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11 A linear chain of spheres confined by a transverse harmonic potential experiences localized buckling
12 under compression. Here, we present simple experiments using gas bubbles in a liquid-filled tube to
13 demonstrate this phenomenon. Our findings are supported semi-quantitatively by numerical
14 simulations. In particular, we demonstrate the existence of a critical value of compression for the
15 onset of buckling.VC 2020 American Association of Physics Teachers.

https://doi.org/10.1119/10.0000667

16 I. INTRODUCTION

17 Linear chains of particles have long been popular in pro-
18 viding simple examples for analysis using classical mechan-
19 ics. Consequentially, numerous classroom demonstrations
20 entail the study of such chains; examples include the prob-
21 lem of determining the force exerted by a falling chain1–3

22 (a long-standing problem, which continues to provoke
23 debate4) the vibrations (and normal modes5) of a chain of
24 particles,6 as a means of demonstrating the properties of the
25 catenary7 (and related curves), the physics of collisions and
26 shock waves,8 as well as numerous other interesting problems
27 suitable for the undergraduate physics curriculum.9

28 Much of this work has been largely confined to linear elas-
29 tic theory and dynamics.5,10 The pedagogical value of such
30 models lies in their essentially one-dimensional nature,
31 which is helpful for observation, analysis, and theory. In
32 many respects, they share the properties of two- and three-
33 dimensional systems and therefore provide an easy introduc-
34 tion to these.
35 Here, we extend the suite of classroom demonstrations to
36 linear chains of mutually repelling particles. The particles
37 are compressed along the length of the chain (corresponding
38 to being trapped by an axial potential in the related physical
39 systems mentioned below), while also being confined in the
40 radial (or transverse) direction by a cylindrically symmetric
41 potential. We will focus on the case of static equilibrium, for
42 compressions large enough to induce complex nonlinear
43 properties.
44 Our demonstration experiments and the accompanying
45 theory and simulations are connected with ongoing research
46 in a number of areas, where they may serve as illustration
47 of the underlying physics, but can also offer inspiration for
48 further measurements. Relevant research includes that on
49 laser-cooled ions in Penning traps11 and dusty plasmas.12

50 Related structures have also been observed in experiments
51 with colloids,13 microfluidic crystals,14 and magnetic par-
52 ticles.15 A more accessible system was introduced in
53 Ref. 16, using buoyant plastic spheres in a water-filled tube,
54 rotated by a lathe; structures for a wide range of compres-
55 sion were reported and were further analyzed theoretically
56 in Ref. 17.

57The type of arrangement formed by the particles depends
58on the competition between radial and axial confinement.
59When radial confinement dominates, the particles form a
60straight linear chain; however, on reducing the radial force,
61the preferred (minimum energy) state of the system transi-
62tions from a linear chain to a modulated zigzag structure.18

63Such systems have many interesting properties, including
64buckling, localization (sometimes described in terms of
65“kinks” or “solitons”), a variety of alternative (meta)stable
66structures, topological changes, bifurcation diagrams, and a
67Peierls-Nabarro potential for transitions between them.18,19

68The buckling of a linear chain has also been found to be rele-
69vant to mechanical properties of engineered materials20 and
70to active colloidal chains in biology.21 As mentioned, buck-
71led structures commonly occur in formations of cooled ions
72in traps; these in turn find a range of advanced applications
73in spectroscopy, quantum computing, and reaction kinemat-
74ics (see Ref. 22 for a recent review).
75In the present paper, we describe for the first time a very
76simple experimental set-up that may be used to demonstrate
77and measure many of the generic nonlinear properties of
78such a system. It is easily realized with the simplest equip-
79ment available in the class-room (test tube with stoppers,
80aquarium pump, and dish-washing solution) (Fig. 1). The
81experimental arrangement consists of gas bubbles trapped in
82a horizontal liquid-filled tube. The bubbles are confined axi-
83ally by opposing walls (stoppers) at either end of the tube.
84Compressing the linear chain of bubbles leads to buckling. A
85further increase in compression generates a sequence of
86different modulated zigzag structures. These are also related
87to previous studies of the packings of hard spheres in
88cylinders.23

89This new type of experiment will enable many fine details
90to be explored, which have not so far been analysed for any
91of the more sophisticated systems mentioned above, espe-
92cially when combined with the numerical simulations of the
93kind presented here.

