Astronomy & Astrophysics manuscript no. ms_ Ryanetal2016_language corrected

June 14, 2016

Effects of flare definitions on the statistics of derived flare
distributions

D. F. Ryan!2, M. Dominique!, D. Seaton»®4, K. Stegen!, and A. White®

1 Solar-Terrestrial Center of Excellence, STDC, Royal Observatory of Belgium, Brussels, Belgium

2 NASA Goddard Space Flight Center, Greenbelt, Maryland, USA

3 Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
4 NOAA National Centers for Environmental Information, Boulder, Colorado, USA

5 School of Computer Science and Statistics, Trinity College Dublin, O’Reilly Institute, Dublin 2, Ireland

June 14, 2016

ABSTRACT

The statistical examination of solar flares is crucial to revealing their global characteristics and behaviour. Such exami-
nations can tackle large-scale science questions or give context to detailed single-event studies. However, they are often
performed using standard but basic flare detection algorithms relying on arbitrary thresholds. This arbitrariness may
lead to important scientific conclusions being drawn from results caused by subjective choices in algorithms rather than
the true nature of the Sun. In this paper, we explore the effect of the arbitrary thresholds used in the GOES (Geosta-
tionary Operational Environmental Satellite) event list and LYRA (Large Yield RAdiometer) Flare Finder algorithms.
We find that there is a small but significant relationship between the power law exponent of the GOES flare peak flux
frequency distribution and the flare start thresholds of the algorithms. We also find that the power law exponents of
these distributions are not stable, but appear to steepen with increasing peak flux. This implies that the observed flare
size distribution may not be a power law at all. We show that depending on the true value of the exponent of the
flare size distribution, this deviation from a power law may be due to flares missed by the flare detection algorithms.
However, it is not possible determine the true exponent from GOES/XRS observations. Additionally we find that the
PROBA2/LYRA flare size distributions are artificially steep and clearly non-power law. We show that this is consistent
with an insufficient degradation correction. This means that PROBA2/LYRA should not be used for flare statistics
or energetics unless degradation is adequately accounted for. However, it can be used to study variations over shorter
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timescales and for space weather monitoring.
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1. Introduction

Solar flares are amongst the most energetic events in the
solar system, releasing up to 103? erg in minutes or hours.
They are believed to arise from a rapid re-ordering of highly
stressed magnetic fields in the corona (Shibata & Magara
2011), but this process is still not fully understood. One way
of better understanding the flaring process and the role it
plays in the corona is to examine flares in a statistical way.

For example, the flaring process may hold the key to
the coronal heating problem: the observation that the lower
corona is 2—3 orders of magnitude hotter than the photo-
sphere (~2 MK as opposed to ~6,000 K). It is thought that
ubiquitous small-scale unresolved flaring events, known as
nanoflares, may liberate enough energy from the stressed
coronal magnetic field to maintain the observed high coro-
nal temperatures. Although this is not the only proposed
solution — others involve the dissipation of magnetohydro-
dynamic (MHD) waves — much work has been done in both
modelling the required nanoflare distribution and analysing
the observed flare distribution (see reviews by Klimchuk
2006; Reale 2010; Parnell & De Moortel 2012). One method
has been to assume that the flare energy size distribution
follows a power law which holds over all scales. The power
law exponent can then be determined from larger observed

flares and extrapolated to the nanoflare regime. Hudson
(1991) calculated that the critical value of the power law
exponent is 2. If the exponent is greater than this then
there is enough energy in the nanoflare ensemble to sustain
the corona’s temperature. If the exponent is less than this
value, then some other mechanism is required.

Another reason to explore the statistical flare distri-
bution is to better understand the flaring process itself.
One theory used to try to explain how flares occur is self-
organised criticality (SOC). The first SOC models of so-
lar flares were devised by Lu & Hamilton (1991) and Lu
et al. (1993) and draw from the earlier theoretical work
of Bak et al. (1987, 1988). Since then numerous varia-
tions have been devised (see review by Charbonneau et al.
2001). These models hold that solar flares are in fact an
avalanche of small-scale magnetic energy release events.
This avalanche can be triggered once the magnetic fields in
the corona — which slowly grow in complexity owing to the
jostling motions of the photospheric plasma in which they
are rooted — surpass some critical instability threshold. One
of the key predictions of these models is that the flare size or
frequency distribution is scale invariant and characterised
by a power law (Aschwanden et al. 2016). Although SOC is
not the only process that can lead to power law size distri-
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butions — others include self-organisation, inverse-cascades,
stochastic relaxation, turbulence — a power law size distri-
bution nonetheless remains a fundamental aspect of SOC
models of solar flares. Therefore, fully understanding the
functional form of the flare size distribution is crucial to
testing these models and better understanding the flaring
process.

There have been many previous studies which have ex-
amined the flare size distribution in soft X-rays (e.g. Hud-
son et al. 1969; Drake 1971; Shimizu 1995; Lee et al. 1995;
Feldman et al. 1997; Shimojo & Shibata 1999; Aschwan-
den et al. 2000; Veronig et al. 2002b,a; Yashiro et al. 2006;
Aschwanden & Freeland 2012). Many previous studies have
examined the flare peak size distribution rather than the to-
tal energy size distribution. There are a number of reasons
for this. First, no single instrument can adequately deter-
mine the energy of the entire flare. Second, the duration of
some flares are not fully observed because of the instrument
duty cycle or because temporally overlapping flares are very
difficult to separate in spatially integrated observations.
However, if it is true that the flare peak flux scales with
total energy, then the peak can be used as a proxy. Under
this assumption, the studies mentioned above have found
power law slopes in the range 1.64-2.16 with most stud-
ies finding a slope less than 2, but not necessarily beyond
statistical uncertainty. Other studies (e.g. Berghmans et al.
1998; Parnell & Jupp 2000; Aschwanden et al. 2000; Benz
& Krucker 2002) have attempted to more directly observe
the small-scale brightenings in the quiet Sun corona that
may be responsible for coronal heating. These studies used
extreme ultraviolet (EUV) imaging observations from the
Transition Region And Coronal Explorer (TRACE) and/or
the Extreme ultraviolet Imaging Telescope on board the So-
lar and Heliospheric Observatory (SOHO/EIT). The power
law indices of the energy size distributions of the observed
events vary considerably depending on the study. Bergh-
mans et al. (1998) and Aschwanden et al. (2000) found
power law slopes or 1.35 and 1.8, implying that coronal
heating by nanoflares is highly unlikely. However, Parnell
& Jupp (2000) and Benz & Krucker (2002) found power
law slopes of 2.52 and 2.31, which strongly support the
coronal heating by nanoflares picture. The cause of these
discrepancies remains contested. Benz & Krucker (2002)
attributed the shallower slopes of other studies to biases
in their energy calculation and event selection criteria. In
contrast, Aschwanden & Parnell (2002) claimed that the
steeper slopes were due to temperature biases of the image
passbands used. Thus, the importance of the flare distri-
bution for coronal heating has not yet been conclusively
answered.

