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Omnidirectional video (ODV) is a recent imaging technology, which is currently getting

increasingly popular thanks to its ability to create an immersive and interactive viewing

experience. Nowadays, viewing ODV is becoming affordable and easy, thanks to relatively

cheap head-mounted displays and the possibility to view ODV with widespread devices

like smartphones and tablets. Moreover, the ODV technology has reached a level that is

mature enough to attract content producers.

Even if the ODV technology has reached an adequate level of maturity, it is still devel-

oping. There are several challenges during ODV production that can introduce artifacts

in ODV even with the current technology. Moreover, for the coding and transmission of

ODV, the current solutions could be further developed and improved.

Therefore, the objective of this thesis is to develop technologies that can help to im-

prove the quality of ODV and be applied during ODV production and for the development

of better coding and transmission methods. Three research areas characterize this thesis:

vi



artifact detection, artifact correction, and quality assessment.

Regarding artifact detection, we propose a general framework that extends artifact

detection methods for stereoscopic 3D (S3D) standard images to S3D omnidirectional

images (ODI), which can be used by artists in the post-production workflow in order to

optimize the quality. Moreover, methods for the detection of two common artifacts in

S3D ODIs, namely color and sharpness mismatch, are also proposed. For the evaluation

of the artifact detection framework, a new dataset of S3D ODIs with visual attention data

was created.

For the second research area, i.e., artifact correction, the thesis proposes three different

solutions for the correction of color mismatch. One solution is based on traditional visual

computing techniques, and the other two solutions are based on deep learning. The

evaluation of these methods shows their effectiveness.

Finally, for quality assessment, a framework that extends full-reference quality metrics

for standard video to monoscopic ODV was developed. For the development and eval-

uation of the framework, a dataset of monoscopic ODVs with subjective quality scores

and visual attention data was created. The evaluation of the framework shows that it

has a better quality assessment performance than the commonly used quality metrics for

monoscopic ODV.
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Chapter 1

Introduction

1.1 Historical Context

Figure 1.1: Section of the Rotunda building in London’s Leicester Square built for the
exhibition of panoramas by Robert Barker. Figure taken from [4].

One of the first attempts to create a panoramic view dates back to 1519, when the artist

Baldassarre Peruzzi painted the walls of the Sala delle Prospettive in the Villa Farnesina

depicting a virtual space with colonnades and distant views of Rome [10]. The word

panorama, from the Greek words pan meaning “all”, and horama meaning “view”, was

invented by Robert Barker in 1787 [4]. He also became famous for his panorama paintings

that he exhibited in the Rotunda in Leicester Square in London (Figure 1.1) [11, 12], which

1



was a purpose-built building for displaying panoramas. Panoramic photography quickly

followed the invention of photography in 1839 [13]. In 1843, Joseph Puchberger patented

a 150-degree panoramic camera, while the first mass-produced panoramic camera, Al-

Vista, was released in 1898. The introduction of digital photography in the 1980s made

the creation of panoramic photographs easier. But, only in the late 1990s, panoramic

photography started to become popular thanks to the success of digital cameras and

improved editing software. In the early 2000s, the first rudimentary ODVs were made

and their popularity slowly increased throughout the decade. Since about 2015, ODV has

seen a marked increase in popularity [14]. In this year, YouTube started to allow ODV

playback, and in 2016 ODV uploads. Also Facebook launched the possibility to view ODV

on its social platform in late 2015. Moreover, in 2016, several important news outlets like

the New York Times, the Guardian, and BBC, started making ODV content regularly for

their news coverage. In 2016, even the Olympics in Rio de Janeiro were live-streamed in

ODV [4].

Figure 1.2: Omnidirectional video cameras.

Figure 1.3: Head-mounted displays.

The time of ODV seems to have come. This claim is based on two points: affordable

and capable production technology and ease of viewing [14]. Regarding the production,

in comparison to the early days of ODV, the cameras and editing tools are now much

cheaper. For the acquisition of ODV, in addition to professional cameras like Kandao

Obsidian and Insta360 Titan, there are also cheap consumer cameras like GoPro Max

and Insta360 One X2, just to name a few (Figure 1.2). It is important to mention, that

the production technology is still developing, but it has already reached a level of ma-

turity stable enough to attract content producers. Regarding the ease of viewing, as it
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was mentioned before, content sharing platforms like YouTube and Facebook together

with different media outlets have made consuming ODV commonplace and accessible

from different devices. Moreover, the viewing of ODV no longer requires costly head-

sets. The so-called head-mounted displays (HMD) are becoming increasingly popular and

cheaper (Figure 1.3). Examples of commercially successful HMDs are Oculus Quest 2,

Sony PlayStation VR, HTC Vive Cosmos, etc.

1.2 Omnidirectional Video

Projection

3600

Figure 1.4: Example of omnidirectional video.

Omnidirectional video, also referred to as 360-degree video (Figure 1.4), can be con-

ceived as a spherical video where the viewers are placed at its center allowing them to

look in every direction, differently from standard video where just a small portion of the

360-degree view is presented. ODV is intended to be viewed with an HMD that shows

only the content in the direction where the viewer is looking at. In contrast to traditional

video, ODV provides a higher immersive and interactive viewing experience. Different

from virtual reality (VR), which presents mainly computer-generated environments to

the viewer, ODV is obtained by capturing live action in the real world.

Thanks to its immersive nature, ODV can be exploited for different applications. For

example, ODV can be used in entertainment [15, 16], like for movies [17], the live streaming

of sports and cultural events [18], and also computer games [19]. Other applications

include communication [20], i.e., ODV conferencing, health care [21], and education [22].

Regarding the latter, it has been noticed that students learn better and recall more

information when they are provided with rich immersive media [4].

1.3 Challenges and Problems

The production of ODV obtained by stitching and blending together multiple views is

not an easy task, as there are many technical challenges to overcome, especially when
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capturing and post-processing in stereoscopic 3D (S3D) [23]. Some challenges are the

physical limitations of the chosen capture system, improper camera alignment, errors in

post-production or compositing, etc [24, 25]. These challenges usually introduce artifacts

that can create visual discomfort and consequently degrade the quality of experience

(QoE) [26] when watching ODV with an HMD [27, 28, 29]. Therefore, the detection and

correction of these artifacts are very important. There are already different detection and

correction methods for traditional video [30, 31, 32], which usually need to be adapted to

ODV, but there are not so many methods specifically designed for ODV.

Besides the production, also the coding and transmission of ODV represent challenges

that can be a source of quality degradation. For example, due to the large field of view

of ODV [33], higher video resolution is necessary, and consequently, also higher memory

requirements are demanded. For the development and evaluation of new solutions to these

technical challenges, like new compression and streaming approaches [20], subjective and

in particular objective quality assessment methods are necessary to ensure a high QoE.

Even though there are already quality metrics for ODV like [34, 35, 36, 37, 38, 39], these

metrics have a limited correlation with subjective quality perception.

In general, methods for traditional video cannot be directly applied to ODV. There

are two unique aspects of ODV not present in standard video that must be taken into ac-

count when dealing with ODV. First, ODV is a spherical signal, but it is usually stored in

planar 2D formats. The mapping between spherical and planar representation inevitably

introduces spherical projection distortions not present in standard video. Furthermore,

planar representations have discontinuities/borders not present in the spherical represen-

tation. Second, the field of view of ODV is much larger than traditional video, but only a

part of ODV can be viewed with an HMD. In [37], it was found that less than 65% of the

ODV area is watched by the viewers. Therefore, it is important to consider the viewers’

behavior while exploring ODV with an HMD [40, 41, 42], and to identify the ODV regions

that are most likely viewed [43, 44, 45, 46, 15], especially when assessing quality.

1.4 Research Question

Considering the challenges and problems related to ODV, and the state-of-the-art methods

for the analysis and processing of ODV, we identified three research areas of relevance for

the development and success of ODV: detection of artifacts that are introduced during

acquisition and post-production, correction of these artifacts, and quality evaluation. For

each research area, we defined the following research objectives:
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Artifact Detection

Develop methods for the detection and localization of artifacts that can be used by

artists.

Artifact Correction

Develop methods for the correction of common artifacts that can improve the quality

and reduce time and efforts in the production workflow.

Quality Assessment

Develop quality metrics that can be used for the development and optimization of

coding and transmission solutions.

The research question of the thesis, which embraces all the research objectives, is

formulated as follows:

Research Question

How to optimize the quality of omnidirectional video?

1.5 Contributions

The thesis contributions that realize the research objectives are listed here:

Artifact Detection

1. A general artifact detection framework for stereoscopic 3D omnidi-

rectional images that extends artifact detection methods for S3D standard

images to S3D omnidirectional images (ODI) based on the subdivision of the

ODIs into planar Voronoi patches, the integration of visual attention, and the

artifact visualization.

2. Two methods for the detection of sharpness mismatch in stereo-

scopic 3D images: the first is based on edge contrast and width histograms,

and the second on psychophysical data from an experiment about the percep-

tion of sharpness mismatch.

3. A method for the detection of color mismatch in stereoscopic 3D

images based on the difference between color statistics extracted from the

two stereoscopic views.
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4. A dataset with stereoscopic 3D omnidirectional images and visual

attention data gathered during a subjective experiment used for the evalu-

ation of the artifact detection framework.

Artifact Correction

1. A color mismatch correction approach for stereoscopic 3D omnidi-

rectional images based on planar Voronoi patches and a robust color

transfer method.

2. Two deep learning-based approaches for the correction of color mis-

match developed for S3D standard images and extended to S3D ODIs.

Quality Assessment

1. A general framework for full-reference objective quality assessment

of monoscopic omnidirectional video that extends full-reference quality

metrics for monoscopic standard video to monoscopic ODV based on planar

Voronoi patches and visual attention.

2. A dataset with monoscopic omnidirectional videos together with

subjective quality scores and visual attention data gathered during

two subjective experiments used for the evaluation of the quality framework.

1.6 Thesis Outline

After this introduction, the background Chapter 2 introduces the foundations of omni-

directional video and its processing pipeline. In this chapter, also two components of

some solutions proposed in this thesis are presented, namely, planar Voronoi patches and

visual attention. In Chapter 3, the contributions in the area of artifact detection are de-

scribed. The general framework for the detection of artifacts in S3D ODIs is introduced

together with the methods for the detection of sharpness and color mismatch. Also the

new S3D ODI dataset used to evaluate the framework is described. Chapter 4 presents

the contributions in the area of artifact correction, i.e., methods for the correction of color

mismatch. The contributions in the area of quality assessment are presented in Chapter 5.

Precisely, the full-reference quality assessment framework for monoscopic ODV is intro-

duced together with a new ODV dataset for the framework evaluation. This thesis finishes

with Chapter 6 where the conclusions are presented and the future work is discussed.
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Chapter 2

Background

This background chapter begins with an introduction to ODV and its processing pipeline.

This part is followed by a section about a new planar subdivision of ODV called planar

Voronoi patches, which is used in different analysis and processing methods proposed in

this thesis. In the end, there is a section about visual attention, also used in some of the

proposed solutions.

2.1 Omnidirectional Video

2.1.1 Introduction

Omnidirectional video can be explained based on the seven-dimensional plenoptic function

P [58]. This function is defined as the intensity of the light rays passing through every

location (x, y, z), at every angles (θ, ϕ), for every wavelength λ, and at every time t:

P(x, y, z, θ, ϕ, λ, t). (2.1)

Essentially, the plenoptic function represents all visual information available to an observer

at any point in space and time. In the case of ODV, we have a single virtual camera that

is moving through the 3D world capturing the light rays in every direction from the

viewpoint of the camera. ODV can then be defined as the following function:

PODV(θ, ϕ, λ, t) = P(Vx(t), Vy(t), Vz(t), θ, ϕ, λ, t), (2.2)

where (Vx(t), Vy(t), Vz(t)) is the position of the camera through time. For simplicity,

the wavelength λ can be dropped from the equation since the color information can be

represented with a 3D color space. Therefore, ODV can be defined by a three dimensional

9



(a) Correct version. (b) Approximation.

Figure 2.1: Stereoscopic 3D omnidirectional video. Red and blue rays correspond to the
rays of the left and right eye, respectively. The circles represent the position of the eyes
when the head rotates around the fixed midpoint between the eyes. Figures taken from
[5].

function PODV(θ, ϕ, t). From this function, novel views of the world from the constrained

camera viewpoint can be rendered in any direction.

