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Perturbative approach to the Kondo effect in magnetic atoms on nonmagnetic substrates
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Recent experimental advances in scanning tunneling microscopy make the measurement of the conductance
spectra of isolated and magnetically coupled atoms on nonmagnetic substrates possible. Notably, these spectra are
characterized by a competition between the Kondo effect and spin-flip inelastic electron tunneling. In particular
they include Kondo resonances and a logarithmic enhancement of the conductance at voltages corresponding to
magnetic excitations, two features that cannot be captured by second-order perturbation theory in the electron-spin
coupling. We have now derived a third-order analytic expression for the electron-spin self-energy, which can be
readily used in combination with the nonequilibrium Green’s function scheme for electron transport at finite bias.
We demonstrate that our method is capable of semiquantitative description of the competition between Kondo
resonances and spin-flip inelastic electron tunneling at a computational cost significantly lower than that of other
approaches. The examples of Co and Fe on CuN are discussed in detail.
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I. INTRODUCTION

The interaction between conduction electrons and localized
spins in transition metals with partially filled d shells is central
to many low-temperature spin effects, which may underpin
the development of spintronics and quantum information
devices. When adsorbed on the surface of a metallic host,
magnetic transition metal atoms exhibit various distinctive
features in the conductance spectrum, which are indicative
of many-body scattering between the conduction electrons and
the localized spins. These manifest themselves as conductance
steps at voltages corresponding to the quasiparticle energies
of specific magnetic excitations and as zero-bias conductance
peaks, known as Kondo resonances. The first are associated
to spin-flip inelastic electron tunneling and can be described
by second-order perturbation theory in the electron-spin
coupling,1 but the second results from third-order effects due
to the electron screening of the local spins.

Recent advances in scanning tunneling microscopy (STM)
have enabled the detection of many-body scattering events in
Mn,2 Fe,3 and Co4,5 adatoms adsorbed on a CuN insulating
substrate. The Co atom in particular shows interesting Kondo
physics, and STM experiments have demonstrated the depen-
dence of the Kondo peak on applied magnetic fields and also
on the spatial extent of individual cobalt complexes.6 The
reduced symmetry of the surface leads to significant magnetic
anisotropy, especially for Fe and Co. Fe is found to have a large
easy-axis anisotropy [D < 0, see Eq. (2)], leading to a ground
state spin close to that of the maximum z component of the inte-
ger S = 2. This results in four evenly spaced conductance steps
in the spectrum. For Co, the large hard-axis anisotropy (D > 0)
and the half-integer S = 3/2 spin produce a doublet ground
state. The measured zero-bias Kondo resonance is then due to
spin transitions between the degenerate ground state levels.7

Theoretical attempts to reproduce these conductance spec-
tra have focused largely on including second-order scattering
events, which cannot account for Kondo resonances but fare
well in reproducing the conductance steps and their relative
intensities.1,8–13 Addressing Kondo physics in Co is more
involved and one has to look for alternative techniques, such as
Wilson’s14 numerical renormalization group theory informed

by density functional theory (DFT). This is an inherently
nonperturbative approach which was developed to counteract
the failings of perturbation theory at energies close to the
Kondo temperature TK. The method creates a “logarithmically
discretized” conduction band where energy intervals become
exponentially smaller as the Fermi energy is approached. This
makes the low-energy spectrum accessible and has formed
the basis of many theoretical descriptions of the Kondo
phenomenon in Co.15–17

Although these schemes recreate well the conductance
spectra for magnetic atoms exhibiting the Kondo effect, they
are numerically expensive. In this paper, we provide an alter-
native and inexpensive approach by going back to perturbation
theory. Within our developed approach, we demonstrate a
qualitative description of the behavior of the Kondo peaks
for Co when this is exchange coupled to another magnetic
atom. However, due to the aforementioned restrictions of the
method we cannot claim an exact quantitative agreement with
the experiments. In addition, for Fe we do find a quantitative
description of the conductance step over-shooting subsequent
to inelastic tunneling due to a magnetic excitation and to its
decay as a function of bias. This was previously ascribed
as originating from nonequilibrium effects,12 but here it is
demonstrated to simply arise from the third-order contribution
to the interacting self-energy.