To date, one aspect of these studies has rarely been dis-
cussed in detail: how does the way flares are defined affect
the statistics of the derived size distribution? Solar flare
event lists are typically generated by simple detection algo-
rithms relying on arbitrary thresholds. The choice of these
thresholds could affect not only the power law exponent of
the derived flare size distribution, but also whether it is
a power law in the first place. Moreover many studies do
not provide statistical evidence that their data are truly
represented by a power law. Although some studies do sta-
tistically test their data (e.g. Wheatland 2010), others only
provide a visual observation of a straight-lined log-log his-
togram. However, it has been shown that first justifying and
then fitting a power law model to data via graphical meth-
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ods can be misleading (Clauset et al. 2009; D’Huys et al.
2016). In light of the importance of the power law nature
of the flare distribution to flare theories (e.g. those based
on self-organised criticality) and the value of the power law
exponent (e.g. for coronal heating), it is crucial to properly
understand the effect of flare detection thresholds and the
nature of the derived flare size distribution before drawing
any physical conclusions.

An example of a study which has examined the effect of
event definition on the statistics of derived distributions is
Buchlin et al. (2005). They constructed a number of pos-
sible types of event definitions inspired by methods used
in the literature. They applied these different definitions to
time series of energy dissipation from an MHD turbulence
simulation. They then examined the size distributions of
various properties of the detected events (total energy, peak
energy, duration, etc.) and found that their derived distri-
butions changed significantly depending on how the events
were defined.

In this paper, we ask a similar question, but apply it
to real flare observations and real detection algorithms.
We examine the effect of the arbitrary thresholds used in
the GOES event list and LYRA Flare Finder (LYRAFF)
flare detection algorithms when applied to time-series
of GOES/XRS (Geostationary Operational Environmental
Satellite/X-Ray Sensor) and PROBA2/LYRA (PRoject for
OnBoard Autonomy 2/Large Yield RAdiometer) observa-
tions. The algorithms are run on the same data sets using
different threshold values. We then perform rigorous statis-
tical analyses on the the resulting flare peak size distribu-
tions in order to determine how sensitive they are to the
choice of algorithm thresholds. The results lead us to in-
vestigate the power law nature of such distributions and
the suitability of both GOES/XRS and PROBA2/LYRA
for statistical flare studies. Finally, possible reasons for de-
viations from power law distributions are discussed. In Sec-
tion 2 we discuss the GOES/XRS and PROBA2/LYRA in-
struments and their flare detection algorithms. In Section 3
we describe our methodology, including the statistical tools
used in analysing the data. In Section 4 we present the
results and discuss their causes and implications. Finally,
in Section 5 we present our conclusions and outline what
is required to determine the nature of the solar flare size
distribution.

2. Flare observations

2.1. Instrumentation

GOES/XRS (Hanser & Sellers 1996) and PROBA2/LYRA
(Santandrea et al. 2013; Dominique et al. 2013) both take
spatially integrated full-disk measurements of the Sun. The
GOES/XRS observes in two broadband channels — 1-8 A
(long) and 0.5-4 A (short) — with a cadence of 3 s (2 s
for GOES-15). It is operated by the National Oceano-
graphic and Atmospheric Administration (NOAA) for space
weather monitoring. Its near 100% duty cycle and good
calibration between satellites have caused it to become a
standard candle to which more sophisticated scientific ob-
servations are typically compared. Its longevity — the first
GOES/XRS was launched in the 1970s — has resulted in a
nearly uninterrupted 40-year data set of flare observations
and its use in numerous statistical flare studies (e.g. Lee
et al. 1995; Feldman et al. 1997; Shimojo & Shibata 1999;
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Fig. 1. a) GOES/XRS one-minute-averaged lightcurve of a
C2.4-class flare on 2007 June 03. The vertical dashed lines mark
the flare’s start and end times according to the GOES event list.
It can be seen that the flare continues for over an hour after the
the official GOES end time. b) Example of three flares incor-
rectly labelled as one event by the GOES event list owing to
crude flare definitions.

Veronig et al. 2002b; Battaglia et al. 2005; Aschwanden &
Freeland 2012; Ryan et al. 2012).

PROBA2 is a technology demonstration mission, which
was launched in late 2009 and is operated from the Royal
Observatory of Belgium (Zender et al. 2013). The LYRA
instrument is comprised of three redundant units, each of
which takes measurements in four broadband channels —
120-123 nm (Lyman alpha), 190-220 nm (Herzberg), 17-
80 nm + < 5 nm (Aluminium), and 6-20 nm + < 2 nm
(zirconium) — with a nominal cadence of 20 Hz. However,
cadence can be as high as 100 Hz during special campaigns.
LYRA’s nominal unit (unit 2) typically has a near 100%
duty cycle making it another good candidate for monitor-
ing flare activity. However, its duty cycle drops between late
September and early March when PROBA?2 experiences an
eclipse season. Since first light, LYRA’s nominal unit has
suffered severe degradation, particularly in the Lyman al-
pha and Herzberg channels, which lost almost all sensitivity
within a year. However, the aluminium and zirconium chan-
nels are far less degraded and their sensitivity to shorter
wavelengths make them well suited to observing flares.

2.2. GOES event list

Because of their suitability for monitoring and record-
ing solar flare activity, automatic flare detection algo-
rithms have been developed for both the GOES/XRS and
PROBA2/LYRA. They serve as useful tools for space
weather monitoring and valuable resources for scientific in-
vestigation.

The GOES event list flare detection algorithm is per-
formed on one-minute-averaged GOES/XRS long channel
data. A flare is defined as having started if

1. there are four consecutive minutes of increasing flux;
2. the flux at the end of the fourth minute is at least 40%
greater than the flux in the first minute.

The flare peak is defined as the maximum flux observed
during the flare, while a flare is defined as having ended
once the flux drops to a value halfway between the initial
and peak flux values, i.e. the time at which the flux equals
Fpeat — (Fpeak — Fstart) X 0.5, where F signifies flux.

These simple criteria make the GOES/XRS flare detec-
tion algorithm easy and fast to implement and also fairly re-
liable for detecting larger flares. This makes it well suited to
space weather monitoring. However, the criteria’s simplicity
can also cause difficulties for scientific analysis. For exam-
ple, the end time definition causes the flare duration to be
systematically underestimated. Therefore analyses of flare
properties depending on the duration, e.g. fluence, is unre-
liable. An example of this can be seen in Figure la, which
shows a GOES/XRS lightcurve of a flare in the GOES event
list with start and end times shown as dashed vertical lines.
It can be seen that the flare carries on long after the official
end time. An advantage of such an aggressive end time def-
inition is that it enables the algorithm to better distinguish
flares that occur temporally close together. Since a new
flare cannot be detected until the end of the previous one
is found, a more realistic end threshold would cause flares
occurring close in time to be counted as a single event,
thereby corrupting the flare distribution. In fact, even with
this abrupt end time criterion, some events in the GOES
event list are still made up of multiple flares. An example
can be seen in Figure 1b, which shows three flares counted
as one event. In this case the flux of the first flare does not
have time to reach the GOES event list end criterion before
the second and then third flares dominate the signal.

