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Abstract. We propose a novel approach for detecting and reconstructing class-
specific objects from 2D images. Reconstruction and detection, despite major
advances, are still wanting in performance. Hence, approaches that try to solve
them jointly, so that one can be used to resolve the ambiguities of the other, espe-
cially while employing data-driven class-specific learning, are increasingly pop-
ular. In this paper, we learn a deformable, fine-grained, part-based model from
real world, class-specific, image sequences, so that given a new image, we can si-
multaneously estimate the 3D shape, viewpoint and the subsequent 2D detection
results. This is a step beyond existing approaches, which are usually limited to
3D CAD shapes, regression based pose estimation, template based deformation
modelling etc. We employ Structure from Motion (SfM) and part based models
in our learning process, and estimate a 3D deformable object instance and a pro-
jection matrix that explains the image information. We demonstrate our approach
with high quality qualitative and quantitative results on our real world RealCar
dataset, as well as the EPFL car dataset.

1 Introduction

Despite big advances, core computer vision problems in the area of detection and re-
construction are far from perfectly solved. It is increasingly recognized that to combat
the problems faced by these areas of vision, effective solutions must tackle them jointly,
modelling the physics of image formation, learn from data, expert-knowledge and allow
one problem to handle the ambiguities of the other. Although 3D geometric reasoning
has become increasingly common in several computer vision applications, it is still
some way off from becoming a standard consumer-level technique.

In this paper, we propose a framework that, given a 2D image, simultaneously
detects an object category instance, estimates the object pose and shape in 3D, rea-
sons about its part appearance and occlusion, thus performing object reconstruction in
3D and detection in 2D, jointly. The proposed framework learns a class-specific, de-
formable fine-grained, part-based model from image sequences, learning both appear-
ance and geometry. Note that the ill-posed nature of the problem results in a complex
solution landscape with several local minima. In order to enable reasonable solutions,
we solve the problem by tackling the complexity in a gradual, incremental way. We
start from a constrained setup for which the solution can be found reliably and then
gradually increase the flexibility in the model to handle more variables in the problem.
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The idea of tackling vision problems jointly, has been gaining traction recently
[15,10,12,13,23,24]. But the modern approaches, while making strides in tackling this
problem, have often resorted to using high quality CAD models (which are expensive,
painstaking to design, and/or limited in their capability to capture the object shape, ap-
pearance, especially the surface texture). Another tendency, is to model camera view-
point using regression rather than modelling the physical projection process. Also,
shape and view variation is often modelled using a bank of representations/templates
and/or in a brute force approach. In our proposed approach, we learn StM based class-
specific shape and appearance models from real image sequences as faithfully as possi-
ble. Some supervised input is acquired through minimal, intuitive input for fine-grained
part understanding. At test time, we formulate the detection and reconstruction problem
in terms of the actual reprojection error (this models the scene physics more accurate
than regression) and use a variety of RANSAC-based techniques in order to make esti-
mation efficient and effective. We will expand on the related work in the next section.

2 Related Work

As mentioned above, the problem of joint detection, reconstruction and pose estima-
tion of object classes from images has received considerable attention within the com-
puter vision research community in recent years [10,24,12,12]. Existing approaches to
solve this problem can be broadly categorized into two main subclasses, i.e., distinc-
tive view-based techniques and 3D geometry-based techniques. Distinctive view-based
techniques exploit robust but less descriptive 2D features for view-specific models for
detection and recognition [5,2,3]. The performance of statistical 2D feature based meth-
ods from the computer vision research literature inspired the development of most dis-
tinctive view-based techniques. Existing techniques [4,6,8] treat viewpoint estimation
as a classification problem by dividing the viewpoint range into discrete bins. Ghodrati
et al. [6] train multiple Support Vector Machine (SVM) classifiers, one for each dis-
crete viewpoint, treating each classifier independently of the others. He et al. [8] use a
two-step process, wherein a viewpoint-parametrized classifier is first used to estimate
a coarse viewpoint followed by fine-tuning step. Fenzi et al. [4] treat continuous view-
point estimation as a regression problem which is solved using a Radial Basis Function
Neural Network (RBF-NN). The RBF-NN is trained to predict the appearance features
as a function of the viewpoint. Tulsiani et al. [ 15] train a Convolutional Neural Network
(CNN) that can jointly predict the viewpoints for all classes using a shared feature rep-
resentation. The CNN is used to estimate the coarse viewpoint which is subsequently
leveraged for keypoint prediction. Though these view-based methods have been effec-
tive, one would expect that accurately modelling the physical projection process would
be beneficial.