The layout of this paper is as follows. First, we show how
to extend the perturbative approach to the third order in the
electron-spin scattering and derive an analytic expression for
the scattering self-energy. This is then implemented within the
nonequilibrium Green’s function (NEGF) formalism18,19 for
electron transport. Then we show in the results section how the
derived expression performs when attempting to describe the
STM conductance spectra of both Fe and Co on CuN. Finally
we conclude. We have also included an appendix dedicated
to detailed the derivation of the third-order expression for the
interacting self-energy.

II. MODEL

The Hamiltonian describing the STM tip, a number of
magnetic adatoms carrying localized spins NA, and the
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nonmagnetic substrate can be divided into three components,
namely a purely electronic part He, a purely spin part Hsp,
and an electron-spin interaction part He−sp. These are given
respectively by

He =
∑
klα

εkla
†
klαaklα +

NA∑
iα

εic
†
iαciα + Htun, (1)

Hsp =
NA∑
i

{
Di

(
Si

z
)2 + Ei

[(
Si

x
)2 − (

Si
y
)2]}

, (2)

He−sp = Jsd

NA∑
i

∑
α,α′

(c†iα[σ ]αα′ciα′ ) · Si . (3)

In He, we assume that both the tip (t) and the substrate
(s) are characterized by a single s-like band, so that
the electronic structure (spin degenerate) is described by the
creation (annihilation) operators a

†
klα (aklα) and the energies

εkl (l = {t,s}). Here, and later, α is the spin index for the
conducting electrons (α = ↑, ↓). Note that the electronic
structure of the tip and the substrate is spin degenerate.
Similarly, the term

∑NA

iα εic
†
iαciα defines the electrostatic

energy for the conducting electrons residing on the adatoms.
Here c

†
iα (ciα) creates (destroys) a conducting electron at the

adatom site i with spin α, and εi is the on-site energy, which
is spin degenerate but can vary from site to site depending on
the nature of the adatom.

The tunneling between the adatom and the tip (substrate)
is accounted for by Htun. This term describes the hopping
from the tip (substrate) to one of the adatoms and essentially
consists of a hopping integral γ t−a

i (γ s−a
i ). The leads can be

replaced by an effective energy-dependent self-energy �t,s(E),
which produces a constant broadening of the adatom density
of states given by �m

i = (γ m
i )2/W (with m = t − a or s − a,

see Ref. 1). The broadening is thus constant around the Fermi
energy EF, provided that the bandwidth W is large compared
to the coupling strength between the two leads and the adatom.
Note that in general we always assume that both the tip and
the substrate couple electronically to only one of the adatoms
at a time, so that γ m

i = 0 except for i = i0, for a given i0. Note
also that for most of the calculations shown here we consider
a single adatom so that the index i drops.

Finally, Hsp contains information on the magnetic
anisotropy of the adatoms and includes both an axial (Di) and a
transverse (Ei) term. He−sp couples the conducting electrons to
the local spins Si through an exchange interaction parameter
Jsd (assumed identical for the different adatoms). Note that
the interaction is on-site, and it has a Heisenberg-like form.
Note also that such a Hamiltonian (at least for |S| = 1/2)
can be derived from a two-band purely electronic one, in
which the electronic structure of one of the bands includes

a Hubbard term. The equivalence of the two models can be
proved up to second order in t/U by using the Wolff-Schrieffer
transformation20 where t and U are the hopping and Coulomb
repulsion integrals respectively.

As already discussed in Ref. 1, our strategy is that of
incorporating all the inelastic contributions to the electronic
structure in an interacting self-energy �int. We then begin
by considering a nonequilibrium system at finite temperature
described at the level of the Keldysh formalism.21,22 The
contour-ordered single particle many-body Green’s function
G is defined as (note that for the sake of clarity we have
dropped the site index i)

[G(τ,τ ′)]σσ ′ = −i〈|TC{cσ (τ )c†σ ′(τ ′)}|〉, (4)

where |〉 is the fully interacting ground state. This expression
can be expanded up to the nth order27 in the electron-spin
coupling as

[G(τ,τ ′)]σσ ′

=
∑

n

(−i)n+1

n!

∫
C

dτ1 . . .