It is difficult to determine exactly how often events like
the one in Figure 1b occur. Ryan et al. (2012) searched the
GOES event list for instances during the decay phase of
flares which met the GOES event list start criteria. These
secondary flares were not included in the GOES event list as
the first flare had not yet met its end criterion. They found
that just over 5% of listed events between 1991 and 2007
were ‘double flares’; i.e. two (or more) flares listed as one.
This is a lower limit on the true number of double flares.
It does not take into account cases where the first flare is
smaller than the second. It only includes comparably sized
double flares because smaller flares would not satisfy the
GOES event list start criteria when placed on the elevated
background level of the already decaying earlier flare. It
also does not account for flares with overlapping rise phases
because they cannot be separated at all by the GOES event
list. Therefore, it is expected that double flares make up a
small but significant fraction of events in the GOES event
list.
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2.3. LYRA Flare Finder

The LYRAFF algorithm (LYRA Flare Finder) was devel-
oped to enable LYRA to automatically detect flares for
space weather monitoring as part of ESA’s Space Situ-
ational Awareness programme (SSA). The resulting flare
list is available online' and is updated in near-real time.
LYRAFF is very similar to the GOES event list, but has
been designed to reduce the drawbacks described in Sec-
tion 2.2. LYRAFF is applied to one-minute-averaged LYRA
zirconium channel data. This channel was chosen because
it is sensitive to the shortest wavelengths and therefore ex-
hibits the largest variability due to flares. In addition this
channel is the least degraded and so is more consistent over
time.

Before flares can be sought, the numerous artefacts of-
ten found in LYRA data must be removed (see Table A.1
in Appendix A for a list and explanation of these arte-
facts). In addition, negative and zero irradiance values and
those greater than or equal to 10 Wm ™2 are deemed unphys-
ical and owing to instrument error. These data points are
therefore also removed. Once the data have been cleaned,
LYRAFF identifies that a flare has started when

1. four consecutive minutes of increasing irradiance are ob-
served (without data gaps). This is labelled the start
threshold period;

2. the irradiance in the fourth minute is 1% greater than
the irradiance in the first minute. The first of these four
minutes is labelled the reference start time, while the
1% value is labelled the start threshold.

Once the reference start time is found, LYRAFF better es-
timates the flare’s true start time by tracking back to the
first minute of continuously increasing flux, whether or not
criterion 2) is met. This is defined as the flare start time.
The flare peak is simply defined as the time of maximum
irradiance. Analogous to the reference start time, the ref-
erence end time is defined as the moment the irradiance
drops to a level 50% between the flare peak and flare start
time irradiance values, just as it is for the GOES event list.
The value of 50% is labelled the end threshold. The flare
end time is then found by tracking forward to the the time
of the latest consecutive irradiance decrease. By finding the
earliest/latest times of consecutive increasing/decreasing ir-
radiance, the estimates of the flare start/end times, and
hence flare duration, are significantly improved. This can
be seen in Figure 2a, which shows a LYRA zirconium chan-
nel lightcurve of a flare. The reference start and end times
are shown by the dashed vertical lines, while the official
start and end times are shown by the solid vertical lines.
It is clear that the start and end times better approximate
the flare duration than the reference times.

In order to reduce cases of double flares (multiple events
being incorrectly labelled as a single event), LYRAFF si-
multaneously searches for a new reference start time once
the irradiance has dropped 20% from the peak towards the
flare start irradiance. This is labelled the first fall threshold.
If a new reference start time is found before the reference
end time, the flare is defined as ending here and is added
to the flare list and is flagged as incomplete. This tech-
nique improves the identification of flares which occur tem-
porally close together. Figure 2b shows an example of two

! http://proba2.oma.be/data/LYRA/LYRAFF
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Fig. 2. a) LYRA zirconium one-minute-averaged lightcurve of
a flare which occurred 2010 March 18. The start and end times
identified by the LYRAFF algorithm are marked by the solid
vertical lines while the reference start and end times are marked
by the dashed lines. b) Example of two flares from 2011 March
22 which occurred temporally close together being successfully
separated by LYRAFF.

temporally close flares being successfully separated by the
LYRAFF algorithm. However, it is clear that in this case
LYRAFF does not do a good job at approximating the flare
duration. Therefore, when examining properties related to
duration, e.g. fluence, such events must be treated with
caution. Moreover, LYRAFF does not eliminate all cases
of multiple flares being counted as one event. If two flares
happen simultaneously or temporally close enough together
that the irradiance does not drop to the 20% threshold,
LYRAFTF still cannot distinguish multiple events.

As a test of how effective LYRAFF is at detecting
double flares, it was applied to the one-minute-averaged
GOES/XRS time series for 1991 to 2007 (inclusive) by al-
tering the start threshold to 40% (the GOES event list start
threshold). This period was chosen because it was the same
that Ryan et al. (2012) used to search for double flares in the
GOES event list (Section 2.2). It was found that LYRAFF
correctly identified and separated 799 double flares. This
was 2.6% of all the flares listed in the GOES event list for
this period and so is about half the percentage of double
flares identified by Ryan et al. (2012). Thus, LYRAFF sig-
nificantly reduces the misidentification of double flares.
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3. Methodology

In order to explore how the choice of arbitrary thresholds in
flare detection algorithms can affect the distributions they
produce, we examined the variation in the flare peak flux
frequency distribution. As we discussed in Section 1, such
distributions are typically described as a power law. We
therefore determined the relationships between the power
law slope of the background-subtracted peak flux size dis-
tribution and the algorithm threshold used to derive it. If
the power law slope of the flare peak distributions is inde-
pendent of the choice of these thresholds, then statistical
flare analyses based on these algorithms can be trusted.
However, if this is not the case, then the effect of threshold
choice must be taken into account before drawing any con-
clusions about the statistical nature of flares. In this section
we outline the methodology followed in this study in three
broad steps: producing flare lists using different algorithms
and thresholds; performing a suitable background subtrac-
tion to the flare peak flux data; and fitting the flare peak
flux frequency distributions with a power law.

3.1. Producing Flare Lists

First we focussed on the GOES event list and GOES/XRS
data. We used the one-minute-averaged long channel
GOES/XRS data produced by NOAA? from 1986 to 2014,
inclusive. Data points marked as bad in the data files were
removed, as were negative and unphysically high flux val-
ues. We then ran the GOES event list algorithm several
times for values of the start threshold in the range 5%-—
90%?2 while keeping the end threshold fixed at its standard
value of 50%. We then repeated the process for different
values of end threshold in the range 5%-90% while keeping
the start threshold fixed at its standard value of 40%. Thus
two sets of GOES flare lists were produced reflecting the
effect of the start and end thresholds.

Next we turned to LYRAFF and PROBA2/LYRA. We
constructed a one-minute-averaged LYRA zirconium chan-
nel time series from January 2010 to May 2015 inclusive.
The time series was cleaned as outlined in Section 2.3.
Eclipse season observations (mid-September to mid-March)
were also removed as attenuation by the atmosphere causes
the irradiance signal to smoothly but dramatically rise and
fall over the course of each orbit, making it impossible for
LYRAFF to reliably detect flares. LYRAFF was then run
several times on this time series using different values of
start threshold in the range 0.1%-100% while keeping the
first fall and end thresholds fixed at their standard values
(20% and 50%, respectively). The process was repeated for
different values of the first fall threshold in the range 5%—
90%, while keeping the start and end thresholds fixed at
their standard values (1% and 50%). The process was re-
peated once more for different values of end threshold in the
range 5%-90%, while keeping the start and first fall thresh-
olds fixed at their standard values (1% and 20%). This re-
sulted in three sets of LYRA flare lists corresponding to
varying start, first fall, and end thresholds, respectively.

