}10)
= (0ITc{co (D)l (T)0) (0l Te fea (z1)eh(72)}10)

x (0| Te{ep (T2)el (T)}0) + (01 Te{eq (T)ch(12)}10)
% (01 Te{ea (1)l (T)}H0) (01 Tefea(Ta)ch (21)}10)
+ (01 T {eo (T)ek (11)}10) (01 Te {ew (Tr)e (T)}10)
% (01 Tc{el(m)ep (12)}0) + (01 Te {eo (T)ch(12)}0)
% (01 Tc{ep (T2)el (2)H0) 01 T fek (xr)ew (21)}10)
+ (01 e {eo (D)l (2DHO0) (01 Te el (z1)ea (21)}10)
X (0| Te {ch(ra)ep (22)}10) — (01 Te{eq (T)el (2)}10)
% (01 Te{ea (1) (t)}ONOI Te fep (el (r}0).  (7)

The first and the second terms represent Fock-like Feynman
diagrams [see Fig. 2(b)], while the third and the fourth
ones correspond to Hartree-like ones (note that Hartree-like
diagrams vanish because of the spin selection rules, as
discussed later in this section). Both these pairs are equal under
the exchange of the indexes. Finally, the last two combinations
can be eliminated since they represent unconnected Feynman
diagrams which vanish in the averaging process.?’ This leaves
us with a simplified expression which, when compared to
Eq. (5), gives us

(01 Te{ea (1)l (T1)ew (T)ef()ep (T2)el (T)110)
= 2i350a aa’ﬂ 8/3’0’ [G()(‘L’, 71 )](ro [GO(TI’ TZ)]at’a’ [GO(":Z s T/)](r/(r’
+ 2085480085 [Go(T, T1)]o6 [Go(T1,T )60 [Go(T2,T2) 1 8-

In this case, since the averaging bracket is over the noninter-
acting ground state, G represents the unperturbed electronic
Green’s function and can be calculated exactly.

We then return to Eq. (6) and evaluate the spin bracket.
The ground state of the noninteracting spin system alone
can be found by diagonalizing exactly Hg,. This is achieved
by constructing the full basis {|n)} where n = —§, — S +

1,...,+ S. Note that in the discussion of the results we will
Energy
)
H—
v —
incoming e spin system outgoing e

FIG. 2. (Color online) (A) Schematic representation of the inelas-
tic process described by the greater self-energy X.,. An incoming
electron scatters against a localized spin and decreases its energy by
Q,.n- This is transfer to the local spin system, which undergoes a spin
transition [n) — |m). (B) Feynman Fock-like diagram describing the
interaction in the time domain.
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keep labeling the eigenvalues of the spin Hamiltonian with
the z component of the total spin S, which in general is
not a good quantum number because of the presence of the
transverse anisotropy. However, such an anisotropy is small so
that our notation remains approximately valid. The resulting
eigenvectors |m) and eigenvalues E,, satisfy the Schrodinger
equation Hg,|m) = ¢, |m), and they can be used to rewrite the
operators S'(t), fori = {x,y,z}, as

S =Y (m|S'n)d},(1)d, (). ®)

m,n

Here d, is a destruction operator for a quasiparticle of the spin
system. The quasiparticles are then assumed to be fermionic in
nature so that they obey the anticommutation rules [d,L,dn] =
Smn and [d,]:,,d,;r 1 = [du,d,] = 0. Such an assumption is valid
as long as the excitations considered are always around the
ground state, i.e., under the condition that the spin system
can always efficiently relax back to the ground state between
spin-flip events. We can then define a contour-ordered spin
Green’s function as follows:

[D(@,T)]nm = =i (| Tctdy(D)d], (). C))

By inserting the expressions in Egs. (8) and (9) into the spin
bracket and by computing the time-ordered contraction, we
finally obtain

(OITc{S (1) S/ (22)}10) = — Z (m|S"|n)(n|S’|m)
X[DO(TI57:2)]11,11[D0(T2»r1)]m,m-
(10)

The set of equations ((8)) and (10) can now be incorporated
into the expression for the second-order contribution to the
many-body Green’s function [Eq. (6)]. Then, by using Dyson’s
equation,”’ one can finally write the second-order contribution
to the interacting self-energy, which reads

[Sin(r1,t)]50 = =I5 Y (10" loplo71por + [0 150 (07 145)
ij.B

x [Go(t1,)lgs Y (m|S'n}(n|S’|m)

m,n

x [Do(t1,72)]0,n[Do(T2, T1) i m - an

If we now assume that the ground-state electronic spin levels
are degenerate, i.e., [Golys = [Golyy, then the only quantity
of interest is the trace of the self-energy over spin indices.
By performing such a trace, the spin-independent self-energy
finally reads

Zin(1,2) P = =247 Y [(m]S 1) *Go(t1,T2)

i,m,n

X [D()(fl»tZ)]n,n [DO(TZa Tl)]m,ma (12)

where we have used the results Tr[o’0/] = §;; and Tr[o'] =
0. Note that, at variance with the phonon case, the relation
Tr[o?] = O guarantees that the Hartree-like diagrams do not
contribute to the self-energy.