So far, we have introduced monoscopic ODV, but there is also a stereoscopic 3D

(S3D) version. In theory, in order to have a correct S3D ODV, we should capture an

S3D standard video for every possible head orientation as illustrated in Figure 2.1a. This

is necessary since the eyes move on the so-called viewing circle when the head rotates

around the fixed midpoint between the eyes. In reality, an approximation is used as

shown in Figure 2.1b [59, 60, 61, 62, 6]. Instead of capturing all the light rays inside

the eye field of view at every position on the viewing circle, the approximation captures

only the rays tangent to the viewing circle. Mathematically speaking, let’s assume that

θ and ϕ are spherical coordinates as shown in Figure 2.2, and the midpoint between

the eyes is V (t) = (Vx(t), Vy(t), Vz(t)). Then, with the head oriented in the direction

(cos(ϕ), sin(ϕ), 0), the positions of the left and right eye on the viewing circle are defined

as follows:

V L(ϕ, t) = V (t) + (−sin(ϕ), cos(ϕ), 0) Dpupil/2, (2.3)

V R(ϕ, t) = V (t) + (sin(ϕ),−cos(ϕ), 0) Dpupil/2, (2.4)

where Dpupil is the interpupillary distance. Assuming that at V L(ϕ, t) and V R(ϕ, t) the

rays tangent on the viewing circle are directed according to the angles (θ, ϕ), the S3D
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Figure 2.2: Spherical coordinates (r, θ, ϕ).

ODV consists of two monoscopic ODVs, one for each eye, defined as follows:

PLS3D−ODV (θ, ϕ, λ, t) = P(V L
x (ϕ, t), V L

y (ϕ, t), V L
z (ϕ, t), θ, ϕ, λ, t), (2.5)

PRS3D−ODV (θ, ϕ, λ, t) = P(V R
x (ϕ, t), V R

y (ϕ, t), V R
z (ϕ, t), θ, ϕ, λ, t). (2.6)

S3D ODV creates a correct stereoscopic experience at the center of the observer’s view,

but increasingly incorrect to the left and right. This is not a big problem because humans

have binocular vision at the basis of stereopsis only in the central 114 degrees of the

horizontal visual field, and they usually orient the head in the direction they want to look

at. From this point, mainly monoscopic ODV is explained, but what presented can be

easily adapted to S3D ODV.

Until now, the theoretical description of ODV has been presented. Concretely, ODV is

stored as discrete samples of PODV(θ, ϕ, t). At a particular time sample t0, we have a 2D

function P t0ODV(θ, ϕ) = PODV(θ, ϕ, t0) whose 2D discrete samples are usually stored in a

2D array, i.e., in an image. P t0ODV(θ, ϕ) can be conceived as a spherical signal, and in order

to store it on a planar 2D representation, a mapping from the sphere to the 2D plane,

i.e., a spherical projection [63], must be defined. In cartography, this problem applied to

the terrestrial globe has been studied for a long time [64, 65]. There are different spherical

projections like equirectangular project (ERP), cubemap projection (CMP), octahedral

project, icosahedral projection, and custom projections like the planar Voronoi patches

presented in Section 2.2. For example, in the case of ERP, the polar angle θ and the

azimuthal angle ϕ are mapped to the vertical and horizontal axis of the 2D image plane,

respectively, as illustrated in Figure 2.3. The drawbacks of the spherical projections are

the distortion of the spherical signal, as can be seen in Figure 2.3 in the pole regions, and

the introduction of discontinuities/borders. These are important aspects that must be

11



 = 0, ... , 360φ

θ = 0, ... , 180

Figure 2.3: Omnidirectional image in equirectangular projection format.

taken into consideration when processing ODVs.

2.1.2 Processing Pipeline

Acquisition &
Post-production

Coding

Display Delivery / 
Streaming

Figure 2.4: Omnidirectional video processing pipeline.

Figure 2.4 shows the typical ODV processing pipeline, from acquisition and post-

production to display. ODV acquisition consists of sampling the monoscopic ODV func-

tion PODV, or the two stereoscopic ODV functions PLS3D-ODV and PRS3D-ODV, using a single
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Figure 2.5: Single camera capturing a stereoscopic 3D omnidirectional image. Figure
taken from [6].

or multiple cameras. In the case of a static scene, a single camera rotating around its

center of projection can be used to capture monoscopic ODIs. A single camera can also

capture S3D ODIs when it is rotated outside the viewing circle as shown in Figure 2.5.

In the case of dynamic scenes, a single rotating camera cannot be used. In this case, a

possible solution consists of a curved mirror that redirects the light rays from surround-

ing directions to the camera sensor [66]. Possible shapes of the mirror are hyperbola,

parabola, or ellipse. This solution works only for monoscopic ODV, and it does not cap-

ture rays coming from every direction, even if its field of view is usually superior to 180

degrees. Another solution based on redirecting light rays uses a fisheye lens instead of

curved mirrors [67]. The field of view of this solution is usually around 180 degrees, but by

combining two cameras with a fisheye lens, like in the camera GoPro Max, the 360-degree

field of view of a monoscopic ODV could be covered. There exists also solutions that

are based on more than two cameras. In these solutions, the cameras could be arranged

in a radial/circular setup [61, 62], like in Google Jump [61], or in a spherical setup, like

in Nokia Ozo. A problem of multi-camera solutions capturing monoscopic ODV is the

physical impossibility of having different cameras sharing the same center of projection.

A consequence of this physical limitation is the presence of artifacts in ODV, like stitching

artifacts.

During post-production, the source videos are stitched together in the best possible

way, and the artifacts caused by the technical limitations of the capture system are de-

tected and possibly corrected. Specifically, the post-production workflow consists of six

steps: 1) data ingest, 2) automatic rough stitching of camera views, 3) manual fine stitch-

ing with the removal of stitching and blending artifacts, 4) color grading, 5) editing, and

6) finishing (rendering).

After ODV acquisition and post-production, there is coding and delivery/streaming.

Compared to traditional video, ODV introduces new technical challenges especially for
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storage and transmission [20], such as higher memory and data rate requirements due

to the large field of view of ODV [33]. Existing solutions for standard video could also

be applied to ODV. For instance, Advanced Video Coding (AVC/H.264) [68] and High

Efficiency Video Coding (HEVC/H.265) [69] standards could be used for compression,

while Dynamic Adaptive Streaming over HTTP (MPEG-DASH) [70] could be used for

transmission. To be compatible with these solutions for standard video, ODV must be

stored and transmitted in planar 2D formats based on different spherical projections,

which introduce geometric distortions and artificial discontinuities/borders, as previously

explained. Ad-hoc solutions for ODV have been also developed. These solutions are

viewport-aware, i.e., they take into account the prediction of the viewport trajectory.

There are two main variations of viewport-aware solutions: viewport-dependent projection

approaches [71], and tile-based approaches [72, 20]. It is worth mentioning that MPEG-

I coding standardization [73] for immersive technologies, including ODV, is currently

underway.

The last stage in the processing pipeline is display. ODV is ideally viewed with an

HMD that shows the portion of the ODV according to the head orientation. Alternatively,

it can be viewed with flat-screen devices, like smartphones, tablets, and computers, where

the viewpoint is controlled with the finger or the mouse. The region of the ODV that is

viewed is called viewport. As illustrated in Figure 2.6, the viewer controls the viewport

with three degrees of freedom corresponding to the rotations around three axes, namely,

pitch, yaw, and roll axis. The rendering of the viewport consists of projecting it onto

the 2D planar format where the ODV is stored and computing the viewport pixels by

sampling the ODV. For the viewport projection, the relationship between the viewport

and ODV must be defined. For that, the viewport can be conceived as a plane tangent

to the spherical representation of ODV, where the points of the viewport plane and the

ODV sphere are related by gnomonic projection [74].
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Figure 2.6: Degrees of freedom of omnidirectional video.

2.2 Planar Voronoi Patches

A component of some solutions presented in this thesis is the subdivision of the ODV into

planar Voronoi patches. They can be conceived as a new spherical projection technique

characterized by low projection distortions that subdivides the ODV in a uniform man-

ner. The planar Voronoi patches were developed in order to efficiently extend methods for

traditional video to ODV by applying these methods to each patch. Alternative solutions

were considered like equirectangular projection (ERP) and the faces of cubemap projec-

tion (CMP). ERP was excluded because it is characterized by large projection distortions

and processing it could require too many computational resources (especially memory)

due to its large field of view (FoV). The faces of CMP were also excluded even if they are

characterized by less projection distortions than ERP, since they have a relatively large

FoV. Applying methods for traditional video to regions with a large FoV is not ideal in

quality assessment and artifact detection when trying to localize the regions that have a

low quality. Planar Voronoi patches are ideal to extend methods for traditional video to

ODV since they are characterized by low projection distortions, and they allow to freely

choose their number and consequently their size, which is useful in quality assessment and

artifact detection for a better localization of the low quality regions. Moreover, they also

provide the flexibility to choose their angular resolution, which is convenient in quality as-

sessment to set equal to the angular resolution of the viewer’s HMD in order to reproduce

the viewing conditions.

For the extraction of M planar Voronoi patches from a given ODV, the spherical

Voronoi diagram [75] of M evenly distributed points on the sphere is computed as illus-
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Figure 2.7: Spherical Voronoi diagram of evenly distributed points on the sphere.

trated in Figure 2.7. M evenly distributed points Pi = (xi, yi, zi) on the sphere, where

i ∈ [1,M ], can be obtained according to the following equations:

ϕi = (i− 1) π
(

3−
√

5
)
, (2.7)

zi =

(
1− 1

M

)(
1− 2 (i− 1)

M − 1

)
, (2.8)

di =
√

1− z2
i , (2.9)

xi = di cos(ϕi) and (2.10)

yi = di sin(ϕi), (2.11)

where ϕi is the azimuthal angle and di is the distance of the point from the z-axis.

The spherical Voronoi diagram defines for each input point Pi the spherical patch Πi

on the surface of the sphere ΩS that contains all the points that are closer to Pi than to

any of the other input points Pl:

Πi = {P ∈ ΩS | dS(P, Pi) ≤ dS(P, Pl) ∀l 6= i}, (2.12)

where dS(P, Pi) is the spherical distance between the point P and the point Pi, i.e., the

length of the shortest path on the surface of the sphere connecting these two points.

Notice that by using evenly distributed points Pi on the sphere, we guarantee that the

spherical Voronoi patches Πi have approximately equal size.
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For the computation of the spherical Voronoi diagram, the current solutions in the

field of computational geometry [76, 77] provide two options. The first option consists of

applying algorithms specifically designed for this problem, like Hyeon-Suk et al.’s algo-

rithm, [78]. The second option exploits the duality between the spherial Voronoi diagram

and the spherical Delaunay triangulation, and consists of solving the spherical Delaunay

triangulation [79, 80] and converting the triangulation into a Voronoi diagram. In our

case, we chose the second option [80].

After the computation of the spherical Voronoi diagram, for each spherical Voronoi

patch Πi a planar Voronoi patch Π′i is extracted from the ODV. This operation is obtained

by first positioning the plane of the planar patch Π′i on the centroid of the spherical patch

Πi tangent to the sphere. The points on the sphere and the planar patch Π′i are related

by the gnomonic projection [74], and the pixels of Π′i are computed by sampling the ODV

in ERP using bilinear interpolation. The angular resolution of each planar Voronoi patch

Π′i is defined by the pixels per visual angle, a parameter that is kept constant for each

patch.

2.3 Visual Attention for Omnidirectional Images and

Video

Human visual attention is a perceptual mechanism of the human visual system (HVS)

that represents nature’s answer to the problem of visual information overload [81]. It

allows us to selectively process the most relevant portions of the vast amounts of visual

information available to the HVS [82]. The concept of saliency map was introduced in

[83] and it corresponds to a two dimensional topographic map that denotes the saliency

of each pixel, i.e., the higher the scalar value stored in the map, the more salient the pixel

is (Figure 2.8). When analyzing and processing ODV, like in ODV quality assessment or

coding, it is useful to take visual attention into account in order to give more weight to

the regions where end-users are actually looking at, that is, regions that should have high

quality.