94II. EXPERIMENTAL METHOD AND RESULTS

95Bubbles of equal size are produced by blowing air
96through a nozzle into a solution of commercial detergent
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97 (“Fairy Liquid”) using an air pump with a flow-control
98 valve. The bubbles are introduced into a perspex tube (inner
99 diameter 6.7mm, outer diameter 8mm), which is placed
100 horizontally at the bottom of the container filled with the
101 surfactant solution (Fig. 1), and stoppers are inserted. For a
102 certain separation L0 of these stoppers, N bubbles are only
103 just in contact with one another and the two stoppers. The
104 uncompressed axial extension D of the bubbles is then
105 D ¼ L0=N. In the experiments reported below, we have used
106 N¼ 19 bubbles with D ¼ 2:3mm.
107 Decreasing the length of confinement L by manually
108 pushing the stoppers, we may observe and record (as pho-
109 tos or videos) the structures that are formed; for an exam-
110 ple, see Fig. 2. For small values of compression D, defined
111 as D ¼ N � L=D, the chain of bubbles remains straight,
112 with all bubbles suffering equal deformation. However, at
113 some critical value of compression D, buckling occurs
114 (see Fig. 2). The critical value of D is zero for hard spheres
115 and finite for soft (elastic) spheres, as in the case of
116 bubbles.
117 In this regime, the buckled structures are found to be
118 planar for rotating cylinders.16,17 They are approximately so

119for the technique here introduced. Further examples are
120shown in Fig. 3 and numbered for later reference.
121To characterize these structures under compression in a
122simple way, we have determined the width W of the minimal
123rectangular box, which contains all the bubbles of a particular
124chain; for an example, see Fig. 4 (top). This is a convenient
125parameter for measurements by hand from photographs.
126However, the data reported below were obtained using the
127image processing software IMAGEJ.24

128Figure 4 shows the rescaled width W/D for ten different
129values of compression D, for all the structures shown in
130Fig. 3. The width increases strongly once the compression
131exceeds its critical value.
132Before describing the data in detail, we will comment on a
133particular feature of the experimental set-up. In the case of an
134uncompressed chain (D ¼ 0) of hard spheres the width W is
135simply D (which in this case coincides with the sphere diame-
136ter). However, two effects play a role when interpreting W in
137our experiments with bubbles. First, optical distortion arising
138from using liquid-filled tubes leads to a small increase in the
139ratio W/D, also in the case of hard spheres for these experi-
140ments. (We found W=D ’ 1:04 for a chain of hard plastic

Fig. 1. Sketch of the experimental setup and procedure. After filling, the tube is tilted to release any excess bubbles, so that only a single line of bubbles

remains. The second stopper is then inserted and manually adjusted to vary the axial compression of the bubble chain. The observation is carried out under

water to avoid air entering the tube. (Inner diameter of the tube: 6.7mm, outer diameter: 8.0mm, and axial extension of bubbles: D ¼ 2:3mm).

Fig. 2. The compression of a linear chain of bubbles results in buckling, once a critical value of compression is exceeded. (a) Photograph of 19 gas bubbles in

a tube filled with surfactant solution for compression D ¼ 2:36 (corresponding to image/datapoint 6 in Figs. 3 and 4). (b) A computer simulation of 19 soft

spheres using the model of Sec. III and ratio of force constants k¼ 2.25 yields a closely similar structure, cf. the region around the maximally displaced bubble,

