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We present a complete prescription for the numerical calculation of surface Green’s functions and self-
energies of semi-infinite quasi-one-dimensional systems. Our work extends previous results generating a robust
algorithm to be used in conjunction with ab initio electronic structure methods. We perform a detailed error
analysis of the scheme and find that the highest accuracy is found if no inversion of the usually ill conditioned
hopping matrix is involved. Even in this case however a transformation of the hopping matrix that decreases
its condition number is needed in order to limit the size of the imaginary part of the wave vectors. This is done
in two different ways: either by applying a singular value decomposition and setting a lowest bound for the
smallest singular value or by adding a random matrix of small amplitude. By using the first scheme the size of
the Hamiltonian matrix is reduced, making the computation considerably faster for large systems. For most
energies the method gives high accuracy, however in the presence of surface states the error diverges due to the
singularity in the self-energy. A surface state is found at a particular energy if the set of solution eigenvectors
of the infinite system is linearly dependent. This is then used as a criterion to detect surface states, and the error
is limited by adding a small imaginary part to the energy.
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I. INTRODUCTION

The electronic transport properties of quasi-one-
dimensional �quasi-1D� systems, described by a localized or-
bitals basis set, can be calculated using the nonequilibrium
Green’s function �NEGF� method.1–4 This is alternative to
schemes based on matching wave functions,5–8 and it is typi-
cally easier to extend to finite bias. The system is usually
divided into two semi-infinite left- and right-hand side leads,
and a scattering region joining them. The effect of the leads
onto the scattering region is taken into account by the so-
called self-energies �SEs�, which can be calculated from the
surface Green’s function �SGF� of the semi-infinite leads.
These can be obtained either with recursive methods9–12 or
by using a semianalytic formula.4,8,13–16 Recursive methods
are affected by poor convergence for some critical systems,
typically when the Hamiltonian for the leads is rather sparse.
Semianalytical methods instead bypass those problems by
construction, however major difficulties arise if the hopping
matrices are singular or, more generally, ill conditioned. Un-
fortunately the condition of the Hamiltonian is set by the
electronic structure of the leads and by the unit cell used, and
thus it is largely not controllable. For this reason an algo-
rithm that performs under the most generic conditions is
highly desirable. Here we present an improved semianalyti-
cal method that overcomes these limitations and thus repre-
sents a robust algorithm for quantum transport based on ab
initio electronic structure.

In the first part of the paper the extended algorithm for the
calculation of the SE is presented. First the construction of
the Green’s function of an infinite 1D system as derived in
Ref. 13 is recast into a more general form based on the
notion of a complex group velocity. Then we present an ex-
tension of such method to the calculation of the SGF and SE
that is defined also for the case of singular hopping matrices.
This largely improves the numerical accuracy. However we

find that even such an improved scheme sometimes fails if
the hopping matrices are close to being singular. We over-
come this problem by performing a transformation of the
hopping matrix that reduces its condition number �, defined
as the ratio between its largest to its smallest singular
value.17,18 This transformation limits the maximum absolute
value of the imaginary part of the Bloch wave vectors, in-
creasing both accuracy and stability. Two approaches are pre-
sented, the first is based on a singular value decomposition
�SVD�, a transformation which has been previously em-
ployed in electronic transport problems either for regulariz-
ing the Hamiltonian of the electrodes2 or for calculating the
complex band structure of long molecules.19 In this work the
SVD transformation is also used to significantly reduce the
dimension of the lead Hamiltonian. The second method con-
sists in adding a random noise matrix. This extended scheme
is implemented in the NEGF ab initio transport code
SMEAGOL,2,20 based on the density-functional theory �DFT�
code SIESTA.21

In the second part of this work we present three examples
of calculations performed with our implementation. We com-
pare the results to the ones obtained by using the original
method of Ref. 13, finding a considerable improvement.
However, although the algorithm appears very robust, our
detailed error analysis reveals that for a given system the
accuracy is lost at some specific energies. This is caused by
the divergence of one of the SE eigenvalues. The physical
origin of this behavior lies in the presence of surface states
very weakly coupled to the semi-infinite leads. Surface states
appear whenever at a given energy the set of Bloch functions
�with both real and imaginary wave vectors� for the infinite
quasi-1D system is linearly dependent. In the simplest case
this corresponds to two Bloch functions being equal inside
the unit cell. A small imaginary part is thus added to the
energy in a small energy range around the surface state. It is
shown that this has little effect on the transport properties in
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the high transmission regime, whereas for low transmission
it has a substantial influence on the results. Crucially only a
very small imaginary part is used, and moreover this is added
only around the energy of the surface state and thus the error
can be carefully controlled.

II. RETARDED GREEN’S FUNCTION FOR AN INFINITE
SYSTEM

Following the scheme introduced in Ref. 13 the construc-
tion of the retarded Green’s function for an infinite quasi-1D
system is now recalled. This is the starting point for the
calculation of the SGF. It is assumed that the Hamiltonian is
written over a localized orbital basis set and that the interac-
tion has finite range. The size of the unit cell can be chosen
to guarantee interaction only to the first-nearest neighboring
unit cells. The total Hamiltonian of the system Hzz� �the in-
tegers z and z� label the unit cells� can then be written as

Hzz� = H0�zz� + H1�z,z�−1 + H−1�z,z�+1, �1�

where H0, H1, and H−1 are N�N matrices, with N being the
number of orbitals comprised in the unit cell �see Fig. 1�. If
time-reversal symmetry holds then H0=H0

† and H−1=H1
†;

however the solutions presented here are valid also in the
more general case when H0�H0

† and/or H−1�H1
†. We further

assume that the overlap matrix Szz� has the same structure
and range of the Hamiltonian,

Szz� = S0�zz� + S1�z,z�−1 + S−1�z,z�+1, �2�

where S0, S1, and S−1 are again N�N matrices with the same
meaning of their Hamiltonian counterparts.

A. Bloch state expansion

The solutions of the Hamiltonian equation for the associ-
ated infinite periodic system �z�Hzz��z�=E�z�Szz��z� are
Bloch functions �z=eikz�, where �z and � are
N-dimensional vectors and k is the wave vector, which in
general is a complex number. For a given real or complex
energy E, there are 2N solutions with wave vectors kn and
corresponding wave functions �n. Each of them satisfies

�H0 + H1eikn + H−1e−ikn��n = E�S0 + S1eikn + S−1e−ikn��n.

�3�

If we define K�=H�−ES� ��=−1,0 ,1�, the equation above
can be rewritten as

�K0 + K1eikn + K−1e−ikn��R,n = 0, �4�

where the additional index R denotes explicitly that the so-
lution is a right eigenvector. The corresponding left eigen-
vector �L,n satisfies

�L,n
† �K0 + K1eikn + K−1e−ikn� = 0. �5�

Time-reversal symmetry gives �L,n=�L�kn�=�R�kn
��, so that

in the case of real kn �propagating states� left and right eigen-
vectors are equal. For complex kn left and right eigenvectors
are different, describing left- and right-decaying states. We
now briefly describe an efficient method for calculating �kn�
and ��R,n�, while we leave to Appendix A the description of
the analogous method for ��L,n�, together with the derivation
of a number of useful relations needed in Sec. II B. The
solution of Eq. �4� can be found by solving an associated
quadratic eigenvalue problem22,23 of the form

�− K0 − K−1

IN 0N
��R,n = eikn�K1 0N

0N IN
��R,n, �6�

where

�R,n = � eikn/2

e−ikn/2 ��R,n

�vn

. �7�

Here IN is the N�N unit matrix and 0N is the N�N zero
matrix �a general i� j zero matrix is denoted as 0i,j�. The
normalization constant is the square root of the complex
group velocity vn=�E /�kn�	=1� equal to

vn =
i

ln
�L,n

† �K1eikn − e−iknK−1��R,n, �8�

ln = �L,n
† �S0 + S1eikn + S−1e−ikn��R,n. �9�

In the following we assume that the eigenvectors �R,n and
�L,n are always normalized to give ln=1. If time-reversal
symmetry holds then v�kn

��=vn
�, so that if the imaginary part

of kn is zero the group velocity is real. Note that, at variance
with Ref. 13, Eq. �6� avoids the inversion of K1, so that it
eliminates a possible source of singularities in the calculation
of kn and �R,n.