Visual attention modeling and saliency prediction for standard images and video is

an ongoing research topic. Good overviews can be found in [84, 85, 86, 87]. Many

computational models that focus on different visual features that motivate visual attention

towards a particular target location have been proposed for traditional 2D content in the

last 30 years. The visual features can be classified as low level features (color, intensity,

orientation) [88, 89], and high level features (face [90] and object [91] detection, image-

center prior [89]). The extracted features can be linearly combined [88] or integrated using
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(a) Omnidirectional image. (b) Visual attention/saliency map.

Figure 2.8: Example of visual attention/saliency map.

learned weights [90, 92]. More recently, models using deep neural networks have shown

impressive performance in predicting visual attention [93, 94, 95]. A recent overview of

deep learning-based methods for standard images and video is given by Borji in [87].

Visual attention for omnidirectional contents, however, is a relatively new research

area. A testbed suitable for subjective evaluations of omnidirectional content, including

the recording of eye-tracking information, was introduced in [96], while the authors of [97]

created a dataset of head movements of users watching ODVs with an HMD. In [98], a

simple approach was proposed to obtain visual attention maps by treating raw experimen-

tal head direction trajectories in omnidirectional content. The approach excludes parts

of a trajectory where the head motion is too fast to fixate the viewer’s attention and

fuses together the fixation of different viewers. Finally, Gaussian filtering is performed to

produce the final visual attention map. According to a study of the eye fixation patterns

inside the viewport presented in [99], a more correct alternative to the Gaussian filter for

the weighting of the viewport trajectories is represented by a distribution with a donut

shape positioned at the viewport center. The authors of [100] estimated visual attention

maps for ODIs viewed with HMDs, when the use of an eye tracker device is not possible.

They collected viewport data and proposed a new method to transform the gathered data

into visual attention maps. They also proposed a method called Fused Saliency Maps that

adapts saliency models for traditional images to ODIs. In [45], four different methods for

the computation of visual attention maps from eye-tracking data are compared.

In [101], a visual attention model for cylindrical ODIs was proposed for visual robot

navigation. The authors of [102] presented a spherical saliency model to compute saliency

maps by fusing together static features (intensity, chromatic, and spherical orientation),

that are themselves obtained through multiscale analysis on the sphere. In [103], the

authors extended their work and presented a computational model of dynamic visual

attention on the sphere which combines static and motion features in order to detect

salient locations in omnidirectional image sequences while working directly in spherical

coordinates.
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More recently, a first attempt to attract attention to the problem of creating and

predicting saliency maps for ODIs was presented in the Salient360! Grand Challenge at

the ICME 2017 conference [104], where head- and eye-tracking ground truth data was

given in the form of saliency maps [99]. In [105], the authors fine-tuned traditional image

saliency prediction to ODIs by subdividing the ODI into undistorted patches and pro-

viding a convolutional neural network (CNN) with the patches together with spherical

coordinates for each pixel in the patches. Recently, SalGAN [95], a generative adversarial

network for saliency estimation in traditional images, was extended to ODIs obtaining

SalGAN360 [106]. Another deep learning-based solution called CubePadding360 was pro-

posed by Cheng et al. [107]. Differently from the previous solutions, CubePadding360 was

developed for ODV instead of ODIs, and it was trained in a weakly supervised manner.

Moreover, Xu et al. [108] created a large-scale eye-tracking ODV dataset and developed

a model that predicts where the viewer will look at an upcoming time based on ODV

content and the past gaze positions.
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Chapter 3

Voronoi-based Artifact Detection in

Stereoscopic 3D Omnidirectional

Images

3.1 Introduction

The production of omnidirectional video is not a simple task due to technical challenges

that can introduce artifacts and degrade the quality. Therefore, the detection of artifacts

is an important aspect of quality control. This chapter deals with artifact detection,

and our ultimate goal is to provide algorithms and tools for automatic detection and

visualization/highlight of artifacts in order to give automatic feedback to artists and

reduce time and efforts in the post-production process. To our knowledge, there is no

scientific publication in this area except for ours, and thus this is an open research field

that we believe of high importance.

In this chapter, a general framework for the detection of artifacts in S3D ODIs is

proposed, together with two methods for the detection of sharpness mismatch (SM) and

one method for the detection of color mismatch (CM). A dataset of S3D ODIs that

was created for the evaluation of the artifact detection methods is also presented in this

chapter. Most of these contributions were published in [48, 49, 50, 53].

3.2 Background

The common artifacts introduced during the production of S3D ODV can be organized

into three categories: binocular rivalry issues, conflicts of depth cues, and artifacts that

occur in both monoscopic and stereoscopic 360-degree content production [25, 47]. Binoc-
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Table 3.1: Binocular rivalry issues in stereoscopic 3D omnidirectional video.

Artifact/ Issue Characteristics Caused by

Geometrical mis-
alignment

Improper (vertical) alignment of left
and right images

Cameras or lenses not properly aligned

Tilting head or changing yaw while looking at the pole
caps with an HMD

Luminance/
color mismatch

Difference in hue, saturation and/or
intensity between left and right
image

Cameras not properly matched (e.g. different aperture)

Varying lighting conditions at different camera loca-
tions

Visual mismatch Reflections, lens flares, polarization

Contamination

Missing or different objects in one of
the views

Varying lighting conditions at different camera loca-
tions

Contamination due to environmental conditions (e.g.
rain, dust, etc.)

Compositing errors in post
Depth of field/
sharpness mis-
match

Difference in sharpness or depth of
field

Different aperture settings of cameras

Focal length of cameras not properly matched

Synchronization Left and right image sequences are
not synchronized

Cameras are not synchronized/ gen-locked

Editing errors in post
Hyperconvergence/
hyperdivergence

Objects are too close to or too far
from the viewer’s eyes

Too much negative or positive parallax between left
and right image

Pseudo-3D Left and right images are swapped Swapped images in HMDs

Editing error in post
Ghosting Double edges of objects Stitching and blending artifacts in post

ular rivalry issues are present when there is a misalignment between the left and right

stereo images (Table 3.1). An example of a common binocular rivalry issue is color mis-

match (CM), which occurs when the color of an object in the left image is different from

the color of the same object in the right image (Figure 3.1a). Another example is sharp-

ness mismatch (SM), which occurs when the sharpness of a region in the left image is

different from the sharpness of the same region in the right image (Figure 3.1b). On

the other hand, depth conflicts are present when different depth cues used by the human

visual system are conflicting (Table 3.2). The depth cues are categorized in monocular

when they require the input from just one eye, such as perspective, motion parallax,

Left View Right View

(a) Color mismatch.

Left View Right View

(b) Sharpness mismatch.

Figure 3.1: Examples of artifacts present in stereoscopic 3D omnidirectional video.
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Table 3.2: Depth conflicts in stereoscopic 3D omnidirectional video.

Depth conflict Characteristics Caused by

Vergence vs.
accommodation

Eyes accommodate on screen plane but converge or
diverge on objects in front or behind the screen plane

Parallax between objects in the left
and right view

Stereopsis vs.
interposition

Foreground objects are occluded by background objects 3D compositing errors in post

Accommodation
vs.
depth of field

Eyes accommodate on screen plane but scene or part of
scene is out of focus

Wide aperture of cameras

Stereopsis vs.
(aerial) perspec-
tive

Monocular depth cue ”perspective” or ”aerial per-
spective” does not match with binocular depth cue
”stereopsis”

3D compositing errors in post

Stereopsis vs.
motion parallax

Motion of objects does not match with their distance 3D compositing errors in post

Stereopsis vs.
size

Relative or familiar size of objects does not match with
their distance

3D compositing errors in post

Stereopsis vs.
light and shading

Distance or shape of objects does not match with their
shadings

3D compositing errors in post

Stereopsis vs.
texture gradient

Texture gradients are not in line with the descending of
depth in the scene

3D compositing errors in post

Table 3.3: Artifacts in both monoscopic and stereoscopic 3D omnidirectional video.

Artifact/ Issue Characteristics Caused by

Stitching artifacts Visible seams and misaligned/ bro-
ken edges

Improper camera arrangement

Registration and alignment errors in post
Blending artifacts Visible color and luminance mis-

matches of regions within an ODI
Varying lighting conditions at different camera loca-
tions

Compositing errors in post
Warping artifacts Visible deformations of objects Improper camera arrangement

Registration and alignment errors in post
Wobbling artifacts Unsteady scene appearance over

time
Temporal inconsistent stitching of camera views (non-
stabilized image sequences)

interposition, etc., and binocular when they require the input from both eyes, such as

convergence, stereopsis or retinal disparity. An example of depth conflicts is stereopsis vs.

interposition, which occurs when foreground objects are occluded by background objects

due to 3D compositing errors in post-production. The third category of issues includes

the artifacts that are present only in ODV, like stitching or blending artifacts (Table 3.3).

These artifacts occur only in multi-camera systems used for panorama capture.

Over the last years, binocular rivalry issues and conflicts of depth cues have been

investigated in detail for standard S3D content, e.g. for cinema screens [25, 28] and 3D-

TV [27, 109], and more recently for omnidirectional S3D content for HMDs [110]. Many

publications focused on the assessment of 3D quality in terms of subjective and objective

quality evaluation. In [111], the authors investigated with subjective tests how viewer

annoyance depends on various technical parameters such as vertical disparity, rotation

and field-of-view mismatches, as well as color and luminance mismatches between the

views. In [112], a stereo camera distortion detecting method based on statistical models
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was presented in order to detect vertical misalignment, camera rotation, unsynchronized

zooming, and color mismatch in native S3D content. The authors of [113] introduced a

full-reference quality assessment metric for stereoscopic images based on the perceptual

binocular characteristics. The proposed metric handles asymmetric distortions of stereo-

scopic images by incorporating human visual system characteristics. Moreover, in [114]

another full-reference metric was presented that evaluates a large variety of measures and

that takes 2D picture quality, binocular rivalry, and disparity map degradation into ac-

count. The authors maximized the correlation with the mean opinion score (MOS) by

using linear regression.

In this chapter, however, the goal is to support the artist by giving direct feedback

regarding S3D quality during post-production. Thus, full-reference quality metrics can

not be applied in this context. In [115], the authors explored the relationship between

the perceptual quality of stereoscopic images and visual information, and they introduced

a model for binocular quality perception. Based on this model, a no-reference quality

metric for stereoscopic images was proposed. The proposed metric is a top-down method

modeling the binocular quality perception of the human visual system (HVS) in the

context of blurriness and blockiness.

A large variety of artifact detection methods, including sharpness mismatch (SM) and

color mismatch (CM) detection methods, were introduced in [30, 116, 117]. For SM, the

three papers proposed approaches that first apply dense disparity estimation, and then

analyze high-frequency differences between both views [30], or estimate and compare a

simple blur model between corresponding patches [116], or analyze differences of edges

using a gradient-based approach [117]. Liu et al. [31] presented an automatic no-reference

approach for measuring the probability of sharpness mismatch (PSM). This probability is

estimated by measuring width deviations of edge pairs in different depth planes in both

views. They demonstrated that the proposed metric outperforms the state-of-the-art S3D

quality metrics that analyze SM between stereoscopic views.

For measuring in-picture sharpness, different metrics have been developed. In [118], a

new perceptual no-reference image sharpness metric based on the notion of just noticeable

blur (JNB) was introduced. The proposed metric is able to predict the relative amount of

blurriness in images with different content. An ideal metric is the cumulative probability of

blur detection (CPBD) metric [119], as it outperforms most other no-reference sharpness

metrics on Gaussian blur. It was developed based on human blur perception at different

contrasts.

For CM, the authors of [30] use the results of the disparity estimation to reconstruct

one view from the other and compare the colors from the original and the reconstructed

view based on the mean square error (MSE) in the RGB color space. To eliminate the
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influence of matching errors and occlusions, the pixels with the highest mismatch are

ignored. The authors of [120] proposed several objective metrics for luminance mismatch

and evaluated their correlation with the results of subjective experiments.

None of the related work presented in this section focused on S3D artifact detection

in ODIs or ODV. To our knowledge only our work published in [47, 48, 49, 50, 52] focuses

on S3D quality assessment methods that deal with ODIs and can be easily extended to

ODV.

3.3 Voronoi-based Framework

Planar Voronoi 
Patch 

Extraction

Visual Attention 
Estimation

Disparity 
Estimation

Artifact 
Detection

Stereoscopic 
ODI

Local and 
Global Scores

Artifact 
Visualization

Figure 3.2: Voronoi-based framework for artifact detection in stereoscopic 3D omnidirec-
tional images.