∫
C

dτn

× 〈0|TC{He−sp(τ1) . . . He−sp(τn)cσ (τ )c†σ ′(τ ′)}|0〉
U (−∞, − ∞)

, (5)

where U is the time-evolution unitary operator, and the time
averages are now performed over the noninteracting ground
state |0〉. We can now write explicitly the expansion up to the
third order, which reads

[G(τ,τ ′)](3)
σ,σ ′ = (−i)4

3!
J 3

sd

∑
αα′,ββ ′,γ γ ′

∫
C

dτ1

∫
C

dτ2

∫
C

dτ3

×〈TC{cσ (τ )c†α(τ1)cα′(τ1)c†β(τ2)cβ ′(τ2)c†γ

× (τ3)cγ ′(τ3)c†σ ′(τ ′)}〉
∑
i,j,k

〈TC{Si(τ1)Sj (τ2)

× Sk(τ3)}〉[σ i]αα′[σ j ]ββ ′[σ k]γ γ ′ . (6)

We then move our attention to the spin operators. Following
the procedure presented in Ref. 1, these are decomposed into
products of quasiparticle operators that obey the Fermi-Dirac
statistics. The ith component (i = x,y,z) of the spin S is
written as

Si(τ ) =
∑
m,m′

〈m|Si |m′〉d†
m(τ )dm′ (τ ), (7)

where |n〉 is an eigenstate of Hsp, and d
†
n (dn) creates

(destroys) a quasiparticle in the same state. Thus the corre-
sponding spin Green’s function is of the form [D(τ,τ ′)]m,m′ =
−i〈TC{dm(τ )d†

m′(τ ′)}〉. By substituting this expression back
into Eq. (8) we obtain

[G(τ,τ ′)](3)
σ,σ ′ = (−i)4

3!
J 3

sd

∑
αα′,ββ ′,γ γ ′

∫
C

dτ1

∫
C

dτ2

∫
C

dτ3 〈TC{cσ (τ )c†α(τ1)cα′ (τ1)c†β(τ2)cβ ′ (τ2)c†γ (τ3)cγ ′(τ3)c†σ ′(τ ′)}〉
∑

mm′,nn′,ll′

×〈TC{d†
m(τ1)dm′(τ1)d†

n(τ2)dn′ (τ2)d†
l (τ3)dl′ (τ3)}〉

∑
i,j,k

〈m|Si |m′〉〈n|Sj |n′〉〈l|Sk|l′〉[σ i]αα′ [σ j ]ββ ′ [σ k]γ γ ′ . (8)
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We now perform the chronological contractions by using
Wick’s theorem for both the electron and spin bracket. In
our previously published work,1 we have shown that in the
electron brackets, the spin selection rules and the electronic
spin degeneracy impose a vanishing contribution for any
“fermion loop” contraction of the form 〈c†(τ )c(τ )〉. Therefore,
we need only to consider the three Fock-like contributions
to the electron bracket. These are all equal under exchange

of contour indexes. The spin bracket has two Fock-like
contributions, but in the following we restrict the derivation
to only one of these for ease of description. Of course
both the contributions will be included in the final result
contained in Eq. (13). With this information in hand, the
expression in Eq. (9) can be written in terms of the known
noninteracting electron and spin Green’s functions, G0 and D0

respectively,

[G(τ,τ ′)](3)
σ,σ ′ = i

J 3
sd

2

∑
β,γ

∫
C

dτ1

∫
C

dτ2

∫
C

dτ3 [G0(τ,τ1)]σσ [G0(τ1,τ2)]ββ[G0(τ2,τ3)]γ γ [G0(τ3,τ
′)]σ ′σ ′

×
∑
m,n,l

[D0(τ1,τ2)]n,n[D0(τ2,τ3)]l,l[D0(τ3,τ1)]m,m

∑
i,j,k

〈m|Si |n〉〈n|Sj |l〉〈l|Sk|m〉[σ i]σβ[σ j ]βγ [σ k]γ σ ′ . (9)

We can now use Dyson’s equation to extract from Eq. (10) the
third-order contribution to the interacting self-energy, which
takes the form

�(τ1,τ3)(3) = 2iJ 3
sd

∫
C

dτ2G0(τ1,τ2)G0(τ2,τ3)

×
∑
m,n,l

Dn(τ1,τ2)Dl(τ2,τ3)Dm(τ3,τ1)

×
∑
i,j,k

(2iεijk)〈m|Si |n〉〈n|Sj |l〉〈l|Sk|m〉. (10)

Note that in order to simplify the notation, we have written
the diagonal elements of the noninteracting spin self-energy
as Dm(τ,τ ′). In the same equation (12), we have also taken
into account the electron spin degeneracy ([G0]↑↑ = [G0]↓↓)
and traced over the spin indices. Finally, we note that
Tr[σ iσ jσ k] = 2iεijk .