B. Green’s function

The retarded Green’s function gzz� of the system is defined
by means of the Green’s equation,

�
z�

gzz�	�E + i��Sz�z� − Hz�z�
 = �zz�, �10�

with �→0+ real. In what follows we present and expand, by
using left and right Bloch functions, the solution to Eq. �10�
given in Ref. 13 only in terms of the right eigenvectors �R.
First we divide the 2N �R,n vectors into N right-going states,
with either Im�kn�
0 �right decaying� or Im�kn�=0 and vn

0 �right propagating�, and N left-going states, with either
Im�kn��0 �left decaying� or Im�kn�=0 and vn�0 �left
propagating�. As a matter of notation in order to distinguish
left- from right-going states, in what follows we indicate the
right-going states with k, �, and v and the left-going states

with a bar over these quantities, i.e., k̄, �̄, and v̄.

H H1 H0
1H H0

H1 H00

FIG. 1. Schematic representation of the system with onsite
Hamiltonian H0 and hopping H1. The overlap matrix has the same
structure.
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As in Ref. 13 we introduce the duals �̃R,n of the right-
going states �R,n defined by �̃R,n

† �R,m=�nm and the duals

�̃̄R,n of the left-going states �̄R,n defined by �̃̄R,n
† �̄R,m=�nm. If

we define the matrices Q and Q̄ as

Q = ��R,1 �R,2 ¯ �R,N� ,

Q̄ = ��̄R,1 �̄R,2 ¯ �̄R,N� , �11�

then the duals can be obtained by simple inversions,

��̃R,1 �̃R,1 ¯ �̃R,N� = �Q−1�†,

��̃̄R,1 �̃̄R,1 ¯ �̃̄R,N� = �Q̄−1�†. �12�

The inversions in Eq. �12� are usually well defined, unless Q

and Q̄ do not have full rank. We will return on this aspect in
Sec. VI, for the moment we assume that the duals can always
be constructed.

The Green’s function calculated in Ref. 13 is then

gzz� = ��
n=1

N

�R,neikn�z−z���̃R,n
† V−1, z � z�

�
n=1

N

�̄R,neik̄n�z−z���̃̄R,n
† V−1, z 
 z�,� �13�

with the matrix V=gzz
−1=g00

−1 given by

V = K−1��
n=1

N

e−ikn�R,n�̃R,n
† − �

n=1

N

e−ik̄n�̄R,n�̃̄R,n
† � . �14�

We now introduce the right transfer matrices TR and T̄R,

TR = �
n=1

N

�R,neikn�̃R,n
† , �15�

T̄R = �
n=1

N

�̄R,ne−ik̄n�̃̄R,n
† . �16�

These are equivalent to the bulk transfer matrices introduced
in Refs. 11, 12, and 24 in the context of the recursive Green’s

function approach. Note that both TR and T̄R have eigenval-
ues with complex modulus 
1. For an integer z the follow-
ing relations hold:

�TR�z = �
n=1

N

�R,neiknz�̃R,n
† ,

�T̄R�z = �
n=1

N

�̄R,ne−ik̄nz�̃̄R,n
† , �17�

which allow us to write the Green’s function of Eq. �13� as

gzz� =
�TR�z−z�g00, z � z�

�T̄R�z�−zg00, z 
 z�.
� �18�

In the same way V is rewritten as

V = g00
−1 = K−1�TR

−1 − T̄R� . �19�

Note that although the matrices TR and T̄R are in general well
defined, the inverse of these matrices is not. In fact, if K1 and
K−1 are singular there are some kn with Im�kn�→�, so that
eikn =0 �see Sec. IV A�. In this case TR does not have full
rank and is therefore singular. The same argument holds for

T̄R. Equation �19� can therefore be used only if the matrices
K1 and K−1 are not singular.

A possible way for overcoming such limitation is by using
an equivalent form for the Green’s function based on the left
and right eigenvectors. The starting point is relation �A6�
between �R,n and �L,n. This allows us to find the connection
between the duals and the left eigenvectors. Equation �A6�
contains a sum over both left- and right-going states. By
moving the contribution of the left-going states to the right

side of the equation, we obtain �n=1
N �R,n�L,n

+

ivn
=−�n=1

N �̄R,n�̄L,n
+

iv̄n
=B,

where we have introduced the auxiliary matrix B. By multi-

plying B from the left with either �̃R
† or �̃̄R

† we obtain, re-

spectively, �̃R,n
† = 1

ivn
�L,n

† B−1 and �̃̄R,n
† = 1

−iv̄n
�̄L,n

† B−1. The ma-
trix B is determined by inserting these relations into Eq. �14�
and by using identity �A8�. The result is B=g00. The relation
between the dual basis and the left eigenvectors is therefore

�̃R,n
† =

1

ivn
�L,n

† g00
−1, �̃̄R,n

† =
1

− iv̄n

�̄L,n
† g00

−1. �20�

This result allows us to rewrite the Green’s function of Eq.
�13� in a shorter form,

gzz� = � �
n=1

N
1

ivn
�R,neikn�z−z���L,n

† , z � z�

�
n=1

N
1

− iv̄n

�̄R,neik̄n�z−z���̄L,n
† , z 
 z�.� �21�

This result represents a generalization to complex energies
and to systems breaking time-reversal symmetry of the solu-
tion given in Refs. 25 and 26 for Hermitian Hamiltonians,
real energy, and an orthogonal tight-binding model. This
derivation shows that the Green’s function can be equiva-
lently expressed by using the right eigenvectors and their
duals 	Eq. �13�
 or both the right and left eigenvectors 	Eq.
�21�
. It is thus possible to move from one representation to
the other through Eq. �20� that relates the duals to the left
eigenvectors. One can then decide which representation to
use, depending on the specific problem investigated. We note
that Eq. �21� has the benefit that g00 can be calculated also in
the case where the two matrices K1 and K−1 are singular. For
those kn where Im�kn�→� the group velocity becomes vn
= i�L,n

† K0�R,n and is therefore well defined 	v̄n=

−i�̄L,n
† K0�̄R,n for Im�k̄n�→−�
.

