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• Ocean waves may be amplified as they approach coasts across steep bathymetry, leading to extreme run-up heights.
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a b s t r a c t

The pressure load at a vertical barrier caused by extreme wave run-up is analysed numerically, using
the conformal mapping method to solve the two-dimensional free surface Euler equations in a pseudo-
spectral model. Previously this problem has been examined in the case of a flat-bottomed geometry. Here,
the model is extended to consider a varying bathymetry. Numerical experiments show that an increasing
step-like bottom profile may enhance the extreme run-up of long waves but result in a reduced pressure
load.

© 2017 The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and
Applied Mechanics.

This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

The existence of extreme waves is an important problem to
various fields and has deservedly received considerable attention,
in particular on the open oceanwhere there aremany documented
cases which have caused loss of life as well as severe damage to
infrastructure (see, for example, O’Brien et al. [1] and references
mentioned within). As such, in the engineering of both coastal
andmarine infrastructure, one is provided an interesting challenge
when providing durable and safe design. In fact, the engineer
often relies on the design wave for estimating various quantities
(such as wave height and pressure load) which the structure may
experience. Needless to say, this is a difficult task which is made
worse by the occurrence of large waves.

A particular case of extremewave action is the enhanced run-up
amplification of long ocean waves impinging on a vertical barrier.
The physical mechanisms involved are discussed in detail in the
review of Peregrine [2]. The problem has also been studied using
numerical simulations by a number of authors. By solving the Euler
equations with a conformal mapping model, Carbone et al. [3] and
Viotti et al. [4] explored the nonlinear evolution of thewave run-up
phenomenon. They showed that a simple, nearly monochromatic
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wave group can produce a run-up amplitude in excess of six times
the far-field amplitude. Viotti et al. [5] extended the model to
account for non-flat bathymetry, while Brennan et al. [6] exam-
ined the associated pressure fluctuations on the barrier. Akrish
et al. [7,8] reproduced the run-up using a higher order spectral
(HOS) method, and also looked at the resulting force on the wall.

In this present work, we wish to extend the analysis of the
pressure loadon the barrier to the case of a varying bathymetry.We
begin bydescribing themathematical formulation of the conformal
mapping method for the Euler equations along with details of the
numerical model used. Under the assumption of inviscid, irrota-
tional fluid flow, the dynamics of the associated free surface wave
system are described by the Euler equations:

∇
2φ = 0, forb(x) < y < ζ (x, t), 0 < x < l, (1)

ζt = −φxζx + φy, aty = ζ (x, t), (2)

φt = −
1
2

(
φ2
x + φ2

y

)
− gζ , aty = ζ (x, t), (3)

∇φ · n = 0, aty = b(x), (4)

where φ(x, y, t) is the velocity potential, ζ (x, t) is the free surface
elevation with respect to the unperturbed condition, g is the verti-
cal acceleration due to gravity, and b(x) is the bathymetry profile.
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Without loss of generality, we shall operate in non-dimensional
units in which g is equal to one, and the fluid density is understood
to be unitary. The conformal mapping method for solving the
Euler equations, originally presented by Dyachenko et al. [9], and
later analysed by Choi and Camassa [10], yields time evolution
equations for the free surface, and the velocity potential evaluated
at the free surface, of the gravity wave system. Viotti et al. [5] ap-
plied conformal mapping to a system containing a varying bottom.
Presented here within is a brief overview of the formulation, high-
lighting the features important to the discussion. The technique
involves finding an appropriate analytical map Z = X(ξ, η, t) +

iY (ξ, η, t) between the physical domain (x, y) and the conformal
domain (ξ, η). Here, we make the distinction that capitalisation
of variables implies that they are functions of conformal variables.
The physical domain is naturally defined by the fluid in question,
while the conformal domain is described by an arbitrary strip of
uniform thickness H > 0.