2 http://satdat.ngdc.noaa.gov/sem/goes/data/new _avg/

3 For clarity, a 5% end threshold means the flare ends when the
flux has drops to a level equal to Fpeak — (Fpeak — Fstart) X 0.05
where F' is flux. Thus, a 5% end threshold results in a short
flare duration, while a 90% end threshold results in a long flare
duration.

Finally, we also applied LYRAFF to the GOES/XRS
time series. We produced three sets of flare lists where one
LYRAFTF threshold was varied in the range 5%-90%, while
the other two were held fixed at their standard values (40%,
20%, and 50% for the start, first fall, and end thresholds,
respectively). Thus we produced eight sets of flare lists in
total, each allowing us to explore the effect of a certain
threshold.

3.2. Background subtraction

Before the flare peak flux size distributions could be reliably
analysed, the background flux had to be subtracted. Other-
wise, the derived distributions would be unphysically steep.
Since the rise phase of many flares is of the order of min-
utes, the background typically has little chance to evolve
between the start and peak of the flare. Therefore in many
cases the flux at the flare start adequately approximates
the background at the peak time. For some flares though,
such as those occurring on the tails of other flares, this will
not be the case. However, as the GOES event list does not
reliably determine the flare end time, more sophisticated
methods of determining the background — such as fitting a
polynomial to periods of pre-flare and post-flare flux — are
also likely to be unrepresentative of the true background.
For flare distributions derived using LYRAFF, which does a
better job of determining the flare duration, we compared
the results of subtracting the initial flux and a value at
the peak time found from linear interpolation between the
start and end of the flare. However, we found no significant
difference in the subsequent results. We therefore simply
subtracted the initial flare flux for all cases.

3.3. Fitting flare distributions

Figure 3 shows a histogram of the background-subtracted
flare peak flux size distribution corresponding to the stan-
dard GOES event list (start threshold=40%, end thresh-
0ld=50%). It can be seen that above ~10~¢ Wm~2 the dis-
tribution appears be a power law. The roll-over below this
level is caused by undersampling of events owing to the
variation in the solar background, which typically reaches
low C-class at solar maximum. All GOES flare peak flux
frequency distributions derived in this study exhibited this
same qualitative behaviour.

In order to quantitatively determine the effect of the
different flare algorithm thresholds, we fit each distribution
with a power law and examined the variation of the expo-
nent. To do this we used maximum likelihood estimation
(MLE), which is a standard statistical technique for fitting
parametric models to empirical data. It is far more robust
and easy to use than graphical methods such as fitting a
linear model to a log-log histogram. For further discussion
of the advantages of MLE see Clauset et al. (2009) and
specifically in the context of solar physics, see D’Huys et al.
(2016).

Given a parametric model (e.g. a power law) described
by a parameter, «, and a set of observations of a prop-
erty, x, it is possible to determine the likelihood function,
L(a,x), which describes the probability that the data is
drawn from a distribution with a given « value. According
to MLE, the maximum of this likelihood function gives the
most likely estimate of « (denoted @), i.e. the best fit. This
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Fig. 3. Frequency distribution of the background-subtracted
GOES long channel peak flux for flares detected using the
standard GOES event list algorithm (start threshold=40%, end
threshold=50%). Above the roll-over the distribution appears to
follow a power law, while below the roll-over it deviates owing
to undersampling of the true flare distribution.

can simply be determined by differentiating the likelihood
function, setting it to zero, and solving for «. Therefore,
given a power law of the form

flz) oca™ (1)
the most likely estimate of « is given by
Ntail

-1
a=1 + Ntail <Z lnx'ri- > ) (2)

i=1

where ,,;, is the lower limit above which the data obey
a power law (e.g. the roll-over in Figure 3); zj=1, . n,.;, 1S
the subsample of data, where x; > Zpin; and nug; is the
number of data points in the subsample x;—1, . ,.,,- To a
first-order approximation, the statistical error on & is then
given by

a—1
V Ntail )

For a derivation of Equations 2 and 3, see Appendix B of
Clauset et al. (2009).

In order to obtain a reliable fit via MLE, a good esti-
mation of z,,;, must first be made. There are a number of
ways of doing this. It can be approximated by eye from his-
tograms. However, this depends on the arbitrary choice of
bin width and the scientist’s subjective choice of where the
histogram deviates from a power law. Therefore, in order to
determine the lower limit more robustly, we performed the
MLE power law fit for x,,;, equal to each flux value in the
sample. We then selected the x,,;, which produced the low-
est Kolmogorov-Smirnov (KS) statistic*. Using this method

(3)

g =

4 The KS statistic is a standard measure of how well an empiri-
cal distribution is described by a fit. It is given by the maximum
difference between the empirical cumulative distribution func-
tion (CDF) of the data and the theoretical CDF of the fit. The
smaller the KS-statistic, the more closely the fit approximates
the data.
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we fit power laws to the peak flux/irradiance frequency dis-
tributions of all the flare lists derived in Sections 3.1 and
3.2.

It should be pointed out that MLE is not the only viable
fitting technique available. Other studies (e.g. Ireland et al.
2015) have used Markov chain Monte Carlo (MCMC) meth-
ods to fit power laws to solar observational data. The advan-
tages of MCMC methods are that they provide a more rig-
orous determination of the fit uncertainties and tend to be
more robust in analysing complex likelihood functions that
may include numerous local maxima. However, for well-
behaved likelihood functions, MLE is expected to produce
similar results to MCMC. What is more, MCMC methods
come at an additional computational cost. In their analysis
of the Fourier power spectra of the dynamics of different
regions of the solar atmosphere, Ireland et al. (2015) ran
each MCMC chain for 150,000 samples. In our case, im-
plementing this procedure for over 100 separate data sets
would be prohibitive. We therefore chose MLE as our pre-
ferred fitting technique for this study. In the next section
we discuss the results of our analysis.