As a matter of completeness we show that a representa-
tion entirely based on the left Bloch functions and their duals

�̃L,n and �̃̄L,n is also possible. By multiplying Eq. �21�, re-

spectively, by �̃L,n and �̃̄L,n from the right, we obtain the two
relations,
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�̃L,n =
1

ivn
g00

−1�R,n, �̃̄L,n =
1

− iv̄n

g00
−1�̄R,n. �22�

Again the left transfer matrices TL and T̄L are defined as

TL = �
n=1

N

�̃L,neikn�L,n
† , �23�

T̄L = �
n=1

N

�̃̄L,ne−ik̄n�̄L,n
† , �24�

and the Green’s function of Eq. �21� can be rewritten as

gzz� =
g00�TL�z−z�, z � z�

g00�T̄L�z�−z, z 
 z�.
� �25�

The structure of Eq. �25� is the same as that of Eq. �18�, with
the difference that now g00 is multiplied to the left of the
transfer matrix. Finally we extend Eq. �19� and present four
equivalent relations for the inverse of g00,

g00
−1 = K−1�TR

−1 − T̄R� = K1�T̄R
−1 − TR�

= �TL
−1 − T̄L�K−1 = �T̄L

−1 − TL�K1. �26�

The second of these relations can be shown by multiplying
Eq. �A7� by g00

−1 from the right and then by using Eq. �20�. In
the same way the third and fourth equations can be obtained
by multiplying identities �A7� and �A8� by g00

−1 from the left.
In the following we will use mostly the quantities expressed
in terms of the right eigenvectors only, however the same
conclusions can be derived using the left eigenvectors.

C. Density of states

As an example of the use of the Green’s function in the
form of Eq. �21�, we determine the spectral function A and
the density of states �DOS� of the infinite quasi-1D system
for the special case where the Hamiltonian and the overlap
matrices are Hermitian. The spectral function is defined as1

Azz� = i	g − g†
zz� = i	gzz� − �gz�z�†
 . �27�

The DOS �z projected on the unit cell z then is

�z =
1

2�
Tr��

z�

Azz�Sz�z� . �28�

By using Eq. �2� this becomes

�z =
1

2�
Tr	AzzS0 + Az,z−1S1 + Az,z+1S−1
 . �29�

In general the main contribution originates from the first
term in the sum, which can be interpreted as the onsite DOS
�̃z,

�̃z =
1

2�
Tr	AzzS0
 . �30�

We now calculate A and � for the special case where
K−1=K1

† and K0=K0
†. In this case for Im�kn�=0 we have

�L,n=�R,n, whereas if Im�kn��0 then �L,n=�L�kn�= �̄R�kn
��.

In the same way for Im�k̄n�=0 we have �̄L,n= �̄R,n, whereas

if Im�k̄n��0 then �̄L,n= �̄L�k̄n�=�R�k̄n
��. Therefore for each

right-decaying state with Im�kn�
0 there is a left decaying

state with k̄n=kn
� and v�k̄n��=v�kn�. Using these relations

when inserting the Green’s function of Eq. �21� in the defi-
nition of Azz�, the contribution from all the decaying states
cancels out. The only remaining contributions come from the
propagating states, also denoted as open channels. For these

kn
�=kn, k̄n=−kn, and v�k̄n�=−v�kn�. With these constraints,

and by using Eq. �21�, the spectral function becomes

Azz� = �
n

Nopen eikn�z−z��

vn
�R,n�R,n

† +
e−ikn�z−z��

vn
�̄R,n�̄R,n

† , �31�

where Nopen is the number of open channels �number of
Bloch functions at a given energy with real positive k vec-
tor�. If there are no open channels Azz�=0 and the Green’s
function is Hermitian. Finally, by using Eqs. �31� and �29�,
and the fact that the eigenvectors are normalized so to give
ln=1 	see Eq. �9�
, the DOS at the site z=0 is simply

�0 =
1

�
�

n

Nopen 1

vn
. �32�

This is the well-known result for the DOS of infinite periodic
1D systems.27

III. SURFACE GREEN’S FUNCTION AND SELF-ENERGY

The retarded Green’s function gS for a quasiperiodic sys-
tem, where the left and right sides are separated at the posi-
tion z=0 �the left-hand side part extends from z=−� to z=
−1 and the right-hand side part from z=1 to z=�, with no
coupling between the cells at z=−1 and z=1�, can be con-
structed from the Green’s function g for the infinite chain as
demonstrated in Ref. 13,

gS,zz� = gzz� − gz0g00
−1g0z�. �33�

The left-hand side SGF is then defined as GL=gS,−1,−1 and
the right SGF as GR=gS,11. The SGF can be obtained by
using Eq. �18�,

GL = �IN − T̄RTR�g00,

GR = �IN − TRT̄R�g00. �34�

This corresponds to the form derived in Ref. 13. This result
can be simplified by using relation �26� for g00 to

GL = T̄RK1
−1,

GR = TRK−1
−1. �35�

These equations unfortunately are only defined if K1 and K−1
are not singular. The same problem however does not affect
the left and right SEs, �L=K−1GLK1 and �R=K1GRK−1,2

since they simply are
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�L = K−1T̄R, �36�

�R = K1TR. �37�

In complete analogy the same expressions obtained by using

the left transfer matrices are �L=TLK1 and �R= T̄LK−1. This
result is equivalent to those obtained in Refs. 8, 11, 12, and
14–16 and derived with different approaches, demonstrating
the equivalence of those to our semianalytical formula. Since
NEGF-based transport codes simply require �L and �R, our
scheme allows the calculations of system with arbitrarily
complicated electronic structure. A schematic tree diagram
describing the steps involved in obtaining the SE is shown in
Fig. 2 �basic algorithm�.

Equations �36� and �37� demonstrate that the SE can be
calculated directly without explicitly calculating GL and GR.
In situations where also the SGFs are needed, these can be
obtained by using the relations

GL = − 	K0 + �L
−1, �38�

GR = − 	K0 + �R
−1. �39�

This can be derived by adding one layer to the left and one to
the right surfaces, respectively.9 In Appendix B we show that
the SEs calculated with Eqs. �36� and �37� indeed fulfill the
above equation. Moreover with the use of Eqs. �35� and �38�
we can now regularize Eq. �19� also for the case where TR is
singular by writing it as

g00
−1 = − K0 − �L − �R. �40�

We have therefore a scheme where the SEs are identified as
the principal quantities, whereas the SGF and g00 are derived
from these.

When we compare the method of Ref. 13 with the equa-
tions derived above, we notice that now it is not necessary to
calculate the matrix g00 and its inverse using Eq. �19� in
order to obtain the SE. This is not defined in the case of
singular K1 and K−1, and therefore we expect the method
presented here to be more stable and accurate. Also the prob-
lems caused close to band edges by the Van Hove singulari-

ties in g00 are avoided. Moreover the method in Ref. 13 relies
on the calculation of the SGF in order to obtain the SE,
whereas here the SGF is not needed. As we will show in Sec.
VI close to surface states the error in the SGF is much larger
than the one for the SE, so that we also expect a large im-
provement in the accuracy for those particular states.

IV. REDUCING THE CONDITION NUMBER OF K1 AND K−1

The accuracy with which the SE is calculated depends on
the accuracy involved in solving Eq. �6�, a quadratic eigen-
value problem extensively studied in the past.22,23 However
most solution methods have problems if K1 or K−1 are close
to being singular or more generally if their condition number
� is large. In this case some of the complex eigenvalues tend
to infinity and others to zero at the same time, and this results
in a loss of accuracy in numerical computations. When cal-

culating TR�T̄R� however the contributions from the states

with Im�kn�→� 	Im�k̄n�→−�
 are vanishingly small. It is
therefore useful to limit the range of the eigenvalues �eikn� in
such a way that the important eigenstates with small �Im�kn��
and �Im�k̄n�� can be calculated accurately, while losing preci-
sion for the less important eigenstates with large �Im�kn�� and

�Im�k̄n��. In this section we show how this can be achieved by
decreasing ��K1� and ��K−1�. Here we assume that K1=K−1

† ,
so that ��K1�=��K−1�. Minor modifications are needed for
the general case �see Appendix C�.