For the detection of artifacts in S3D ODIs, we developed a general framework published

in [48, 49, 50] and illustrated in Figure 3.2. In the problem of artifact detection in S3D

ODIs with a large field of view, it is important not only to detect artifacts but also to

localize them. For this reason, we propose a framework that uniformly subdivides the

S3D ODIs into patches, and then it analyzes each patch for the presence of artifacts.

First, the framework extracts approximately equally sized planar Voronoi patches from

the left and right view of the ODI as described in Section 2.2. In parallel, visual attention is

estimated. Then, for each pair of corresponding S3D patches, a disparity map is computed.

Afterward, the pairs of corresponding S3D patches are processed independently by an

artifact detection method for standard S3D content, taking visual attention into account

in order to give more weight to artifacts that are present in regions with high visual

attention. From the processing of each patch, a local patch score is computed, which is

large if artifacts are detected, and small otherwise. Next, the patch scores are combined

together in order to obtain global scores, and finally, the patch scores are visualized in

the ODI using a color-coded representation. All the components of the framework are

presented in the next sections.
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Figure 3.3: Disparity compensation for corresponding planar Voronoi patches Π′i in the
left and right images, respectively.

(a) Spherical Voronoi diagram with 30
patches.

(b) Spherical Voronoi diagram mapped into
the equirectangular projection format.

Figure 3.4: Voronoi patches.

3.3.1 Planar Voronoi Patches

The planar Voronoi patches Π′i are extracted from the ODI according to the method

described in Section 2.2, which is based on the computation of a spherical Voronoi diagram

of evenly distributed points on the sphere. In the presence of disparity, it can occur that

a region inside a planar Voronoi patch in one view is outside the corresponding planar

Voronoi patch in the other view. In order to cope with the disparity, we add a border

around the Voronoi patch when it is extracted, as shown in Figure 3.3.

The number of patches and thus the size of each patch have an impact on the local-

ization of the artifacts. The larger the patch size is, the more difficult it is to detect and

localize the artifacts if they only appear in small areas of the ODI. We empirically found

out that 30 patches are a good number for the localization of the artifacts. Figure 3.4

shows the spherical Voronoi diagram computed from 30 evenly distributed points on the

sphere and its projection into the equirectangular projection format.
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Figure 3.5: Projections of the viewport (left) and the Gaussian filter defined in the view-
port (right) into the equirectangular projection format.

3.3.2 Visual Attention Estimation

The visual attention map is useful in order to identify regions that should have a high

visual quality, i.e., regions that should be free from artifacts (e.g. SM) where end-users

are actually looking at. For visual attention estimation, we developed a new method that

was published in [48]. This method computes visual attention maps in ERP format, and

it was inspired by De Abreu et al.’s method [100]. In our approach, the visual attention

map is computed from a sequence of HMD viewport positions recorded while a viewer

is freely looking at an ODI. For each viewport position, a filter kernel centered on the

viewport and defined by its dimension is projected onto the ERP image (see Figure 3.5).

The projections of the filter kernels are then added in order to obtain the final visual

attention map (see Figure 3.6).

In our approach, we use the Gaussian filter centered on the viewport according to the

assumption proposed in [100] that the viewer tends to look at the center of the viewport

rather than at the borders. This assumption is supported by two facts, namely, that the

visual acuity is at its maximum at the center of the human visual field (fovea), and the

head tends to follow the eye movements to preserve the eye resting position (eyes looking

straight ahead). According to the paper [99] published after our research, this assumption

was corrected based on a new study. According to this study, the eye fixation patterns

inside the viewport can be better modelled with a donut-shaped distribution centered on

the viewport rather than with a Gaussian distribution.

The Gaussian filter is defined as follows:

h (u, v) = e
− 1

2

(
u2

σ2u
+ v2

σ2v

)
, (3.1)

where (u, v) are pixel coordinates centered on the HMD viewport, while σu and σv control

the horizontal and vertical filter size and are related to the field of view and the resolution

of the HMD viewport. Figure 3.5 shows five projections of the viewport and the Gaussian

filter defined on the viewport into the ODI in ERP format. In contrast to our method,
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Figure 3.6: Computation of visual attention maps: original ODI in equirectangular pro-
jection format with overlaid viewport and center gaze (top left), with overlaid Gaussian
filter defined in the viewport (top right), and the resulting visual attention maps with
(bottom right) and without (bottom left) Gaussian filtering. Blue: low visual attention,
red: high visual attention.

the one by De Abreu et al. [100] needs to model the pixel deformation in the ERP format

since it applies a Gaussian filter in this format after the projection of the viewport centers.

In our approach, we apply the filter on the viewport, and then we project the filter on

the equirectangular format without the need to model the pixel deformation.

3.3.3 Disparity Estimation

As per pixel disparity information is usually required for the detection of the artifacts

in S3D content, dense disparity estimation is the third step of our approach. Disparity

estimation, also called stereo matching, is a well-studied problem in photogrammetry

[121, 122], and different solutions have been developed [123, 124, 125, 126, 127]. To

estimate disparity maps between the corresponding left and right planar Voronoi patches,

we apply the semi-global block matching approach described in [127] which delivers good

results at reasonable computational costs.

Since the disparity estimation can be noisy and inaccurate, we apply a consistency

check for the disparity values, and only disparity values that are consistent are used for

further computations. Assuming that DL→R and DR→L are the disparity maps from left

to right view and from right to left view, respectively, then the disparity at pixel (x, y) in

DL→R is valid if

|DL→R(x, y) +DR→L(x−DL→R(x, y), y)| ≤ δ, (3.2)

27



where δ is a predefined threshold.

3.3.4 Artifact Detection and Analysis

Inspired by the work in [128], where visual attention is used for weighting the spherical

PSNR in the context of coding, we incorporate visual attention in the detection of artifacts

to weight the artifacts depending on the likelihood of appearance in the HMD viewport of

the end-users. In this way, more weight is given to the artifacts present in regions where

the viewer is looking with high probability.

Visual attention can be integrated at two levels: pixel and patch level. At the pixel

level, the pixel visual attention ψ(p) can be used in order to weight each pixel p that is

processed using a weight equal to g′(ψ(p)), where g′ is a function that can be freely chosen.

The visual attention at the pixel level can be used by the artifact detection methods for

standard S3D images in order to compute the local patch scores. At the patch level, the

patch visual attention Ψi, which is equal to the average of the pixel visual attention inside

the patch i, is used to weight the local patch scores using a weight equal to g′′(Ψi), where

g′′ is also a function that can be freely chosen. The visual attention at the patch level is

used to compute the global scores of the ODI.

We propose two global scores, the visual attention-based weighted sum of local patch

scores and the number of patches with artifacts. On the one hand, the visual attention-

based weighted sum of local patch scores is defined by the following equation:

Sglobal =

∑M
i=1 g

′′(Ψi) Si∑M
i=1 g

′′(Ψi)
, (3.3)

where Si is the local patch score, and M is the number of patches. On the other hand,

the number of patches with artifacts can be computed as follows:

M∑
i=1

1g′′(Ψi) Si≥γ, (3.4)

where γ is a user-defined threshold and 1 is an indicator function, which is equal to one

if the condition g′′(Ψi) Si ≥ γ is true, and zero otherwise.

As mentioned before, the visual attention weight functions g′ and g′′ can be freely

chosen and controlled by the artist. In this way, the artist can decide whether to ignore

the visual attention by choosing a constant g′, or to completely ignore the pixels with

visual attention lower than a threshold, by setting the weight of these pixels to zero. An

example of function g′ and g′′ used in some of the publications is the piece-wise linear
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function defined as

g′(x) = g′′(x) =

{
5 · x, x ≤ 0.2,

1, x > 0.2,
(3.5)

i.e., pixels and patches with visual attention larger than 20% have maximal weight when

calculating the scores.

3.3.5 Artifact Visualization

For the artist assessing the quality of the ODI, it is useful to visualize the patch scores

directly on the ERP image. Different colormaps can be applied in order to assign a color

to the patch score. In the results presented in this thesis, we used the jet colormap,

which assigns blue to 0, red to the maximum possible score, and green to a middle score.

Additionally, the patch scores and the patch visual attention can be displayed directly

within each patch as text to further substantiate the analysis. Patch visual attention

can be displayed for practical reasons within post-production workflows, as artists should

first get visual feedback if the artifact exists, and then decide, dependent on the visual

attention in a patch, if a correction is required. Figure 3.7 illustrates an example of

visualization of SM patch scores in an ODI with SM localized in the center using the jet

colormap.
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Figure 3.7: Example of sharpness mismatch score visualization: left ODI with blur inside
the red ellipse (top) and sharpness mismatch visualization (bottom) including a text
overlay with the sharpness mismatch patch score and the visual attention.

3.4 Omnidirectional Image Artifact Dataset

This section introduces the dataset of S3D ODIs together with visual attention maps

that was created for the evaluation of the artifact detection methods. The dataset was

made public in [50], and to our knowledge, it is the first and only dataset with S3D ODIs

currently publicly available.

3.4.1 Image Selection

The dataset consists of 96 S3D ODIs collected from different public sources. The resolution

of the ODIs ranges from 1920×960 to 4640×2320 pixels per view. In order to have a large

variety, the dataset has the following characteristics: 32 indoor scenes, 51 landscape

scenes, 48 scenes containing humans, 47 ODIs with both pole caps covered, 19 ODIs with

only the top pole cap covered, 30 ODIs without pole caps, 90 ODIs captured in native
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3D while 6 post-converted to 3D.

The dataset was captured with a range of different 360◦-rigs. These are Google

Odyssey (7), Jaunt rig prototype I and II (7), Panocam POD 3D (9), VUZE VR (5),

Nokia OZO (4), customized rig by INVR (3), customized rig by Jumpgate (4), Omnicam

3D (1), customized rig with Mobius cameras (1), unknown 3D rigs (49) and post-converted

(6).

3.4.2 Subjective Experiment

To compute the visual attention maps of the dataset using the method presented in

Section 3.3.2, we organized a subjective experiment similar to the one described in [100].

During the experiment, the participants were asked to freely look at S3D ODIs while

wearing an HMD and sitting on a turn-chair. The HMD used in the experiment is

an Oculus Rift DK2 with a resolution of 960×1080 pixels per view and a vertical and

horizontal field of view equal to 100◦. While the subjects were looking at the images, we

recorded the viewport center locations on each of the ODIs, assuming that the center of

the viewport corresponds to the visual target location of the user. As previously explained,

this assumption was proposed in [100], but later corrected in [99] where a donut-shaped

distribution of the eye fixations was proposed.

The experiment was divided into a training and test session. During the training

session, the subjects got familiar with the experiment, while a demo image was displayed.

During the test session, the dataset of 96 ODIs was displayed in random order using the

software application introduced in [100] which was modified to display S3D ODIs. For

cross-platform compatibility reasons, the application was implemented using the WebVR

and the ThreeJS APIs, so that it can run with different HMDs on different web browsers.

The application is able to collect viewport information from the gyroscopic sensors at

the refresh rate of the HMD. For Oculus Rift DK2 the maximum refresh rate is 75 Hz,

meaning 13.33 ms per frame.

Each image was displayed for 15 seconds, and according to [100], the data captured

during the first second was discarded as it adds trivial information on the starting viewing

direction. A break of one minute was introduced in the middle of the experiment. A total

of 17 subjects (3 females and 14 males) between 20 and 56 years and with normal stereo

vision took part in the experiment. In order to keep anonymity, we assigned an identifier

to each of them.

Figure 3.8 shows some visual attention maps computed with our method. These maps

show that the test subjects tended to look at the equator of the ODIs rather than at the

pole caps. Moreover, high-level features like the bear in ODI 54 and the gunshot in ODI
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23 attracted the visual attention of the subjects.

Figure 3.8: Visual attention maps.
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3.5 Sharpness Mismatch Detection

Sharpness mismatch (SM) can be introduced in S3D video during shooting with two cam-

eras having different focal lengths or aperture settings, or by asymmetric compression.

In this section, two different SM detection methods for S3D standard images are pre-

sented. These methods are then extended to S3D ODIs based on our general framework

(Section 3.3).

3.5.1 Histogram-based Method
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Figure 3.9: Overview of the processing steps of the histogram-based sharpness mismatch
detection method.

