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The energy of fcc and hcp foamsy
S. Hutzler, @*2 F. F. Dunne,® A. M. Kraynik®® and D. Weaire®

We present Surface Evolver evaluations of the difference in energy between face-centred cubic (fcc)
and hexagonal close-packed (hep) foams in the usual idealized model, for liquid fractions ranging from
the dry to the wet limit. The difference vanishes in both limits, and favours hcp for all intermediate liquid
fractions, as has been proven. The maximum relative energy difference is very small, of the order of
102, The asymptotic dependence on liquid fraction is non-analytic in both limits: we present explicit
expressions in both cases, derived from first principles. They have been obtained from identifying node
interactions (dry limit) and contact interactions (wet limit) as the respective sources for energy
differences between fcc and hcp. The wet limit is well described by Morse—Witten theory which has
proven to be very powerful for the analytic computation of the surface energy of slightly deformed

rsc.li/soft-matter-journal bubbles.

1 Introduction

The comparison of the energies of face-centred cubic (fcc) and
hexagonal close-packed (hep) foams has turned out to be a
stimulating testing ground for ideas and methods that are
central to the wider field of foam structures in general."™ In
the present paper we push numerical simulations to a very high
level of accuracy in order to aWdetermine such relative
energies. We offer interpretations of the most salient results,
which relate to the approach to the wet and dry limits, respec-
tively, at liquid fractions ¢, = 1 — n/(3v2) ~ 0.26 and zero. In
the wet limit this is achieved via an exploration of the Morse-
Witten theory for bubble interaction. For the dry limit we have
developed a non-analytic term accounting for node interaction
which is to be added to the established expansion of energy in
terms of liquid fraction.

The questions raised and answered for these ordered mono-
disperse close-packed structures might be considered esoteric,
since foams are typically disordered and polydisperse. How-
ever, monodisperse foams of sufficiently high liquid fraction
have been found to crystallise in close-packed structures.
Originally discovered by Bragg and Nye in 1947,* and subse-
quently ignored, this has been a subject of renewed investiga-
tion in more recent times.” ' Despite this, the topic remains
largely unexplored; the present work is relevant to its future
development.
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In the usual idealized model of a foam," illustrated in Fig. 1,

infinitesimally thin films meet threefold, with contact angle
zero, at finite size Plateau borders, which contain all the liquid.

In equilibrium, a foam has minimum surface energy; the
contribution of an element of a film surface is twice that of an
element of a Plateau border. The local geometrical/topological
rules for stable equilibrium were identified a century and a half

continuous
phase

film

Plateau border

Node

Fig.1 Elements of foam structure in the case of low ligquid volume
fraction, ¢/g’6.05. Three films meet at 120 degrees in Plateau borders,
which in turn meet under angles of arcos {—1/3) ~ 109.67° in a node or
junction, In the idealised model all liquid is contained in the Plateau border
network, i.e. the films are infinitesimally thin. (These angles are for ¢ = 0.).
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~ ago,™ and their implications for extended structures have been

debated ever since.
The calculation of the precise encrgies of 2d foam structures

—rhad to wait until the 19805 (buc a good description of the

fourfold junctions in 3d foams was given in a different context
by Nye and Frank in 1973'9).

The workhorse of this subject has been Brakke's Surface
Evolver,® which has been steadily refined, so that systems of
over a thousand bubbles can now be analysed with great
accuracy.’’ In the present paper we begin by applying the
Evolver to a particularly demanding special case, the small
difference of the energies of the fec and hep structures. We then
develop asymptotic formulae for this difference, applicable in
the vicinity of the dry and wet limits; these are consistent with
the numerical results over quite wide ranges.

Our analysis (which is equally applicable to ordered emul-
sions) breaks new ground in various respects, in order to

“isolate the higher-order contributions to energy which are

responsible for the energy difference in question. It should
stimulate further close attention to theory, but the present
application is a very specialised one and generalisation will
be difficult.