In recent years, due to the wide availability of affordable depth sensors, 3D shape
repositories and 3D CAD models, coupled with the fact that it makes more sense to rea-
son in terms of the underlying 3D structure of the object, the research focus has shifted
towards 3D geometry-based techniques for solving the 3D object pose estimation and
reconstruction problem. With improved optimization techniques and processing power,
we are able to learn these, more powerful models. Pepik et al. [12,13] extended the
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Deformable Parts Model (DPM) [3] to represent the part locations and deformations
in 3D. Yu et al. [17] on the other hand, propose an approach for learning a shape ap-
pearance and pose (SAP) model for both 2D and 3D cases, where the training instances
with unknown pose are used to learn a probabilistic object part-based model. The class
label and the pose of the object are inferred simultaneously by joint discovery of parts
and alignment to a canonical pose. Xiao et al. [16] and Kim et al. [1 1], exploit synthetic
3D models to incorporate 3D geometric information into the DPM framework [3] for
pose estimation. More recently, Choy et al. [1] use Non-Zero Whitened Histogram-of-
Gradients (NZ-WHO) features [7] to synthesize, on the fly, discriminative appearance
templates from 3D CAD models, for several poses, scales on multiple CAD model in-
stances of the object, to jointly estimate the viewpoint and the instance associated with
the object. In particular, Pepik et al. [12,13] rephrase the DPM framework [3] to formu-
late a structured learning output predictor to estimate the 2D bounding box of the object
along with its viewpoint by enriching the object appearance model using 3D CAD data.
The combination of robust DPM matching with the representational power of 3D CAD
models is shown to result in a boost in performance across several datasets. We aim to
extend this work by learning from real, SfM shapes and associated image appearance
models and also treat viewpoint using a full projection model instead of regression.

There has been progress in this regard. Hejrati and Ramanan [9] learned the 3D ge-
ometry and shape of the object from 2D part annotations using a non-rigid SFM tech-
nique. In particular, Hejrati and Ramanan [10] represent 2D object part appearances
using a Gaussian mixture model (GMM) that captures the appearance variations due to
variations in the viewing angle. Zia et al. [18] use a 3D shape representation scheme
to jointly model multiple objects allowing them to reason about inter-dependencies be-
tween the objects, such as occlusion, in a more deterministic and systematic manner.

Our proposed method departs from the beaten path described above, through the
following means: (i) employing automatically estimated, real world 3D shapes to learn
deformable models (manually generated 3D CAD models are often lacking in appear-
ance details (such as surface texture) and make simplifying approximations about the
actual 3D geometry that undermine the challenges underlying the 3D object pose esti-
mation and reconstruction problem), (ii) modelling the projection process for geometric
reasoning instead of relying on regression models, (iii) solving the shape recovery and
view estimation problems using an effective RANSAC based scheme (as opposed to the
computationally intensive generative process of [10]) and (iv) using a fine-grained part
representation, learnt from real data, to model the shape to a high resolution and accu-
racy for more complex analysis in the future. The pipeline of the proposed RANSAC
based scheme for shape recovery and viewpoint estimation is shown in Fig. 1

3 The Proposed Method

3.1 Problem Statement

Given a set of image sequences of the same object class, e.g. cars, each sequence being
taken around a single object instance, our objective is to reconstruct the shape and pose
of a new instance observed in a new input image. More precisely, we aim to learn a
deformable shape model for the particular object class, which then allows us to estimate
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Fig. 1: The proposed object shape and pose (or viewpoint) estimation pipeline. Given a
test image, we perform part candidate detection using the learned mixture-model-based
part appearance model, followed by viewpoint (scaled orthographic cameras) estima-
tion using a RANSAC-based scheme. The optimization gradually fits more deformation
to the shape to recover a realistic reconstruction with a refined camera estimate.