The newly found Eq. (12) now needs to be expressed in
terms of the real times (t,t ′), so that a close expression for the
energy resolved lesser and greater interacting self-energies can
be explicitly written. Such a derivation is based on the Keldysh
formalism for evaluation of time-contour integrals21,22 and is
illustrated in the Appendix. Finally, in order to obtain the
complete expression for the interacting greater and lesser
self-energies, �

≶
int, one needs to include the second-order

contributions

�
≶
int(E)(2) = −2J 2

sd

∑
m,n,i

Pn(1 − Pm)|〈m|Si |n〉|2

×G
≶
0 (E ± 
mn), (11)

which have been previously derived in Ref. 1. Combining both
second- and third-order contributions, we are left with the final
total expression which reads

�
≶
int(E) = −2J 2

sd

∑
m,n,l

Pl(1 − Pm)G≶
0 (E ± 
ml)

{
δnl

∑
i

|〈m|Si |n〉|2 + 2i(ρJsd)
∑
ijk

εijk〈m|Si |n〉〈n|Sj |l〉〈l|Sk|m〉

×
[

ln

∣∣∣∣ W√
(E + V ± 
mn)2 + (kBT )2

∣∣∣∣ + ln

∣∣∣∣ W√
(E + V ± 
nl)2 + (kBT )2

∣∣∣∣
]}

, (12)

where kB is the Boltzmann constant, T is the temperature, Pl

is the population of the |l〉 spin state, and V is the applied
voltage. Note that the plus (minus) sign corresponds to <

(>). If we now assume that the adatom is much more strongly
coupled to the substrate than to the STM tip, (γ s−a � γ t−a) and
ε0 � EF, we can approximate its density of states around EF

with a constant, ρ = (�s−a/2π )/[ε2
0 + (�s−a)2/4]. The weak

coupling to the STM tip also ensures that the spin system
remains always close to equilibrium.12 This means that the
adatom state always resides close to the ground state, i.e.,
that P0 ∼ 1. The matrix elements 〈m|Si |n〉, with i = {x,y,z},
determine the intensity of a given transition between an initial
state n and a final state m. We also note that the strength

of the third-order interaction depends on the dimensionless
parameter ρJsd in agreement with the expression of Ref. 23.

The calculation of the spin-inelastic conductance spectra
of adatoms adsorbed on surfaces requires the implementation
of the NEGF scheme including many-body scattering effects,
which has been rigorously derived in Ref. 1. In brief, the
tunneling current at any terminal i = t,s for the bias voltage
V can be calculated from

Ii =
∫ +∞

−∞
Īi(E) dE, (13)

Īi(E) = e

h
Tr{[�>

i (E)G<(E)] − [�<
i (E)G>(E)]}, (14)

115435-3



AARON HURLEY, NADJIB BAADJI, AND STEFANO SANVITO PHYSICAL REVIEW B 84, 115435 (2011)

where �>
i (E) = [1 − fi(E,V )]�i and �<

i (E) = fi(E,V )�i .
Here fi(E,V ) is the bias dependent Fermi function in each of
the leads, e is the electron charge, and h is the Planck constant.

III. RESULTS

Having found a close formula for the interacting self-
energy, we can now proceed with the full NEGF formalism1

and calculate the conductance spectra of various adatoms on
insulating substrates. In order to explore the performance of
our perturbative approach in describing the Kondo physics
contained in the third-order contribution to �

≶
int, we consider

both Co and Fe adsorbed on CuN. For these species, exper-
imental data are available both for individual atoms and for
interacting dimers.3–5

Figures 1 and 2 show the calculated conductance spectra
respectively for single Co and single Fe atoms on CuN
as the dimensionless parameter α = ρJsd is varied (note
that the spectra are normalized relativel to the elastic-only
conductance G0). The α parameter is the coupling constant
of the perturbation expansion as discussed extensively in our
previous publication.1 This is varied by altering the coupling
of the adatom to the substrate, i.e., by changing γ s−a, which
translates to modifying the value of the adatom density of
states at the Fermi level.