marked by an arrow.
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141 spheres of diameter 3mm, placed in the water-filled tube
142 within the container used for the bubble experiments.)
143 Second, our gas bubbles are not spherical even under zero
144 compression D, due to the effect of buoyancy, pressing them
145 against the tube surface.
146 The combination of these two effects can account for the
147 value of W=D ’ 1:14 found for small compression,
148 D ’ 0:13, see Fig. 4. Upon further compression the width
149 increases slightly to about W=D ’ 1:23 for D ’ 1:56. At
150 D ¼ 2:13, the chain has clearly buckled, causing a large
151 increase in the width to about W=D ’ 1:41. A further
152 increase in compression results in a roughly linear increase
153 in W, as the profile of lateral displacement becomes increas-
154 ingly localized (see the photograph in Fig. 4).
155 At values of compression exceeding D ’ 2:7, the local-
156 ized zig-zag structure gives way to a straight chain contain-
157 ing a “doublet,” a transverse pair of bubbles.
158 A linear extrapolation of the width variation of the buck-
159 led structures would identify the onset of buckling at around
160 Dc ’ 1:75. However, buckling is generally associated with a
161 square-root scaling in compression, visible in the simulations
162 described in Sec. III. Taking this into account, we estimate
163 the critical value of compression to lie somewhere in the
164 range 1:8 < Dc < 2:0 (Fig. 4).

165III. THEORY AND SIMULATIONS

166We have made a preliminary comparison of the above
167data with the results from an elementary numerical simula-
168tion. The basis for this is explained below. We should
169emphasize that the simple model for bubble-bubble interac-
170tions, which we will employ, is not intended to be accurate,
171and so comparison will not be fully quantitative.
172We will be concerned with structures of length L, made up
173of N idealized spherical particles of diameter D; see Fig. 5.
174We will restrict our analysis to structures formed under low
175compression, D ¼ N � L=D. We have already shown one
176simulation result in Fig. 2.
177To obtain such numerical results, we have used the Durian
178Model.25,26 This represents bubbles as spheres whose over-
179lap is associated with a repulsive force between the bubble
180centres. (A similar approach was suggested earlier.27) For a
181pair of bubbles of equal size, the interaction energy Ei is
182Ei ¼ k1=2ðj~Ri � ~Riþ1j � DÞ2, where ~Ri are sphere centres
183and k1 is the spring constant for bubble-bubble interaction.
184The crude model has proved to be useful in foam physics28,29

185in providing qualitative and semi-quantitative insights.
186In the present case, we write the total energy due to con-
187tacts, including the contribution of the two bubbles in con-
188tact with the confining walls (i¼ 1) and (i¼N), in the
189approximate form,

Econtact ¼
k1

2

X

N�1

i¼1

ðð Xi � Xiþ1ð Þ2

"

þðYi � Yiþ1Þ
2Þ1=2 � DÞ2 þ

D

2
� X1

� �2

þ
D

2
þ XN � L

� �2
#

: (1)

Fig. 3. Sequence of 10 photographs of a chain of 19 bubbles under compres-

sion (Di ¼ 0:13; 0:32; 1:00; 1:56; 2:13; 2:36; 2:56; 2:62; 2:80; 2:85). For

geometrical dimensions, see the text. Compression was progressively

increased by small amounts. The solid yellow line marks the center of each

chain. Buckling becomes visible at the fifth image, leading to a modulated

zig-zag pattern of bubble displacement. Note eventual exceptional case 10,

in which a transverse pair (or doublet) of bubbles is surrounded by a straight

linear chain. Variation of the experimental procedure can produce localiza-

tion at other places in the chain.