Test Image Part Detection

Final Viewpoint Estimation

both the best deformed shape and the 3D object pose in a new image such that visible
semantic, salient parts of the object project to their 2D observations in the image. The
latter also involves an occlusion reasoning for the new viewpoint and object instance.

To formulate this, we will use the following notation. Each of the K uncalibrated
image sequences given in the training set, indexed by k£ € {1... K}, contains Ny im-
ages taken around an object instance. Let us denote the n-th image in the k-th sequence
by I,,x, and its associated 3 x 4 camera (projection) matrix by C,, which encodes the
relative object pose and the camera intrinsics. The estimation task is to predict the full
projection model C and the 3D shape .S of the object in a new uncalibrated input image
1. For simplicity, we define the 2D object detection mask in I as projection of the fitted
shape instance through the estimated camera.

3.2 A Class-Specific Deformable Model

There are different ways to represent the shape of an object instance that is of a partic-
ular object class. Due to its simplicity and elegance, we have chosen to use a semantic
part-based construction in combination with a linear subspace deformation model.

We define the shape S of any object instance via the 3D positions of its P semantic
parts in space. The set of parts is predefined per object class. If s, is the position of the
p-th part of an object instance, then the shape of this instance can be encoded by a 3 x P
matrix S = [sl ...S p] . The linear subspace model describes any shape as a linear com-
bination of a set of L known basis shapes which capture the modes of variation in the
training data. Thus, the shape matrix of a particular object instance is S = Zlel By,
where B; is the 3 x P matrix of a basis shape and «; is the corresponding coefficient.

Assume that the basis shapes {B; }_, are known from a training phase for an object
class for now. Then given a new image I depicting an instance of the same object class,
the objective is to compute the shape matrix S of the depicted instance, as well as the
camera (projection) matrix C that maps 3D parts of the object to its observation in the
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new image /. The 2D projection %), of a 3D part location s,, can be formulated as

L
%, =p(C-s,) =p <C Zal.blp> (1)

=1

where by, is the p-th column of basis shape matrix B;, p(.) is a mapping that maps
any vector (u, v, w) with h # 0 to (u/w,v/w). The camera matrix C can describe a
perspective or an orthographic projection. However, not all points on the surface of an
object are visible in an image. The binary visibility state of a 3D point s in an image
of camera matrix C is modeled by a boolean variable v(s, C) € {0, 1}, where 0 stands
for occluded and 1 for visible.

Given the matrices of the basis shapes {B; }, the shape of an object instance is fully
determined by its deformation parameters {«; }. The loss function for computing the
shape matrix S and the camera matrix C of an object instance depicted in a query image
I can be defined as the sum-of-squared Euclidean distances between the projections and
the observations x,, of the visible object parts in image I:

P L
L{o1},C) =Y (s, C) - [, — p(C-sp) I, sp=> aby, ()
p=1 =1

where the vectors by, are known from the training phase. The joint shape-pose problem
for an input image I can be solved by a minimization of L with respect to the shape
coefficients {o; } and projection parameters C.

The loss function for the training phase can be obtained in a similar fashion. There,
the squared projection errors of K object instances needs to be measured over all images
of the training set. The loss function for training can be written as

K Ny

L
LT—ZZZ V(Skps Crik) - |[Xkip — p(Crk - skp)|[°, Skp = D b, (3)
=1

k=1n=1p=1

where sy, is the 3D location of the p-th part of the k-th object instance, and C,,y, is the
camera matrix corresponding to the training image I,,; as introduced in Sect. 3.1.