Many of the other parameters of the model used in
the present simulations have been extracted from the DFT
calculations reported in Ref. 16. The broadening due to the
coupling to the substrate (we neglect the one due to STM
tip) is set initially at �s−a = 0.1 eV for both Co and Fe. In
order to ensure consistency in our approximations [�s−a =
(γ s−a)2/W ] we also set γ s−a = 1.5 eV and the substrate
bandwidth to W = 20 eV. We then choose ε0 = 1 eV to
fulfill the criterion ε0 � EF = 0. The magnitude of Jsd for
both Fe and Co is held constant at 0.5 eV (note that Jsd =
0.5 eV is comparable to the value calculated from DFT for
a Ni impurity sandwiched between Au leads24). Finally, the
empirical parameters describing the axial D and transverse E

FIG. 1. (Color online) Normalized conductance spectrum for Co
(S = 3/2) on CuN as α = ρJsd is increased. Note the emergence of
a Kondo resonance at zero-bias, i.e., at the Fermi level. The curves
are arbitrarily displaced for clarity.

FIG. 2. (Color online) Normalized conductance spectrum for Fe
(S = 2) on CuN as α = ρJsd is increased. Note the transition from
a constant conductance at the inelastic steps to a conductance that
logarithmically decays after the excitation. The curves are arbitrarily
displaced for clarity.

anisotropies are taken from the experimental fits of Refs. 3
and 4 and are DCo = 2.75 meV, ECo = 0 meV, DFe =
−1.53 meV, and EFe = 0.31 meV, while the adsorbed atoms
spins are SCo = 3/2 and SFe = 2.

Let us start our discussion from the case of Co. The full diag-
onalization of the Hsp (SCo = 3/2) Hamiltonian gives us a set
of four (2SCo + 1) eigenvalues and eigenvectors. In particular,
the presence of a hard-axis anisotropy results in the following
energy manifold εCo

m = {0.69,0.69,6.19,6.19} meV, i.e., in a
doubly degenerate ground state. It is then found that transitions
between the degenerate ground states become allowed only on
inclusion of the third-order term in Eq. (6). This is because of
the selection rules imposed by the theory through the matrix
elements 〈m|Si |n〉. Such a transition appears in the spectrum of
Fig. 1 in the form of a zero-bias Kondo peak, whose intensity
increases as the value of α gets larger. The same feature is
completely absent if one truncates the perturbation expansion
to the second order. Note that the third-order contribution to the
interacting self-energy scales as α2, while the second-order one
goes as α (see also Ref. 1). Hence it follows that an increase
of the adatom density of state (an increase of α) promotes
the third-order contribution to the self-energy. As such the
enhancement of the Kondo peak intensity is directly related
to the relative growth of the logarithmic divergence of �

≶
int in

Eq. (13). The same logarithmic divergence produces a second
distinctive feature in the dI/dV traces, namely the rise of the
conductance following an inelastic excitation. This can be, for
instance, seen in the conduction step at 6 meV. Such a step
originates from the transition from the ground state to the first
excited state. One may then note that first the conductance
rises sharply at the voltage corresponding to the excitation
energy and then slowly decays. Such a feature is absent if
the perturbation expansion is truncated to the second order,1

and in that case the conductance step is essentially square
(the conductance traces are similar to those found here for
small α’s). Although we will come back on the agreement
between our results and experiments, we note here that such
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conductance traces are qualitatively similar to those found in
the STM experiments of Refs. 4 and 5, i.e., both the zero-bias
Kondo peak and the increase in conductance at the inelastic
transition voltages are observed.

The results for Fe are presented next in Fig. 2. This time
Hsp (SFe = 2) has the five eigenvalues namely εFe

m = {−6.30,

− 6.12, − 2.46, − 0.60,0.18} meV, so that the ground state
is nondegenerate. At zero magnetic field, all the transitions
allowed by the third-order expansion are resolved in the
conductance traces. In this case there is no zero-bias Kondo
peak as the ground state is nondegenerate. Near to the zero-bias
region we now find a conductance dip, which corresponds
to an inelastic transition between the first two lower lying
spin states. Furthermore, as in the case of Co, here we also
observe the presence of a logarithmic conductance increase
at the inelastic steps in the dI/dV traces (for instance, note
the well pronounced one at ∼4 mV). Again, since such a
feature is directly related to the third-order contribution to
the interacting self-energy, it gets more pronounced as α is
increased. The same feature is observed experimentally in
all non-Kondo active adatoms, demonstrating the good level
of description provided by the third-order expansion. Note
that such a behavior was previously explained by invoking
a nonequilibrium population of the Fe spin states.12 This
explanation however conflicts with the fact that the same
effect is seen also for low currents,3 namely when the adatom
spin state resides close to the equilibrium. Therefore, we
now re-interpret the experimental data as the manifestation
of third-order Kondo corrections to the spin-flip inelastic
tunneling spectra.

