The relative energy of fcc and hep foams
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The energies of face-centred cubic (fcc) and hexagonal close-packed (hcp)
monodisperse foams, associated with their total surface area, are equal in the
wet and dry limits, in the usual model. We prove that for all intermediate values
of liquid fraction, hcp has lower energy. Energy considerations are thus not
sufficient to explain the observed preference for crystallization into fce over hep
in experiments using monodisperse bubbles.
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1. Introduction

The closely related face-centred cubic (fcc) and hexagonal close-packed (hcp) structures
occur widely in materials science and idealized models; for example, in the crystal structures
of many elements and in simulated hard sphere packings. Their relative energy (or in some
cases the free energy) is always of interest as a determinant of the most stable structure.
Such close-packed structures have been observed for monodisperse foams in recent years,
with a distinct preference for fcc [1-3]. The structures form spontaneously when bubbles
are produced using a flow-focusing device, which results in spherical bubbles with sub-
millimetre diameters, smaller than the capillary length. The preference for fcc may be due
to kinetics or fluid dynamics, or grain boundaries. It has also been attributed to a reduced
mechanical stability of the hep structure: the impact of rising bubbles onto a hcp arrangement
can cause collapse [2].

Accordingly, the experiments do not simply imply that fcc must have a lower energy,
which within the usual model for foams is equivalent to the surface area per bubble [4,5].
Nevertheless, we are drawn to examine the energy of each structure.

Here, we will offer an essentially rigorous proof that hcp has the lower energy for
values of liquid fraction ¢ between its limiting values: the dry limit of ¢ = 0 (although the
structures are not stable in this limit, as discussed later) and the wet limit ¢ = ¢, ~ 0.26:
the critical liquid fraction at which bubbles are spheres.
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Figure 1. The shape of bubbles in the dry limit (i.e. ¢ = 0). (a) fcc: a rhombic dodecahedron and
(b) hep: a trapezo-rhombic dodecahedron. All faces are flat and all the angles between adjoining
faces are 120°, satisfying Plateau’s conditions for equilibrium; however, these structures are unstable
equilibria due to the presence of eightfold vertices.

2. Proof

In the wet limit (¢ = ¢.), bubbles are perfect spheres, so clearly the energies of the two
structures are equal. In the dry limit, a bubble in an fcc foam takes the form of a rhombic
dodecahedron, with 12 identical rhombic faces; in hep, a trapezo-rhombic dodecahedron,
with 6 rhombic and 6 trapezoidal faces, as in Figure 1. These polyhedra have identical
surface areas so the energies are also equal at ¢ = 0.

For all liquid fractions, we assume a canonical foam, in which the bubble surface assumes
a unique shape which minimizes its surface area at constant volume. We assume that in the
ordered structures discussed, each bubble possesses all the symmetries of the underlying
lattice.

Figure 2a shows the form of a bubble in equilibrium for a fcc foam between the wet
and dry limits, at ¢ =~ 0.125. Also indicated is a plane, which divides the bubble into two
pieces. Since the fcc lattice is centrally symmetric, any plane passing through the centre of
the bubble divides its surface into two congruent pieces, equal in area and volume: we use
the (11 1) plane, indicated by the dashed lines in Figure 2. We can reflect one half of the
fce surface (the top half in the figure) in this dividing plane to obtain the form shown in
Figure 2b. This new surface is everywhere continuous and retains the surface area and
volume of fcc, but its planar contacts match the hep structure. It may be regarded as a
trial solution for hcp, and cannot therefore have a lower energy. Indeed the energy must be
higher, since this rejoining results in discontinuities in the surface normal (see exaggerated
sketch in Figure 3). Hence the surface can be relaxed, removing these ‘kinks’ and lowering
its energy. This completes the proof. Such rigorous proofs are quite rare in this subject (see
e.g. [6]).

Preliminary simulations using the Surface Evolver [7] confirm that there is indeed a very
small but detectable difference in the energies of bubbles in fcc and hep foams, of the order
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Figure 2. (a) shows a bubble in an fcc foam at liquid fraction ¢ & 0.125, obtained from a Surface
Evolver simulation. (b) is obtained by reflecting the top half of the fcc bubble in a dividing plane
(dashed line). This results in a trial solution for hep.
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Figure 3. The surface obtained by reflection in Figure 2b is continuous but not smooth: it can be
further relaxed to obtain a surface of lower energy. Here (a) shows the shape of the flat contact for
an fcc bubble, (b) for the trial hep surface and (c) the further relaxed hep surface. The kink has been
exaggerated here for clarity.

of 1073%. These simulations will be reported in detail in a further publication, together with
order-of-magnitude estimates of the energy difference, relating it to the relaxation described
in Figure 3.

3. Discussion

The hcp structure has an extra degree of freedom, in that its axial ratio c/a (i.e. twice the
ratio of the separation of close-packed planes to the separation of neighbouring bubbles
within the planes) is not fixed by symmetry. In the wet limit, spherical bubbles ensure the
ideal close-packed ratio of /8/3. In the dry limit, it is easy to show that the surface area of



the trapezo-rhombic dodecahedron described earlier is minimized in the ideal axial ratio.
For intermediate values of ¢ this does not hold. If indeed varying c/a from its ideal value
does result in a reduction of the energy of an hcp foam, this only strengthens our result.

Due to the symmetry of the fcc lattice, all contacts between fcc bubbles are planar for
any liquid fraction. The same argument applies only to 6 of the 12 contacts for an hcp bubble
(those which are trapezoidal in the dry limit). It follows that it may be possible to further
lower the energy of an hcp bubble by allowing the other faces (those which are rhombic in
the dry limit) to warp slightly. Again, this does not affect our result, since it can only result
in a further reduction of the energy of hcp.

We should also note that the fcc and hep structures are unstable very close to the dry limit,
due to the instability of junctions of more than four Plateau borders (i.e. liquid channels) in
the dry limit [8,9]. Instead, the body-centred cubic or ‘Kelvin structure’ tends to occur in
ordered dry foams [10,11]. This does not affect our calculations — we deal only with a single
bubble in a fixed fcc environment and so no such instability arises. It is also worth noting that
experimentally, mixtures of fcc and hcp arrangements are seen when close-packed planes
are randomly stacked. However, in this case, each bubble can be considered locally to be
either fcc or hep, depending on the positions of its nearest neighbours.

It is tempting to consider a similar inverse argument, in which half of an hcp bubble is
‘twisted’ by 30° and rejoined to yield an fcc bubble of equal surface area. This argument
fails: the intersection of the hcp bubble with the dividing plane has only threefold rotational
symmetry and so this process results in a discontinuous surface.

In summary, we have shown that the energy of an fcc foam slightly exceeds that of
an hcp foam for liquid fractions 0 < ¢ < ¢, with equality at ¢ = 0 and ¢ = ¢..
The experimentally observed preference for fcc over hep can thus not be attributed to
energy differences. Further details of relevant simulations will be provided in a subsequent
publication.
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