At this point we can calculate the real-time quantities, such
as the lesser (greater) self-energies, by using the Langreth’s
theorem for time ordering over the contour t; € C(C,) and
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7, € Co(C)3' €y is the time-ordering contour from —oo to
+o0 and C;, is the time-antiordering contour from +00 to —oo.
We find

Sit1.)® = =202 " [(m|S'[n) PG (t1.12)

i,m,n

X [Do>(t1st2)]n,n[D()<(t29t1)]m,m

=242 [(m|S' 1) PGy (11.12)

im,n

x Py(1 — Pm)eii(é?m—sn)(tl—lz)7 (13)

<
where in the second step we have written explicitly Dy (t1,t,)
in terms of the spin-level occupations P, = dld,. The depen-

<
dence of X, over the energy E can found by a simple Fourier
transform

S(E)® = =202 3" [(m|S|n) 2 Py(1 = P,y)

xGy (E £ Q). (14)

where Q,,, = ¢, — &, and where the + (—) symbol corre-
sponds to X< (X7).
Electron-spin scattering events are now fully described by

<
[Zi(E)]. In particular, Eq. (14) describes the process where
an incoming electron with energy E experiences a spin-flip
process, which changes its energy by ££2,,,,. This is the result
of the electron-spin interaction with the local spins. Such a
process is schematically represented in Fig. 2. Note that the
probability for an excitation to occur is determined by the
prefactors (m|S'|n)|*>P,(1 — P,,), i.e., by the state of the spin
system.

We conclude this section by discussing the limits of validity
of our perturbative expansion. On a first inspection of Eq. (14),
one could conclude that the strength of the second-order
interacting self-energy is solely dependent on Jszd. This will
indeed result in a large perturbation parameter and thus in
a possibly divergent perturbative expansion (see Table I for
an estimate of the various parameters). However, both the
lesser and greater Green’s functions are proportional to the
density of states of the scattering region p [see Eq. (25)].
In the weak-coupling limit one has p ~ I'/&j, where & is
the on-site energy of the atom under consideration (the one
under the tip) and I'" is the total broadening due to the
electrodes I' = I'p_g + I'sup—s. As a consequence, we have

<

that ¥ (E)® ~ aJy, where a = pJy; is a dimensionless
quantity. By continuing the expansion to the third order,
one will find an additional contribution to the interacting
self-energy proportional to a?J, i.e., it will be discovered
that the perturbation expansion parameter is the dimensionless
quantity «. The convergence of the perturbation series is then
guaranteed by our weak-coupling condition, which essentially
establishes that p is small and then o < 1.

III. NONEQUILIBRIUM GREEN’S FUNCTION METHOD
FOR ELECTRON TRANSPORT

The transport properties of the device are described by using
the NEGF method. This has been extensively described in the
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past.!”"!° Here we only summarize the main concepts and we
highlight the modifications associated to describing electron-
spin interaction. A two-probe device can be divided into three
distinct regions, two semi-infinite leads which represent the
STM tip and the underlying substrate and a central scattering
region (see Fig. 1). The leads act as charge reservoirs, and
they are characterized by their chemical potential, respectively,
tep and pgp. The external bias is introduced in the form of
a relative shift (symmetric) of the two chemical potentials
with respect to each other. The underluying assumption of the
method is that under the external bias there is no rearrangement
of the electronic structure of the leads, i.e., that electron
screening in the leads is efficient. This simplifies the problem
to that of calculating the retarded Green’s function of the
scattering region'®!%3? only:

G(E) = lim[(E — in)] — He - (B (15)
n—

Here H. is the electronic part of the Hamiltonian [Eq. (1)] and
Y (E)is the retarded self-energy, which incorporates the effects
of the leads and of the inelastic interaction. In particular, X(E)
writes as

E(E) = Zip(E) + Zap(E) + Zin(E), (16)

where X,(E) and Xg(E) are, respectively, the STM tip
and substrate self-energies, while X, is the scattering self-
energy describing the electron-spin interaction. The leads’
self-energies can be written in terms of the surface Green’s
functions &, and &g and the coupling matrices between the
leads and the scattering region H,_g (@ = tip, sub):