As a final test for our third-order self-energy we consider
an exchanged coupled Co-Fe dimer, a situation already
investigated experimentally in Ref. 5. In our formalism, this
translates into including an additional Heisenberg-like term to
Hsp, namely

HH = Jdd(SCo · SFe), (15)

where Jdd is the exchange coupling constant. Figures 3 and 4
show the conductance spectra calculated in the two situations
where the tip is either positioned over Co (Fig. 3) or Fe (Fig. 4).
We use a value for α = ρJsd = 0.1. In the figures, we also
superimpose the experimental data5 for comparison.

Note that in general Jdd is small (not larger than 0.1 meV) so
that any changes in the electronic levels of the combined Co-Fe
system are not resolved in the mV range,1 i.e., no new inelastic
steps appear in the spectra. In general we notice a change in
the dI/dV traces of both Co and Fe as they are brought close
together, i.e., as Jdd increases. For Fe, both the conductance
steps around zero-bias and that at 0.18 mV decrease in intensity
with increasing Jdd. In contrast, Fe itself acts as an effective
magnetic field that splits the zero-bias Kondo resonance
present in the spectrum of Co. Both these effects are observed
in the experiments of Ref. 5. Notably Fe does not simply act as
a source of magnetic field on Co, as seen in the inset of Fig. 3
for Jdd = 0.1 meV. In the figure, one can clearly observe an
additional Kondo peak emerging at zero bias in between the
two principally split peaks. This is a unique feature of the
exchange coupling between Co and Fe. In fact, the exchange
coupled Fe-Co dimer possesses (2SCo + 1) × (2SFe + 1) = 20

FIG. 3. (Color online) Normalized conductance spectrum for a
Co adatom on CuN when it is exchange coupled to Fe as Jdd is
increased (Jdd = 0 means that there is no magnetic coupling between
Co and Fe). Note how the Co Kondo peak splits as the Fe atom
acts as an effective magnetic field. The insert zooms in the zero-bias
region. The calculated spectra are in black, while the corresponding
experimental data from Ref. 5 are in red.

eigenvalues and additional allowed transitions appear at each
of the atomic sites. For instance, for large Jdd the zero-bias
region of the Co spectrum becomes completely dominated by
a conductance dip. This originates from the opening of a spin
transition between the ground state at −5.686 meV and the
first excited state at −5.379 meV. Such a transition, absent for
the isolated Co adatom, has a spectral intensity much larger
than that of the Kondo resonance, which therefore disappears
from the spectrum.

We now wish to compare our data with the correspond-
ing experimental spectra.5 Notably, whereas the calculated

FIG. 4. (Color online) Normalized conductance spectrum for a
Fe adatom on CuN when it is exchange coupled to Co as Jdd is
increased (Jdd = 0 means that there is no magnetic coupling between
Co and Fe). Note that the intensity of the conductance step at 0.18 mV
decreases with increased exchange coupling. The calculated spectra
are in black, while the corresponding experimental data from Ref. 5
are in red.
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spectrum of Fe is in excellent quantitative agreement with the
experimental one, the same cannot be said for that of Co, which
only reproduces the experimental features at a qualitative level.
In particular, the experimental Kondo resonance is much more
pronounced than the calculated one (note that the parameter α

has been set in order to reproduce the experimental step in the
spectrum at ∼4 mV). At this point we can only speculate on
the reasons for such a disagreement. Firstly, the s-d model is
valid only in the limit where the tunneling matrix element t is
small with respect to the adatom charging energy U . This is the
case in which a Hubbard-like model can be mapped onto the
s-d one.20 Such a limit might not be satisfied for Co on CuN.
In the event of a large t/U ratio, a more rigorous two-body
(Hubbard-like) approach needs to be employed to describe
electrons in the localized d states25 or in the conducting s