4. Results and discussion

4.1. Effect of arbitrary thresholds on GOES-derived flare
distributions

Figure 4 shows the relationships between the thresholds
used to define GOES flares and the power law exponent
of the derived GOES flare peak flux size distribution. The
power law exponents of each distribution were obtained us-
ing T, in the range 541 x 107 Wm~2. The mathemati-
cal justification for this choice is that an x,,;, in this range
gives the lowest KS statistic. The physical justification is
that this is the maximum level the solar X-ray background
can reach during solar max. This causes the flare detec-
tion algorithms to undersample the true flare distribution,
thereby making the statistics unreliable below this level.
Figure 4a shows the variation of the power law exponent
with the GOES event list start threshold. A shallow but
clear decreasing dependence is evident. For a start thresh-
old of 5% the exponent is greater than 2. As the thresh-
old is increased the exponent decreases steadily until it
reaches ~1.92 for start thresholds of 90%. Moreover this
trend is clearly beyond the range of statistical uncertainty.
We might naively expect this result if we used crude fitting
techniques and believed that the change in start threshold
simply caused the detection algorithm to undersample the
flare population below a given peak flux. This would only
cause the lower section of the distribution to deviate from a
power law and would hence flatten the average slope. How-
ever, by robustly determining x,,;, and excluding events
below this value, we would expect the fitted power law slope
not to change as the larger flares should be common to all
flare distributions. However, this is not what we see in Fig-
ure 4a. We see that despite robustly determining ., the
start threshold still affects the power law slope. This oc-
curs because the start threshold defines a flare based on
its impulsiveness rather than its peak flux. Therefore, some
larger flares above the best found value of x,,;, may occa-
sionally be missed because they are not impulsive enough.
This shows that — depending on how the start of a flare is
defined — different flare distributions can be obtained.
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Fig. 4. Power law slope of the background-subtracted GOES long channel peak flux frequency distribution as a function of the
GOES event list and LYRAFF thresholds. The left column corresponds to the thresholds of the GOES event list algorithm, while
the right column corresponds to the LYRAFF algorithm applied to GOES/XRS observations. Each row then corresponds to the
start (top), first fall (middle), and end (bottom) thresholds. We note that there is no plot in the middle left panel as the GOES
event list does not use a first fall threshold. The error bars represent the statistical uncertainty of the power law fits given by
Equation 3. We note that there is a clear downward trend in both start threshold plots implying that the derived flare distribution
depends on the choice of start threshold. In contrast, the first fall and end threshold panels show flat relationships implying that
the derived flare distribution is independent of the choice of these thresholds.

To verify this result, we examined the same relation-
ship for the LYRAFF algorithm (Figure 4b). The improved
ability of LYRAFF to detect temporally nearby flares helps
determine whether the above result is owing to incorrect
classifications of multiple events or aggressive start and end
time definitions. However, a very similar behaviour is ob-
served. Although the decreasing trends in Figures 4a and
4b are small, they could be significant. For example, when
trying to determine whether nanoflaring can explain the
coronal heating problem by extrapolating the flare distri-
bution, the key value of the power law slope is 2. If we
naively define a flare with a 5% or 50% start threshold,
we could come to totally opposite conclusions. Therefore,

it is vital to fully understand the effect of the chosen flare
definitions before interpreting the results.

Despite the similarity between Figures 4a and 4b, the
results are not exactly the same. With the exception of the
10% start threshold, the LYRAFF exponents are all greater
than their GOES event list counterparts for the same
threshold by between 0.1% and 1.2%. This is a very small
difference and within the range of uncertainty. Nonethe-
less, a slightly higher exponent is expected when employing
LYRAFF. As discussed in Section 2.3, LYRAFF success-
fully identified and separated 2.5% of the flares in the stan-
dard GOES event list as double flares, using the standard
GOES thresholds (start threshold=40%, first fall thresh-
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0ld=20%, end threshold=50%). These additional flares are
the main difference between the flare lists derived by ap-
plying the GOES event list and LYRAFF algorithms to
GOES/XRS time series. The peak flux frequency distribu-
tion of these additional flares has a best fit power law expo-
nent of 2.59+0.15 above the Z,,;, value of 5x10~6 Wm—2
commonly used in this study. This is significantly steeper
than the corresponding LYRAFF exponent in Figure 4b as
the distribution of the additional flares is highly skewed
to smaller events. This occurs because it is the smaller
flare that is masked from the peak flux size distribution
when a double flare occurs. Therefore, LYRAFF’s ability
to better separate double flares is what leads to marginally
steeper flare distributions. However, as also highlighted in
Section 2.3, LYRAFF cannot identify all temporally over-
lapping flares. If more of these flares could be identified,
it would only serve to further steepen the overall flare size
distribution. This shows the small but important impact
that correctly identifying temporally overlapping flares can
have.

Next, we examined the effect of the first fall and end
thresholds of the GOES event list and LYRAFF algorithms,
seen in Figure panels 4c—4e. More promisingly, flat relation-
ships around 1.98-1.99 were found. This demonstrates that
the derived flare distribution is not influenced by the choice
of first fall or end thresholds in either algorithm. However, it
must be noted that we are only looking at peak flux distri-
butions which are independent of flare duration. If we were
to examine fluence, the choice of first fall and end thresh-
olds and the effectiveness of our algorithm to accurately
determine start and end times would play a very important
role.

4.2. Stability of the power law nature of flare distributions
4.2.1. Stability plots

In order to further investigate the reliability of the power
law fits discussed in Section 4.1, we examined the stability
of the MLE-derived power law exponent as a function of
Tmin- Figure ba shows a cartoon of a stability plot, i.e. the
dependence of the derived fit on the choice of x,,;,, for a hy-
pothetical stable power law fit (for similar plots, see Clauset
et al. 2009). There are three regimes in a stability plot for
a reliable MLE-derived fit. At low values of z,,;, there is
an increasing relationship because x,;, is lower than the
roll-over (Figure 3) caused by the undersampling of events.
As x,,:n is decreased below the roll-over, the fit is made
artificially shallower. At high x,,;, there is another steeper
increasing relationship because the choice of x,,;, is now so
high that we only have a few events in our sample which is
insufficient for fitting a power law. At intermediate values
of Zp,in the relationship is flat. This means that within this
range the derived power law exponent is independent of
the choice of x,,;, since the distribution is now adequately
sampled. However, as the choice of x,,;, is increased, the
number of events in the sample is decreased, causing the
statistical uncertainty of the fit to increase. Therefore, it
is important to choose the lowest value of x,,;, for which
the fit is stable. If the dependence of the derived power law
exponent on ,,;, exhibits this flat regime, we say that the
power law fit is stable.

Figure 5b shows the stability plot for the GOES peak
long channel flux size distribution derived using the stan-
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Fig. 5. a) Hypothetical relationship between the best fit power
law slope and the lower limit (z.,n) for a stable power law fit.
The flat region in the middle of the plot shows the range over
which the fit is independent of the choice of Zmin, i.e. stable.
b) The same relationship as a) for the real GOES long chan-
nel peak flux frequency distribution derived with the standard
GOES event list (start threshold=40%, end threshold=50%). It
can be seen that there is no flat region where the power law
slope is independent of choice of xn. This suggests that the
distribution may not be best approximated by a single power
law.

dard GOES event list definitions (start threshold=40%, end
threshold=50%). It can be seen that the intermediate flat
regime is absent. The stability plots of all the derived flare
peak flux size distributions in this study show the same
qualitative behaviour. This implies that these distributions
are not well fit by a single power law. This is in contrast to
numerous studies over the past decades which have treated
the distribution of peak GOES long channel flux as such.