Boundary conditions for the harmonic function Y (ξ, η, t) are
provided by the vertical displacement of the free surface and the
given bathymetry profile:

Y = Ỹ (ξ, t), atη = 0,

Y = B(ξ, t), atη = −H, (5)

which, assuming periodicity of the problem in ξ with period L =

2π/k, we expand as

Ỹ (ξ, t) =

∑
n̸=0

Ŷneinkξ ,

B(ξ, t) =

∑
n̸=0

B̂neinkξ , (6)

where Ŷn and B̂n are the Fourier coefficients of the free surface
and bathymetry, respectively. Note that we are implicitly assum-
ing a periodic bathymetric profile in this case. Furthermore, we
have introduced the notation that tildes represent variables re-
stricted to the free surface. The most general solution to these
conditions is

Y (ξ, η, t) = Ŷ0 +

(
Ŷ0 − B̂0

H

)
η +

∑
n̸=0

Ŷn
sinh [nk(η + H)]

sinh(nkH)
einkξ

−

∑
n̸=0

B̂n
sinh(nkη)
sinh(nkH)

einkξ . (7)

Given the harmonic nature of the problem, we take advantage
of the Cauchy–Riemann conditions to derive the corresponding
expression for X(ξ, η, t),

X(ξ, η, t) = x0(t) +

(
Ŷ0 − B̂0

H

)
ξ − i

∑
n̸=0

Ŷn
cosh [nk(η + H)]

sinh(nkH)
einkξ

+ i
∑
n̸=0

B̂n
cosh(nkη)
sinh(nkH)

einkξ , (8)

where x0(t) is an integration constant. Here, we note that if the
expression H = Ŷ0 − B̂0 holds, then the first Fourier coefficient of
Yη (= Xξ ) is equal to one. As such we assume this, thereby setting
the spatial period in conformal space and physical space equal
(i.e., L = l). This also implies that H is time dependent, which is
a natural consequence of the conformal mapping. However, the
physical bathymetry profile b(x) has no dependence on time.

Similarly, we can find expansions for the velocity potential Φ
and the stream function Ψ :

Φ(ξ, η, t) = Uξ +

∑
n̸=0

Φ̂n
cosh [nk(η + H)]

cosh(nkH)
einkξ , (9)

Ψ (ξ, η, t) = U(η + H) + i
∑
n̸=0

Φ̂n
sinh [nk(η + H)]

cosh(nkH)
einkξ , (10)

where Φ̂n are the Fourier coefficients of the velocity potential
on the free surface, and U = m[Ψ̃ ]/H is the mean horizontal
velocity of the flow (the operator m refers to integral mean over
one period), included so that the periodic nature of the potential
may be isolated:

Φ̃(ξ, t) − Uξ =

∑
n̸=0

Φ̂neinkξ . (11)

The Hilbert-like transform operators provide a simple means
of transforming between the various harmonic conjugate pairs in
conformal space. On the free surface, the following relations hold

X̃ξ = 1 − Tx[Ỹξ , Bξ ], Ψ̃ξ = −Tψ [Φ̃ξ − U], (12)

with Tx and Tψ operating as follows:

Tx[f , g] =
1
H

−

∫
f (ξ ′) coth[π(ξ ′

− ξ )/2H]dξ ′

+
1
H

−

∫
(g(ξ ′) − H) tanh[π(ξ ′

− ξ )/2H]dξ ′, (13)

Tψ [f ] = −
1
H

−

∫
f (ξ ′)cosech[π(ξ ′

− ξ )/2H]dξ ′. (14)

Note that −

∫
refers to the principal-value integral over the real

axis. We are now in position to express the system’s governing
equations in conformal space (see Refs. [5] and [10] for a thorough
derivation). The time evolution of the free surface is given by

Ỹt = −X̃ξ

(
Ψ̃ξ

J

)
+ ỸξTx

[
Ψ̃ξ

J
,Ht

]
+ Ỹξq(t), (15)

where J = X̃2
ξ + Ỹ 2

ξ is the Jacobian on the free surface, and q(t) is
related to the constant x0(t) present in Eq. (8). Before defining q(t),
it is important to note that Ht does not depend on ξ , and thus will
produce only a constant value under the action of Tx transform. As
such,wemay absorb the effect ofHt in q(t), and set it to zerowithin
the transform. We set q(t) as

q(t) = m
{
XξTx

[
ψξ

J
, 0
]

+ Yξ

(
ψξ

J

)}
, (16)

a definition which implies that x0 is a constant in time. Finally, the
evolution equations of the system are

Ỹt = − X̃ξ

(
Ψ̃ξ

J

)
+ ỸξTx

[
Ψ̃ξ

J
, 0

]
+ Ỹξq(t), (17)

Φ̃t = −
1
J

{
1
2
Φ̃2
ξ −

1
2
Ψ̃ 2
ξ − JΦ̃ξTx

[
Ψ̃ξ

J
, 0

]}
− gỸ + C(t). (18)

We note that C(t) is an arbitrary function of time which may be
absorbed into Φ̃t .