In the followings, we present our approach for learning the basis shapes and part
appearance from multi-view 3D mesh reconstructions of our input sequences.

3.3 From Dense 3D Reconstructions to Part-Based Shape Models

In order to learn the 3D basis shapes, a 3D surface model of each object instance of the
training set is needed. Moreover, we will augment the shape model with an image-based
appearance model per object part (Section 3.5). This requires the additional knowledge
of all camera matrices C,,; for the training images I,;. We now discuss how these
prerequisites are obtained and postpone the learning algorithms to Sections 3.4 and 3.5.

Prior to training, we first apply a state-of-the-art 3D reconstruction pipeline to each
sequence, separately. A Structure-from-Motion (SfM) procedure computes the camera
matrices C,,x, while a dense Multi-View Stereo (MVS) and surface reconstruction algo-
rithm computes a triangle mesh surface of the visible surface areas of the scene, given
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the camera models. We use 123DCATCH that integrates all these steps, but note that
other similar tools are also possible here. As a result, each 3D object instance in the
training set is reconstructed as a mesh with an arbitrary number of vertices and trian-
gles (see Figure 2). Intra-class variations and the varying vertex counts make meshes
difficult to relate, not to mention that most vertices may not correspond to any salient
entity on the object surface or its corresponding images.

¢ ===

Fig. 2: Training set examples for ’car’: 3D meshes obtained from real-world 2D image
sequences from 123DCATCH. These models are used for data-driven 3D geometric
reasoning throughout the paper. Note the intra-class shape variability.
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Fig.3: 3D Part Geometry. Left: The standard deviation of part location is plotted in
spheres (yellow on car’s right, blue on the left). Interestingly, the front door handles vary
considerably in location, while the bumpers and lights, not so much. Right: Variances
in the mutual distance between each pair of parts are overlaid on a sample graph (red
corresponds to higher variation, blue corresponds to lower variation).

In a subsequent step, we annotate each 3D mesh (Fig. 2) with a fixed set of parts
(up to the closest vertex location), where each part is a repeatable and semantically
meaningful region of the object, e.g. (center of) front-left-wheel or rear-licence-plate.
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The 3D part annotations are obtained via an intuitive user interface by performing a
multi-view triangulation of part annotations from two or more images observing the
same object instance. As a result, each object instance (indexed by k € {1...K})
yields an ordered set of 3D object part locations {skp};f:l.

Once the 3D meshes are annotated, the coordinate frames can be aligned using the
part annotations. Due to the shape variations, this gives a more accurate alignment than
simply applying the Iterated-Closest-Point (ICP) algorithm in our experience. Figure 3
shows the scatter of object part locations (across training instances), as well as the
covariance ellipsoids (corresponding to 10) to visualize intra-class shape variations in
our example training set.

3.4 Learning a Class-Specific Object Shape

Based on the 3D shape model discussed in Section 3.2, we perform a Principal Com-
ponent Analysis (PCA) on the object part positions and retrieve the top M modes of
deformation (M = 4 in all our experiments), which gives us a set of L = M 4 1 basis
shapes (where B is explicitely defined as the mean shape) for an effective and compact
linear subspace model to describe the subspace of possible intra-class shapes.

3.5 Learning the Appearance of Object Parts

The shape bases define a subspace of possible shapes for a particular object class. How-
ever, we also need to understand the appearance of the class in order to efficiently relate
the shape model to new images. For each object part in the 3D shape representation, we
construct an appearance model.

For the training sequences, by estimating visibility and projection, an appearance
model for each part is learnt from the ground truth image sequences under real illumi-
nation, projection etc. For every part, CNN features (conv5 layer) are extracted from
the input images at their projections (when visible), using publicly available network
weights [14]. These weights are obtained via training on the ImageNet Challenge 2014
(ILSVRC) dataset based on the part annotations. A mixture model [3,10] over these
CNN features is then used to represent the variation in appearance, viewpoint etc. We
learn a binary SVM classifier for each mixture component of each part of the class, to
act as a part detector in images.