4.2.2. Assessing goodness-of-fit

To better understand this result, we assessed the goodness-
of-fit for all the flare data sets derived in this study to
their respective power law fits. The methods described be-
low were implemented with the poweRlaw package (Gille-
spie 2015) using the statistical software language R. We
initially operated under the assumption that the observed
data greater than x,;, follows a power law distribution (our
null hypothesis). We then use p-values to assess the plau-
sibility of this assumption in each case. The p-value is the
probability that a finite sample drawn from a parent dis-
tribution will deviate from that parent distribution by at
least a given amount due to random chance. In our case, the
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Fig. 6. Histogram of p-values for power law fits to all
GOES/XRS flare peak irradiance frequency distributions deter-
mined with the GOES event list (solid) and LYRAFF (dashed).
The dotted vertical line denotes the 5% level below which we
reject the null hypothesis, i.e. that the flares are drawn from a
power law distribution.

finite sample is the observed peak flux frequency distribu-
tion, while the believed parent distribution is a power law.
If p is large, then it is impossible to rule out random noise
as the cause of the deviation of the data from a power law.
If p is small, then there is a very low probability of this be-
ing the case and our assumption that the null hypothesis is
true becomes untenable. (For a description of how p-values
were calculated in this study, see Appendix B.)

Figure 6 shows a histogram of the p-values derived for
all the GOES/XRS flare lists derived with different thresh-
olds in the GOES event list (solid) and LYRAFF (dashed)
algorithms. The vertical dotted line shows p = 0.05, which
is a threshold typically used to define whether a p-value is
significant. It can clearly be seen that the majority of flare
lists have p-values less than 0.05, while almost all have a
p-value less than 0.1. This means that almost all flare dis-
tributions derived in this study have less than a 1 in 20
chance that their deviation from a power law is due to
random noise. Moreover, almost all have less than a 1 in
10 chance. Although this does not categorically prove that
the distributions are not power laws, it does cast signifi-
cant doubt over our above assumption that flares detected
with GOES/XRS are appropriately modelled by a power
law parent distribution.

4.2.3. Possible Causes Of Non-Power Law Behaviour

There are two different explanations for why the observed
flare peak flux size distributions are not power law-like.
Either the true flare distribution is power law-like and the
observational and /or analytical techniques are masking this
or the true flare distribution is in fact not a power law.
There are a few possible reasons why this type of anal-
ysis may not reveal a power law flare distribution. First,
the simple background subtraction methods used here —
subtracting the flux at the flare start time or a linearly ex-
trapolated flux between the flare start and end times — may

not be adequate and may be corrupting the distribution. It
is difficult to fully rule this out without performing manual
background subtraction for all events and comparing re-
sults. Second, the range over which we can fit a power law
may be insufficient to adequately determine the power law
stability. The x,,;, values used in the fits described in Sec-
tion 3.3 are around 5x107% Wm~2 owing to a combination
of the upper limit of solar background and the GOES/XRS
lack of spatial resolution. Moreover, the largest flares in our
sample are of the order of 1072 Wm™2, while we have only
very small number statistics above 104 Wm™2. This gives
us less than two orders of magnitude over which to fit a
power law. If we were able to extend this range, perhaps
a more reliable, stable power law could be found. Third,
even in the range 1076-107* Wm~2 we could still be un-
dersampling the true flare distribution owing to large flares
masking smaller ones.

In order to investigate whether this third possibility
is plausible, we attempted to determine how many flares
would have to be missed by GOES/XRS and/or the stan-
dard GOES event list algorithm (start threshold=40%, end
threshold=50%) to make the observed flare frequency dis-
tribution a stable power law. To do this we added syn-
thetic flares to the original distribution above the upper
limit of solar background variation (~5x10~% Wm~2) until
the CDF of the flare distribution closely matched the CDF
of the theoretical power law distribution. The difficulty in
this method is selecting the power law exponent with which
to generate the theoretical CDF. Since the stability plot in
Figure 5 is continuously increasing there is very little rea-
son to select one exponent value over another. On the one
hand, exponents corresponding to an x,,;, close to the up-
per limit of the solar background are, according to our hy-
pothesis, artificially shallow because of undersampling. On
the other, exponents corresponding to a high .., suffer
from small number statistics and are therefore artificially
steep. To give us an idea of the importance of this prob-
lem, we performed this process for exponents of 1.98, 2.02,
2.2, and 2.3 (which correspond to fits using .., values of
5x1076, 107°, 5x107°, and 10~* Wm ™2, respectively; see
Figure 5). The number of additional flares required to make
the distribution stable around an z,,;, of ~5x10~% Wm—2
for each of the exponents were found to be as follows: an
exponent of 1.98 required ~300-400 additional flares; an
exponent of 2.02 required ~700-800 additional flares; an
exponent of 2.2 required ~2500-4000 additional flares; and
an exponent of 2.3 required ~4000-6000 additional flares.
As percentages of the observed number of flares with peak
fluxes above 5x107% Wm™2, these numbers translate to 6-
8%, 14-16%, 25-80%, and 80-120%. The distributions of
additional flares were predominantly high C- and low M-
class flares. The percentage corresponding to an exponent
of 1.98 is very similar to the 5% of flares in the GOES event
list found by Ryan et al. (2012) to be double flares. As dis-
cussed in Section 2.2, this is a lower limit for the number
‘missing flares’ from the GOES event list, so perhaps the
true number may be as high as ~15%. This would agree
with the 14-16% of additionally required flares correspond-
ing to a power law exponent of 2.02. Therefore if the true
power law exponent of the flare size distribution is around
2, it is not impossible that the deviation from a power law
is due to undersampling of high C- and low M-class flares. If
the true power law exponent is much above 2, this becomes
increasingly unlikely. Unfortunately, however, it is not pos-
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sible to objectively determine the true exponent from the
GOES/XRS observations alone.

Other possible explanations for the behaviour of the
observed flare frequency distribution is that the true dis-
tribution is close to but not actually a power law. If the
global flare distribution is a convolution of multiple heavy-
tailed distributions, e.g. if each active region has a different
flaring distribution or if there are different flaring mecha-
nisms which produce different distributions, then the result-
ing distribution would converge to a power law under the
central limit theorem. Evidence for active region flare distri-
butions deviating from a power law was found by Wheat-
land (2010). He used GOES/XRS to examine AR 11029,
which produced 70 B- and C-class flares. Using a Bayesian
maximum likelihood estimation technique he found that a
power law plus exponential rollover model was 200 times
more likely to represent the data than a simple power law.
This functional form qualitatively agrees with the unstable
single power law fits found in this study. Wheatland (2010)
interpreted this power law deviation as being due to the
fact that the active region only had a finite amount of free
magnetic energy available for flaring. If this behaviour is
found for all or many active regions, it is possible that the
convolution of all active region flare distributions studied
here would also exhibit this behaviour.

Another possibility is related to the fact that tradition-
ally the GOES flare peak flux has been used as a proxy for
the flare energy. This is valid if the total flare energy scales
reliably with GOES peak flux. However, this may not be the
case. It may be possible that some flares have a lower pro-
portion of their thermal emission in the GOES/XRS long
passband owing to their temperature or differential emis-
sion measure (DEM) distribution. This may cause the flare
distribution as observed by GOES/XRS to slowly flatten at
lower peak fluxes. Previous studies have examined the effect
of using X-ray and EUV flux measurements as a proxy for
the total flare energy (Aschwanden & Parnell 2002; Parenti
et al. 2006). These studies have found that the power law
slope of the flare size distribution as observed with a given
emission line/passband can be different from the size dis-
tribution of flare thermal energies which ultimately drives
the observed emission. This difference was found to depend
on the formation temperature/temperature response of the
observed line/passband. Parenti et al. (2006) further con-
cluded that high temperature lines/passbands tend to be
less different from the thermal energy size distributions.
These studies, however, did not focus explicitly on the va-
lidity of a power law model for the size distribution, but
rather the best fit power law slopes.