The Bernoulli equation may be exploited in order to calculate
the total pressure associated with the system in question. Note
that this was done previously in Ref. [6] for the special case of flat
bathymetry. Here, we extend to the varying sea bed. The Bernoulli
equation is given by

P = −

[
φt +

1
2

(
φ2
x + φ2

y

)
+ gy

]
+ D, (19)
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where D is an arbitrary constant. The required derivatives of φ
necessary for the computation of Eq. (19) can be determined by
evaluating Φξ , Φη , and Φt via the chain rule, and rearranging the
resulting equations:

φx =

Φξ −Φη
Yξ
Yη

Xξ − Xη
Yξ
Yη

, φy =
Φη − φxXη

Yη
. (20)

φt = Φt − φxXt − φyYt . (21)

While φx and φy are easily found via the Fourier expansion equa-
tions, φt , however, requires more thought. First, we note that the
conformal mapping procedure conveniently provides the Fourier
coefficients of Yt andΦt on the free surface, Ŷnt and Φ̂nt . As (Xt , Yt )
and (Φy,Ψt ) are harmonic conjugate pairs, we seek to express
X̂t in terms of Ŷt , which is achieved via the operator Tx; X̂nt =

−
∂
∂t Tx

[
Ŷn, B̂n

]
.

This provides the means to construct the time derivative of the
analytic map over the whole domain, Zt . On the free surface, the
map is given by

Z̃t (ξ, t) =

∑
n̸=0

(
X̂nt e

inkξ
+ iŶnt e

inkξ
)
, (22)

whose analytical extension to the full domain is

Zt (ξ, η, t) =

∑
n̸=0

(
X̂nt e

ink(ξ+iη)
+ iŶnt e

ink(ξ+iη)
)

=

∑
n̸=0

Ẑnt e
inkξ . (23)

Ẑnt is given by

Ẑnt =

{
−
∂

∂t
Tx

[
Ŷn, B̂n

]
+ iŶnt

}
e−nkη

=

[
− iŶnt coth(nkH)

+ inkHt

(
1

sinh2(nkH)
Ŷn − coth(nkH)cosech(nkH)B̂n

)
+

i
sinh(nkH)

B̂nt + iŶnt

]
e−nkη

= i
[

−e−nkh

sinh(nkH)
Ŷnt +

nkHt

sinh2(nkH)

(
Ŷn − cosh(nkH)B̂n

)
+

1
sinh(nkH)

B̂nt

]
e−nkη, (24)

where the rearrangement of terms is performed in order to allevi-
ate truncation errors during numerical computation. Xt and Yt are
thus given by

Xt = Re(Zt ), (25)
Yt = Im(Zt ). (26)

Finally, as they satisfy the same boundary conditions, we may
Fourier expand Φt in the same manner as Φ , and thus all compo-
nents of Eq. (19) are found.

The system’s evolution equations in conformal space,
Eqs. (17)–(18) are solved via a pseudo-spectral method, with
transforms being handled by the fast Fourier transform. The corre-
sponding discretisation of the system follows standard procedure,
and due to the high order of nonlinearity inherent to the problem,
dealiasing is performed using a 1/2 rule, and applied sequentially
after every nonlinear operation. Time integration is handled via
an optimal adaptive ordinary differential equation solver, again to
the standard of common software packages (for reference, we use
MATLAB).

Fig. 1. Initial configuration of numerical simulation. Thick line: Initial free surface.
Thinner lines: bathymetry profile, with S = 0.10 (dashed line) and S = 0.15 (solid
line). The dashed vertical line indicates the ‘‘barrier’’, acrosswhichmirror symmetry
is imposed. Here, the wave packet’s initial wave amplitude is a0 = 0.10. Horizontal
coordinate x is normalised by initial packet wavelength λ0 .