2 Hcp and fcc foams

The hep and fee structures (Fig. 2) are familiar from crystal-
lography. Each consists of a stacking of close-packed 2d layers
(ABAB and ABC in a familiar notation). In the case of hep, we
shall only consider the case of ideal axial ratio c¢/a for which all
nearest neighbour distances are equal. This is not required by
symmetry, and will be commented upon later. If bubbles of
equal volume are centred at each point of Fig. 2, a foam is
created in which the centre of mass of each bubble coincides
with the corresponding point and thin films are formed at
bubble-bubble contacts. Fig. 3 shows examples of hep and fee
foams for several values of liquid fraction ¢, generated using
the Surface Evolver, “©

At ¢ = 0 (dry foam) both fee and hep structures are unstable,
as they do not conform to Plateau’s rule, which requires there

Z

Fig. 2 Arrangement of points (in this case, centres of bubbles) in the face-
centred cubic (fcc) and hexagonal close packed structures (hcp). The
diagonal in this representation of the fcc lattice is the vertical axis in the
hep structure. We have also indicated the positions of a fourfold and an
eightfold junction (node) of Plateau borders, placed respectively in the
centre of a tetrahedron or octahedron. (See the discussion in Section 5.2.).
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Fig. 3 Examples of bubbles generated using the Surface Evolv?ié
monadisperse foams, arranged in (top) fcc and (bottom) hep structures.
They are shown (left to right) at the dry limit, ¢ = O (where the bubbles are
rhombic (fce) or trapezo-rhombic (hcp) dodecahedra, although with same
slightly curved interfaces), at ¢ =004, at ¢ = 011 and at ¢ = 0.25, close to
the wet limit.

to be only four-fold vertices for stability. However, in Surface
Evolver computer simulations the eight-fold vertices which
oceur in both fee and hep foams have been found to be stable
for values of ¢ as low as 0.000278 (a result which disproved
the earlier conjecture that a symmetric eight-fold vertex would
be stable for any finite value of liquid fraction®). We shall
ignore this instability in the present work. A higher, but still
very small value of about 0.003 was found in microgravity
experiments.2°

Examples of monodisperse dry foams which adhere to
Plateau’s rules at ¢ = 0 are the Kelvin structure®?? and the
Weaire-Phelan structure.??2*

3 The wet and dry limits
-generated images “of=bubbles

cp, for four different values

Fig. 3 shows Sur
arranged respectivel
of liquid fractiem.

In the wet limit, the bubbles talke the form of perfect spheres

b
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(radius R) in contact, so that the energy per bubble is
(% 753) ,

E, = 4myR?, (1)

where y is surface tension. In this case the energies of both fee
and hep are obviously equal. In the dry limit this is also self-
evident, that is, the total areas of the plane faces of the
polyhedral bubbles is the same for fee and hep, see Fig. 4.
But how do the energies E(¢) compare for a general value of
liquid fraction ¢?

Whyte ez al.*® gave a rigorous proof that the fec structure
cannot have a lower energy than hep for any liquid fraction,
using a variational argument. Having established this, the
question remains: what is the magnitude of the energy differ-
ence, favouring the hep structure?

This journal is @ The Royal Society of Chemistry 2020
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Fig. 4 In the dry limit (¢ = 0) a bubble in an fcc foam takes the form of a
rhombic dodecahedron (solid lines, left). Reflection of its top half in the
indicated dividing plane results in the trapezo-rhombic dodecahedron ofa
bubble in a hep foam (solid lines, right) with the same total surface area
(energy). For a finite value of ¢ the same operation transforms an fcc
bubble (shaded bubble, left, here for ¢ ~ 0.125) into a trial solution for an
hcp bubble (shaded bubble, right). Its surface area can be relaxed (for fixed
bubble volume), resulting in a hcp bubble of lower energy than the fcc
bubble; for details see ref. 25,

4 Computed energy difference for all
liquid fractions

The Surface Evolver was used to calculate the energy of fcc and
hep foams for liquid fractions 0.01 < ¢ < 0.25 and bubble
volume set to unity. The Surface Evolver input files were
generated by taking the dry structures shown in Fig. 3 and
applying the command, wetfoam2.cmd, to replace cell edges
with primitive Plateau borders, Ze. the liquid-filled channels
with triangular cross sections and flat faces, to be subsequently
relaxed. High accuracy was achieved by refining the triangular
mesh six times, taking a large number of iteration steps at each
level of refinement, and using quadratic facets for the last three
levels. This procedure typically produces foam energies with
absolute accuracies of about six decimal places.

The fee structure has cubic symmetry, which guarantees
isotropic stress and minimum energy; however, the hep struc-
ture only has hexagonal symmetry which does not guarantee
isotropic stress (that is, in equilibrium the axial ratio does not
have to take its ideal value). The magnitude of stress anisotropy
was evaluated by calculating the stress of the hep foam for ¢ =
0.11, where the energy difference between hep and fec is
greatest. The stress became isotropic when the distance
between bubble layers was decreased about 0.03% (for ¢ =
0.11); however, this resulted in an energy decrease only in the
seventh decimal place. Consequently the stress anisotropy of
the hep foam structure is relatively insignificant and the ideal
axial ratio is imposed in all of these calculations, and what
follows. Of course, according to the variational principle, the
energy difference can only increase if this restriction is relaxed.