In order to obtain ��K1� first a SVD of the matrix is per-
formed,

K1 = USV†. �41�

Here, U and V are unitary matrices and S is a diagonal ma-
trix, whose diagonal elements sn are the singular values.
These are real and positive, and ordered so that sn+1
sn. If
smax is the largest singular value, and smin the smallest one,
then the condition number is defined as ��K1�=smax /smin,
with K1 singular if smin is zero.

We now replace S with an approximate SSVD, whose di-
agonal elements sSVD,n are

( −K0 −K−1

1 0

)
ΦR,n = eikn

(
K1 0
0 1

)
ΦR,n

TR =
N∑

i=1

eiknφR,nφ̃
†
R,n

ΣR = K1TR

Σeff
L −→ ΣL Σeff

R −→ ΣR

vn > 0 ∨ Im(kn) > 0

Q−1† = {φ̃R,n}

T̄R =
N∑

i=1

e−ik̄nφ̄R,n
˜̄φ
†
R,n

Q̄−1† = {˜̄φR,n}
Q̄ = {φ̄R,n}

Solve k = k(E) Choose accuracy target ∆max
Σ,r

Calculate the SE for the effective system

Basic algorithm

Transform back to the full system.
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FIG. 2. Schematic diagram of
the basic algorithm described in
Sec. III and of the extended algo-
rithm described in Sec. IV.
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sSVD,n = 
 sn, sn � smax�SVD

sSVD, sn � smax�SVD
� �42�

and accordingly K1 with K1,SVD=USSVDV†. The tolerance pa-
rameter �SVD is a real positive number that determines the
condition number of K1,SVD.

We now present two possible choices for sSVD. The first is
to set sSVD=0, resulting in K1,SVD being singular. We can
then perform a unitary transformation in order to eliminate
the degrees of freedom associated to sSVD,n=0 and obtain an
effective K1 matrix �K1

eff� with reduced size for which
��K1

eff�
�SVD
−1 . The second possibility is to set sSVD

=smax�SVD, so that by definition we have ��K1�=�SVD
−1 . The

accuracy obtained with both strategies is similar, the advan-
tage of using the first however is that the size of the matrices
is reduced, so that for big systems the computation is much
faster. In our implementation we use both methods together;
first we reduce the size of the system by setting sSVD=0, and
then, if necessary, we further reduce the condition number
for the effective system by limiting the smallest singular
value.

A. Reduction in system size

Here we set all the M singular values sn smaller than
smax�SVD to zero, so that there are Neff=N−M singular values
sn with sn�smax�SVD. The transformations needed in order to
obtain the right SE are now presented �the procedure for the
left SE is analogous�. We apply the unitary transformations
Kzz�

� =U†Kzz�U and �R,n� =U†�R,n, and we define K1�
=U†K1,SVDU, K−1� =U†K−1,SVDU, and K0�=U†K0U. Since M
singular values of K1,SVD are zero the transformed matrices
have the structure

K1� = � K1,c K1,u

0M,Neff
0M,M

�, K0� = �A B

C D
� ,

K−1� = �K−1,c 0Neff,M

K−1,u 0M,M
�, �R,n� = ��c,n

�u,n
� , �43�

where the dimensions of the new matrices are Neff�Neff for
K1,c, K−1,c, and A, Neff�M for K1,u and B, M �Neff for K−1,u
and C, and M �M for D. Finally �c,n is a column vector of
dimension Neff, and �u,n is of dimension M. The transformed
form of Eq. �4� is

�K0� + K1�e
ikn + K−1� e−ikn��R,n� = 0. �44�

Due to the structure of K−1� there are M solutions to this
equation with eikn =0 and �c,n=0. We therefore split up the
right-going states into those with finite eikn�0 and those
with eikn =0. For the first set, from Eq. �44�, we obtain

�u,n = Fn�c,n, �45�

with

Fn = − D−1�K−1,ue−ikn + C� . �46�

The �c,n are then solutions of an effective system with re-
duced size,

�K0
eff + K1

effeikn + K−1
effe−ikn��c,n = 0, �47�

where the effective matrices are

K1
eff = K1,c − K1,uD−1C ,

K−1
eff = K−1,c − BD−1K−1,u,

K0
eff = A − BD−1C − K1,uD−1K−1,u. �48�

We can now solve the quadratic eigenvalue problem 	Eq. �6�

for this effective system to get the set of Neff eigenvectors
Qc= ��c,1 �c,2¯�c,Neff

� and eigenvalues �eikn� for the right-
going states. The M eigenvectors of the second set of solu-
tions with eikn =0 are given by �c,n=0 with a general �u,n.
The set of eigenvectors of the full K� matrix therefore is

Q = �Qc 0Neff,M

Qu Q0
� , �49�

with Qu= �F1�c,1 F2�c,2¯FNeff
�c,Neff

� and Q0 is a general
matrix of solution vectors for the states with eikn =0. From
this we obtain the set of duals,

Q−1 = � Qc
−1 0Neff,M

− Q0
−1QuQc

−1 Q0
−1 � . �50�

Using these results we can now calculate the transfer matrix
TR� of the transformed system,

TR� = �
n=1

Neff

eikn� �c,n�̃c,n
† 0Neff,M

Fn�c,n�̃c,n
† 0M,M

� , �51�

where we have also used the fact that eikn =0 for the second
set of solutions. We note that setting the M smallest singular
values sn to zero causes the last M columns of TR� to be zero
too. Moreover the explicit calculation of Q0 is not needed in
order to obtain TR� . From this and Eq. �37� we obtain the right
SE,

�R� = ��R
eff − K1,uD−1K−1,u 0Neff,M

0M,Neff
0M,M

� , �52�

where

�R
eff = K1

eff�
n=1

Neff

eikn�c,n�̃c,n
† �53�

is the SE of the effective system.
The structure of �R� shows that by applying this unitary

transformation, we have ordered the elements of the SE by
absolute size, moving those columns �rows� with the smallest
values to the right �bottom�. By setting the smallest singular
values of K1 to zero, those columns and rows of the SE with
small values have also been set to zero. This is illustrated in
Fig. 3, where the absolute value of the diagonal elements of
the transformed self-energy ��R,ii� � is shown for a �8,0� zigzag
carbon nanotube at the Fermi energy EF �see Sec. V for a
detailed description of the system�. The ��R,ii� � are basically
identical for different �SVD up to i=Neff, and indeed an in-
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creasing value of �SVD results in more diagonal elements of
�R� set to zero. We note that Neff is of similar size as N in Fig.
3, since the system is rather short along z and a small basis
set is used �i.e., N is small�. For large systems and rich basis
sets the ratio Neff /N will decrease. The physical interpreta-
tion of the zero columns and rows in the SE is that the M
states with kn→� decay infinitely fast, so that the interaction
of those states is limited to the site they are localized at.
Finally the SE of the original system can be obtained by
applying the inverse unitary transformation,

�R = U�R�U†, �54�

and in contrast to �R� the matrix �R is a dense N�N matrix.
Note that in order to obtain the left SE we perform the

unitary transformations Kzz�
� =V†Kzz�V and �R,n� =V�R,n and

then follow an analogous procedure. In this case however
instead of the right-going states the left-going ones are used.

