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Electron transport across electrically switchable magnetic molecules
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We investigate the electron-transport properties of a model magnetic molecule formed by two magnetic
centers whose exchange coupling can be altered with a longitudinal electric field. In general, we find a negative
differential conductance at low temperatures originating from the different scattering amplitudes of the singlet
and triplet states. More interestingly, when the molecule is strongly coupled to the leads and the potential drop
at the magnetic centers is only weakly dependent on the magnetic configuration, we find that there is a critical
voltage V- at which the current becomes independent of the temperature. This corresponds to a peak in the
low-temperature current noise. In such limit, we demonstrate that the quadratic current fluctuations are pro-
portional to the product between the conductance fluctuations and the temperature.

DOI: 10.1103/PhysRevB.80.184429

I. INTRODUCTION

An intriguing aspect of electronic transport is the interac-
tion between the current electrons and the internal degrees of
freedom of the conductor. Atomic positions and vibrations
are certainly at the research center stage, electromigration
being the most obvious example of interplay between the
current and the atoms motion. The situation becomes even
more intriguing at the nanoscale, where quantized vibrations
can be detected by measuring the electron current and its
derivatives with respect to the applied bias. This is the prin-
ciple of inelastic electron-tunneling spectroscopy (IETS).
Furthermore also the reverse effect is possible, namely, one
can control the atomic positions of a nano-object by exciting
appropriately some vibrational modes. Current-induced
chemical reactions' and nanocatalysis®> on surfaces are
among the most appealing potential applications of this field.

Equally important is the interplay between the electron
current and the magnetic texture of a magnetic device. Such
an interplay underpins the giant magnetoresistance effect?
and its reverse, i.e., current-induced magnetization
dynamics.* Considerably less investigated are the same phe-
nomena at the atomic scale. This is mainly due to the intrin-
sic difficulties of both manipulating and detecting a few
spins. In addition, magnetic excitations occur at energies
lower than those involved in molecular vibrations so that the
measuring temperatures are often rather low. Still there are
notable examples, such as ultra low-temperature IETS of
magnetic atoms on surfaces® and of two-probe devices incor-
porating single magnetic molecules.®

An exciting prospect for scaling down spin dynamics to
the atomic level may be given by the ability of manipulating
the magnetic configuration of a molecule with an electric
potential instead of an electric current. Electrically induced
alteration of the exchange coupling has been already pre-
dicted for two-centers magnetic molecules’ and molecular
nanowires,® and it is essentially based on the fact that the
Stark shift of a magnetic object may depend on its magnetic
state. This effect can be a crucial ingredient for the physical
implementation of quantum computing based on spins.%!?

An intriguing question is whether or not the dependence
of the exchange coupling over an electrical potential in a

1098-0121/2009/80(18)/184429(5)

184429-1

PACS number(s): 72.25.Rb, 73.22.—f, 75.30.Wx, 75.50.Xx

magnetic molecule can be detected electrically. This is the
goal of our paper where we investigate the current-voltage,
I-V, curve of a two-terminal device incorporating a two-
center magnetic molecule in which the exchange coupling
changes with bias. Importantly we find that, in particular
conditions of coupling between the molecule and the elec-
trodes, there is a critical voltage V. at which the current
becomes independent of the temperature. This is accompa-
nied by a negative differential conductance (NDC) at low
temperature originating from the difference in scattering am-
plitude of the different spin states of the molecule.

II. SYSTEM SETUP AND COMPUTATIONAL METHOD

In Fig. 1 we show the simple model system investigated,
which comprises a diatomic magnetic molecule sandwiched
between two one-dimensional (1D) nonmagnetic electrodes.
The system is described by the s-d model,'"!'> where spin of
the current carrying s electrons is exchange coupled to the
local spins S, and S,(d) of the two atoms in the dimer. S, and
S, are treated as classical variables and their orientation de-
termines the scattering potential for the s electrons. These are
described by a tight-binding Hamiltonian with a single s or-
bital per site at half filling. The on-site energy and hopping
integral in the electrodes are ¢ =2 eV and y =-2 eV, a

FIG. 1. (Color online) The model system investigated: a dimer
of magnetic atoms, dark gray (red online), carrying, respectively,
spin S; and S5, is attached to two 1D nonmagnetic electrodes, light
gray (light blue online). The Hamiltonian for the dimer is Hppy.
The scattering region (dashed box) includes the dimer and six atoms
of the electrodes and it is described by the Hamiltonian matrix Hg.
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choice which maintains the system far from the van Hoof
singularities at any voltage investigated. No local spins are
present in the electrodes so that their electronic structure is
not spin polarized. The Hamiltonian of the dimer is