Fig. 5 presents results for the energy difference between fcc
and hep over the full range of liquid fraction, ¢, in the form of
the dimensionless quantity (Eg..(¢) — EBhep(9))/E,. This energy
difference is a very small quantity (with a maximum of about 9
x 107 for ¢ ~ 0.11), compared with the total energy of either
structure (which has a maximum value of E(¢ = 0)/E, ~ 1.1).

A close examination of Fig. 5 will detect an approach to zero
energy difference which flattens out markedly in both wet and

This journal is © The Royal Socisty of Chemistry 2020
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Fig. 5 Energy difference between fec and hcp foams as a function of
liquid fraction ¢. The blue data points are computed using the Surface
Evolver Software. The black squares mark the dry and wet limits, when the
difference is zero. Note that close to both limits the energy difference
flattens out markedly. In the wet limit bubbles have radius R and energy
4nR?*: note the normalization.

dry limits. This appears inconsistent with any simple power-law
dependence.

5 Approach to the wet and dry limits

In order to shed some light on all of this we have concentrated
on analyzing the limiting form in the vicinity of the wet and dry
limits. In both cases asymptotie expressions for the difference
will be developed. They are quite different but are both non-
analytic, as the data suggests.

5.1 Wet limit

Close to the wet limit, contacting bubbles are deformed, modify-
ing their spherical shapes, with the formation of thin films at the
contact points; in fee and hep every bubble has 12 contacts.

Any theory that treats the contributions of each contact inde-
pendently with a simple pairwise potential between representative
points, dependent on their separation (as some ad hoc heuristic
models have done in the modelling of foam properties) would yield
zero for the hep-fee energy difference, We shall see that the relative
orientation of contacting neighbours in the two cases is the source of
the difference, in the wet regime. This dependence is far from
obvious, and only comes to light when we adduce the theoretical
method of Morse and Witten.”® It was developed specifically for
foams (or emulsions) close to the wet limit. Until recently, this
remarkable development has not been well appreciated or under-
stood and it has hardly been applied at all. Héhler and Weaire®”
have provided an exhaustive interpretation and explanation of the
method and its justification, which may stimulate its wider use.

The first experimental confirmation of Morse-Witten theory
appears to be that by Ginot et al*® who measured bubble
deformation in a linear train of bubbles under gravity. The
experimental data could not be explained using a model of
pairwise interactions, but is well described within the frame-
work of Morse-Witten theory. It is also supported by Surface
Evolver simulations.

Soft Matter, 2020, 00,110 | 3
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The present problem provides a very appropriate context in
which to demonstrate the application of the theory, and the
simplicity of some of its implications, for three dimensional
foam structures,

Results derived from the theory are exact in an asymptotic
sense: that is, they give forms for force, energy, etc. that are the
leading terms as ¢ approaches the wet limit,

Remarkably, the theory shows that bubbles may be repre-
sented by points placed at their centres of mass, with central
forces acting between them.*® Crucially, each of these forces
depends on the local arrangement and magnitudes of compres-
sions of all of the contacts of the two interacting bubbles, not just
the separation of their representative points. In that sense, the
theory is “non-local”. Because hep and fee have different arrange-
ments of nearest neighbours, this dependence entails a finite
energy difference and may be applied to the problem at hand,

Although challenging in some respects, including the
appearance of logarithmic terms in the pairwise interactions,
the application of the Morse-Witten theory to the present
problem yields remarkably simple results, particularly a non-
analytic exact asymptotic form for the energy difference in the
vicinity of the wet limit. ‘

In the Morse-Witten formulation the radial displacement x; of
the surface of a bubble at a given contact { is related to the
mmagnitudes and directions of all of the forces, acting at contacts J
of the bubble, Here displacement is a negative quantity, defined as
the difference between the distance of the centre of mass to the
contact point and the undeformed bubble radius, R. For a bubble
of radius R = 1 and forces f; normalized by yR, it is given by?”3°

. =§ZIE[5+GIH(§J%>JJ?—ZG(9&')J§'- @)

J#i

Note the logarithmic term, a distinctive feature of the theory.?”
The sum is-the contribution of the “non-local” forces Jjacting at
all of the other contacts J # 1L G(8) is the Green's function,

_ 11 4 29
G(6) = _E[§+§COSG +cosfln (sm EH, 3

to be evaluated at the angles 8 between vectors pointing from the
bubble centre to the contacts ; and /. (See Fig. 6 for an illustration
for hep and fec.)