B. Limiting the smallest singular value

We can limit the lower bound of the singular values sn by
setting sSVD=smax�SVD in Eq. �42�. In this case the approxi-
mated K matrix is obtained by replacing K1 with K1,SVD. The
error introduced is now of the order of smax�SVD. Ideally
smax�SVD should be of the order of the machine numerical
precision, so that the error is minimal. However sometimes
increasing smax�SVD beyond that value improves the results,
therefore �SVD is left as a parameter to adjust depending on
the material system investigated. This will be discussed ex-
tensively in Sec. V.

A simpler but equally effective possibility for limiting the
smallest singular value of a matrix is that of adding a small
random perturbation.17,28 Thus another strategy for reducing
the condition number of K1 is that of replacing K1 with
K1,noise=K1+W�wnoise�, where W�wnoise� is a matrix whose
elements are random complex numbers with an average ab-
solute value �Wij��wnoise. In particular we choose the �Wij� in
such a way that both Re�Wij� and Im�Wij� are random num-
bers in the range 	−wnoise ,wnoise
. We find that if wnoise
=smax�SVD the addition of noise usually gives results as ac-
curate as those obtained with the SVD procedure, but the
calculation is faster since instead of performing a SVD we
just perform a sum of the matrices.

In Fig. 2 we present our final extended algorithm as it has
been implemented in SMEAGOL. This now includes the fol-

lowing regularization procedure of K1. First the size of K1
and hence of the whole problem is reduced by using the
scheme described in Sec. IV A, with a tolerance parameter
�SVD=�SVD,1. This generates an effective matrix K1

eff whose
condition number ��K1

eff� is reduced by adding a small noise
matrix W�wnoise�. Such a step is extremely fast and enhances
considerably the numerical stability of the calculation. In
most cases the SE for the effective system can then be cal-
culated and no further regularization steps are needed. How-
ever, in some cases the calculation of the SE still fails. This,
for example, happens when the solution of Eq. �6� for the
effective system fails or else when the calculated number of
left-going states erroneously differs from the number of
right-going states. In these critical situations we further de-
crease ��K1

eff� by limiting the smallest singular value of K1
eff

as described in Sec. IV B with a tolerance parameter �SVD
=�SVD,2. The code automatically adjusts �SVD,1, �SVD,2, and
wnoise within a given range until the SE is calculated. In our
test calculations for a number of different systems we found
no situation where such a scheme has failed. In contrast
when the standard algorithm of Ref. 13 is employed the
number of failures was considerable. Note that our extended
algorithm can also be used in conjunction with recursive
methods for evaluating the SE.9–12 Also in this case it will
decrease the computing time for large systems due to the
reduced size of the effective K matrix.

V. ERROR ANALYSIS

When recursive algorithms are used the accuracy of the
SE is automatically known as it coincides with the conver-
gence criterion. Poor convergence is found when the error
cannot be reduced below a given tolerance. Direct methods,
as the one presented here, are in principle error free in the
sense that when the solution is found, this is in principle
exact. For this reason the numerical errors arising from direct
schemes usually are not estimated. In this section we per-
form this estimate and present a detailed error analysis for
three different material systems.

In order to estimate the numerical accuracy we use the
recursive relations of Eqs. �38� and �39�, written as

�L
out = − K−1	K0 + �L

in
−1K1,

�R
out = − K1	K0 + �R

in
−1K−1, �55�

where ��L/R�
in are calculated with our extended algorithm and

��L/R�
out are obtained by evaluating the right-hand side term of

the above equations. When the solution is exact then �L
out

=�L
in and �R

out=�R
in. Therefore we can define a measure of the

error �� as

�� = ���L/R�
out − ��L/R�

in �max, �56�

where �¯ �max stands for the maximum norm,18 the corre-
sponding relative error is ��,r=�� / ���L/R��max. The accuracy
criterion used in the extended algorithm is the following. We
first set �SVD,1, wnoise, and eventually �SVD,2 and compute
��,r. This should be lower than a target accuracy ��,r

max. If this
is not the case then the SE will be recalculated with a differ-
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FIG. 3. �Color online� Absolute value ��R,ii� � of the diagonal
elements of the transformed right SE for different values of �SVD.
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ent set of tolerance parameters, until ��,r reaches the desired
accuracy. If this condition is never achieved the final SE is
the one with the smallest ��,r.

We now calculate the SE for different variations of the
method, chosen in order to highlight the problems arising
from K1 and K−1 and to show the difference between the
basic method of Ref. 13 and the extensions presented here.
There are two main differences between the two methods.
The first is that here we solve Eq. �6� without inverting K1,
whereas in Ref. 13 K1

−1 is used to solve the inverse band-
structure relation k=k�E�. Clearly this second choice is less
accurate if K1 is close to singular. However it is much faster
computationally, so that it might be of advantage for big
systems. The second difference is that here it is not necessary
to calculate g00 via Eq. �19�, so that one does not need to

invert TR and T̄R.
In order to investigate the effect of these two aspects in-

dependently, we have calculated the SE using the following
four methods. In method 1 we use the algorithm presented in
this work. In particular we use Eq. �6� to solve the quadratic
eigenvalue problem and Eqs. �36� and �37� to obtain the SE
�for the right SE we actually use a different form of Eq. �6�;
see Appendix D�. Method 2 is essentially the same, with the
only difference that instead of solving Eq. �6� we use the
eigenvalue method of Ref. 13. In method 3 we solve Eq. �6�,
but we use Eq. �34� to calculate the SGF, with g00 obtained
from Eq. �19�. Finally method 4 is the algorithm of Ref. 13.

In order to obtain a statistically significant average of the
errors, we plot a histogram of the calculated errors for both
�L and �R for a large energy range. Here we use the absolute
error, since it can readily be compared to the energy scale of
the problem. Note that although the relative error might be
small, the absolute error can be very large if ���L/R��max
�1 Ry. Furthermore in order to keep the analysis simple in
all the calculations of this section, we do not reduce the
system size nor do we add noise �wnoise=0�. We regularize
K1 and K−1 by using sSVD=smax�SVD in Eq. �42�. Since the
error depends on the chosen �SVD, here we calculate �� for a
set of �SVD in the range �0,10−23,10−22, . . . ,10−4 ,10−3�. We
then present the smallest �� found for �SVD taken in that
range. This is the smallest possible error achievable with a
given method and allows us to extract information on the
range of optimal SVD values for a given method.

As first example a �8,0� zigzag carbon nanotube29 is pre-
sented 	the unit cell is shown in Fig. 4�a�
. The length of the
periodic unit cell is 4.26 Å along the nanotube, with 32 car-
bon atoms in the unit cell. The LDA approximation �no spin
polarization� is used for the exchange-correlation potential.
We consider 2s and 2p orbitals for carbon with double � and
a cutoff radius rc for the first � of rc=5 bohr. Higher � are
constructed with the split-norm scheme with a split norm of
15%.21 The real-space mesh cutoff is 200 Ry. The matrices
H0, H1, S0, and S1 are extracted from a ground-state DFT
calculation for an infinite periodic nanotube. We calculate the
SE for the semi-infinite nanotube at 1024 energy points in a
range of �5 eV around the Fermi energy.

Figure 5�a� shows the histogram of the errors in the SE,
where N is the number of times a given error �� appears. In
general the figure shows that for this system the average

error increases when going from method 1 to method 2 and
method 3, and finally to method 4. The error obtained with
method 1 is on average about 6 orders of magnitude smaller
than the one obtained with method 4. The main reason be-
hind this dramatically improved accuracy is that method 1
does not involve any steps where a singular K1 leads to di-
vergencies. Method 4 on the other hand is strongly depen-
dent on the condition number of K1, since it necessitates to

invert K1 and TR �or T̄R�. Methods 2 and 3 are on average
about 1 order of magnitude more precise than method 4.
Since they both still involve one of the two inversions, the
difference is however not large.