Mirror symmetry about the centreline of the computational
domain is enforced on the initial condition, resulting in two wave
packets of equal amplitude and opposite direction, starting from
opposite ends of the wave tank, colliding head-on at the centre. In
the absence of viscosity and surface tension, this is identical to the
presence of a rigid vertical barrier [11–13]. Thus we emulate wave
reflection from the vertical barrier by simulating two identical
waves colliding. To clarify, the physical domain can be thought of
as 0 ≤ x ≤ L, the computational domain is 0 ≤ x ≤ 2L, and the
‘‘barrier’’ is located at x = L.

The free surface ỹ0(x) = ζ0(x) and the associated velocity
potential φ̃0(x) have the following initial conditions:

ỹ0(x) = W (x)a0 sin [k0(x − x0)] , (27)

φ̃0(x) = − W (x)a0
ω0

gk0
coth(k0h) cos [k0(x − x0)] , (28)

where ω0 is the initial frequency, satisfying the finite-depth dis-
persion relation

ω2
0 = gk0 tanh(k0h), (29)

and W (x) is the envelope function, satisfying

W (x) =
1
2

[
tanh

(
x − x0
δ

)
− tanh

(
x − x0 − 3λ0

δ

)]
. (30)

This particular envelope function produces an initial wave packet
containing three full wavelengths, and the initial (dimensionless)
wavelength is set as λ0 = 125. The parameter determining the
location of the initial wave packet x0 is fixed at one wavelength.
Additionally, δ ≈ 0.3λ0 is the thickness parameter, set as such
to minimise the formation of secondary waves in the early time
evolution. These conditions are chosen such as to produce near
optimal run-up, see Ref. [4]. The bathymetry profile considered is
given by

b(x) = −h +
S
2

[
tanh

(
x − x1
δs

)
− tanh

(
x2 − x
δs

)]
, (31)

which produces a smooth ramp followed by flat ‘‘step’’. Here, h is
the flat ground level, set equal to one, S is the ‘‘step height’’, and
δs is another thickness parameter which we set equal to L/100,
such that in conjunction with the step edge coordinates x1 and x2,
produces a ‘‘step length’’ of approximately one wavelength. The
domain and set up is depicted in Fig. 1. Simulations are typically
performed using 215 (32768) dealiased Fourier modes.

The bottom profile in conformal space, B(ξ, t), which depends
on both the instantaneous free surface Ỹ (ξ, t) and the physical
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Fig. 2. Space time evolution of wave packet, for (a) flat bottom case and (b) step height S = 0.15 case. Free surface elevation is normalised by initial dimensionless amplitude.
The inset in each panel is a zoomed in snapshot of the regions enclosed by the dashed black lines. Note the differing colour scales used, corresponding to the differing run-up
amplitudes found in each case. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. (a) Run-upmeasured atwall. (b) Corresponding pressure load onwall. Thick grey lines: Flat bottom case, dashed lines: S = 0.10 case, thin black lines: S = 0.15 case. Note
that with a stepped bathymetric profile, there is an increased shoaling effect and run-up amplitude, and conversely, reduced pressure load on wall. The effect is enhanced
with increased step height.

bathymetry b(x) needs to be updated at each time step before
any computations of the evolution equations can be performed.
Further details may be found in Ref. [5]. We utilise a fixed point
iteration scheme to update B(ξ, t) from the previous time step’s
estimate, with the termination condition being that the residue
R(n+1)

= ∥H (n+1)
− H (n)

∥∞ has decreased below a fixed tolerance
τR. The nature of the iteration scheme means that although the
physical bathymetry profiles are prescribed to have a step length of
one wavelength, this is not exactly guaranteed, and thus we refer
to it as an approximate measurement.