The interplay between conductive and radiative cool-
ing is another potentially important factor. This interplay
varies depending on the flare temperature. The GOES/XRS
temperature response lies in the range 4-40 MK and typ-
ically leads it to record flare peak temperatures in the
range 10-25 MK. At these temperatures, conduction is more
efficient than radiative cooling, with radiation becoming
increasingly relatively efficient as the temperature drops
(Cargill et al. 1995). The cooling rates change from flare
to flare based on physical conditions (Ryan et al. 2013).
Therefore, a greater or lesser fraction of a flare’s thermal
energy may be transported through conductive or radiative
processes and hence emitted in the GOES/XRS passbands
at the flare peak.
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Furthermore, flare energy may not be consistently parti-
tioned between thermal energy, accelerated particles, non-
thermal emission, etc. A comprehensive understanding of
the energy partition between the different physical pro-
cesses is a large and difficult undertaking and is beyond the
scope of this paper. There have been some previous stud-
ies which have made important progress in this endeavour
(e.g. Emslie et al. 2012; Aschwanden et al. 2015). However,
more work is required to fully understand how the energy
partition changes as a function of peak GOES flux across
multiple orders of magnitude.

4.3. Using LYRA for flare statistics

We performed a similar analysis as described in Section 4.1
on the LYRA flare lists derived with LYRAFF. Figure 7a
shows a log-log histogram of the background-subtracted
peak LYRA zirconium channel irradiance of flares de-
tected with the standard LYRAFF thresholds (start thresh-
old=1%, first fall threshold=20%, end threshold=50%).
The first thing to note is that the distribution visibly de-
viates from a straight line even above the roll-over. Similar
behaviour was observed in most of the LYRA peak irra-
diance size distributions derived with different LYRAFF
thresholds. This implies more strongly than in the case of
GOES that these distributions are not well described by
a power law. To confirm this, we determined the p-values
of each LYRA peak irradiance frequency distribution us-
ing the same process described in Section 4.2. The results
are shown in Figure 8a. It can be seen that most of the
distributions have a p-value less than 0.05, which suggests
that our null hypothesis — that the flares are drawn from
a parent power law distribution — is incorrect. This agrees
with our visual observation from Figure 7a. However, there
is also a minority of distributions with very high p-values.
We investigate this in Figure 8b, which shows the p-values
as a function of the number of flares used in the fitting
process, i.e. the number of flares greater than x,,;,. It can
be seen that all the distributions with high p-values have
less than 500 events greater than x,,;,. This is because the
Tmin Was so high that it excluded the majority of flares
from the fitting process. This implies that a power law is
not appropriate for describing the distribution.

Although the LYRA flare distributions are clearly not
power laws, they are typically much steeper than those
found using GOES/XRS. For example, the best fit power
law exponent for the distribution in Figure 7a was found
to be ~2.3£0.1. For comparison, the exponents for almost
all the GOES/XRS flare lists derived with both the GOES
event list and LYRAFF algorithms were less than 2. In or-
der to determine the cause of this discrepancy, we split the
LYRA flares into two subdistributions: those observed by
both LYRA and GOES/XRS and those observed by LYRA
only. For this exercise we used the LYRA flare list de-
rived with the standard LYRAFF algorithm (start thresh-
old=1%, first fall threshold=20%, end threshold=50%) and
the standard GOES event list (start threshold=40%, end
threshold=50%). We found that out of the 5253 flares ob-
served by LYRA between 2010 and 2014 inclusive (exclud-
ing eclipse seasons), 2276 were also in the GOES event list,
while 2977 were not.

Next, we verified that the flares not in the GOES event
list were not bad detections caused by data artefacts or
deficiencies in the LYRAFF algorithm. We randomly se-
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Fig. 7. a) Frequency distribution of background-subtracted
LYRA zirconium channel peak irradiance of all non-eclipse-
season flares between January 2010 and May 2015 derived with
the standard LYRAFF algorithm (start threshold=1%, first fall
threshold=20%, end threshold=50%). The distribution above
the roll-over does not follow a straight line indicating this dis-
tribution is not a power law. b) The same distribution as in a)
broken into flares observed by LYRA and GOES/XRS (solid)
and those observed by just LYRA (dashed). The flares observed
by only LYRA tend to be smaller and have a steeper distribu-
tion. ¢) The same distribution as in a) broken into flares which
occurred in 2010 and after 2010. The slope of the 2010 distribu-
tion is less steep. We note that the 2010 distribution has been
scaled by 25 to make it easier to visually compare its slope with
the post 2010 distribution.

lected 100 of the LYRA flares not found in the GOES event
list and examined their lightcurves. By visual inspection we
determined that 91% were good detections, while only 9%
appeared not to be a flare. This confirms that the major-
ity of the LYRAFF detections are real and that there is a
population of flares visible to LYRA but not detectable by
GOES/XRS and the GOES event list.

Figure 7b shows histograms of the two LYRA subdis-
tributions discussed above. Flares detected in LYRA and
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Fig. 8. a) Histogram of p-values for power law fits to all
LYRA flare peak irradiance size distributions determined with
the LYRAFF. The dashed vertical line denotes the 5% level be-
low which we reject the null hypothesis, i.e. that the flares are
drawn from a power law distribution. b) p-value vs. number of
flares greater than i for the same flare distributions as in a).
We note that distributions with high p-values have less than 500
events above Tnmin, causing the power law fits to be unreliable.

GOES/XRS observations are represented by the solid line
while flares only detected with LYRA are represented by the
dashed line. Two things are clear from this plot. Firstly, the
LYRA-only flares tend to be small, which may be a clue
as to why they are not detected with GOES/XRS. Since
less intense flares tend to be cooler (Ryan et al. 2012), the
LYRA-only flares may be too cool to exhibit significant
thermal emission in the GOES/XRS channels. Secondly,
the LYRA-only flares have a much steeper distribution. If
this were physical it could imply that the flare distribu-
tion actually steepens as flares become smaller and would
have interesting consequences for the coronal heating prob-
lem. However, another possible explanation is that LYRA’s
degradation has not been properly corrected and is skewing
the results.