Sup(E) = HY, s&ip(E)Hip-s. (17)
San(E) = He-s@un(E)HYy, s (18)

The surface Green’s functions can be found by first
constructing the Green’s function for an infinite system and
then by applying the appropriate boundary conditions.** For
a single-site, nearest-neighbor, one-dimensional tight-binding
chain, g, takes a simple close form

1 .
&ip(E) = gan(E) = %e’k(E), (19)
-1 E —¢
k(E) = cos , (20)
2yo

where k(E) and y are, respectively, the dispersion relation and
the hopping parameter. We assume an equal hopping parameter
in the leads and also the condition yy > &¢. The interaction
between the scattering region and the leads has the effect of
broadening the discrete energy levels in the scattering region.
The broadening functions write

To(E) = i[Za(E) — THE)], 2D

where (o« = tip, sub). The resulting lesser and greater lead self-
energies are related to the broadening and to the population of
the electrons and holes in the leads,

Z5(E) = fo(E)o(E), (22)
5 (E) =1 = fa(E)]Ta(E), (23)
where f,(E) = 1/[1 4 exp(“4#)] are the Fermi functions.
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Finally, the retarded electron-spin scattering self-energy is
found from the Hilbert transform*’

nt

2 E'—E

dE' X7 (E') — 5 (E")

Sim(E) = PV /

_ Zn(E) — 2 (E)
2 b

where PV denotes the principal value and where the full
expressions for 3, (F) and X (E) have been given in
the previous section. Note that at variance with a similar
expression for the self-energy describing electron-phonon
scattering, in Eq. (24) there is no Hartree-like contribution.
This usually describes polaronic effects and is known to
cause the breakdown of the Born approximation for strong
electron-phonon coupling.

Additional quantities of interest which enter in the defini-
tion of the electron current, are the lesser and greater Green’s
functions (G = and G~). Their diagonal elements respectively
give the electron and hole density in the scattering region.
These are defined by

(24)

G>(E) = G(E)[Z>(E)IGY(E), (25)
where
SEE) = T (E) + Tog(E) + Ti(E). (26)

As already mentioned, the application of a potential difference
V across the device produces a shift in the tip and substrate
chemical potentials. By assuming, as done here, that the tip
and the substrate share the same Fermi level Er, then we have
Mip = Ep+ eV /2 and pug, = Ef + eV/2. This is equivalent
to replacing the energy in the leads with E — E £ eV /2 (e is
the electron charge). Finally the current can then be calculated
for a range of values of V at any of the leads o as

+oo
1, =/ I,(E)dE, 27)

[e¢]

I(E) = 2Tr{[2§(E)G<(E)] — [ZZ(E)GT(E)]}. (28)

The conductance is found by differentiating the above expres-
sion with respect to the bias.

In concluding this section we would like to discuss the
expected magnitude of the inelastic contribution to the con-
ductance with respect to the elastic one. The ratio between two
such contributions essentially corresponds to the ratio between
the interacting and the noninteracting (Jy; = 0) Green’s
functions. A simple calculation shows that the unperturbed
Green’s function differs by a factor of X,/ I" from the fully
interacting one. In the previous section we showed that to
the second order Effl) ~ aJsq. Therefore, to the second order,
the ratio between the elastic and inelastic contributions to the
conductance turns out to be proportional to the dimensionless
factor a(Jyy/T) ~ (Jua/€0)>. Analogously, the third-order
contribution will account for a factor a?(Jyq/T"). With this
in hand and by looking at the parameters in Table I, we can
conclude that the contribution originating from the second-
order expansion will be significant, while that from the third
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TABLEI. Empirical parameters used in the numerical simulations presented in this work and their
assigned numerical values. In the rightmost column we report the source of a particular estimate.

“Channel” here means the scattering region.

Quantity Symbol Value Origin
Atomic spin S 5/2 Exp. (Ref. 7)
Temperature T 0.6 K Exp. (Ref. 7)
d-d exchange Jaa +6.2 meV Exp. (Ref. 7)
s-d exchange Jsa +500 meV DFT (Refs. 34 and 35)
Fermi energy Ex 0 meV DFT (Ref. 34)
Lead hopping integral Y0 10000 meV DFT (Ref. 34)
Channel on-site energy £ 1000 meV DFT (Ref. 34)
Tip-channel hopping Viip—S 50 meV DFT (Ref. 34)
Substrate-channel hopping Vsub—$ 500 meV DFT (Ref. 34)
Axial anisotropy D —0.037 meV Exp. (Ref. 5)
Transverse anisotropy E 0.007 meV Exp. (Ref. 5)

order will be minute. As a consequence, our strategy to stop
the expansion to the second order appears well justified.