Initially, we examine the effect of varying the step height in the
bottom profile. Two step heights are chosen. S = 0.10 and S =

0.15, and are comparedwith the flat bottom case. Thewave packet
has an initial amplitude a0 = 0.1, this value being the interim
amplitude examined in Ref. [6]. Time evolution of the wave packet
is initially governed by shallow water dynamics, developing sharp
wave fronts under the effects of nonlinear steepening. The step
bathymetry amplifies this phenomenon. Eventually, dispersive ef-
fects regularise the sharp fronts, generating modulated undular
bores. Furthermore, enhancement of wave amplification and run-
up follows as thewavesmeet thewall. These features are presented
in Fig. 2, which also compares the space time evolution of the flat
bottom case and S = 0.15 case.

The lower panel of Fig. 3 displays the total pressure loads on
the wall for each case. The increase in step height is followed by
an alleviation of total pressure. This is examined in more detail in
Fig. 4, which shows, in addition to total pressure, the hydrostatic
and dynamic components, as well as associated power spectra. A

more detailed description of the dynamics of run-up amplification
andwave evolution in this scenario can be found in Refs. [3] and [4].
Additionally, similar bore formation can be seen in the recent
works of Trillo et al. [14] and Brühl et al. [15], linked with the
soliton solutions of the Korteweg–de Vries equation.

Increasing the step height increases themaximum run-up, from
R/a0 = 5.23 for the flat case, to R/a0 = 6.71 for the max-
imum step height considered. In each case, the maximum run-
up peak is featured in the second run-up packet. There is also
a noticeable shoaling effect, which is enhanced with larger step
heights. These features can be seen clearly in the upper panel of
Fig. 3.

The lower panel of Fig. 3 displays the total pressure loads on
the wall for each case. The increase in step height is followed by
an alleviation of total pressure. This is examined in more detail in
Fig. 4, which shows, in addition to total pressure, the hydrostatic
and dynamic components, as well as associated power spectra.
The hydrostatic contribution is approximated by PH = −g(y −

η), and dynamical pressure is then P − PH . With increasing step
height, the reduction in total pressure is mirrored by an increase in
the magnitude of the dynamic contribution. With increasing step
height, kinks in the pressure peaks begin to appear (these kinks are
highlighted in the figure, and are shown in more detail in Fig. 5, a
feature which is likely a result of the associated increase in crest
height at the wall). These kinks were also observed in Ref. [6],
as a result of increasing wave amplitude. The kinks are primarily
present in the pressure peaks associated to maximum run-up.
Peregrine [2] notes that this is a result of the increasing steepness
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Fig. 4. (a)–(c) Break down of pressure components, (d)–(f) pressure spectra. Blue lines: hydrostatic pressure, red lines: total pressure, green lines: dynamic pressure. The
dynamic contribution to pressure is increased with increasing bathymetric step height. Note that for increased dynamic pressure (reduced total pressure), kinks begin
to appear in the pressure peaks associated to maximum run-up, a result of pressure minima forming beneath increasingly steep wave crests. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Close up plot of the pressure ‘‘kinks’’ from simulation with step height S = 0.15, from the bottom panel of Fig. 4. Blue line: hydrostatic pressure, red line: total
pressure. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Total pressure load on wall, including full vertical stratification, for flat and both bathymetric stepped profiles.
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Fig. 7. (a) Relative L2 error on total pressure, compared between simulations ran using 214 and 215 Fourier modes, for S = 0.15 case. (b) Energy variation for each case. Thick
grey line: flat bathymetry, dashed line: S = 0.10, black line: S = 0.15. Presence of step bathymetry leads to increased energy loss as waves meet vertical barrier.

Fig. 8. Examining the effect of varying initial amplitude. Two initial amplitudes, a0 = 0.10 and a0 = 0.125, are chosen. The step height is kept constant at S = 0.15. Colour
coding as before. (a) Run-up compared between both cases. (b) Total pressure load on wall, for both cases. The appearance of the pressure ‘‘kinks", associated with large
run-up peaks, is yet again present. (c)–(f) Comparison between hydrostatic and dynamic pressure components for (c, e) a0 = 0.1 and (d, f) a0 = 0.125 cases. Note that by
increasing the initial amplitude of the wave packet, similar effects to those induced by increased step height are observed.

of the wave, which creates a pressure minima beneath the wave
crest. Examining the power spectrum in Fig. 4, the increasing
contribution from dynamic pressure is seen in the high-frequency
domain, coinciding with the drop in total pressure compared to
the hydrostatic approximation. Interestingly, further into the high-
frequency region of the spectrum, the total component briefly
overtakes the hydrostatic, atwhich point the dynamic contribution
steadily decreases also, and this effect is diminished with increas-
ing step height. The full pressure fields underneath the wave run-
up for each case is shown in Fig. 6, where the reduction in total
pressure as a result of increasing step height can be seen.