Although LYRA’s zirconium channel has experienced
less degradation than the other channels, its degradation is
still significant. It is known that this degradation is more se-
vere in the EUV part of the spectral band (6-20 nm) than
the soft X-ray (SXR; <2nm), which is more sensitive to
flare variability. In order to avoid artificially enlarging the
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flare variability in the signal — assumed to be dominated
by the SXR contribution — an additive degradation cor-
rection is included in the publicly available data. However,
if the flare variability also has a significant contribution
from the EUV part of the passband, then the additive cor-
rection would cause flare peak irradiances to be increas-
ingly underestimated as degradation increases. This would
cause the flare distribution to become steeper over time.
To check this, we plotted histograms in Figure 7c of the
LYRA flares not found in the GOES event list from 2010
(solid histogram) when the degradation was not too bad
and after 2010 (dashed histogram) when the degradation
had become more significant. It can clearly be seen that
the 2010 distribution is shallower than that for flares after
2010. This is consistent with the degradation explanation.
Additionally, it is expected that the difference in slopes
would be smaller if all flares observed by LYRA were in-
cluded because the flares large enough to also be detected
in GOES/XRS would have a higher contribution from SXR
and the additive degradation correction would affect them
less. This is exactly what we found. Therefore, we conclude
that the steeper slope seen in LYRA flare distribution is
neither physical nor due to deficiencies in the LYRAFF al-
gorithm. It is most likely due to insufficient degradation
correction of LYRA irradiances. This means that although
a combination of LYRA and LYRAFF can be used to detect
the occurrence of flares, absolute LYRA irradiances are not
reliable and should not be used for flare statistics or ener-
getics unless the degradation is adequately corrected.

5. Conclusions

In this paper we examined the effect of arbitrary thresholds
in the GOES event list and LYRAFF flare detection algo-
rithms when applied to GOES/XRS and PROBA2/LYRA
observations. We found that that the power law index of
the GOES/XRS-derived flare peak flux size distribution de-
pends on the choice of start threshold, but not on those
of the first fall and end thresholds. This was found to be
true when both the traditional GOES event list and GOES-
adapted LYRAFF algorithms were used. The power law
slope value ranged from ~1.92-2.02 depending on whether
start thresholds of 90%-5% were used. This highlights the
importance of understanding the biases introduced by flare
definitions before drawing conclusions on the nature of the
derived flare distribution. This is particularly true if try-
ing to address coronal heating by nanoflares as changing
the flare start threshold can cause the flare distribution to
have a power law slope either above or below the critical
threshold of 2.

We also found that the LYRA flare peak irradiance size
distribution is artificially steep and not well modelled by a
power law. This was shown to be consistent with an insuf-
ficient degradation correction. Therefore, although LYRA
can be used to detect flares, its absolute irradiances should
not be used for statistics or energetics unless the degra-
dation is adequately corrected. However, this does not af-
fect LYRA’s ability to chart relative irradiance changes over
short timescales, for example within flares.

We consider the discussion in the two previous para-
graphs to be the main conclusions of this paper. How-
ever, in the process of this analysis we came to a number
of secondary conclusions. Firstly, we found that that the
LYRAFF algorithm does a better job of separating tem-
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porarily overlapping flares than the GOES event list. This
leads to a slightly higher proportion of smaller flares be-
ing detected. This may cause the power law slope of the
flare peak flux size distribution to steepen. However, any
such steepening observed as part of this study was found
to be within the range of statistical uncertainty. Despite
LYRAFF’s improved ability to detect temporally overlap-
ping flares, it is still limited. If a greater number of such
flares could be detected and separated, it is expected that
the power law slope of the flare distribution would steepen
further.

Secondly, we showed that — independent of the choice
of threshold — the GOES flare peak flux size distribution
is visually approximate to but is not strictly a power law.
However, we have not been able to adequately determine
the reason for this. We showed that by assuming the true
flare distribution is a power law with an exponent of ~2, it
is plausible that the observed distribution’s deviation from
a power law may be owing to flares being missed by the
detection algorithm. However, if the power law exponent
is much steeper than 2, this becomes increasingly unlikely.
The issues with flare detection, solar background, energy
partition, and instrumental response suggest that conclu-
sively answering this question with an instrument as basic

as GOES/XRS may be impossible.

In order to improve our ability to examine the flare dis-
tribution, it is necessary to use spatial information. This
will allow flares to be identified when they overlap tempo-
rally but not spatially. It will also improve our ability to ac-
curately subtract the background flux. Both of these steps
will improve our statistics. The flare distributions from mul-
tiple individual active regions should also be studied in this
way to determine whether the global flare distribution is a
single power law or a convolution of numerous heavy-tailed
non-power law distributions. Studies that more comprehen-
sively chart the energy partition of flares and eruptions
must be undertaken to better determine what biases we
introduce by using measurements from a single passband
as a proxy for the flare energy. Finally, algorithms that can
better identify the event duration will allow us to examine
fluences rather than just peak fluxes, which are likely to be
a better proxy of the total flare energy.
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Appendix A: LYRA Artefacts Removed By
LYRAFF

Table A.1 shows the different artefacts removed from
LYRA observations before applying the LYRAFF algo-
rithm. These artefacts are defined in the PROBA2 time
annotation files. For more information see http://proba2.
oma.be/data/TARDIS.

Appendix B: Calculating p-values

The method of calculating p-values used in this study is
outlined in Clauset, Shalizi, and Newman (2009). First, we
used the methods described in Section 3.3 to find the best fit
power law to our empirical data set, giving us an exponent
&, a lower limit x,in, and a K8 statistic KSey,;,. The total
number of flares in the data set is m, while the number
greater than xyi, is n4e- Next, we created an ensemble of
synthetic data sets. Data points above x,;, were randomly
generated from a power law with exponent &, while data
points below x,;, were randomly sampled with replacement
from the corresponding subset of the empirical data. Each
synthetic data point had a probability of 7444 /n of being in
the regime above Zyin and 1—mn44:/n of being in the regime
below this value. Thus, the synthetic data sets should mimic
the empirical data set well across its entire range if the data
above the threshold value of z.,;, follows a power law.

The MLE method outlined in Section 3.3 was then
used to fit each synthetic data set with its own power
law model, and its corresponding KS statistic of the fit,
K Sgyntn was calculated. Finally, the p-value was given by
p= nsynth>emp/nsynthv where Nsynth>emp WaS the number
of synthetic data sets with a K Ssyntn, > K Semp and ngyntn
was the total number of synthetic data sets. In this study
we created 1000 synthetic data sets for each empirical one
so that our p-value would be reliable to two decimal places
(Clauset et al. 2009).
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Table A.1l. Standard artefacts removed from LYRA observations before applying LYRAFF.

Artefact

Description

ASIC reload
Calibration

Glitch

LAR

Moon in LYRA

Offpoint
Operational Anomaly

Recovery

SAA

UV occultation

Visible occultation

Reload of the application apecific integrated circuit
Calibration campaign
Undefined glitch.

Large angle rotation. 90° rotation of satellite lasting a
few minutes. Cause spikes and dips in the signal.

Moon in LYRA field of view which can cause
non-solar variations in signal.

PROBA2 offpointed from disk centre potentially altering
signal artificially.

Unexplained anomaly.

Time taken for LYRA detectors to get back to full efficiency
after not being exposed to sunlight. Can take many hours.

Transition of PROBA2 through the South Atlantic anomaly
causing increased noise in signal.

Solar irradiance attenuated by Earth’s atmosphere.
Defined as when PROBAZ2’s tangential altitude is <350 km.

Solar irradiance is blocked by the disk of the Earth.
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