Fig. 4. The variation of the normalized chain width W/D with compression

D reveals the onset of buckling at a critical value of Dc ’ 1:9. Values of D
exceeding 2.7 lead to the occurrence of an increasing number of doublets

within the same structure. (Numbers refer to the chains shown in Fig. 3, and

the photograph at the top marks the width W for structure 7.).
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190 Only the coordinates Xi and Yi enter, an approximation
191 that makes the system planar and is valid for small values of
192 compression.
193 The corresponding approximation for the gravitational
194 potential energy due to the buoyancy of a particle held in
195 place by the cylindrical surface is

Egravity ¼
k2

2

X

N

i¼1

Y2
i : (2)

196 The force constant k2 is given by

k2 ¼ Dqg
4

3
pðD=2Þ3=ðr � D=2Þ; (3)

197 where Dq is the density difference of gas and liquid, g is the
198 acceleration due to gravity, and r is the radius of the cylin-
199 der, see Fig. 5(b).
200 The total energy is thus approximated by Etotal ¼ Econtact

201 þEgravity. Expressed as a dimensionless energy, E ¼ Etotal=
202 ðk2D

2Þ, this may be written as

EðDÞ ¼
1

2
k
X

N

i¼0

di;iþ1 � 1ð Þ2 þ
1

2

X

N

i¼1

y2i ; (4)

203 where we have introduced the dimensionless quantities xi
204 ¼ Xi=D; yi ¼ Yi=D, di;iþ1 ¼ ððxi � xiþ1Þ

2 þ ðyi � yiþ1Þ
2Þ1=2

205(for 0 < i < N), d0;1 ¼
3
2
� x1, dN;Nþ1 ¼

3
2
þ xn � ðN � DÞ,

206and the ratio of the two force constants,

k ¼ k1=k2: (5)

This is essentially the same expression used in Ref. 20.
207The system has been reduced to two dimensions. The situa-
208tion is rather different in the other physical systems to which
209we referred in Sec. I, where planar structures are found to
210arise for only low compressions, but are not imposed by
211geometry at the outset (as we have done here). That is, planar
212structures are found in practice and become twisted at higher
213compression.
214Starting from a small value of compression D, and a
215straight linear chain, we progressively increase D. For each
216step, the previous equilibrium structure is used as the starting
217structure for minimization (in accord with the experimental
218procedure). Energy E, Eq. (4), is minimized numerically
219with respect to the coordinates xi and yi.
220Below a critical value of compression (which depends on
221the value for the ratio k of the force constant, Eq. (5)), the
222minimum energy arrangement corresponds to that of a
223straight linear chain, but this buckles to form a zig-zag chain
224at a critical value of compression, as in the experiment. (A
225small perturbation is necessary to promote the instability.)
226We performed computations for increments of dD ¼ 0:01
227up to compression D ¼ 3:0 for various values of k. The
228results for k¼ 2.5 and N¼ 19 are collated in Fig. 6, in terms
229of the dimensionless maximum transverse displacement,
230ymax ¼ maxðjyijÞ. We have found this to be a more straight-
231forward quantity for comparison with experiment, rather
232than width W, since W is affected by both optical distortion
233and bubble deformation, as discussed above.
234For values of compression slightly exceeding Dc ¼ 1:83,
235we find ymax to vary as ðD� DcÞ

1=2
, as is generally the case

236in buckling transitions. In this range, the envelope of the dis-
237placement profile is broad (roughly of cosine form).
238For higher values of D, there is increased localization of
239buckling, as in the example shown in Fig. 2. Finally, there is
240a sudden jump in the maximum transverse displacement with

Fig. 5. Schematics for the modeling of a chain of soft spheres under com-

pression. (a) Top view and notation. (b) View along the X direction, show-

ing bubbles (diameter D) pressed against the surface of a liquid filled tube

(radius r). For small displacements Y of a bubble in the horizontal direction,

its downward movement leads to an increase in potential energy due to

buoyancy of approximately 1
2

DqgV
ðr�D=2ÞY

2. Here, Dq is the density difference

and V is the volume of the bubble, V ¼ 4
3
pðD

2
Þ3.