Our histogram-based sharpness mismatch detection method (HSMD), which was pub-

lished in [50], is based on the observation that when blur is applied to an image, the widths

of most of the edges increase. Essentially, the proposed method computes the edge width

distributions in the form of histograms in the left and right view, and then it estimates

their difference. The method consists of a preprocessing and an actual SM detection step

illustrated in Figure 3.9. In the preprocessing step, the disparity maps DL→R from the

left to the right view and DR→L in the other direction are estimated and a consistency

check is applied as described in Section 3.3.3. The validated disparity map DL→R defines

the valid correspondences between the left image IL and the right image IR. Then, the

sets of pixels ΩL ⊆ IL and ΩR ⊆ IR with valid correspondences are extracted, i.e., each

pixel (x, y) ∈ ΩL has a valid correspondence (x′, y) ∈ ΩR with x′ = x−DL→R(x, y).

Then, edge pixels eL ∈ ΩL and eR ∈ ΩR are extracted in both images using the Canny

edge detector [129]. For each edge pixel, the edge width and contrast are estimated using

the method described in [130]. Based on the edge pixels, two 2D histograms HL(ci, wj)

and HR(ci, wj) with edge contrast bins ci and edge width bins wj are filled for the left

and right view, respectively. Finally, the SM score is obtained by computing the distance

between the two histograms. First, 1D edge width histograms H i
L(wj) = HL(ci, wj) and
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H i
R(wj) = HR(ci, wj) are extracted from the original 2D histograms for each edge contrast

bin ci. In order to obtain an histogram distance independent of the amount of edge pixels,

i.e. the total area of the histograms, we normalize the 1D edge width histograms with:

Ĥ i
[L,R] =

H i
[L,R]

Ai
, (3.6)

where Ai = max(AiL, A
i
R), and AiL and AiR are the areas of the left and right histograms

H i
L and H i

R: Ai[L,R] =
∑

j H
i
[L,R](wj).

A well-established metric to measure differences between two histograms H0 and H1

is the earth mover’s distance EMD(H0, H1) [131]. More precisely, EMD computes the

flow fij which represents the amount that is transferred from bin i in H0 to bin j in H1.

Formally, EMD(H0, H1) is defined as follows:

EMD(H0, H1) = min
{fij}

(
∑
i

∑
j

fijdij) +

α|
∑
i

H0(i)−
∑
j

H1(j)|, (3.7)

subject to the following constraints:

fij ≥ 0,
∑
j

fij ≤ H0(i),
∑
i

fij ≤ H1(j), (3.8)∑
i

∑
j

fij = min(
∑
i

H0(i),
∑
j

H1(j)), (3.9)

where α is a user-defined parameter, and dij is the distance between the bins i and j. We

define dij = |i− j|/N with N equal to the number of bins.

The final SM score S is then obtained by summing the distances between 1D his-

tograms weighted by the number of edge pixels as follows:

S =
∑
i

EMD(Ĥ i
L, Ĥ

i
R) νi, (3.10)

with

νi =
AiL + AiR∑
k

(
AkL + AkR

) . (3.11)

3.5.2 Just Noticeable Sharpness Mismatch-Based Method

This section presents another method for the detection of SM published in [53] and based

on the just noticeable sharpness mismatch (JNSM), i.e., the minimal level of SM that is
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perceived by the human visual system and creates discomfort. When an S3D image has a

low level of SM, it can happen that the viewer does not perceive it, that is, she/he perceives

the image as sharp as the sharpest of the two stereoscopic views. The mechanism of the

human visual system behind this behavior is called interocular blur suppression [132].

For the development of our new method for the detection of SM, we are interested in

the limits of interocular blur suppression, i.e., the threshold where the human brain is no

more able to suppress SM. We call this threshold JNSM. In other words, given an S3D

image without SM, the JNSM is the minimal amount of blur applied to one of the two

views, so that the viewer perceives a difference with respect to the original S3D image.

In the scientific literature, there are different publications about binocular suppres-

sion [133, 134, 135, 136, 132], which is a mechanism related to interocular blur suppression.

Binocular suppression occurs when the stereoscopic views are of different quality (i.e. not

only SM), and the higher quality view dominates the perceived quality. Binocular sup-

pression was studied by Julesz [133] based on experiments with random dot stereograms.

It was also investigated in studies related to monovision correction [134, 135], and asym-

metric compression [136, 132]. The JNSM was studied in [132] with a psychophysical

experiment using wave gratings with vertical and horizontal orientations, and with dif-

ferent contrasts and spatial frequencies. It was observed that orientation, contrast, and

spatial frequency do not have a large influence on the JNSM.

In this section, we first present a psychophysical experiment that extends the study

in [132] by exploring how the JNSM is influenced by other two dimensions of the wave

grating stimulus: the symmetric blur, i.e., blur equally applied to the two views, and the

disparity. Then, we present the SM detection method based on the JNSM.

Psychophysical Experiment

The goal of the experiment was to measure the JNSM for the development of a new

method for SM detection. In particular, we selected stimuli necessary to develop the core

of our method, that is, a criterion for the evaluation of the perceived SM at the edges in

an S3D image. In order to measure the JNSM in the experiment, two stimuli identical

except for SM were shown at the same time. One stimulus was the reference stimulus

without SM, and the other one was the test stimulus with SM. The task of the subjects

was to see whether these two stimuli were perceived as different.

Stimuli: The stimuli used in the experiment were squared S3D wave gratings with a

side length equal to 6 degrees of visual angle. The wave gratings of the two views were

obtained by applying the Gaussian filter to a sequence of 12 equal-sized vertical stripes

of two alternating gray intensities. Here, we assume that when the standard deviation σ
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Figure 3.10: Vertical arrangement of the reference (top) and test (bottom) stimuli used
in the experiment.

of the Gaussian filter is zero, the Gaussian kernel is a Dirac delta function, and no blur

is introduced. The Gaussian filter was applied, because according to [137], defocus-based

effects of lens aberrations in images can be modeled with Gaussian blur. Reference stimuli

without SM, i.e., with symmetric blur applied to the two views, were obtained by using

the same standard deviation σ of the Gaussian filter in both views. From a given reference

stimulus, test stimuli with SM were generated by adding ∆σ to the standard deviation σ

of one view, and other test stimuli were generated with ∆σ added to the σ of the other

view. The reference and test stimuli were vertically arranged as shown in Figure 3.10.

A total of 34 reference stimuli were shown in the experiment. 30 reference stim-

uli had symmetric blur applied to the two views defined by the standard deviations σ

{0, 0.5, 1, 2, 5} arcmin, Michelson contrasts {0.20, 0.50, 0.98}, and disparity equal to zero.

The remaining four reference stimuli had no blur (σ = 0), Michelson contrast 0.5, and

disparities {−67.4, 67.4} arcmin. We selected the σ values similar to [138], and we also

checked the σ histograms of image datasets [2, 1] to be sure to cover most of the σ values

of these datasets. Moreover, we intentionally chose a low, medium, and high contrast.

Regarding the disparities, we selected a positive and negative disparity large enough to

cover most of the possible disparity range of S3D images.

Procedure: In order to measure the JNSM, we used the method of limits [132]. In the

experiment, at the moment when each reference stimulus was initially shown, the test
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(a) Picture of the stereoscope.

Virtual Screen

Mirrors

Eyes Right ScreenLeft Screen

(b) Technical illustration of the stereoscope. Figure taken from [139].

Figure 3.11: Wheatstone stereoscope used in the experiment.

stimulus was identical to it (∆σ = 0). At each second, the SM of the test stimulus was

automatically increased by adding 0.07 arcmin to ∆σ. The task of the subject was to

indicate when she/he started to see a difference between the two stimuli.

Apparatus: For the experiment, we built a Wheatstone stereoscope [140] shown in

Figure 3.11 in order to avoid crosstalk. Our stereoscope has two mirrors at 45 degrees

fixed on an optical breadboard, two Dell P2415Q monitors, and a chin rest. The effective

monitor size is 29.6cm × 52.7cm, the monitor resolution is 3840×2160 pixels, the viewing
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(a) Stimuli with Michelson con-
trast 0.20 and zero disparity.
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(b) Stimuli with Michelson con-
trast 0.50 and zero disparity.
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(c) Stimuli with Michelson con-
trast 0.98 and zero disparity.
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(d) Stimuli with Michelson con-
trast 0.50 and σ = 0.

Figure 3.12: Plots of the average ∆σJNSM with the standard deviation of the subjects’
∆σJNSM illustrated with a vertical bar. σ is the standard deviation of the symmetric
Gaussian blur applied to the reference stimulus.

distance from the monitors is 0.7m, and the visual resolution is 89 pixels/degree. The

monitors were carefully calibrated with the X-Rite i1Display Pro colorimeter and the

DisplayCAL application. The white point was set to 6500K, the white level to 200 cd/m2,

and the gamma to 2.2.

Subjects: In total, 23 subjects, 19 males and four females, took part in our experiment.

The subjects were aged between 22 and 52, with an average of 32 years. The subjects

had a normal or corrected-to-normal vision.

Data Analysis: The JNSM is expressed here as ∆σJNSM , which is equal to the smallest

∆σ that generates a test stimulus perceived differently than the corresponding reference

stimulus. The final ∆σJNSM value is obtained by averaging the subjects’ ∆σJNSM values.

Figure 3.12 shows the plots of the final ∆σJNSM . First, as already observed in [132], the

∆σJNSM of the gratings with different contrasts are similar. Second, interestingly sym-

metric blur has an influence on the JNSM: starting from the grating without symmetric

Gaussian blur (σ equal to 0) the ∆σJNSM initially decreases, and around σ 1 arcmin the

∆σJNSM begins to increase. Third, it can also be observed that the ∆σJNSM remains

38



nearly constant across different disparities. For this reason, disparity is not considered

in our SM detection method. Based on the large stimuli parameter ranges considered in

the experiment, we can conclude that the studied stimuli characteristics, i.e., contrast,

symmetric blur, and disparity, do not have a large influence on the JNSM in general.

Proposed Method
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Image

Edge
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Matching
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Edge Pixels
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Figure 3.13: Overview of the processing steps of the proposed method for sharpness
mismatch detection.

This section presents the new method for the detection of SM in S3D images based on

the JNSM, which was inspired by [31]. Since when the SM is below the JNSM, it is sup-

pressed by the interocular blur suppression, the proposed method analyzes corresponding

edge pixels between the two views and checks whether their SM is above the JNSM. As

shown in Figure 3.13, the proposed method is divided into a preprocessing step and an

SM detection step.

In the preprocessing step, the disparity is estimated and a consistency check is com-

puted as described in Section 3.3.3. In parallel to the disparity estimation, edge pixels

eL ∈ IL and eR ∈ IR are extracted in both images using the Canny edge detector [129].

Then, the edge pixels between the two views are matched, obtaining edge pixel pairs

(eiL, e
i
R) with i = 1 . . . N .

In the actual SM step, for each edge pixel ei[L,R] the edge width wi[L,R] and contrast

ci[L,R] are estimated using the method in [130]. The edge width wi[L,R] is then converted

into the standard deviation σi[L,R] of the Gaussian filter that, when applied to a step edge,

generates an edge with the same width.

Next, for each matched edge pixel pair (eiL, e
i
R) a local SM criterion Ci

SM is evaluated

to check if the SM of the edge pixel pair is larger than the JNSM. In particular, the

criterion checks whether the difference |σiL − σiR| is larger than the ∆σiJNSM of an edge

with contrast (ciL + ciR)/2 and Gaussian blur standard deviation min(σiL, σ
i
R). In our

method, ∆σiJNSM is obtained by bilinear interpolation of the experiment data. The local

SM criterion Ci
SM is formally expressed as follows:

Ci
SM = 1∆σiJNSM≤|σ

i
L−σ

i
R|, (3.12)
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where 1 is an indicator function, which is equal to one if the condition ∆σiJNSM ≤ |σiL−σiR|
is true, and zero otherwise. Finally, the results of the N local SM criteria are averaged to

obtain the final score:

S =
1

N

N∑
i=1

Ci
SM . (3.13)

3.5.3 Evaluation

Standard S3D Images

In this section, the SM detection methods are evaluated based on standard S3D im-

ages. In this evaluation, we compare, the histogram-based SM detection method (HSMD)

from Section 3.5.1, the just noticeable SM-based detection method (JNSMD) from Sec-

tion 3.5.2, the method introduced in Narvekar et al. [119] (cumulative probability of blur

detection, CPBD), and the state-of-the-art Liu et al.’s method [31] (probability of sharp-

ness mismatch, PSM).