IV. RESULTS

The entire procedure outlined in the previous two sections
is now implemented numerically in order to calculate the
I1-V characteristics and the conductance spectra (d1/dV-V)
of some selected magnetic nanostructures. In particular, we
aim at reproducing the d1/dV -V curve observed through Mn
monoatomic chains deposited on thin CuN insulating atomic
layers, as described in Ref. 7. Clearly our one-dimensional
(1D) model does not include all the details involved in the
actual SF-IETS STM experiments, but we argue here that
it contains already all the ingredients to reproduce the main
experimental features.

In Table I we list all the parameters used in our simulations
and their assigned values. These have been either inferred from
the experiments (Exp) (Ref. 7) or have been estimated from
density functional theory (DFT) calculations.** The local Mn
spin is set to be 5/2, as proposed in the original experimental
works,>’ confirmed by DFT calculations,** and expected from
the nominal Mn valence. The spin-spin coupling parameter
Jaq corresponds to an antiferromagnetic order between the
neighboring Mn spins, a feature verified in the experimental
conductance spectra. The lead on-site energy is suitably set to
zero and simply defines the reference potential. We also note
that the value for J, is determined from theory to be of the
order of 500 meV.*** Although we employ a zero-temperature
formalism, we nevertheless evaluate the Fermi functions of
the leads at the small temperature of 0.6 K. This allows us
to include minor thermal smearing of the electron gas in the
leads and consequently of the conductance profile. Finally we
notice that the scattering region is expected to be significantly
more strongly coupled to the substrate than to the tip. This
essentially means that the spin population in the scattering
region remains effectively in equilibrium' with the substrate,
i.e., there is no accumulation of spin excitations between two
inelastic tunneling events.

Figure 3 shows the calculated conductance spectra nor-
malized against the elastic contribution G [this is the
conductance calculated for ¥s(E) = 0] for N-atom-long Mn

chains (N < 4) in no external magnetic field. From the figure
we observe that the conductance increase due to the inelastic
contribution is of the order of 1/4 (for N =2, where the
amplitudes of the spin matrix elements of the self-energy are
approximately unity). For our choice of parameters the scaling
factoris (J;q/ g =1 /4. Such a good agreement validates our
analysis on the limits of the perturbation expansion. We can
then predict that the corresponding conductance increase that
might originate from third-order contributions [these scale as
o2 (Jsy / )] is significantly smaller. This estimate justifies our
original choice of stopping the perturbation expansion to the
second order.

In the case of N = 3 and N = 4 the spectrum is calculated
for the STM tip placed above the second atom in the chain.
In Fig. 3 we also show that by placing the tip above the first
atom in the chain for the N = 3 case we drastically decrease
the conductance step at ~17 meV. A similar occurrence
is seen in the conductance step for N = 4. In general, we
chose to position the tip over the second atom in order to
reproduce the experimental spectra more accurately. From the
figure it is clear that all the qualitative experimental findings
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FIG. 3. (Color online) Normalized conductance spectra for Mn
chains of different lengths N. The various spectra, except for N = 1,
are offset for clarity. The tip is placed above the second atom of the
chain for chains with N > 2 and also over the first atom in the case of
N = 3. We notice the strong dependence of the spectra on the chain
parity.
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are correctly reproduced. In particular, we notice the strong
dependence of the conductance profile over the parity of the
chains, with chains comprising an odd number of atoms (odd
chains) exhibiting a conductance dip at approximately V = 0,
which is absent for even chains. It is worth noting, however,
that the spectra for N = 3 and N = 4 contrast slightly with
the experimental spectra, which are asymmetric with respect
to the bias and also exhibit some slope at the conductance
steps. We believe that these features are a manifestation of
nonequilibrium effects' in the spin system, i.e., to the fact
that the local spins do not relax instantaneously to their ground
state. These effects are not included at the present level of the
theory.

The ground state of each odd chain has a net total spin S =
5/2. This is affected by the transverse and axial anisotropy,
which lift the ground-state degeneracy and allow a transition
between the ground state and the first spin-flip excited state
to occur. The excitation of such a transition results in a
conductance step at a voltage corresponding to the transition
energy. Since the anisotropy energies are small (see Table I),
the excitation energy is small as well, and the feature in the
conductance profile appears near V = 0. In contrast, the even
chains do not show any zero-bias excitation, since the ground
state is a singlet and does not carry a magnetic moment. This is
direct proof that the magnetic interaction between Mn ions is
antiferromagnetic. Should this have been ferromagnetic, even
chains would also have shown zero-bias anomalies.