1.2
Hpp = 2 2 hlqﬁcfﬁczﬁﬁL E 7’(0(171.527+ C(zﬁcf > (1)
afl i o

where /1 is the on-site Hamiltonian matrix of the ith atom
of the dimer, 7y is the hopping parameter, and ¢?"(c?) is the
creation (annihilation) operator for an electron with spin
o(7,]) at the site i. We have defined hf’ﬁ=[eo+ U(p;
- po)]ﬁaB—Jsdfi-(&)aﬁ, where & are the Pauli matrices, p; is
the total occupation of ith site, py=1 is the site occupation in
the neutral configuration, U=1 eV is the atomic charging
energy and J4=2 eV is the exchange parameter between the
s electrons and the local spins. In our calculations we con-
sider =2 eV, y=-0.1 eV, and |S;/=1. In absence of spin-
orbit interaction and spin polarization of the electrodes the
scattering potential is determined only by the mutual angle,
0, between the two local spins. Finally, the dimer and the
electrodes are coupled by the hopping integral y.. In particu-
lar we explore the two cases in which yc=1/4v and yc
=1/2v;. These parameters are only illustrative and have
been chosen in order to maximize the difference in conduc-
tance between different spin states of the molecule (6=0 vs
0=m).

The nonequilibrium Green’s function method'? applied to
our tight-binding Hamiltonian'# is used to calculate the trans-
port properties. The central quantity is the retarded Green’s
function of the scattering region

G(E) = lim [(E+i7) ~Hpw-3.-3]" (2
7—

where E is the energy, Hg is the Hamiltonian matrix of the
scattering region, and 3, (2g) is the self-energy of the left-
(right-)hand side electrode. This latter describes the interac-
tion between the scattering region, which includes the dimer
and six atoms of the electrodes (see Fig. 1), and the elec-
trodes. G(E) enters in a self-consistent procedure to evaluate
the stationary occupation of the scattering region and once
convergence is achieved the two-probe microscopic current,
i(V), at the voltage V is extracted from the Landauer
formula.'*

Since at any given temperature the angle between the
magnetic moments in the dimer fluctuates, for any micro-
scopic quantity g we can define its macroscopic counterpart,
0, as the thermal average over all the possible angles

Jimeq(6,V)e S eldg
o(V)=(g(V)=—"2 (3)

fgmaxe_gl Z/kB ng
Emin

thus that if g=i one obtains the macroscopic current, /. Here
&1, is the dimer magnetic energy, which writes

512:_Jdd CcoS 0, Jdd:a+b Uﬁ(a,V) (4)

and &y (Emax) 18 its minimum (maximum) value. In the Egs.
(4) above Jy4 is the exchange energy between the two spins,
which in turns is a quadratic function of the electrical poten-
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FIG. 2. Microscopic transport quantities. The microscopic cur-
rent, i, as a function of the angle, 6, is shown in panels (a) and (c)
for different voltages V. Panels (b) and (d) show the internal poten-
tial drop, vy, as a function of the external bias and for different
angles. Panels (a) and (b) are for y-=1/4v; while (c) and (d) are
for ye=1/27y;.

tial difference between them, vy. This latter is an intrinsic
function of both V and 6. Finally the constants a and b are
fixed to the values of a=0.001 eV and b=—0.8 eV/V2.
Note that the functional dependence of J44 over v4 implies a
critical voltage at which the exchange energy changes sign,
i.e., the magnetic coupling turns from ferromagnetic to
antiferromagnetic.”?

III. RESULTS AND DISCUSSION

We begin our analysis by investigating the microscopic
quantities, i.e., the current i(V, #) and the dimer internal po-
tential drop vy. In Fig. 2 we present, for both choices of
coupling 7yc, i— 6 for different voltages and vy—V for differ-
ent angles 6. In the case of y-=1/4v; the current varies as
i(V,0)~[iy+i, cos 8]V with iy and i; two constants. At the
same time v, is only weakly dependent on the internal spin
configuration, i.e., the vy-V curve changes little with the
angle 0 [Fig. 2(b)]. In contrast for yc=1/27; the current
peaks at approximately #=m/2 with both the parallel and
antiparallel configurations being low conducting. Again the
amplitude of the current variation over 6 increases with bias
although only moderately in this case. Furthermore for this
situation vy, which is still linear with V, is rather sensitive to
the angle between the two spins. These differences affect
dramatically the macroscopic current, /, that we calculate
next.

The macroscopic I-V curves for the two cases are pre-
sented in the panels (a) and (c) of Fig. 3 while the panels (b)
and (d) report the current quadratic fluctuations Af
=\(i*)—I? still as a function of bias. In all cases we study the
electrical response in the temperature range 1-15 K. The
most interesting behavior is found for y-=1/4v;, from
which we start our discussion.