The performance comparison was evaluated based on two datasets: LIVE 3D Phase II

[2]. and Ningbo 3D Phase I [1]. These two datasets were obtained by introducing different

degrees of distortions to some artifact-free stereoscopic reference images.

The LIVE 3D Phase II dataset consists of 8 reference S3D images and 360 images

obtained by symmetrically and asymmetrically distorting the reference images with 5

different types of distortions (compression using the JPEG and JPEG2000 compression

standards, additive white Gaussian noise, Gaussian blur and a fast-fading model based

on the Rayleigh fading channel). For the evaluation of SM, we only took the subset of 24

asymmetrically distorted images with Gaussian blur, since defocus-based effects of lens

aberrations can be modeled with Gaussian blur [137].

The Ningbo 3D Phase I dataset consists of 10 reference S3D images and 370 im-

ages obtained by distorting the right view of the reference images with 4 types of dis-

tortions (compression using the JPEG and JPEG2000 compression standards, additive

white Gaussian noise, and Gaussian blur). For the evaluation of SM, we again only took

a subset of 100 asymmetrically distorted images with Gaussian blur.

For each image, the datasets provide a subjective difference mean opinion score (DMOS)

in the range 0-100 that was obtained through subjective experiments.

For the method comparison, we evaluated the correlation between the subjectively

obtained DMOS and the SM scores of the methods by fitting a logistic function to trans-

form the SM scores to DMOS. A well-suited logistic function was proposed by the Video
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Table 3.4: Ningbo 3D Phase I dataset [1].

PLCC SROCC RMSE MAE
CPBD [119] 0.8359 0.587 2.054 1.739
PSM [31] 0.8542 0.5426 1.945 1.599
HSMD [50] 0.8708 0.6296 1.839 1.455
JNSMD [53] 0.8604 0.5496 1.906 1.551

Table 3.5: LIVE 3D Phase II dataset [2].

PLCC SROCC RMSE MAE OR
CPBD [119] 0.7069 0.4307 5.091 4.192 0.02
PSM [31] 0.9276 0.7572 2.913 2.094 0
HSMD [50] 0.9548 0.8205 2.152 1.563 0
JNSMD [53] 0.9217 0.7769 2.944 2.092 0

Quality Expert Group in [141] and is defined by

DMOSp(S) =
β1 − β2

1 + e
−S−β3‖β4‖

+ β2, (3.14)

where DMOSp is the predicted DMOS of the SM score S, and β1−4 are parameters that

are computed during the fitting.

After the fitting of the logistic function, the following performance metrics were ap-

plied in order to evaluate how well the logistic function predicts the subjective DMOS:

Pearson’s linear correlation coefficient (PLCC), Spearman’s rank ordered correlation coef-

ficient (SROCC), root mean squared prediction error (RMSE), mean absolute prediction

error (MAE), and outlier ratio (OR). PLCC and SROCC measure the prediction accuracy

and the monotonicity, respectively. The larger these two metrics are, the more accurate

and monotonic the prediction is. For RMSE, MAE, and OR, the smaller the metric, the

better the performance of the prediction is. Note that the LIVE 3D Phase II dataset does

not provide the standard deviation of the DMOS, which is necessary to compute the OR.

Table 3.4 and 3.5 show the performance metrics for the two datasets. The best values

are marked in bold. As can be seen, HSMD outperforms CPBD, PSM, and JNSMD for

all metrics. A weakness of HSMD, PSM, and JNSMD compared to CPBD is the need for

disparity maps. For this reason, geometrical misalignment may negatively influence the

analysis, but this does not compromise the state-of-the-art performance of HSMD.

S3D Omnidirectional Images

In this chapter, our two SM detection methods together with Liu et al.’s PSM method [31]

are evaluated based on the ODI dataset introduced in Section 3.4. For the computation of
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the global SM scores presented in Section 3.3.4, we define g′′(x) = x. Figure 3.14 shows the

visual attention-based weighted sum Sglobal of the patch scores defined by Equation 3.3.

The ODIs with the smallest global scores are ODI 19, ODI 36, and ODI 44. Among

these ODIs, ODI 19 has a low score because it was converted from 2D to 3D in post-

production. SM is unlikely in post-converted images as they are generated using depth-

image-based rendering. On the other hand, ODI 44 was captured with Jaunt, an off-

centered slit camera.

The ODIs with the largest global scores are ODI 42, ODI 48, ODI 50, ODI, 57, and

ODI 83. ODI 42 was captured with the VUZE camera that has 4 stereo camera pairs,

while ODI 50 and ODI 57 were captured with Panocam’s POD 3D that consists of 9

stereo camera pairs capturing the left and right view of the ODI independently.

Figure 3.15-3.16-3.17 shows the analysis of some ODIs with visual attention maps,

the visualization of patch scores, and close-ups. These figures show how SM is correctly

detected in the ODIs. In addition to SM, the SM detection methods are sometimes also

able to detect asymmetric distortions that can be confused with SM, like the mismatch

between corresponding glares (ODI 21 and ODI 51), the presence of stitching and blending

artifacts (ODI 45 and ODI 48), and contamination (ODI 73).
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(a) Visual attention-based weighted sum Sglobal of the patch HSMD scores.

(b) Visual attention-based weighted sum Sglobal of the patch JNSMD scores.

(c) Visual attention-based weighted sum Sglobal of the patch PSM scores.

Figure 3.14: Visual attention-based weighted sum Sglobal of the patch scores obtained with
different sharpness mismatch detection methods.
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Figure 3.15: Sharpness mismatch analysis based on HSMD.
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Figure 3.16: Sharpness mismatch analysis based on JNSMD.
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Figure 3.17: Sharpness mismatch analysis based on PSM.
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3.6 Color Mismatch Detection

This section introduces a new method for the detection of color mismatch (CM) in stan-

dard S3D images published in [49] and extended to S3D ODIs based on our framework

(Section 3.3).

3.6.1 Proposed Method

Preprocessing Color Mismatch Detection

Stereoscopic
Image

Visual Attention
Estimation

Disparity
Estimation

Estimation of
Color Statistics

Estimation of
Color Differences

Color Mismatch
Score

Figure 3.18: Overview of the processing steps of the proposed color mismatch detection
method.

If there is no CM in S3D images, the color statistics of common regions between

the two views are very similar. The more CM is present, the more different these color

statistics are. For this reason, the proposed method compares color statistics of common

regions between the two views similar to the statistics used in the color transfer method by

Reinhard et al. [142]. The proposed CM detection method is divided into a preprocessing

and an actual CM detection phase. An overview of the processing steps is illustrated in

Figure 3.18.

In the preprocessing step, first the visual attention ψ(p) is computed at each pixel p

(Section 3.3.2). Then, disparity is estimated between the left and right images, and the

consistency check described in Section 3.3.3 is applied to exclude inaccurate correspon-

dences. Based on the validated disparity map DL→R, regions that are present in both the

left and right images are detected. A pixel (x, y) in the left image and a pixel (x′, y) in the

right image belong to the same region if x′ = x−DL→R(x, y). We define the sets of pixels

in the left and right image belonging to the common regions as ΩL and ΩR, respectively.

Inspired by Reinhard et al. [142], for all pixels belonging to the common regions ΩL and

ΩR, the color statistics mean and standard deviation of the color channels are extracted.

Reinhard et al. extract color statistics that differ from ours in two aspects. The first is

the color space, i.e., instead of using the lαβ color space, we extract the statistics from

the Lab color space since it is perceptually uniform. The second aspect is the integration

of visual attention, which is used in our approach to weight the pixels.

47



Let’s define IL(p) and IR(p) as the colors at the pixel p defined in the Lab color space

in the left image IL and right image IR, respectively. Then, we first extract the visual

attention-based mean for each color channel as follows

µX =
1∑

p∈ΩX
g′(ψ(p))

∑
p∈ΩX

IX(p) · g′(ψ(p)), (3.15)

where X ∈ {L,R}, and g′(ψ(p)) is the user-defined weighting function that controls the

influence of the visual attention ψ(p). For the generation of the results, g′ is a piece-wise

linear function, which is defined as

g′(x) =

{
5 · x, x ≤ 0.2,

1, x > 0.2,
(3.16)

i.e., pixels with visual attention larger than 20% have a maximal weight when calculating

the scores. We also extract the visual attention-based standard deviation for each color

channel defined as

σX =
1∑

p∈ΩX
g′(ψ(p))

∑
p∈ΩX

(IX(p)− µX)2g′(ψ(p)). (3.17)

Finally, the CM score is computed according to:

S =

√
‖µL − µR‖2 + λ ‖σL − σR‖2, (3.18)

where λ is a tuning parameter that was set to one for the generation of the results.

3.6.2 Evaluation

In order to demonstrate the performance and usability of our proposed method, we eval-

uated the quality of 96 ODIs from our dataset. For each ODI, we computed the two

global scores proposed in Section 3.3.4, i.e., the global score Sglobal and the number of

patches with detected CM defined by Equation 3.3 and 3.4, respectively, where the visual

attention weight function g′′ is the identity function and γ is equal to 0.2. Figure 3.19

shows these global scores. ODI 16 and ODI 17, which were converted from 2D to 3D

in post-production, have the lowest score Sglobal, and no patch with CM was detected.

CM is very unlikely for post-converted images as the stereoscopic views are generated

using depth-image-based rendering. ODI 56 and ODI 61 have a high score Sglobal. These

ODIs were captured with Panocam POD 3D which uses 9 stereo camera pairs capturing

the left and right view of the ODI independently. ODI 20 was captured with the Vuze
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(a) Color mismatch global score Sglobal

(b) Number of patches with color mismatch.

Figure 3.19: Color mismatch analysis of the ODI dataset.

VR camera which uses 4 stereo camera pairs. Here the score Sglobal is the highest of all

ODIs under evaluation (see Figure 3.20). ODI 42, ODI 56, and ODI 77 are ODIs that are

characterized by more than 10 patches with CM.

Figure 3.20 exemplary shows six ODIs with detected CM, together with their visual

attention maps, the visualization of the patch scores, and close-ups of detected regions. As

seen in the figure, our proposed method detects and highlights patches with CM correctly.

It can also be observed, that the CM detection method is able to detect artifacts like

contamination (ODI 37) and different glares (ODI 55).
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Figure 3.20: Color mismatch analysis.
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3.7 Conclusions

The core of this chapter is a general framework for artifact detection in S3D ODIs based

on planar Voronoi patches and visual attention. The framework takes artifact detection

methods for S3D standard images and extends them to S3D ODIs. The framework was

applied for the detection of two artifacts, namely, SM and CM. For SM, two detection

methods were also proposed. The first is based on edge contrast and width, and the second

is based on the just noticeable SM measured in a subjective experiment. According to

the evaluation of these methods, the first approach has the highest performance among

the state-of-the-art methods, while the second approach has a lower performance but

still comparable to the performance of the first method. For CM, a detection method

based on color statistics was proposed. Finally, for the evaluation of the artifact detection

framework, a dataset of S3D ODIs was created with viewport trajectories collected during

a subjective experiment.

In the future, the weaknesses of the proposed solutions could be investigated and

fixed. For example, even if the SM detection method JNSMD was developed based on

data collected during a psychophysical experiment, it did not reach the performance of the

other proposed method HSMD. To improve JNSMD, a more accurate estimation method

of the edge standard deviation σ could be used, visual attention could be integrated to

weight regions according to their relevance, and the JNSM threshold could be replaced

with the probability of SM perception, which would require a new subjective experiment

to measure this probability. Another point left for future research is the estimation

of the thresholds necessary to decide whether an artifact is perceived by the viewer,

since the proposed artifact detection methods only compute a score. Subjective tests

with potential end-users could be organized in order to find the detection thresholds and

fine-tune other hyperparameters. Moreover, the proposed artifact detection methods are

based on disparity estimation, which could be inaccurate in the presence of strong vertical

disparity (e.g. at the pole caps), or due to homogeneous regions (e.g. sky). In future

research, the influence of inaccurate disparity could be investigated, and if needed more

robust disparity estimation methods could be applied. Another point is the use of visual

attention estimated by algorithms instead of visual attention estimated from viewers.