The energy of a foam as a function of liquid fraction is often
expressed as normalized excess energy ¢(¢) per bubble,
defined as,

&(¢) = E($)/E, — 1, (4)

where E, is given by eqn (1).%*° In the Morse-Witten model this
quantity, expressed in terms of the forces f; acting at the N
contacts of a bubble, is given by**?7

1{ 71X 8n 4y 1 &

For any given crystalline structure, such as fee or hep, the
angles 0;; between contacts are known and thus G(0) is readily
evaluated.

4 | Soft Matter, 2020, 00, 1-10
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Fig. 6 Sketch showing the nearest neighbours of the central point for hep
and fcc. The energy difference between the two structures is due to the
difference in angles 6, between neighbours above and below the hor-
izontal plane containing the central paint,

We will in the following show how eqnr(2) and (5)
can be employed to compute ¢(¢) as a function of liquid
fraction for both fee and hep, using the Morse-Witten model
for displacements x; that are the same for all contacts (x; = x).

The displacement x and liquid fraction ¢ are related by

1—¢ 1
=4, "0+ &

for bubbles of spherical radius unity. The left hand side is the
ratio of gas fraction to its critical value; gas volume is constant
and total volume scales inversely with (1 +x)°.

5.1.1 Energy of fce structure. As a preliminary exercise, we
shall explore the energy of the fec structure, as given by Morse-
Witten theory.

All forces f; acting on a given bubble, are equal by symmetry,
as are the displacements x, The theory gives energy as a
function of f; eqn (5), but we wish to know it as a function of
x (hence ¢).

From eqn (2), and evaluating G(t), eqn (3), at the 11 angles

; 2 ’ ; g
0y for fee (g (4 times), —;—t (4 tlmes),g (twice),  (once)) we obtain
the displacement x(f) at each contact,

x(f):%(ln{—n+5—21n3). (7)

This may be formally inverted by using the lower branch of
the Lambert W function (resulting in f(x) = 4nx/Ww_, (e°x/18));7
however, this will be avoided in what follows.

For force f « 1 the following asymptotic form can be
obtained from egn (7)*”

4nx

iy “

xpression for normalized excess energy as a function of
for(f:@ﬁobtained from eqn (5),
3
ere(f) = ggf!(ﬁ In/—11/24+mn8+1n9 +Inx). (9)

Inserting the asymptotic expression (f < 1) for f(x) (eqn (8)
results in

x(¢)

(@)} (1)

Efce (¢) ~ =6

This journal is ® The Royal Society of Chemistry 2020
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Fig. 7 Normalized excess energy &(¢) (egn (4)) as a function of liquid
fraction for an fcc foam in the wet regime, The thick solid line is obtained
from a parametric plot of the parameter-free Morse—Witten model; data
points are from numerical calculations using the Surface Evolver. The thin
solid line is the asymptotic form, eqn (10), cbtained from the Morse—
Witten model. The wet limit is marked by a black square. Note by
comparison with Fig. 5 that on this energy scale the tiny difference
between the excess energies of fcc and hcp would not be perceptible.

where we have expressed displacement x in terms of liquid
fraction ¢, using eqn (6). Fig. 7 shows that this asymptotic form
for the excess energy (shown as thin line) provides a good
approximation for values of liquid fraction exceeding about
0.22, consistent with the assertion that Morse-Witten theory is
asymptotically exact in that limit.

An even better agreement of Morse-Witten theory with the
Surface Evolver data for gg.(¢) is achieved by using the para-
metric expressions for ¢(x(f)) (eqn (6) and (7)) and &g.(f)
(eqn (9)). This results in a relative error less than 10% even at
¢ ~ 0.15, roughly half way between the dry and wet limits; see
thick line in Fig. 7. Note that on the energy scale displayed in
Fig. 7 it would not possible to distinguish the energies of fcc
and hep; the energy scale used in Fig. 5 is 100 times smaller.

We note in passing that the asymptotic form for the excess
energy, eqn (10), is also obtained from the Z-cone model**** for
Z=12, corresponding to the 12 contacts of an fec bubble. In the
cone model a bubble with Z neighbours is decomposed into Z
identical pieces, which are approximated as circular cones. The
cap of each cone consists of a flat disk (the area of contact with
a neighbouring bubble) and an outer part with constant mean
curvature, joining the flat disk smoothly. Within the cone
model approximation, analytic expressions of surface energy
as a function of liquid fraction can be derived.

5.1.2 Energy difference of fee and hep structure in the wet
regime. All of the contacts in the two structures have displace-
ments x; which are the same, for any given liquid fraction ¢.
However, in the Morse-Witten theory the forces f; and energies
are not the same.