Figure 3(a) reveals two remarkable features. First we note
that there is a pronounced NDC at about 0.2 Volt, which is

184429-2



ELECTRON TRANSPORT ACROSS ELECTRICALLY....

0.07 — ‘ ‘ — ‘ 0.03
0.06 - - b) L7 0,025
~0.05— [ RN lon =
QP 7002 2
J 0041 3 \ f N
) H = ¢ 00152
~0.03~ r Ll N Z

~ 002l B i o1
0.01F e -10.005
0l P2 ‘
025 ——F—— 17— ——7——7—0.03
P
29T N b
02l-C) 1 d) I —0.025
~ r f‘/ 1L './ \‘. ;002 =
N e B FO \ RN
N 2 {L N N 100158
Pt 7 N ~—~
~ 0.1 A — IK |r PN N
~ [ -—=-3K [ A\ oot '
0,05 < | 5K | F /{;\/ X \.\ |
05— ¢ | 7K |~ & N . Tr~.<._70.005
r --- 15K| o
0 1 1 T T 1 t T 0
0 0.1 0.2 03 0 0.1 0.2 0.3
V (Volt) V (Volt)

FIG. 3. Macroscopic transport quantities. The I-V curves are
presented in panels (a) and (c) while panels (b) and (d) display the
current quadratic fluctuations AI=(i*>)—I? as a function of bias V.
Panels (a) and (b) are for yc=1/47 while (c) and (d) are for yc
=1/27.. Note that in (a) there is a critical voltage V- at which the
current becomes independent of the temperature.

well evident at 1 K, it weakens as the temperature increases
and finally disappears at 15 K. Interestingly the scaling of the
electrical current with the temperature is opposite at the two
sides of the NDC: it decreases as the temperature is enhanced
before the NDC while it grows with T for voltages just after
the NDC. The same NDC is present also in the case of stron-
ger coupling with the leads [yc=1/27., Fig. 3(c)] at the
somewhat lower voltage of about 0.1 Volt. In this case how-
ever the NDC is much less pronounced and disappears al-
ready at 3 K.

The second and most striking feature of Fig. 3(a) is the
presence of a critical voltage, V-, at which the current be-
comes independent of the temperature. Such a voltage is in
the vicinity of the NDC and correlates well with the peak in
the current quadratic fluctuations [Fig. 3(b)] at low tempera-
ture. Note that this second feature is absent in the case of
strong coupling to the leads.

All these aspects can be easily understood by relating the
microscopic quantities of Fig. 2 with the average of Eq. (3).
Let us consider the case of y-=1/47; first. In general the
macroscopic current I(V) is determined by the microscopic
currents i(V, 6) of those configurations in which the system
spends most of the time. The Egs. (4) tell us that the ferro-
magnetic configuration is energetically favorable at low bias
while it is the antiferromagnetic to dominate at higher volt-
ages (for vy larger than =\—a/b). This means that as the
external bias increases the average current becomes progres-
sively dominated by antiferromagnetic configurations to the
expenses of the ferromagnetic ones. Since the microscopic
current for f=1r is always considerably smaller than that for
0=0 [see Fig. 2(a)], this results in a decrease in the macro-
scopic current as a function of bias, i.e., in the NDC. Note
that this particular NDC is not of microscopic electronic ori-
gin since the microscopic currents i(V, §) are monotonic in V
for every 6.

In brief, the NDC described here originates because, as
the bias is changed, the system spends on average a different
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amount of time in the many accessible magnetic configura-
tions. Thus, the present mechanism is different from previ-
ously proposed schemes for magnetic molecules.!> In that
case the NDC is the result of the spin-selection rule forbid-
den suppression of transitions between different charging
states of the molecule. As such the NDC has a microscopic
origin and always appears as satellite of the main Coulomb
blockade physics, i.e., it strictly occurs when the coupling
between the molecule and the electrodes is weak. In contrast
our macroscopic NDC is simply rooted in the energetics of
the problem and can occur even in the limit of strong cou-
pling and without charging.

The fact that the exchange coupling changes sign as a
function of the bias produces the second important feature in
the macroscopic /-V curve. In fact when the potential drop
between the two magnetic atoms is vg= = V—a/b then the
parallel and antiparallel configurations of the magnetic mol-
ecule become energetically degenerate. This means that now
no magnetic energy scale enters into the problem and the
system spends an equal amount of time in any spin configu-
rations regardless of the temperature. In general, vy is pro-
portional to the external bias V. Therefore one expects the
existence of a universal external bias Vo=V[&,(v4)=0] such
that £,,=0 and the macroscopic currents becomes indepen-
dent of the temperature as indeed demonstrated in Fig. 3(a).
However there is a second condition for this to happen, i.e.,
v4 should be independent of the angle 6. This is not satisfied
for yo=1/2v, [see Fig. 2(d)] and as a consequence the I-V
curves remain temperature dependent at any bias.