3.6 Detecting an Object Shape and Pose in a Query Image

Given a new query image I, and the learnt shape subspace spanned by basis shapes
{B,}, and given the appearance-based object part detectors based on deep features and
on SVM classifiers, our goal is to jointly fit the deformable shape model and compute
the camera matrix C for this image such that 3D part locations of the fitted 3D shape
model project to corresponding part observations in the image. The corresponding loss
function is formulated in Eq. 2. The proposed pipeline is outlined in Algorithm 1 (which
also invokes Algorithm 2).
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Algorithm 1 Shape recovery, pose estimation and detection

1:

Part Detection. Possible candidates for part detections are collected by convolving the
trained SVM weight filters on conv5 feature pyramids [25]. Filter responses across multi-
ple scales are combined using Non-Maxima Supression followed by Platt’s Scaling [22] to
obtain the probabilities of positive responses, such that the responses of different SVM clas-
sifiers are comparable. Responses stronger than a certain probability (p=0.35) are considered
plausible candidates for the next step.

: Viewpoint Estimation. We find the best camera parameters to project the mean shape to the

test image by performing a RANSAC-based view estimation routine explained in Algo.2. In
this case, the minimal set needs to be size 3 and the unknown parameters correspond to those
of scaled orthographic projection.

: Viewpoint and Shape Refinement. We perform a subsequent pass of viewpoint refinement

allowing for shape deformation. This is equivalent to optimizing Eq. 2, with respect to the
deformation parameters {a;}/; in addition to the scaled-orthographic camera parameters.
The RANSAC-based procedure can be repeated, but in each pass, one more mode of shape
deformation is considered for a stable, incremental optimization. Finally, the a minimal set
of 5 2D part candidates is needed for estimation of the extra L — 1 = 4 basis shape weights.
The optimization of the loss function in Eq. 2 is modified to reflect the new parameters.

: Object Mask. The estimated deformable shape and camera parameters represent the best

reconstruction estimate for this image. When projected to the image, this gives us an object
detection silhouette for this image.

Algorithm 2 RANSAC-based Viewpoint Estimation Algorithm

1:

Perform part detection using the trained part appearance classifiers to obtain Filter Response
F, on the test image. Threshold these to obtain a set of possible candidates.

: for N iterations do

Assemble a minimal set of randomly-sampled unique parts from the candidates (con-
straint: they must be simultaneously visible in at least one view).

Fit the unknown parameters minimizing the projection loss between the mean 3D shape
parts corresponding to the 2D minimal set selected above.

Check for inliers, based on whether candidate detections are within threshold 71 for the
remaining visible parts projected according to the above derived projection.

If the number of inliers are greater than 7> then store this minimal set and the estimated
parameters.

: For the set with maximum inliers, re-estimate the parameters minimizing the projection loss,

through least-squares fitting on all the inliers, instead of only the minimal set. This is the best
parameter estimate.
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Fig. 4: Examples of 2D image sequences from the EPFL Multi-view Cars dataset (Left)
and our RealCar dataset (Right).

4 Evaluation

4.1 Dataset

Our RealCar dataset consists of 35 image sequences taken around unique and distinct
instances of cars, captured in real world conditions with challenging variations in scale,
orientation, illumination with instances of occlusion. The total number of images per
sequence varies between 30 and 115, across the dataset. When an SfM method like
123DCatch is used to estimate the car shapes and camera matrices, we get full mesh
shapes along with full projection matrices (see Fig. 2). We use 29 of these sequences
(and associated SfM results) for training and reserve 6 for testing.

The EPFL Multi-view cars dataset [28] contains image sequences of car instances
on a turntable. Such sequences do not respond well to SfM pre-processing like RealCar
dataset as the scene is not rigid, so this provide images to test on, but no ground truth 3D
meshes or part annotations. This dataset is used purely as a second test set of images.

4.2 Experimental setup

In this section, we evaluate the performance of our approach based on two tasks, (1)
Viewpoint Estimation, to measure the accuracy of the estimated camera projection and,
(2) Reconstruction, to measure how well the shape of the object in the test image is
recovered.