A direct approach to the evaluation of this difference is
cumbersome, requiring the computation of the inverse of the
displacement-force relation mentioned above and involving the
Lambert function, etc. We have accomplished this, but in the
course of exploring the problem we encountered a simpler

This journal is @ The Royal Society of Chemistry 2020
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procedure which gives essentially identical results. This con-
sists of the evaluation of the energy difference for constant
forces f. That is, we attribute to the hep structure the same
forces f; as in the fce structure with the same displacements x;.
This gives the negative of the required result, to wu:hm a very
good approximation (see Appendix A). ( e il s W

The expression for the energy difference that—thls—gwgs 1/.«:-—

e CCRCCY)!

Only 9 elements of the (symmetric) 12 x 12 matrix of 0
contribute to the energy difference. These are the elements
related to the angles between contacts in the AC and AA layers
below and above the central bubble, as indicated in Fig. 6. The

efe (1) — enep (f) (11)

sum in eqn (11) is thus given by GG(arccm;(—é))Jr

3G(arccos(—1)) — 6G (arccos (—g)) —3G (arccos (f%)),

leading to a remarkably simple result for the energy difference,

erce(f) — encp(f) = —=(— 51n11+91n3+31n2)f (12)

16 2

The evaluation of the energy difference Ae(¢) = (Egec(@) —
Enep())/Eo, between fee and hep (as well as the direct caleyla-
tion, as mentioned above) is then obtained by combining
with the parametric expressions for the d1sp1acement—force
x(f), and liquid fraction ¢(x(f)) relationships (eqn (7) and (6),
respectively). The result is shown as a thick solid line in Fig. 8,
it is in excellent agreement with the direct evaluation men-
tioned above; moreover it supplies an analytic form in terms of
liquid fraction, given below. Agreement with the Surface Evol-
ver calculations is good, as Fig. 8 shows.

An asymptotic expression for the energy difference Ag(¢) is
obtained from eqn (12) using the asymptotic form for f(x)

(eqn (8)), together-with-eqa-{6)—

x(¢) T
In[—x()]

with displacement x(¢) given by eqn (6). This again provides a
good estimate of the energy difference for ¢ exceeding about
0.24, as shown by the thin line in Fig. 8.

Having identified the source of the variation of energy in the
wet limit, we will now turn to the dry limit, where an entirely
different approach is required to identify the sources of the
small energy differences between fce and hep.

Ae(¢p) ~ (5In11 —9In3 — 31112){ (13)

5.2 Dry limit

5.2.1 Energy expansions. In the vicinity of the dry limit,
where the bubble shapes are approximately polyhedral, succes-
sive contributions to the energy have been identified in the past
as associated with elemenfs of the structure (faces, borders and
junctions or nodes)yFig. 9 illustrates the structural elements
using two-dimensiénal sketches. The contribution of Plateau
borders of finite width, and the further correction due to their

Soft Matter, 2020, 00,1-10 | 5
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Fig. 8 Normalized energy difference Ae(¢) = (Erecld) — Encpld)/{4nyR?)
between fcc and hcp foams as a function of liquid fraction ¢ in the wet
regime, The blue data points are computed using the Surface Evolver
Software while the thick red solid line is an analytic expression resulting
from the Morse—Witten model (i.e. a combination of egn (6), {7) and (12)).
The thin red line is the asymptotic form, given in egn (13). The black square
marks the wet limit where the energy difference vanishes.

swollen nodes (Fig. 1 and 10)*** lead to an expression of
energy per bubble as a function of liquid fraction ¢ of the form
E(QS)J"ED = Edry o E1¢1/2 + E2¢'; (14)

where Eqy, E; and E, are numerical constants (given in $2.3 and
S2.1 for different foam structures, ESIf) and E, is the surface

“energy of a sphere with radius R (see eqn (1)) We have already

noted that the first term, which survives in the dry limit (¢ = 0),
makes no contribution to our problem. Nor does the second, as
can be seen by examining Fig. 4. That is, the total line length is
the same for our two structures.

area%
vertex pointf

Fig. 9 Origins of the various contributions to the energy of a foam in the
dry limit, as expressed by eqn (14). E4y, corresponds to the total film area.
This is reduced by Elq&”z due to the presence of Plateau borders of finite
width, here represented as thickened lines. The presence of a vertex at
their intersection leads to a further energy correction which varies linearly
with ¢ in the case of a single vertex. The energy difference between fcc
and hcp requires the consideration of an additional correction, see Fig. 11
and eqgn (23).

line length

6 | Soft Matter, 2020, 00, 1-10
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Fig. 10 Surface Evolver simulations showing part of a single Plateau
border connecting two nodes and a fourfold node in a relatively dry foam
(in the Kelvin structure). The cross-sectional area of the Plateau border is a
function of longitudinal position x; it increases as a node is approached.
Away from the node the Plateau border radius r{x) is given by egn (15) and
(18).