states.17

Notably, in the latter case of Misiorny et al.,17 it was
suggested that an increase in the exchange coupling parameter
Jsd may lead to a suppression of the Kondo peak at the Fermi
level, which contrasts with what is found here. In our work,
we chose to neglect any two-body terms in the conducting
s-states as the inclusion of such would render the derivation of
an analytic self-energy impossible. It has also been reported
by Leuenberger et al.26 and by Romeike et al.7 that the s-d
exchange coupling itself exhibits a large anisotropy such that
J

x,y

sd 
 J z
sd. This will certainly have an effect on the calculated

conductance spectra, and as such will be investigated in a future
work.

IV. CONCLUSIONS

In conclusion, we have studied the effects of including third-
order contributions in the interacting self-energy describing
electron-spin coupling to the conductance spectra of transition
metal atoms adsorbed on a CuN substrate. In particular, we
have derived a close expression for the third-order electron-
spin self-energy within the NEGF formalism and a single
band tight-binding model incorporating local Heisenberg
exchange of conducting electrons to quantum spins. Two
main features in the conductance spectra emerge from our
formalism, namely a logarithmic decay of the conductance
as a function of bias subsequent to a conductance step and
zero-bias Kondo resonances. We obtain an almost perfect
quantitative agreement for the spectrum of the non-Kondo
active Fe adatom, but only a qualitative one for the Kondo
active Co. The level of agreement is similar for both the
situations where the adatoms are isolated or when they interact
with each other via a Heisenberg-like exchange interaction.

The low computational effort needed by our method makes
it a valuable alternative to full many-body treatments in
describing spin inelastic phenomena at the atomic level. We
also believe that our proposed scheme is amenable to be
combined with first principles methods, i.e., it can form the
basis for a fully quantitative theory of spin scattering in
nanostructures. However, to improve the current results, we
conclude that a more rigorous treatment, including two-body
Hubbard terms in the Hamiltonian, might better describe the
Co conductance spectra.

FIG. 5. Feynman rules for nonequilibrium Green’s functions
calculated over the contour running from −∞ to +∞. The
four configurations are the lesser and greater Green’s functions
(a) and the time-ordered (b) and anti-ordered (c) Green’s functions.
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APPENDIX

In this section, we will show how the integral in Eq. (12)
is evaluated over the time-ordered contour τ2. The part of the
self-energy in Eq. (12) which is of interest to us will be denoted
by I and is written as follows:

I(τ1,τ3) =
∑
m,n,l

Dm(τ3,τ1)
∫

C

dτ2G0(τ1,τ2)

×G0(τ2,τ3)Dn(τ1,τ2)Dl(τ2,τ3). (A1)

In order to express the quantity above in terms of real times
we perform the integral over a contour going first from
−∞ → +∞ and then from +∞ → −∞21 so that only the
ground state at t = −∞ is well defined. The various branches
along the contour result in four different Green’s function
configurations, which are illustrated in Fig. 5. These are
respectively the lesser and the greater Green’s functions (G<

and G>) and both the time ordered and anti-ordered Green’s
functions (Gt and Gt̄ ). The lesser (<) contributions to I enter
into Eq. (15) as

I<(t1,t3) =
∑
m,n,l

D>
m(t3,t1)

{∫ +∞

−∞
dt2G

t
0(t1,t2)G<

0 (t2,t3)

×Dt
n(t1,t2)D<

l (t2,t3) +
∫ −∞

+∞
dt2G

t̄
0(t1,t2)G>

0 (t2,t3)

×Dt̄
n(t1,t2)D>

l (t2,t3)

}
, (A2)
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where we define Gt
0(t,t ′) = G<

0 (t,t ′) + Gr
0(t,t ′) and Gt̄

0(t,t ′) = G<
0 (t,t ′) − Ga

0(t,t ′). If we now insert these expressions into
Eq. (A1), we obtain eight integrals that can be evaluated separately. These are

I<(t1,t3) =
∑
m,n,l

D>
m(t3,t1)

{∫ +∞

−∞
dτ2G

r
0(t1,t2)G<

0 (t2,t3)Dr
n(t1,t2)D<

l (t2,t3) +
∫ +∞

−∞
dt2G

r
0(t1,t2)G<

0 (t2,t3)D<
n (t1,t2)D<

l (t2,t3)