The relative L2 error on the total pressure load on the wall is
shown in the left panel of Fig. 7, computed for the S = 0.15
case and compared between two simulations using 214 and 215

dealiased Fourier modes. Feasible convergence is found, with the
spikes in the L2 measurement to order O(10−5) found near the
pressure kinks, which may be attributed to the increased nonlin-
earity of the systemas thewaves impinge on thewall. Additionally,
the total energy variation of the system for each case is shown in
the right panel of Fig. 7. Noticeable energy loss is found when the
leading peak of each wave group approaches the wall, although
reasonable conservation is obtained.
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Finally, Fig. 8 displays a comparison between simulation results
from two different initial amplitudes. The bathymetry profile is
the same in both, using step height S = 0.15, and the two initial
amplitudes are a0 = 0.1 and a0 = 0.125. As can be seen, after
the first wave group hits the wall, the run-up for the lower initial
amplitude case is actually larger. This is likely related to optimal
run-up conditions in the presence of a varying bottom, and is not
thoroughly examined in this work. The converse is true for the
pressure load, which is larger for the increased amplitude case.
Although the run-up is slightly smaller for increased amplitude, the
waves themselves are still larger, and as such, the pressure is too.
Finally, for the increased amplitude case, the largest run-up is now
found in the leading run-up packet. As such, the pressure ‘‘kinks’’
are present again, however given the largest run-up peak is now in
the leading packet, the kink is now positioned as such.

In conclusion, we have presented an examination of extreme
wave run-up on a vertical wall, in the presence of a varying
bathymetry, and in addition, the associated pressure fluctuations
are computed. This investigation is facilitated by Euler equation
numerical simulations based on the conformal mapping method.
The procedure used to identify the pressure field beneath the free
surface is also described.

An increasing bottom profile enhances already extreme wave
run-up, but decreases the associated pressure load, which is over-
estimated by the hydrostatic approximation. As such, the dynamic
pressure contribution is amplified by the rising sea bed. In terms
of the pressure spectrum, this increased dynamic component is
seen in the high-frequency region. Increasing the amplitude of the
initial wave packet also enhances this phenomenon. The pressure
peaks associated with the largest run-up feature the most striking
dynamical component, giving rise to the formation of ‘‘kinks’’ in
the peaks.

We note that this is a simple investigation, in which we have
highlighted the potential effect the varying bottom profile has. A
wide class of profiles can be considered, providing scope for future
work. Thewaveparameters considered in thisworkwere chosen to
provide near optimal run-up, ofwhich a detailed description can be
found in Refs. [3,4]. Optimal conditions in the presence of varying
bathymetry have not yet been determined.

As mentioned in Ref. [6], aside from this works relevance to
maritime engineering, there is also an interesting implication to
microseisms. Longuet–Higgins [16]work onmicroseisms provided
a basis for research on the influence of nonlinear waves on seismic
noise, and it is still an active topic today [17,18]. Pressure fluctu-
ations on the sea bed associated with the run-up of long waves
contain a considerable high-frequency component in their power
spectrum, similar to the typical frequency band associated with
microseisms.

A further potential application of this work is in the inves-
tigation of boulder-sized deposits along exposed coastlines. The
movement of such large masses indicates that the affected coasts
experience extremely high-energy wave events (for example, see
Cox et al. [19]). Recent research [19,20] focussed on the west coast
of Ireland has shown that storm waves, rather than tsunamis,
are capable of producing such movements, despite calculations
indicating that this should not be possible [21]. This suggests that
fully-nonlinear wave models, with the resulting extreme run-up

and pressure loads discussed in this present work, are needed to
completely understand these phenomena.
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