We come next to the node term. In the present case there are
two kinds of nodes, namely fourfold and eightfold, as indicated
in Fig. 2. The numerical constant E, of eqn (14) was first
caleulated by,*® applying the Surface Evolver to a single four-
fold node with attached Plateau borders of finite length and
taking this length to infinity by extrapolation. A more accurate
value was determined by Koehler et al.?® Again, a contribution
from nodes which uses such an isolated constant fails to
account for the energy difference in question: fcc and hep have
the same number of vertices, of the same types.

One might expect that the above expression, eqn (14), can be
further extended into a series in ¢'?, with the next and possibly
crucial term coming in as proportional to ¢*?, but this is
illusory. Instead a subtle non-analytic form for the next correc-
tion is required. It represents the effect of the finiteness of the
length of individual Plateau borders: in a sense the nodes
interact with each other for finite ¢; see the sketch in Fig. 11.
Those interactions depend on the separations of the nodes, i.e.
the Plateau border lengths which are different in the two
structures, so at last a source of energy difference emerges.
We proceed to estimate it.

Close to the dry limit, each Plateau border has a relatively
small and smoothly varying cross-section as in Fig. 10, except
where it merges with a node. We may describe it as having the
same concave triangular cross-section as that of a uniform
border, but with varying area, or radius of each of its three
cireular ares. That is, the cross-sectional area A(x) = ¢r*(x) is 2
function of position x, along the Plateau border, where r(x) is
the local Plateau border radius and ¢, = v/3 — /2 is a geome-
trical constant." In the following we write

This journal is ® The Royal Society of Chemistry 2020
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Fig. 11 Our analysis shows that the energy difference between fcc and
hcp is due the different separations of their Plateau border nodes, since
their contributions to the total energy are not quite independent. This

+= results in an additional exponential term in the energy expansion of
eqn (14), shown in egn (23).

r(x) = ro(1 + 8(x)). (15)

We will determine the appropriate form for 8(x), treated as
small. Close to the dry limit this will be a good approximation
along most of the length of the border, but it necessarily fails at
the ends where borders are merged into a node. This point will
require careful consideration in due course; see also the com-

“ ments in S1 (ESIT)\‘

For small 3(x) the Laplace-Young equation (equating local
curvature with the constant pressure difference across the
surface of the Plateau border) take;b&im of the linear differ-

]
=

ential equation

/

2 / ;-"/
d*6(x (16)

) (erro)28(x),

[2
where ¢; = Tg-— 1 ~0.39.

This has the elementary solution

5(x) = aexp {i] + bexp {—c:‘—m} : 17)

C1ro

For the single isolated node described above, where x is the
distance from the node, a = 0.

For a Plateau border connecting two nodes, both prefactors
are non-zero. If the two nodes are identical, the swelling of the
Plateau borders is described by a cosh function. (This situation
is reminiscent of the catenoid shape of a soap film formed
between two parallel wire rings.?”)

To our knowledge, this description of varying Plateau border
| /,-’cross~section has not been used before, so we provide a
relatively simple illustrative example in S1 (ESIf). This is the
case of the Kelvin (bcc) foam, in which 'all nodes are identical
(and fourfold) and all Plateau borders are of equal length. (They
Y ' are slightly curved, which we shall ignore.) Included in 51 (ESTH)

“__—"are Surface Evolver calculations, for comparison with the
approximation advanced here.

More generally, for a Plateau border connecting two nodes
(which may be of different types), separated by a distance L, one
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obtains ' i

x—L x
— ] + fexp [—m]. (18)
We refer to these dimensionless numbers, « and f as node 2
constants, #——
.~ Much of the difficulty of applying this to the estimation of
“energies lies in the specification of the node constants (see also
§1, ESIf)./Using the functional form for the Plateau border

profile, eqn (15) and (18), allows us to obtajn’a functional form
74;-{ the energy of a foam, =3 7~ /F«

In order to relate Plateau border radlius to liquid fraction ¢
we will use the lowest order expression ¢ = Mgroz, where L, is
the (foam structure dependent) total length of the Plateau
border network per volume of the foam. This approximation
is valid in the vicinity of the dry limit, when the contribution of
the swelling of the Plateau border to the total liquid content
maybe neglected (i.e. r(x) ~ r, throughout). In the following we
will rewrite this as

3(x) = ccexp[

& = Aeg(ro/L)?, (19)

with 1 a structure-dependent dimensionless constant. _—
Consider first the approximation of a Plateau border as

channel of length L and uniform cross-section (i.e. d(x) = 0

located at the intersection of three films, as illustrated in Fig. 1.