+
∫ +∞

−∞
dt2G

<
0 (t1,t2)G<

0 (t2,t3)Dr
n(t1,t2)D<

l (t2,t3) +
∫ +∞

−∞
dt2G

<
0 (t1,t2)G<

0 (t2,t3)D<
n (t1,t2)D<

l (t2,t3)

−
∫ +∞

−∞
dt2G

<
0 (t1,t2)G<

0 (t2,t3)D<
n (t1,t2)D<

l (t2,t3) +
∫ +∞

−∞
dt2G

<
0 (t1,t2)G<

0 (t2,t3)D<
n (t1,t2)Da

l (t2,t3)

+
∫ +∞

−∞
dt2G

<
0 (t1,t2)Ga

0(t2,t3)D<
n (t1,t2)D<

l (t2,t3) −
∫ +∞

−∞
dt2G

<
0 (t1,t2)Ga

0(t2,t3)D<
n (t1,t2)Da

l (t2,t3)

}
. (A3)

Importantly, several of these integrals cancel each other, while a few others can be grouped together by using the various
definitions of G≶ and Gr/a .27,28 By performing these simplifications, we finally obtain a much more compact expression

I<(t1,t3) = 2
∑
m,n,l

D>
m(t3,t1)

{∫ +∞

−∞
dt2G

r
0(t1,t2)G<

0 (t2,t3)D<
n (t1,t2)D<

l (t2,t3) +
∫ +∞

−∞
dt2G

<
0 (t1,t2)G<

0 (t2,t3)Dr
n(t1,t2)D<

l (t2,t3)

}
,

(A4)

which after performing the integration over t2 becomes

I<(t1,t3) = 2
∑
m,n,l

Pl(1 − Pm)
∫ ∫

dωdω′{Gr
0(ω)G<

0 (ω + ω′ − εl)Pnδ(ω′ − εn)

+G<
0 (ω)G<

0 (ω + ω′ − εl)D
r
n(ω′)

}
ei(εm−ω−ω′)(t1−t3). (A5)

Note here that, as we have previously shown,1 Gr
0(ω) = 1/(ω − ε0 + i�s) and G<

0 (ω) = �sfs(ω)/[(ω − ε0)2 + �2
s ]. Again we

assume that the coupling to the tip is negligible, leaving only the contribution to the broadening from the substrate. This is
governed by the Fermi function fs(ω). The spin subsystem is assumed to be weakly coupled to a surrounding heat bath kept
at a temperature T , which ensures that the system remains in thermal equilibrium. Therefore, to a good approximation, we
write Dr

m(ω) = 1/(ω − εm + ikBT ) and D<
m(ω) = Pnδ(ω − εm). In the latter, we have assumed kBT to be small enough that the

lesser Green’s function can be approximated by a delta function multiplied by the occupation of the specific spin state. With this
information at hand, we note that the first term in the curly brackets in equation (A4) will not produce a logarithmic Kondo term
but represents merely a small third-order correction to the scattering and can thus be neglected, as also found in Ref. 27. The
second term contains the interesting third-order contribution, which after Fourier transform becomes

I<(E) = 2
∑
m,n,l

Pl(1 − Pm)G<
0 (E + εm − εl)

∫ +W

−W

dωG<
0 (ω)Re

[
Dr

n(E − ω + εm)
]
. (A6)

Here we have only kept the real part of Dr
n, since we are only interested in the quantity ImIr (E) = [I<(E) + I>(E)]/2. The

effect of ReIr (E) on the conductance is negligible in the case of ε0 � EF.1 It is also due to this fact that the density of states
ρ around EF is approximately constant and therefore can be taken outside of the integral in Eq. (A7). This leads to a new
expression for I<(E), which reads

I<(E) = 2
∑
m,n,l

Pl(1 − Pm)G<
0 (E + εm − εl)ρ

∫ −V

−W

dωRe

[
1

(E − ω + εm − εn) + ikBT

]
. (A7)

Finally, we perform the integral and also repeat the entire procedure for I>(E) and arrive at the final expression, which reveals
the logarithmic divergences present at the allowed transitions

I≶(E) = −2
∑
m,n,l

Pl(1 − Pm)G≶
0 (E ± 
ml)ρln

[
W 2

(E + V ± 
mn)2 + (kBT )2

]
. (A8)
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