Figure 6�a� shows the histogram of the optimum �SVD
used for the calculations of the SE. Here we plot the number
of times N a particular �SVD has given the smallest error in
the set of calculations. A larger optimal value for �SVD indi-
cates a stronger dependence of the computational scheme on
��K1�. For method 1 the range of used �SVD is smaller than
10−12. If we force �SVD to be zero we get almost the same
level of accuracy, as shown in Fig. 5�a�, which confirms that

(a) (b)

(c)

FIG. 4. �Color online� Unit cells of the three systems investi-
gated in this work: �a� �8,0� zigzag carbon nanotube, �b� bcc Fe
oriented along the �100� direction, and �c� fcc Au oriented along the
�111� direction. The black arrow indicates the direction of the stack-
ing z, i.e., the direction of the transport.
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FIG. 5. �Color online� Histogram of the errors in the calculation
of the self-energy �� for three different systems: �a� �8,0� zigzag
carbon nanotube, �b� bcc Fe, and �c� fcc Au. N is the number of
times a given error �� occurs �not normalized�.
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the accuracy for method 1 depends little on ��K1� for this
system. However also for this method there is a set of ener-
gies �a few percent of the total number� where the solution of
Eq. �6� fails if �SVD is too small. The optimal �SVD for the
other methods is orders of magnitude larger than that of
method 1, and it is never smaller than 10−9. The absolute
error induced by replacing K1 by K1,SVD is of the order of
�SVDsmax. Usually smax is of the order of 1 Ry, so that the
error is of the order of �SVD Ry. Therefore since in methods
2–4 a large value of �SVD is needed in order to improve
��K1,SVD�, also the resulting error is large.

The second example is bcc Fe 	Fig. 4�b�
, oriented along
the �100� direction. The lattice parameters are the same
as in Ref. 30. There are four Fe atoms in the unit cell. We
apply periodic boundary conditions in the direction per-
pendicular to the stacking, so that these correspond to
four Fe planes. The length of the cell along the stacking
direction is 5.732 Å. Double-� s�rc=5.6 bohr�, single-�
p�rc=5.6 bohr�, and single-� d�rc=5.2 bohr� bases are used.
The real-space mesh cutoff is 600 Ry, and the DFT calcula-
tion is converged for 7�7 k-points in the Brillouin-zone
orthogonal to the stacking. The SEs have been calculated for
the converged DFT calculation at 32 different energies in a
range of �1 eV around the Fermi energy and for 10 000
k-points in the two-dimensional �2D� Brillouin zone perpen-
dicular to the stacking direction. For each k-point there is a
different set of matrices K0, K1, and K−1, so that for each
k-point there is a different SE. The histogram for the error of
the calculated self-energy �� is shown in Fig. 5�b� and the
histogram for the optimal �SVD in Fig. 6�b�. The general
behavior is similar to the one found for the carbon nanotube.
We note that, although for the vast majority of the calcula-
tions the error in the SE is small, there is a long tail in the
histograms of Fig. 5�b� indicating the presence of a small
number of large errors. This is present for all the methods,
with maximum errors of 10−2 Ry for method 1 and 100 Ry
for method 4. Closer inspection shows that the reason for the
increase in the error for certain energies and k-points is
caused by a divergence in ���L,R��max. This will be illustrated
in more detail in Sec. VI.

Finally we consider fcc Au 	Fig. 4�c�
, with the stacking
along the �111� direction. The unit cell consists of three

planes of nine gold atoms each. These are the typical leads
used for the calculations of the transmission properties of
molecules attached to gold.31–34 We use double � s�rc
=6.0 bohr� and single � d�rc=5.5 bohr� and four k-points in
the Brillouin zone perpendicular to the stacking. The mesh
cutoff is 400 Ry. The SEs have been calculated for 418 en-
ergy points from about 15 eV below to about 10 eV above
the Fermi energy. The general behavior 	Figs. 5�c� and 6�c�

is again similar to that of the previous examples. Also here
the error for method 1 is about 6 orders of magnitude smaller
than that of method 4, with methods 2 and 3 giving some
marginal improvement.

Our results show that the scheme presented here in gen-
eral allows the calculation of the SE with high accuracy. The
main advantage of method 1 is rooted in the possibility of
using a much smaller �SVD. For big systems sometimes one
might prefer to use method 2, since it is considerably faster
than method 1 and gives the second best accuracy. In this
case we first calculate the SE with method 2 and check the
error. Only for those energy points where the error is above
some maximum value �of the order of 10−5 Ry, for ex-
ample�, the calculation is repeated with method 1 to improve
the accuracy. Finally the results show that for all methods the
SVD transformation of K1 is necessary, although for method
1 it is needed only a few percent of the times. For big sys-
tems, in particular if the unit cell is elongated along the
stacking direction, or if a rich basis set is used, ��K1� will
generally increase as there will be some singular values of K1
going to zero. In these cases also method 1 will require a
SVD transformation for most energies. The range of �SVD
should however be similar to the one shown in Fig. 6, so that
also the error in the SE should be of the same order of mag-
nitude. We also note that in order to keep the analysis sim-
pler, here we have not used the reduction in system size
described in Sec. IV A, for such large systems it is however
crucial in order to decrease the computational effort and
regularize K1 at the same time.

VI. SURFACE STATES

The center of the error distribution for method 1 �Fig. 5�
is located at small ��, usually smaller than 10−11 Ry. How-
ever the histogram has also a tail reaching up to very large
errors. These are found only at some critical energies as dem-
onstrated in Fig. 7�a�, where we show �� for the carbon
nanotube calculated over 1024 energy points in a range of 2
eV around the Fermi energy. The average error is of the order
of 10−12 Ry, but at energies around −0.8 and −0.34 eV the
error drastically increases. Indeed a finer energy mesh at
these points suggests a divergence. The origin of the large
errors at particular energies can be investigated by looking at
the eigenvalues gL,i of the SGF GL. In Fig. 7�b� the largest
and the smallest absolute values for the eigenvalues, respec-
tively, gL,max and gL,min, are plotted as a function of energy
�gL,min
 �gL,i�
gL,max�. It can be seen that gL,max diverges
close to the energies where the error increases, i.e., we can
associate large errors in GL with a divergence in its spec-
trum. Since �L is calculated from Eq. �36� the only possible

origin for the divergence is in the norm of some of the �̃̄R,n.
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FIG. 6. �Color online� Histogram of �SVD giving the smallest
error in the self-energy: �a� �8,0� zigzag carbon nanotube, �b� bcc
Fe, and �c� fcc Au. N is the number of times a given �SVD generates
the smallest error �not normalized�.
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As these are obtained by inverting the matrix Q̄
= ��̄R,1 �̄R,2¯ �̄R,N� 	Eq. �11�
, one deduces that the set of
vectors ��̄R,n� is not linearly independent. For these energies

��Q̄�→�. We therefore can simply check the magnitude of

��Q̄� to determine whether there is a divergence of the SE
close to a particular energy.

Physically the divergence of the SE translates into the
presence of a surface state at that particular energy.9,11 Con-
sider the spectral representation of GL,

GL�E� = �
n=1

N
1

E + i� − En
�n�̃n

†, �57�

where En are the eigenvalues, �n are the right eigenvectors of
the effective surface Hamiltonian matrix H0−�L with over-

lap S0, and �̃n are the left eigenvectors of the same Hamil-
tonian. A localized surface state is found when there is a real
eigenvalue En�E� at En�E�=E �or more generally if
Im	En�E�
 is very small�.