As mentioned above, the conductance steps encountered
at approximately V = 0 correspond to spin-flip events, i.e.,
to electron scattering processes that produce the transition
[m =5/2) — |m = 3/2) (m is the magnetic quantum number)
but that also preserve the total spin Sy = 5/2. The first net
spin changing transition occurs for N = 2 and corresponds
to the large conductance step found at V = J;4/e = 6.2 mV.
This is investigated in more detail in Fig. 4, where we also
include the dimer’s spectrum calculated when a magnetic field
is applied along the z direction. The effect of the magnetic field
is that of splitting the single excitation line into three distinct
conductance steps. In this case, in fact, the antiferromagnetic
dimer has a singlet (S = 0) ground state and a triplet
(Sior = 1) first excited state. Therefore, an excitation from the
ground state to the first excited state changes the net spin of
the dimer. When a magnetic field is applied the degeneracy
of the triplet excited state is lifted and excitations having the
three Zeeman-split levels as final states are possible. This
produces the threefold splitting of the conductance steps, as
seen to agree well with experiment in Fig. 4.

Figure 5 shows the conductance spectrum for the trimer
(N = 3). This chain exhibits similar trends to those found
for the dimer as a magnetic field is applied, i.e., there is
a Zeeman split of the zero-field conductance steps. From
the figure one may notice that for both the theoretical (A)
and experimental (B) data there is a shift of the principle
step to lower voltages as the magnetic field is increased. We
remark here that in order to recreate the conductance profile of
the trimer, additional ferromagnetic second-nearest-neighbor
interaction between the local spins at the edge of the chain must
be included in the model.!' The magnitude of this additional
exchange parameter is approximately half of that of J;;. The
inclusion of such a second-nearest-neighbor coupling constant
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FIG. 4. (Color online) Theoretical (A) and experimental (B)
conductance spectra for the N = 2 chains in a finite external magnetic
field. For B £ 0 we note a splitting of the conductance steps,
corresponding to the Zeeman split of the final triplet excited state.
This is observed in the experiments of Ref. 7, which are also reported
in (B).

changes the position of the conductance step from a second
excited state at 27 mV to a first excited state at 16 mV. This
correction is also included in the calculations for N = 4 (see
Fig. 3), again giving good agreement with experiments.

In all of the spectra investigated, the most striking agree-
ment with the experiments concerns the correct prediction
of the SF-IETS excitation voltages. In particular, not all the
possible spin excitations feature in the d1/dV-V curve as
a result of spin-selection rules. A careful analysis of the
inelastic process, as outlined in the first section, reveals
why some excitations occur and why some other do not. In
particular, we note that the proper selection rules for transitions
are governed by the prefactor in the self-energy |(m|S'|n)|?
[Eq. (14)]. This effectively selects which excitations are more
probable to occur. For example, the full energy spectrum
of the trimer has 6° =216 eigenvalues, but only a small
portion of these eigenvalues will contribute significantly to the
scattering self-energy. Consequently, only a few transitions
will have influence on the conductance spectrum. This, for
instance, explains why the first conductance step of the dimer
is considerably larger than that of other chains of different
lengths. In fact, our calculations show that a transition from the
singlet ground state (S = 0) to any of the triplet excited states
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FIG. 5. (Color online) Theoretical (A) and experimental (B) conductance spectra for the N = 3 trimer at different magnetic fields. We
notice the shift of the first conductance step transition to lower voltages as the magnetic field increases. This is in good agreement with STM

experiments of Ref. 7, which are reproduced here in (B).

(S =1;m = —1,0, + 1) has equal probability. This results in
a conductance step which is approximately three times larger
than any single spin-flip event that occurs in an odd chain.

V. CONCLUSIONS

In conclusion, we have formulated a theory of electron
transport through magnetic nanostructures based on the NEGF
formalism and including inelastic spin scattering. We have
first explicitly derived an expression for the interacting self-
energy at the level of the first Born approximation in the
electron-spin interaction. This has been used to calculate the
current-voltage and the conductance-voltage curves for a 1D
system of magnetically coupled spins at finite bias and in
a magnetic field. Our results reproduce well the features of
recent SF-IETS experiments for 1D Mn chains. Most notably,
the severe dependence of the conductance spectra on the chain

parity and the selection-rule suppression of certain transitions
is a direct outcome of the theory. Our NEGF approach is
therefore a valid alternative to master-equation-based schemes,
with the advantage that it can be scaled up to larger systems
and combined with more sophisticated electronic structure
theories.
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