We evaluated our framework based on visual attention estimated from viewers, which is

usually difficult to obtain. In practice, automatic methods for visual attention estimation

should be applied. Furthermore, in this chapter, we studied two common artifacts in

particular, namely, CM and SM. Nevertheless, other common artifacts that characterize

ODV, like stitching and blending artifacts, could be studied.
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Chapter 4

Color Mismatch Correction for

Stereoscopic 3D Omnidirectional

Images

4.1 Introduction

Input S3D Image
Color Mismatch Analysis of 

Input S3D Image
Color Mismatch Analysis of 

Output S3D ImageOutput S3D Image

Figure 4.1: Color mismatch correction.

Stereoscopic 3D images can have color mismatch (CM) between the left and right image

due to reasons like different camera and lens characteristics, different reflections resulting

from different camera positions and orientations, polarized light, etc. The presence of CM

can reduce the quality of experience (QoE) and cause problems when processing the S3D

images [25], e.g., for depth estimation. For this reason, it is important to remove this

artifact that occurs frequently.

Color correction of S3D images (Figure 4.1) consists of selecting either the left or right

image as the reference image and correcting the other image, which is called the target

image. The reference image contains the color information that must be mapped to the

target image while preserving the structure information, i.e., the edges, present in the

target image.
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For color correction, there are two categories of approaches, namely, global [143, 144]

and local [145] methods. Global methods estimate a single color transformation, while

local methods estimate different local transformations. Global methods usually analyze

the color distributions of the reference and target images, but they fail in the presence

of local CM. Local methods can fix local CM using correspondences between the tar-

get and reference image, but they are usually sensitive to the quality of the estimated

correspondences.

For CM correction, there are already several methods based on traditional visual

computing techniques [143, 144, 145, 52, 32, 3, 146, 147, 51], but only two published

methods based on deep learning [148, 57] including our approach [57]. In this chapter,

we propose an approach based on traditional visual computing techniques, i.e., , planar

Voronoi patches and a color transfer method, and we also present new deep learning-

based solutions. In particular, we propose local methods for ODIs that are robust to

inaccuracies in the correspondence estimation. Some of the contributions presented in

this chapter were published in [51, 57].

4.2 Background

This section first presents the color correction approaches based on traditional visual

computing techniques. Then, the field of deep learning is briefly introduced together with

the single deep learning-based color correction method that had been published before

ours.

4.2.1 Color Correction Based on Traditional Visual Computing

Techniques

In the computer vision and multi-view video processing communities, the initial efforts

to solve CM between multiple views used exposure compensation (or gain compensation)

[143]. This approach adjusts the gain level of images to compensate for appearance

differences caused by different exposure levels. However, this approach may fail in the

case of local differences.

The authors of [144] propose a simple method to compute 3D lookup tables with a

non-linear process that minimizes the colorimetric properties of the source images. Wang

et al. [145] proposed a robust algorithm to correct the color discrepancy between images,

which neither requires a color calibration chart/object nor explicitly compensates for the

image as a whole. Instead, they correct the image region by region using local feature

correspondences.
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Dudek et al. [149] proposed a combination of global and local color correction. While

the global color correction is performed using a classic histogram-based method applied to

the entire image, for local color correction a region-based approach based on optical flow

estimation is used. More recently, Dudek et al. [52] extended their previous method to

S3D ODVs. The global color correction was substituted by an iterative method, while the

local color correction consists of applying the local color correction approach from [149] to

two patches extracted from the ODV. In [32], a method is proposed that combines global

and local color information to correct color discrepancies between stereoscopic image pairs.

In the first step, the algorithm uses dense stereo matching and global color correction to

initialize color values, and in the second step, it improves the local color smoothness and

global color consistency of the corrected image while maintaining the colors of the first

step as much as possible.

For large baseline multi-view video, Ye et al. [150] introduced a robust color correction

method that enforces spatio-temporal color consistencies and gradient preservation by

solving a global optimization problem. The authors of [151] proposed an effective color

correction method for multi-view image stitching which first finds coherent content regions

in inter-image overlaps, where reliable color correspondences are extracted, and then

parameterizes a color remapping curve as a transform model, and expresses the constraints

of color consistency, contrast, and gradient in a uniform energy function.

While many methods have been proposed for stereo and multiview color correction,

not so many have explicitly considered the color correction of S3D ODIs. Distortions

introduced when ODIs are stored in ERP format can cause errors during correspondence

estimation, limiting the quality of color correction results generated by applying the meth-

ods not designed for S3D ODIs directly to ERP format.

The image processing and computer graphics communities were developing similar

color manipulation methods, called color transfer techniques. These methods transfer the

color feel from a palette image to a target image and assume that the content of the images

is different. The earliest work in this area was by Reinhard et al. [142], who proposed

transforming the mean and standard deviation of each color channel in the target image

to match that of the palette image. Since then, more complex techniques have been

used to model the color distributions of the images more accurately, including histograms

and Gaussian mixture models [152, 153]. While global color transfer functions are often

used, including affine, radial basis, and optimal transport functions [154, 155, 156], local

techniques have also been proposed to allow for more flexibility in the recoloring [157, 158].

An efficient method was developed by Pitie et al. [3]. It first estimates a global color

function that converts the color distribution of one image into another, and then it reduces

possible grain artifacts generated by the color function. Recently, Grogan and Dahyot
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[146, 159] proposed a color transfer technique that could also be extended to take into

account color correspondences between the target and palette images, so that the method

could be used to color correct images of the same scene. They showed that this method

performs as well as other state-of-the-art color corrections techniques, with the advantage

of being more robust to correspondence outliers. In this chapter, this method is extended

to ODIs in order to reduce local CM.

4.2.2 Deep Learning

Deep learning [160] is a subfield of machine learning that studies deep artificial neural

networks, that is, neural networks (NN) with many layers. A NN is a group of neurons

connected together, where each neuron performs a simple operation, usually a weighted

sum of its inputs plus a non-linearity. Despite this simple operation, when the neurons

are combined together in a NN, they can perform complex operations. Each NN can

model a large variety of functions parameterized based on the internal parameters of the

NN, which can be learned through efficient optimization methods based on the back-

propagation technique [161]. In the field of visual computing, a special type of NN is

usually used, the so-called convolutional neural network (CNN) [160, 162]. This type of

network allows a drastic reduction of parameters compared to traditional fully connected

networks, and it works similarly to the human brain. Like the region of the human brain

that processes visual information, the so-called visual cortex [163], CNNs are organized in

layers. Moreover, nearby neurons in a layer represent nearby regions in the input image,

and the deeper a neuron is in the CNN, the more complex are the stimuli the neuron

responds to. One of the first CNNs was invented in 1998 by LeCun et al. [164] for the

recognition of hand-written digits. CNNs became famous in 2012 when the CNN called

AlexNet developed by Krizhevsky et al. [165] won the ImageNet Challenge [166]. In the

following years, this challenge was won by more sophisticated and deeper CNNs. Among

them, it is worth mentioning VGG [167], GoogLeNet [168], and ResNet [169]. Currently,

CNNs has reached state-of-the-art performance in different visual computing tasks like

object detection [170], optical flow estimation [171], image super-resolution [172], etc.

4.2.3 Color Correction Based on Deep Learning

To our knowledge, except ours [57], only Yuanyuan et al. [148] applies deep learning

to the problem of CM correction in S3D images. This approach first applies the color

correction method by Zheng et al. [32] obtaining an intermediate result that is then

processed by SRCNN [7], which is a convolutional neural network that was developed for

super-resolution. The results show the state-of-the-art performance of this method.
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4.3 Voronoi-Based Approach for Stereoscopic 3D Om-

nidirectional Images

Planar Voronoi 

Patch 
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Patch-based 
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Figure 4.2: Voronoi-based color mismatch correction method (Voro-CMC).

This section presents a novel method for the correction of CM based on planar Voronoi

patches, which we call Voronoi-based color mismatch correction method (Voro-CMC) and

we published in [51]. In the case of S3D ODIs, the presence of local CM is more likely

than in traditional S3D images, since S3D ODIs are often obtained by combining images

captured by different cameras that can have characteristic and setting mismatches or

different positions and orientations that can result in different reflections. Therefore,

our method subdivides the S3D ODI into planar Voronoi patches, where global color

correction transformations are locally fitted and then globally combined. The evaluation

of the method shows that it is able to considerably reduce the CM. As illustrated in

Figure 4.2, the method is divided into a preprocessing step and a CM correction step.

In the preprocessing step, the ODI is subdivided into planar Voronoi patches as de-

scribed in Section 2.2. In the presence of disparity, it can occur that a region inside a

planar Voronoi patch in one view is outside the corresponding planar Voronoi patch in

the other view. In order to cope with the disparity, we add a border around the planar

Voronoi patch when the patch is extracted, as shown in Figure 3.3. The number of patches

and thus the size of each patch influence the reduction of the CM. If the CM is localized

in a small region and the patch is large, then the proposed method could have difficulty

in matching the colors between the two views. We empirically found that 30 patches are

a good number for most of the ODIs that we processed.

Following the patch extraction, color correspondences between corresponding planar

Voronoi patches of the target and reference view are estimated. We investigated two meth-

ods for the estimation of correspondences: the semi-global block matching approach [127]

and the coarse-to-fine PatchMatch approach [173], but we found no significant difference

between the color correction results generated using these approaches.

In the actual CM correction step, for each patch, we use the correspondences to

estimate a color transformation that recolors the patch of the target view so that it
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is more similar to the reference view, using the method proposed in [146]. For a given

patch, let’s assume that we have the color correspondences {ckT , ckR}k=1..N defined in the

RGB color space. Then, we fit two Gaussian mixture models GMMT and GMMR to the

target colors ckT and reference colors ckR of the correspondences, respectively:

GMMY (x) =
1

N

N∑
k=1

N (x; ckY , hI), with Y ∈ {T,R}, (4.1)

where x ∈ R3 are color values, and each Gaussian N is associated with an identical

isotropic covariance matrix hI. The goal is to align the two Gaussian mixture models by

warping the target one as follows:

GMM ′
T (x|θ) =

1

N

N∑
k=1

N (x; ζ(ckT , θ), hI), (4.2)

where ζ represents a parametric thin plate spline (TPS) transformation controlled by

the parameter θ. Technically, the alignment between GMMR and the warped GMM ′
T is

obtained by minimizing the L2 distance between them. This L2 technique was shown to

be robust to correspondence outliers, and the smooth TPS function ensures that similar

colors in the patch remain similar after recoloring, eliminating artifacts in the gradient of

the image which can appear when using other re-coloring methods [152].

Once the transformations ζi have been estimated for each patch Π′i, they have to be

combined to recolor the entire ODI of the target view. To ensure that there are no harsh

color changes between patches in the recolored ODI, we use weight masks to blend the

transformations. For each transformation ζi, a corresponding weight mask Gi is computed

in ERP format. To compute the value of a pixel in the weight mask Gi, the spherical

distance between this pixel and the centroid of the patch Π′i in the spherical representation

of the ODI is computed, and a Gaussian function is applied to it. In this way, in Gi, pixels

that lie close to the patch centroid will have higher weights than those further away. Then,

when recoloring the ODI IT of the target view in ERP format to its corrected version I ′T ,

the color of the pixel at location (j, k) is given by:

I ′T (j, k) =

∑M
i=1Gi(j, k) · ζi(IT (j, k), θi)∑M

i=1 Gi(j, k)
, (4.3)

where M is the number of patches. In this manner, each local color transformation has

the most influence in the area from which it is estimated, and the color transformations

are smoothly blended without creating any artifacts at the patch borders.
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4.4 Deep Learning-Based Approaches for Stereoscopic

3D Standard Images

Two general deep learning-based color correction approaches for S3D standard images

are proposed in this section. In the first approach, the target and reference images are

preprocessed and then fed to a CNN, while in the second approach, the target and ref-

erence images are fed directly to a CNN. These solutions are extended from standard to

omnidirectional S3D images in Section 4.5.

4.4.1 Approach with Preprocessing

Target 
Image

Reference 
Image

Corrected 
Target 
ImageCorrespondence 

Estimation

CNN Color 
Correction

Warping

Occlusion

Correspondences

Global 
Correction

Figure 4.3: Approach with preprocessing (PreProcNet).

The first approach is called PreProcNet and consists of a preprocessing phase followed

by a color correction phase illustrated in Figure 4.3. The idea behind PreProcNet is

to combine the advantages of local and global color correction, that is, the ability of

local correction to fix local CM, and the robustness of global correction in regions where

correspondences are difficult to compute. More precisely, in the preprocessing phase, a

globally and a locally corrected target image are computed. Next, these two corrected

target images are fed to a CNN that computes the final corrected target image.