From our discussion it is now clear that if v4 is propor-
tional to V and weakly dependent on 6 then there will be a
critical voltage V- at which any macroscopic quantity be-
comes temperature independent. Figure 3(a) illustrates this
feature for the current and the same is demonstrated in Fig.
4(b) for the conductance G:(;—"). Interestingly one can also
adopt a different definition for the macroscopic conductance,
namely, that of the bias derivative of the macroscopic current
dl/ dV. Such a quantity is presented in Fig. 4(a) and as ex-
pected it appears sensibly different from G. Interestingly
both G and dI/dV are, in principle, accessible from experi-
ments, and one may wonder whether some general conclu-
sions can be taken by measuring the two quantities indepen-
dently.

In general, by taking the Eq. (3) and formally deriving Q
with respect to the bias V we find

1% 1% o€ a€
fa0) o] { o) o2
A%

- —=)_ , 5

av 1 av Q av ®)

where kg is the Boltzman constant. If one now considers g

=i then the Eq. (5) establishes a general relation between the

conductance fluctuations and the correlation function be-
tween the current and the magnetic energy, which reads

ol dEL(V, 0 dEH(V, 6
[G‘(Tv}"BT: v 2EeVO\ [ 9€av.0

v v
(6)

Such a relation is drastically simplified when the micro-
scopic current has the typical spin-valve dependence i(V, 6)
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FIG. 4. Differential conductance calculated as (a) the derivative
of the macroscopic current, I, with respect to the bias or as the (b)
thermal average, G, of the microscopic conductance. In panel (c)
we show the product of (G-dI/dV) with the temperature T as a
function of bias. Results are presented for y-=1/47;. Note that
[G-al/dV]T is proportional to the square of the current quadratic
fluctuations AZ? [panel (d)] of Fig. 3(b).

~[ip+i, cos H]V and vy is linear with V. In this situation
(encountered here for yc=1/4v;) one finds

al
[G—W]kBTMAIZ, (7)

i.e., that the conductance fluctuations rescaled by the tem-
perature are proportional to the squared current fluctuations.
A numerical proof of such a relation is provided in the panels
(c) and (d) of Fig. 4, where we show, respectively, G
—0l/dV and A%

We believe that such a relation can be verified experimen-
tally. The right-hand side of Eq. (7) is essentially the square
of the current noise and it is directly addressable experimen-
tally. The key point is then that of evaluating the left-hand
side, i.e., of measuring independently G and dI/dV. The sec-
ond quantity (dI/dV) is simply the numerical derivative of
the /-V curve measured by slowly sweeping the bias in a dc
measurement. In contrast we can extract G from the real part
of the complex conductivity obtained as the linear response
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to a slow ac modulation around a given voltage V. Note also
that our argument holds if the dominant fluctuations of the
current have the magnetic origin discussed here. Therefore
we speculate that this relation can be verified in a tempera-
ture range where vibrational fluctuations are suppressed and
where quantum tunneling is still negligible.

Before concluding we wish to point out that our main
result, namely, the existence of a critical voltage V- at which
the macroscopical observable become temperature indepen-
dent, is expected to hold valid even to a fully quantum-
mechanical description of the molecule spin. In fact the only
two conditions for our argument to be valid are that there
must exist two different spin states of the molecule having
different scattering properties'® and that these two states
must become energetically degenerate for a certain value of
the external bias potential. These two conditions can be cer-
tainly met even if the molecule spins are treated quantum
mechanically. However, in the quantum case we expect
quantum tunneling to dominate the transition between the
two spin states at low temperature and voltages near V¢ (i.e.,
when the two states are quasidegenerate). In that situation
low-temperature anomalies in the I-V around V are likely to
be present. These cannot be described by our classical
model.

IV. CONCLUSION

In conclusion we have investigated the temperature-
dependent electronic transport through a model diatomic
magnetic molecule, in which the exchange coupling between
the two magnetic centers is a function of the bias. This pre-
sents two remarkable characteristics. First, if the potential
drop between the two magnetic centers is only weakly de-
pendent on the angle between their magnetic moments and it
is linear in V then there is a critical voltage V- at which the
macroscopic current becomes temperature independent. Sec-
ond, if in addition the microscopic current has a form
i(V,0)~[iy+i; cos 8]V then there is a universal relation be-
tween the temperature-rescaled conductance fluctuations and
the quadratic current fluctuations. Both these effects are a
unique fingerprint of the dependence of the magnetic energy
upon an external bias and can be used as a tool for detecting
such a dependence.
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