This results in an area reduction per Plateau border by
(20) /

Together with the scaling L o< /¢, eqn (19), we obtain the 30
form of the first energy correction term in eqn (14), and no_ ‘
contribution to the fce-hep energy difference. S

This overestimates the energy reduction since such straight
channels overlap at the nodes. A (positive) correction to this is
obtained by estimating the surface area contribution Any, 4(ro) 35
of the two nodes (with node constants « and f) associated with
each channel of length L as

Aap(ro) = — (2\/?: - TE) roL,g

\

(21)

Ay op(r0) = (23— n)rg.[:é(x)dx,

Inserting for d(x) (eqn (18)) and integrating results in

Bnsagin) = (2V3 =)+ ) (1 - exp| ] ). @2)

Note that in the limit of . — oo this node correction is
proportional to liquid fraction ¢; it provides the second correc-
tion term in the energy expansion of eqn (14). The finite Plateau
border length adds to this an additional exponential term.

For a foam structure such as fee or Kelvin, where all Plateau
borders have the same length, one then obtains the following
expression for the energy per bubble, ;/

B(¢)/Bo = By — B9 + Bap(1 — exp[ -3 /\/9]). (23)

a3
(=

%

w
n

The numerical constants E,, E; and E, all depend on the type
of foam structure. In S2 (ESIT) we show that E; and E; are
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Fig. 12 Excess energy E(¢)/(4nR%)) — 1 of an fcc bubble as a function of
liquid fraction ¢. The black line is a one-parameter fit to the dry limit
energy expansion, egn (23), resulting in ¢ + § ~ 1.3. The red line is the
energy expression from the Morse—Witten model, shown also in Fig. 7. {On
this energy scale the tiny difference between the excess energies of fcc
and hcp would not be perceptible, cf. Fig. 5.).

readily estimated from geometry, only E, also involves the a
priori unknown node constants « and f, which need to be
determined from least-square fits to either energy as a function
of liquid fraction, or Plateau border profiles. Fig. 12 demon-
strates the validity of this energy expansion, eqn (23), for an fee
/foam. (See Fig, S2, ESIf}—im—S2—for its application to a
elvin foam.)

We will in the following show that it is the presence of the
exponential terms in the energy expansion, eqn (23), resulting
from finite Plateau border lengths, which can account for the
energy difference between fee and hep.

5.2.2 Energy difference between fec and hep in the dry
limit. We will now apply the above theory to our principal goal —
the estimation of the energy difference between fee and hep,
particularly in the dry regime. As noted above, only the correc-
tions due to the nodes, given by Any, , 4(r,) per Plateau border of
length L (eqn (22)), need to be considered for this.

The detailed calculation is presented in S2.2 (ESIf). It takes
account that of the 24 edges in the hcp structure, 18 are
identical to those in fee, while 3 edges have an « node at each

4
end and length §L, and the remaining 3 edges have a f node at

2
each end and length EL'

This results in the following functional form for the energy
difference between fce and hep as a function of liquid fraction

®,
(Erec(®) — Enep()) / Eo = Eacpexp [*Ez/\/ﬂ
{a(oxe[-£:/ (3v8)] - 1) +h(ewn[+8:/ (3v5)] 1)},
(24)

as detailed in 82 (ESI{). Here again we have used the lowest
order expression of (eqn (19)) for relating r, to ¢. The structural
constants E; and E, are readily computed as E; ~ 1.646 (see
§2.1, ESIt) and E, ~ 0.059 (see 2.2, ESIT).

8 | Soft Matter, 2020, 00, 1-10

Soft Matter

1e-05 T
) Surface Evolver simulation @
drylimrtene y expansion
= itten madel
T Be-0s | ]
L3
2 @
%
u 6e-06 ® E
8 ®
L
g 4e-06 | ®
£ ©
e
>
g 2e-06 »
£
L)
o . . L
0 0.05 041 0.15 0.2 0.25

liquid fraction ¢

Fig. 13~ Analytical estimates of the energy difference between fcc and
hep. Th%iis the dry limit energy expansion of eqn (24), for o ~ 0.82
and f ~ 0.2 r combinations are possible but describe the data over a

more limited range in liquid fraction. The red line is the result from the
Morse—-Witten model, as shown also in Fig. 8.