From the recursive relation 	Eq. �38�
 one can deduce that
for an infinite eigenvalue there is also a corresponding van-
ishing eigenvalue. Therefore in Fig. 7�b� for energies where
gL,max→� we have also gL,min→0. Close to the singularity
we can therefore expand the two eigenvalues as gL,max

�
1

E+i�−En
and gL,min�E+ i�−En. For E=En the largest eigen-

value in Eq. �57� is then equal to �−1, and the smallest is
equal to �. To avoid divergence therefore the magnitude of
the GL eigenvalues can be bounded to a finite value �−1 by
introducing a small imaginary part to the energy for energies
in the vicinity of a surface state.

Another possibility for limiting the size of gL,max is to

bound the singular values of Q̄ from below in the same way
as it is done for K1 �Sec. IV B�. This essentially imposes the
�̄R,n to be linearly independent from each other. However,
with this scheme it is not possible to conserve the Green’s
function causality, so that the SGF might have eigenvalues
lying on the positive imaginary axis. Moreover we loose
control over the accuracy of the computed SGF and SE. Both
these problems are avoided when using a finite �.

We now investigate the DOS and transport properties of a
system when the finite imaginary part � �broadening� is
added to the energy. We consider as an example the carbon
nanotube of Fig. 4. In Fig. 8�a� the onsite surface DOS �̃0 as
defined in Eq. �30� is shown for �=0 Ry, �=10−6 Ry, �
=10−5 Ry, and �=10−4 Ry. For �=0 the surface DOS van-
ishes for energies between −0.42 and +0.39 eV, indicating
the presence of a gap around the Fermi energy. Note that
there are no Van Hove singularities in �̃0, since we never
divide by the group velocity when calculating the SGF. For
finite � and energies away from the band gap, the DOS is
essentially identical to that calculated for �=0, however in-
side the gap �̃0 does not vanish but saturates to a small value
proportional to �−1. Moreover whereas the surface states are
not visible for �=0, they appear in the DOS for finite �, and
their full width at half maximum �FWHM� equals 2�.

We then move to the transport by calculating the trans-
mission coefficient2 T�E� for a carbon nanotube attached to
semi-infinite leads made from an identical carbon nanotube.
Since this is a periodic system T�E� must equal the number
of open channels, so that it can only have integer values.
This is indeed the case for �=0 	Fig. 8�b�
. For finite �s the
transmission coefficient is only approximately an integer, es-
pecially inside the energy-gap region where the finite surface
DOS introduced by � leads to a nonzero transmission. The
transmission in the gap is proportional to �2 �note that the
scale is logarithmic�, since on both sides of the scattering
region the artificial surface DOS is proportional to �. In this
region of small transmission therefore the results might
change by orders of magnitude depending on the value of �.
For all values of � however we find no contributions to the
transmission coming from the surface state, indicating that
these do not carry current. These results show that adding a
finite value � to the energy has little effect on the actual
transmission if this is large. However when the transmission
is small, as in the case of tunnel junctions, the finite � intro-
duces an additional contribution to the conduction that might
arbitrarily affect the results. It is thus imperative for those
systems to identify surface states and use the imaginary �
only in a narrow energy interval around them.

Finally we can give an estimate of the relative accuracy
��,r���=�� / ���max at the energy corresponding to the sur-
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face state. As discussed before the origin of the error is the

inversion of Q̄ needed to calculate the duals. The relative

error introduced by the inversion of Q̄ is proportional to

��Q̄�.17,18,28,35,36 Close to a surface state the smallest singular

value is of the order of �, so that ��Q̄���−1. As this is the
dominant source of error in the calculation of the SE close to
a surface state, we can approximate the relative error as

��,r
in = c1�−1, �58�

where c1 is a constant that depends on the machine precision
and on the details of the algorithm. The label “in” explicitly
indicates that this is the error in the SE calculated with the
extended algorithm 	��L/R�

in in Eq. �55�
. The absolute error
��

in is equal to the relative error times ���max, which is itself
proportional to �−1, so that we get ��

in��−2.
When using Eq. �56� to estimate the error in the SE we

introduce an additional error due to the inversion involved in
obtaining GL. The largest singular value of GL is propor-
tional to �−1, and the smallest one is proportional to �, so that
the relative error introduced by the inversion is proportional
to ��GL

−1�=��GL���−2. For small � we can therefore write
for the error in �L

out,

��,r
out = c2�−2, �59�

where c2 is again a constant. Since the errors are random the
total estimated error can be approximated by adding the con-
tributions from the two inversions,

��,r
2 � ���,r

in �2 + ���,r
out�2. �60�

��,r is therefore a good estimate for the true error ��,r
in if ��,r

out

is small. Close to surface states however ��,r
out ���,r

in , so that
��,r largely overestimates the true error.

To verify these estimates numerically we present a
scheme for calculating ��,r

in and ��,r
out independently. For each

SE we perform a second calculation where we add a
small amount of noise to the input matrices K0, K1, and K−1,
so that we obtain the self-energy �L,noise for a slightly per-
turbed system. The noise is added as a random relative per-
turbation of each element of the matrices. As we decrease the
magnitude of the noise the difference between �L and �L,noise
is reduced until it becomes constant for noise smaller than
a critical value. In this range of minimum noise even if
the difference in the input matrices decreases, the difference
in the output matrices is constant, it therefore corresponds to
the error in the calculation. As one might expect we find
that this critical value of noise is of the same order of mag-
nitude as the numerical accuracy used �approximately 10−15

in our calculations�. We can therefore obtain ��,r
in = ��L

in

−�L,noise
in �max / ��L

in�max and ��,r
out = ��L

out−�L,noise
out �max / ��L

out�max,
with the magnitude of the noise equal to the critical value.

We have calculated the maximum error for a set of 128
energy points located within 10−11 Ry around the energy of
the surface state at −0.34 eV for different values of �. The
result is shown in Fig. 9�a�. Indeed for small � ��,r

in follows
Eq. �58� with c1�10−15 Ry, ��,r

out follows Eq. �59� with c2
�10−19 Ry2, and ���,r�2����,r

in �2+ ���,r
out�2. In Fig. 9�b� the

condition numbers ��Q̄� and ��GL� are shown, confirming

��Q̄���−1 and ��GL���−2. This demonstrates that close to
surface states ��,r is mainly caused by the calculation of GL.
Thus ��,r largely overestimates the real error ��,r

in , which
even for �=10−10 Ry has an acceptable size of ��,r

in �10−5.
Since c1 and c2 are generally system dependent, in prac-

tical calculations we use a value of � ranging between 10−7

and 10−6 Ry for energies in the vicinity of surface states,
mainly in order to limit the absolute error. Moreover � is
added in an energy range corresponding approximately to the
FWHM of the imaginary part of �E−En+ i��−1, which is
equal to 2�. Although this range is only of the order of
10−7−10−6 Ry, in practical calculations where both energy
and k-point sampling are fine, the number of times when this
prescription is applied can be rather large �see Fig. 5�.