Fig. 6. Variation of maximum lateral bubble displacement ymax with com-

pression D. Data points correspond to the experimental data of Fig. 4. The

solid line represents numerical data obtained from a minimization of the

energy of a chain of soft particles, Eq. (4), for a value of the force constant

ratio k¼ 2.5. At the onset of buckling, the numerical results indicate a

square-root dependence of ymax with compression.
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Fig. 6. Experimental data and results of a model simulation, for the variation of ...

with compression (dashed line).
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241 increasing compression; at this point, the doublet structure
242 (with a transverse pair of spheres) becomes favourable. The
243 maximum transverse displacement associated with this
244 increases very slightly with compression, before encounter-
245 ing a further transition. Full details of this rich scenario, as
246 well as a comprehensive overview of theory and simulation,
247 are reserved for a future paper.

248 IV. COMPARISON WITH EXPERIMENT

249 Figure 6 also presents experimental data for comparison.
250 Here, the maximum lateral bubble displacement ymax

251 ¼ Ymax=D was obtained by first determining the lateral mid-
252 point of each bubble and then measuring its distance to the
253 tube axis, using the photographs in Fig. 3. (The representa-
254 tion of the buckling of a bubble chain using its width W, as
255 in Fig. 4, might be more suited in the context of a class-room
256 since it requires fewer measurements.)
257 There is broad agreement between experiment and theory
258 for k¼ 2.5. Increasing k moves the critical value of compres-
259 sion Dc towards zero, the value found for the case of hard
260 spheres (k1 ! 1).17 The theory also correctly predicts the
261 occurrence of a doublet structure (number 10 in Fig. 3).
262 We may also seek to estimate k from the relevant experi-
263 mental parameters. Setting the dimensional spring constant
264 k1 ¼ c=2,26 where c ’ 0:03N=m is the surface tension of
265 our surfactant solution, we can evaluate k ¼ k1=k2 using
266 Eq. (3). Substituting q ¼ 1000 kg=m3; D ¼ 2:3mm, and r
267 ¼ 3:35mm, we obtain k ’ 0:5, i.e., a value of the same order
268 of magnitude as the one found from comparison with numer-
269 ical data (Fig. 6).

270 V. FURTHER DEMONSTRATION EXPERIMENTS

271 The effects of buckling in a chain of particles can also be
272 illustrated using even simpler experimental set-ups.
273 Figure 7 shows an example of a buckled chain of 30 steel
274 spheres (ball bearings) in a tube, closed with two stoppers. In
275 order to reduce friction, we immersed the spheres in vegeta-
276 ble oil. Related structures can also be investigated using golf
277 or tennis balls in a perspex tube, or even in a section of roof
278 gutter, and doubtless other ingredients await discovery and
279 exploitation.

280 VI. SUMMARY AND OUTLOOK

281 We have described a simple experimental set-up, suitable
282 for the class- or lecture room, for the exploration of the non-
283 linear properties of a chain of spheres under compression.
284 The experiment demonstrates these properties, which have
285 recently led to a number of publications on nano-scale sys-
286 tems.11,12,30 The simulation method described is straightfor-
287 ward and reproduces key features of the experiment. It might
288 also lend itself to exploration in the context of a computa-
289 tional physics laboratory.

290The use of bubbles offers an additional dimension to the
291experiment, which could be explored: the effective softness
292of the bubbles is a function of their size. In the present pre-
293liminary work, we have used only a single bubble size and
294treat the softness parameter (constant k in Eq. (4)) as adjust-
295able. Note that k can also be varied by varying the cylinder
296radius.
297In previous work, we analysed the desk-top toy called
298“Newton’s Cradle”, i.e., a linear chain of contacting metal
299balls, suspended from a railing by attached strings, and thus
300subject to a harmonic confining potential, albeit in the direc-
301tion of the chain.31 As is the case in the present work, this
302system proved to be remarkably rich when analyzed in
303detail. In particular, the break-up of the line of balls follow-
304ing the initial impact is generally overlooked in physics text-
305book descriptions. It is hoped that the bubble chain
306experiment presented here, which shares with the cradle an
307economy of effort and expense, provides similar stimulation
308for students to look for non-trivial phenomena in chains of
309confined spheres.
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