Values for the two node constants « and S can then be
obtained from a least squares fit of the numerical Surface
Evolver data to eqn (24). Fig. 13 shows that a two-parameter
fit, resulting in « =~ 0.82 and f ~ 0.2, provides an excellent
description of the numerical data for liquid fraction up to about
0.12. However, the values of the fit parameters are highly
dependent on the range over which the data is fitted.

In Table 1 we summarize our preliminary estimates of the
node constants « and f as obtame from least square fits of
numerical data. More accurafe/data would be required to

extract data from Plateau borders Wﬂd hep
: o~

structure ;

6 Conclusion

We have described two separate exercises that provide asymp-
totic estimates of energy in the respective limits of dry and wet
foams, directly applicable to the very small energy differences
under study, with satisfactory results. Together, they give a
good account of the magnitude of the very small energy
difference between fee and hep. There is room for improvement
in various details, but the analytic forms that have been
identified are convincing, when compared with the Surface
Evolver calculations.

Both theories depend on the particular features of this
problem: no easy generalisation to other structures presents
itself. That is, we do not claim to be able to formulate a general

Tablel Summary of values for node constants « and f, together with the
respective sources for their estimates

method () B (@+p) a+p
Kelvin, energy, Fig. S2 0567 X —-*
KelvingPtateau border profile, Fig. 81 0.9 =% = —
Kelvin, liquid fraction, eqM 0.75 = s
fee, energy, Fig. 12 — == 1.3 —
Energy difference fee/hep, Fig. y 0.82 02 — 1.02

= - -—
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1 theory of foam energies to higher order than eqn (23). Never-
theless the success of these analyses may provoke similar
theories for small effects, where the cruder theory is
inadequate.

5 Experiments with monodisperse bubbles of a few hundred
um in diameter have shown that these crystallize sponta-
neously, with a roughly 2 to 1 preference of fee over hep.”®
While this appears to be conflicting with our analytical and
numerical results showing that fec is the higher energy struc-

10 ture we should stress that the relative energy difference is less
than 0.001% percent:The experimentally found preference for

\J___fcc may be due to @Qlydmdynamic effects involving the

/ mechanical stability of striicsures during the formation of the
crystalline structure.*®

15 From a theoretical perspective our results also demonstrate

the usefulness of the Morse-Witten model of deformable
bubbles as a promising analytical alternative to the computa-
tional modelling of crystalline foams and also emulsions,
which show many analogies.*®3® Crystalline foams have
20 recently attracted attention as excellent candidates for self-
organised photonic networks (‘Phoamtonic design’), particu-
larly the Kelvin and Weaire-Phelan structures, featuring large
bandgaps.*’
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A Proof for AE; = —AE,

30
Here we will give a general derivation of the result required in
5.1.2, relating the energy difference under the condition of
constant forces to that under constant displacement. It is more
transparent than a more direct and detailed one.

A8 Consider a set of forces f; (column vector f) and corres-
ponding displacement x;, The forces depend linearly on the
displacements,

o Y - . g

\ x f=Mz x= MY, (25)

“U where M is a matrix (not necessarily a scalar: each force
depends on more than one displacement).

The energy may be written as r 2
1 -
E=_3TM"'f (26)

45 2 -
or

~ l"T s = »
E :Ef M i A (27)

50 Let M have the form

M= M, + M,, (28)

with M, = A, where T is the unit matrix and } is a scalar. The
elements of M; are small compared with ],

Consider a change AM; of the matrix M, which represents
the “non-local” coupling of all forces and displacements. Using

o
5]
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eqn (26) and (27) the consequent change of energy of a given |
configuration is

|

AEr = %f TAMS = 5 TAMf (gg}

for constant forces, or Pl

1 -
AE =AML
{?_J_ Zﬁ‘ ( )f (30)

5

for constant displaeement. 7 *
Here M ' = (U + M) ~ J7YI — 17'M,), so that A(M ™) ~

1 5
—A7%AM;. Inserting into eqn (30) gives AE, = 7511*255 TAM\f.
[

AL = -~ T 4% 415

(31)
the change in energy under the condition of constant forces or
condition of constant displacement have opposite signs.

In the present case, the leading term in the Morse-Witten
x[f) relation, eqn (2), must first be linearised (discarding the
constant}, producing the term AI above, while the seond term
M; is the matrix representation of the term involving Gy. The

approximations involved are very good beause the latter term is
small compared to the first, in the Morse-Witten relation.

To lowest order x =7, resulting in

o - i

‘ AEf = —AEK,

| o]

ba
¥
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