Viewpoint Estimation: In order to evaluate the viewpoint estimation performance of
the proposed approach, we run Algorithm | and report the Mean Precision of Pose
Estimation [19] and Mean Angular Error [29], on individual images from the 6 test se-
quences of our RealCar dataset as well as from all 20 sequences of the EPFL Multi-view
Cars dataset [28], where each car is imaged over a complete 360 degrees, with approx-
imately one image for every 3-4 degrees. To measure viewpoint estimation accuracy
we report our results using two standard metrics, Mean Precision of Pose Estimation
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(MPPE) [19] and Mean Angular Error (MAE) [29]. To report MPPE, we discretize az-
imuth angles (¢) into k& number of bins where k& € {8,12,16, 18,36} and compute the
precision of the viewpoint estimation for different number of bins. Table 1 shows the
MPPE obtained using our approach on both images from our RealCar dataset and the
EPFL dataset, and compares with Pepik et. al. [13] and Ozuysal et. al. [28], on EPFL
dataset. Similarly, the Mean Angular Error [29], to evaluate the continuous viewpoint
estimation performance of the proposed system, on both datasets is shown in Table 2 in
comparison with Pepik et. al. [13] and Glasner et. al. [29] on the EPFL Multi-view cars
dataset. In addition to estimating the Mean Angular Error for predicting the azimuth
angle, we also estimate MAE for predicting all 3 Euler angles [15], to provide a more
accurate measure of performance of the proposed approach, for continuous viewpoint
estimation. Table 3 shows MAE (Mean Angular Error) computed by estimating all 3
Euler angles.

0 RealCar Dataset EPFL-Multiview Cars Dataset [28]
(Ours) Training set[(Ours) Test set||(Ours)[3D?PM-D [13][Ozuysal et. al. [28]
w/4 93.79 86.09 59.86 78.5 -
/6 89.44 79.13 50.06 75.5 -
/8 83.85 71.30 40.47 69.8 41.6
/9 78.26 65.22 36.67 71.8 -
w/18 46.58 43.48 19.22 45.8 -

Table 1: Viewpoint Classification Accuracy using MPPE [19] on our RealCar dataset
(left), and on EPFL Multi-view Cars dataset [28] (right). For our dataset, in addition to
the test set, pose estimation experiments are also conducted on a subset of the training
set to demonstrate the performance of the proposed approach in estimating viewpoint
& recovering shape, on images, where the part detection accuracy is quite high.

0 RealCar Dataset EPFL-Multiview Cars Dataset [28]
(Ours) Training set|[(Ours) Test set||(Ours)[3D?PM-D [13]|Glasner et. al. [29]
/4 13.02 14.13 17.35 12.9 24.8
/6 11.88 12.35 13.58 9.0 -
/8 11.05 10.87 10.68 7.2 -
/9 10.32 9.92 9.58 6.2 -
w/18 5.47 6.2 4.81 5.2 -

Table 2: Continous/Fine-Grained Viewpoint Estimation error using MAE [29] on our
dataset (left) and on EPFL Multi-view Cars dataset [28] (right).
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Our Dataset EPFL-Multiview Cars Dataset [28]
0 —

Training set|Test set (Ours)
/4 16.08 18.28 31.48
/6 14.92 16.31 22.71
/8 13.15 14.45 17.27
/9 12.32 13.54 15.06
w/18 6.92 6.59 8.05

Table 3: Continous/Fine-Grained Viewpoint Estimation using our Ransac-based view-
point estimation technique, MAE [29] on EPFL Cars dataset [28] by computing all 3
Euler angles.