The above analysis confirms that close to surface states
also direct methods have the same accuracy problems of re-
cursive methods. This fact is usually ignored in the
literature,4,13,14,30 where it is assumed that the accuracy is
constant for a given algorithm. Here we show that the accu-
racy of a method is solely determined by the value of c1,
which, as indicated in Sec. V, can vary over many orders of
magnitude. Our analysis also shows that methods requiring
the explicit calculation of GL from its inverse are much less
accurate close to surface states than those calculating �L
directly.

VII. CONCLUSIONS

By extending the scheme proposed in Ref. 13, we have
presented a different but equivalent form for calculating the
Green’s functions of an infinite quasi-1D system, as well as
the SGF and SE for the semi-infinite system. We have then
constructed an extended algorithm containing also the neces-
sary steps to regularize the ill conditioned hopping matrices.
This is found to be crucial in order to obtain a numerically
stable algorithm. By applying a unitary transformation based
on a SVD, we remove the rapidly decaying states and calcu-
late the SE for an effective system with reduced size. We
further decrease the condition number of the hopping matri-
ces by adding a small random perturbation and by limiting
the smallest singular value.
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GL, as a function of the broadening � for the carbon nanotube of
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We have performed a detailed error analysis on the nu-
merical calculation of the SE, showing that if the algorithm
does not involve an inversion of the hopping matrices K1 �or
K−1� high accuracy is obtained. We also find that the error is
not constant as a function of energy. It is shown that an
increase in accuracy is needed especially close to energies
where the SE and SGF diverge, which corresponds to the
presence of surface states in the semi-infinite system. At
these energies we improved the accuracy by adding a small
imaginary part to the energy. We have shown that this pro-
cedure affects the transport properties little in the high trans-
mission limit. However, for low transmission this adds some
spurious surface density of states contributing significantly to
the total transmission. The transport can therefore be
strongly affected, so that the imaginary part should be added
only in a small energy range around the poles and it should
be as small as possible.

Our final algorithm is therefore highly numerically stable
and extremely accurate. Most importantly errors and accu-
racy can be closely monitored. We believe that this is an
ideal algorithm to be used with ab initio transport schemes,
where the condition of the Hamiltonian and its sparsity is
controlled by the convergence of the electronic structure and
therefore cannot be fixed a priori.
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APPENDIX A: CONSTRUCTION OF THE LEFT
EIGENVECTORS AND USEFUL IDENTITIES

The left eigenvalues of the Bloch equation 	Eq. �5�
 can
also be calculated by solving a quadratic eigenvalue problem
as follows:

�L,n
† �− K0 − K−1

IN 0N
� = eikn�L,n

† �K1 0N

0N IN
� , �A1�

where

�L,n
† =

i�L,n
†

�vn

�eikn/2,− e−ikn/2K−1� . �A2�

The full sets of left ��L,n� and right ��R,n� eigenvectors
	see Eq. �7�
 form a complete and orthogonal basis. The or-
thogonality relation is

�L,n
† �K1 0N

0N IN
��R,m = cn�nm, �A3�

where cn is a constant. This leads to

i�L,n
† �K1eikn − e−ikmK−1��R,m = vncn�nm. �A4�

For n=m this equation is only satisfied if cn=1, in which
case it corresponds to the definition of vn. With the chosen

normalization the basis is therefore orthonormal. The corre-
sponding completeness relation then reads

�
n=1

2N

�R,n�L,n
† �K1 0N

0N IN
� = � IN 0N

0N IN
� �A5�

and provides the three following useful relations:

�
n=1

2N
�R,n�L,n

†

vn
= 0N, �A6�

K1�
n=1

2N

ieikn
�R,n�L,n

†

vn
= IN, �A7�

K−1�
n=1

2N

− ie−ikn
�R,n�L,n

†

vn
= IN. �A8�

Note that in Eqs. �A5�–�A8� the sums run over all 2N solu-
tions. If K1=K−1

† and K0=K0
† Eqs. �A7� and �A8� are equiva-

lent.

APPENDIX B: VERIFICATION OF THE RECURSIVE
RELATION FOR THE SURFACE GREEN’S FUNCTION

Here we demonstrate that �L calculated using Eq. �36�
indeed fulfills the recursive relation for GL of Eq. �38�. Insert
Eqs. �35� and �36� into Eq. �38� and take the inverse to ob-
tain

K0 + K−1T̄R + K1T̄R
−1 = 0. �B1�

Using the definition of the matrix T̄R 	Eq. �16�
 we write

�
n=1

N

�K0 + K−1e−ik̄n + K1eik̄n��̄R,n�̃̄R,n
† = 0. �B2�

This equation corresponds to the defining equation for the
�̄R,n and is therefore fulfilled by definition. The same is
therefore true for Eq. �38�. Equation �39� for GR can be dem-
onstrated similarly.

APPENDIX C: REGULARIZATION OF K1 AND K−1 FOR
K1

†ÅK−1

In Sec. IV A we assume that K1=K−1
† in order to write the

transformed matrices K1� and K−1� in form of Eq. �43�. If K1
†

�K−1 the same can be done by performing a generalized
SVD of the Hamiltonian and overlap matrices as described in
Ref. 2. Here we present a different approach, based on two
standard SVD transformations, one for K1 and one for K−1

† ,

K1 = U1SaV1
†,

K−1
† = U−1SbV−1

† . �C1�

Here U1 ,U−1 ,V1 and V−1 are unitary matrices and Sa and Sb
are diagonal matrices with the singular values on the diago-
nal. In general there are M1 singular values of K1 smaller
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than �SVDsa,max, and M−1 singular values of K−1 smaller than
�SVDsb,max, with sa,max and sb,max being, respectively, the larg-
est singular values of K1 and K−1. If M =min�M1 ,M−1�, we
obtain K1,SVD by setting the smallest M singular values of K1
to zero. In the same way we obtain K−1,SVD by setting the
smallest M singular values of K−1 to zero. A transformation,

K1� = U1
†K1,SVDU−1,

K−1� = U1
†K−1,SVDU−1 �C2�

brings both K1� and K−1� to the form of Eq. �43�. All the results
of Sec. IV A are then valid also for K1

†�K−1.
If the Hamiltonian and overlap matrices are real and Her-

mitian, but the energy is complex, then K1=K−1
†�. By using

Eq. �C1�, and the fact that Sa and Sb are real, we obtain Sa
=Sb, so that M =M1=M−1. If the Hamiltonian and overlap
matrices are Hermitian but not real, then in general Sa�Sb.
However in all the calculations performed the difference be-
tween Sa and Sb was very small, so that in practice we al-
ways had M1=M2.

In Sec. IV B we limit the singular values of K1 from be-
low without reducing the size of the system. If K1

†�K−1 we

simply apply the transformations described in Sec. IV B to
both K1 and K−1 independently.

APPENDIX D: QUADRATIC EIGENVALUE PROBLEM
FOR THE RIGHT-GOING STATES

We find that in the solution of Eq. �6� the numerical ac-
curacy for those eigenvalues with �eikn�
1	Im�kn��0
 is
better than for those with �eikn��1	Im�kn�
0
, especially
when �kn��1. For �L we only need the left-going states, for
which Eq. �6� gives the better accuracy. For �R the right-
going states are needed. In this case, in order to increase the
accuracy for the right-decaying states 	Im�kn�
0
, instead of
Eq. �6�, we solve the equivalent equation

�− K0 − K1

IN 0N
��R,n = e−ikn�K−1 0N

0N IN
��R,n, �D1�

with

�R,n = �e−ikn/2

eikn/2 ��R,n

�vn

. �D2�

The eigenvalues of the states with Im�kn�
0 now have an
absolute value larger than one and therefore a higher accu-
racy.
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