The result tables show that our method performs very well on our dataset and com-
petes well with the state of the art on the EPFL dataset, despite training on a smaller
dataset appearance-wise. We report the viewpoint estimation accuracy on our dataset
as well as on EPFL Multi-view cars dataset, we used our dataset (barely 29 3D object
instances) to learn part appearances and 3D part geometry, and test it on EPFL Multi-
view cars dataset. The performance of our approach relies heavily on the part detection
performance generating inliers for at least a few parts. If part detections are even rea-
sonable, the viewpoint/shape estimation is generally accurate, and so the accuracy on
the RealCar dataset tends to be high (running our approach on the data that it has been
trained on, shows best case results and an upper bound on how well our algorithm can
do, due to the familiarity with appearance, though projection must still be figured out).
The experiments show that, most of the bad viewpoint estimations are mainly due to bad
part detection performance as shown in shown in Fig. 6 or mistakes due to symmetry
of the car class.

Another important factor that affects the viewpoint estimation performance of our
approach is the lack of a strong global appearance prior or a root filter. Unlike other
regression based methods, we solely rely on detected 2D part locations for reasoning
the 3D shape of the object, where slight anomalies with one or more part detections
can cause a considerable error in the estimated final viewpoint. In the future, we will
train robust part appearance classifiers over more appearance data with hard-mined data
negatives, along with strong root filters, to try improving part detection accuracy and
performance.

Fig. 5 shows qualitative results on the EPFL dataset. Fig. 6 demonstrates the chal-
lenges of part detection and appearance symmetry in viewpoint estimation success.
Fig. 7 shows the viewpoint/shape recovery results on our dataset. Also Fig. 8 compares
the shape recovery results before and after the viewpoint and shape refinement step.

Reconstruction Unlike EPFL dataset, the RealCar dataset has the ground truth 3D
parts annotated, so we can qualitatively compare the estimated 3D part based model
with its actual ground truth, to evaluate shape accuracy. To report the shape recovery
performance of our approach, we computed the average sum of squared distances be-
tween the estimated and ground truth 3D part locations of the object in the test image,
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Fig.5: Qualitative results of the proposed RANSAC-based Viewpoint Estimation and
Shape Recovery, on EPFL Multi-view Car dataset. Odd columns illustrate the test im-
age with corresponding Viewpoint/Shape estimations overlayed on it. Even columns
illustrate the Viewpoint Estimation of their corresponding test image (on its left), us-
ing a sample mesh (from our dataset) for better visualization. (nofe: meshes (in even
columns) are not generated/reconstructed by our viewpoint estimation approach, and
are used only for the purpose of better visualization in all our qualitative results).
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Fig. 6: A qualitative illustration on how the failure of part detection and the effect of
symmetry in part appearances affect the the viewpoint estimation performance.

Fig. 7: Qualitative results of the proposed RANSAC-based viewpoint estimation on our
dataset, with Viewpoint/Shape estimations overlayed on the object.
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Fig. 8: An illustration on the improvement in Viewpoint and Shape Estimation due to the
Viewpoint and Shape refinement step. Each pair of the image represents the Viewpoint
and Shape estimations before (/eft) and after (right) the Viewpoint and Shape refinement
step. The shapes on the right (of each pair) tend to be more compact and has a better
viewpoint estimate, than the ones on the left.

for the 3D parts normalized to unit scale. The reconstruction/shape recovery error is
0.07 on the training set and 0.082 on test set of the RealCar dataset.

5 Conclusion and Future Work

We have shown qualitatively that our method for class-specific shape detection, recov-
ery and pose estimation can yield good results on unseen state-of-the-art data as well
as the original training data. We expect our RANSAC based process to be faster, while
still efficient, than brute force exhaustive search and also models the projection pro-
cess more accurately than regression. The fine-grained part representation and linear
subspace representation allows us to model deformation effectively, but work with far
fewer vertices than an SfM mesh with thousands of vertices. Importantly, we aim to
learn such a part representation automatically, and automatically warp and improve the
full mesh reconstructions also. As mentioned, better training and engineering should
help perform even better. Going forward, using more image evidence (edges, contours,
textures etc.) to fit the camera projection and reconstruction parameters, should allow
for more accurate estimation. We could also perform GraphCut based segmentations
for improved detection outlines.
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