For the global color correction in the preprocessing phase, we apply the color transfer

method by Pitie et al. [3]. On the other hand, the local color correction is obtained by

warping the reference image into the target image based on correspondences computed by

SIFT-Flow [174], which is an optical flow estimation method robust to CM and already

used in another CM correction approach [32] and in a CM evaluation metric [175]. SIFT-

Flow cannot estimate correspondences in the occluded regions, and in order to deal with

them, an occlusion mask is computed and fed to the CNN.

Two CNNs were considered for the second phase, SRCNN [7] and U-Net [8]. Pre-

ProcNet with the first CNN is called SRCNN-PreProcNet and with the second CNN

U-Net-PreProcNet.
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SRCNN-PreProcNet

Figure 4.4: SRCNN [7]. Figure taken from [7].

SRCNN [7], illustrated in Figure 4.4, is a simple network developed for image super-

resolution, which consists of three convolutional layers. This network was already used

for CM correction in [148].

U-Net-PreProcNet

Figure 4.5: U-Net [8]. Figure taken from [8].

U-Net [8], illustrated in Figure 4.5, is a deep network originally developed for biomed-

ical image segmentation and later applied to different image-to-image translation prob-
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lems [176]. It consists of a contracting encoder and an expanding decoder linked by skip

connections. The contracting encoder has a sequence of layers, where at regular intervals,

the resolution of the feature maps is halved using max pooling, while the number of chan-

nels is doubled. Similarly, in the expanding decoder at regular intervals, the resolution of

the feature maps is doubled using transposed convolution, and the number of channels is

halved.

4.4.2 End-to-End Approach
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Figure 4.6: End-to-end approach (E2ENet).

The second approach is a local color correction solution able to correct local CM,

inspired by [177], and illustrated in Figure 4.6. It consists of an end-to-end network called

E2ENet that takes as input the target and reference image without any preprocessings

and computes the corrected target image. Besides color correction, E2ENet also learns

to estimate correspondences in the presence of CM and uses them in order to warp the

feature map of the reference image into the target image. Therefore, E2ENet can be

categorized as a multi-task network.

The proposed network has three main components: feature extraction, parallax-

attention mechanism (PAM) [178], and color correction. The feature extraction compo-

nent extracts the feature maps A and B from the target and reference image, respectively,

which are necessary for the color correction. The second component, i.e., PAM [178], esti-

mates correspondences along horizontal epipolar lines assuming that the input S3D image

is rectified. If the S3D image is not rectified, different image rectification methods could

be applied [179, 180]. PAM also computes an occlusion map OA→B, and it warps the

feature map B of the reference image into the target image obtaining the warped feature

map D. The last component takes as input the feature map A of the target image, the

warped feature map D of the reference image together with the occlusion map OA→B,

and it computes the color corrected target image.

Here, two variants of E2ENet are considered. The first variant implements the feature

extraction and the color correction as a sequence of residual blocks. This variant is called
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ResBSeq-E2ENet and it was published in [57]. The second variant is similar to U-Net

and uses a contracting encoder for the feature extraction and an expanding decoder for

the color correction, and it is called EncDec-E2ENet.

Next, PAM is described in detail followed by the presentation of ResBSeq-E2ENet and

EncDec-E2ENet.

Parallax-Attention Mechanism
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Figure 4.7: Parallax-attention mechanism (PAM).

The parallax-attention mechanism (PAM) [178] estimates correspondences by consid-

ering all the pixels along the epipolar lines, and for this reason, it is an example of a

non-local network. Correspondence estimation is a long-studied problem in photogram-

metry [121, 122], and PAM represents one of the latest solutions.

PAM has already been successfully used in other solutions for disparity estimation

[178], S3D image super-resolution [178, 177, 181, 182, 183], binocular image dehazing

[184], light field reconstruction [185], and object pose estimation [186]. Differently from

the other solutions, we apply PAM to S3D images with CM and we show that it works

also in this condition.

PAM is illustrated in Figure 4.7. The inputs of PAM are the feature maps A,B ∈
RH×W×C (H is the height, W is the width, and C are the channels) extracted in the previ-

ous component from the target image IT and the reference image IR, respectively. In the

beginning, there are two residual blocks with shared weights that adapt the input features

for the estimation of the correspondences and that generate the feature maps A0 and B0.

This is important since different tasks require different features, otherwise, the proposed

multi-task solution would suffer from training conflicts [187]. Then, a 1×1 convolution

layer converts A0 into a feature map Q ∈ RH×W×C , and another 1×1 convolution layer

converts B0 into a feature map K ∈ RH×W×C that is reshaped to RH×C×W . Q and K are
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multiplied and softmax is applied obtaining a parallax attention map MB→A ∈ RH×W×W .

MB→A can be seen as a cost matrix that encodes the correspondences along horizontal

epipolar lines. In the next step, B is processed by a 1×1 convolution layer obtaining

R ∈ RH×W×C , which is multiplied by MB→A to generate D ∈ RH×W×C . D can be inter-

preted as the result of the warping of B into A. PAM also estimates the occlusion map

OA→B. For the occlusion map, a second parallax attention map MA→B is estimated by

exchanging A and B. Refer to [178] for the details of the occlusion map computation.

In our case, PAM is trained in an unsupervised way without ground truth correspon-

dences like in [178]. For this component, a correspondence estimation loss LPAM is min-

imized. It consists of the sum of three losses: the photometric loss Lpm, the smoothness

loss Lsmooth, and the cycle loss Lcycle:

LPAM = Lpm + Lsmooth + Lcycle. (4.4)

The photometric loss Lpm warps the reference image IR into the target image IT based

on MB→A, and it computes the difference between the warped reference image and the

target image. In addition, it also warps the target image based on MA→B and computes

the difference between the warped target image and the reference image. More precisely,

it is defined as follows:

Lpm =
∑

p/∈OA→B

‖IT (p)− (MB→A ⊗ IR)(p)‖1+

∑
p/∈OB→A

‖IR(p)− (MA→B ⊗ IT )(p)‖1,
(4.5)

where ⊗ denotes the matrix multiplication.

The smoothness loss Lsmooth is applied to the parallax attention maps M ∈ {MA→B,

MB→A} for the correct handling of textureless regions as follows:

Lsmooth =
∑
M

∑
i,j,k

(‖M(i, j, k)−M(i+ 1, j, k)‖1+

‖M(i, j, k)−M(i, j + 1, k + 1)‖1).

(4.6)

The cycle loss Lcycle is introduced to achieve cycle consistency according to the fol-

lowing equation:

Lcycle =
∑

p/∈OA→B

‖(MA→B ⊗MB→A)(p)− J(p)‖1+

∑
p/∈OB→A

‖(MB→A ⊗MA→B)(p)− J(p)‖1,
(4.7)
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where J ∈ RHxWxW is a stack of H identity matrices.

ResBSeq-E2ENet
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…
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Figure 4.8: ResBSeq-E2ENet.

ResBSeq-E2ENet, which was inspired by [177], is illustrated in Figure 4.8. The idea

behind this CNN is to use sequences of residual blocks like in ResNet [169]. In ResBSeq-

E2ENet, the feature extraction component consists of a 3×3 convolution layer followed by

a sequence of residual blocks. As explained before, the color correction component takes

as input the feature map A extracted from the target image in the feature extraction

component, and the outputs of PAM, i.e., the warped feature map D of the reference

image together with the occlusion map OA→B. First, A, D, and OA→B are concatenated

and the resulting features are fused by a 1×1 convolution layer. The fused features are

then processed by a sequence of residual blocks followed by two 3×3 convolution layers.

The number of channels of the feature maps is kept constant through the entire CNN.

EncDec-E2ENet

EncDec-E2ENet is illustrated in Figure 4.9. In this solution, PAM is applied to down-

scaled feature maps of the input images. In this way, the correspondence estimation by

PAM is faster and requires less memory.

For the feature extraction component, a contracting encoder similar to the one of

U-Net is used, where at regular intervals, the resolution of the feature maps is halved

and the number of channels is doubled. Different from U-Net, the encoder consists of a

sequence of blocks containing a convolutional layer followed by four residual blocks. In the

contracting encoder, the downscaling of the feature maps is computed by a convolution

with stride two.
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Figure 4.9: EncDec-E2ENet.

The color correction component consists of an expanding decoder similar to the one of

U-Net, where at regular intervals, the resolution is doubled and the number of channels is

halved. Like the encoder, the decoder consists of a sequence of blocks with a convolutional

layer followed by four residual blocks. Different from U-Net, in the expanding decoder,

the upscaling of the feature maps is computed by bilinear interpolation.

Between the encoder of the target image and the decoder, there are skip connections.

These are used in order to better transfer the information of the target image to the color

correction component and also avoid the vanishing gradient problem. No skip connections

from the encoder of the reference image are used since the reference image is not aligned

with the corrected target image.

4.4.3 Losses

The color correction loss LCC used to train PreProcNet and E2ENet evaluates how differ-

ent the color corrected target image I ′T is from the ground truth target image IGT
T . Like in

[148], for LCC we use a combination of pixel-based and perceptual losses. More precisely,

we use the sum of the mean absolute error (MAE), the mean squared error (MSE), and

the negative of the structural similarity index measure (SSIM) [188] as follows:

LCC =
1

N

∑
p

‖I ′T (p)− IGT
T (p)‖1 +

1

N

∑
p

‖I ′T (p)− IGT
T (p)‖2

2 − SSIM(I ′T , I
GT
T ), (4.8)

where p are the pixels, and N is their number. MSE is commonly used because it makes

the network converge fast, but since it computes the quadratic error sum, it is sensitive to

the regions with large differences and not so much to the regions with small differences.

On the other hand, MAE computes the absolute error sum and it is sensitive to the regions

ignored by MSE. In this way, the sum of MSE and MAE improves the robustness of the
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trained model. SSIM was chosen since it is close to human visual perception.

The multi-task E2ENet also estimates correspondences in addition to color correction.

As was mentioned in Section 4.4.2, this secondary task is learned in an unsupervised

way by PAM based on the loss LPAM . The loss minimized by E2ENet is defined by the

following weighted sum: LCC + 0.005LPAM

4.4.4 Experiments

Dataset

For the training and evaluation of the proposed CNNs, we took undistorted S3D images

and introduced CM. The S3D images were taken from three datasets: Flickr1024 [189],

InStereo2K [190], and the IVY LAB Stereoscopic 3D image database [191].

Flickr1024 [189] consists of 1024 S3D images with different resolutions collected from

albums on the website Flickr [192], and are characterized by high quality and rich details

covering diverse contents, like landscapes, urban scenes, people, man-made objects, and

computer-generated scenes. It has already been used in other studies about S3D image

super-resolution [177], denoising [193], stereo matching [194], etc. InStereo2K [190] con-

tains 2050 S3D images with resolution 1080×860. They were taken from different indoor

scenes including offices, classrooms, bedrooms, living rooms, and dormitories. The IVY

LAB Stereoscopic 3D image database [191] has 120 S3D images with resolution 1920×1080

and captured using a 3D digital camera with dual lenses (Fujifilm FinePix 3D W3). The

images were taken from 62 indoor scenes and 58 outdoor scenes, and they are characterized

by various contents like humans, trees, structures, man-made objects, etc.

In order to exclude images with repetitive content and with a large CM, the S3D

images were manually checked for repetition and analyzed automatically for CM with the

method described in Section 3.6.1. In the end, we obtained 1035 undistorted S3D images.

In order to introduce CM in the undistorted S3D images, we applied the same color

transformations used in [175, 148] but with more parameter values. Precisely, we modified

the target images by applying six color modification operators found in Photoshop 2021

with different intensity levels that are reported in Table 4.1. In the end, we obtained

36225 distorted S3D images. The final dataset consists of a total of 37260 undistorted

and distorted S3D images. Both types of S3D images were used for the training and

evaluation. 80% of the dataset was randomly selected for the training set, 10% for the

validation set, and another 10% for the test set.
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Table 4.1: Photoshop 2021 operators and intensity levels used to generate the color mis-
match dataset.

Photoshop Operator Intensity Levels
Brightness -90, -60, -30, 30, 60, 90

Color balance -90, -60, -30, 30, 60, 90
Contrast -60, -40, -20, 20, 40, 60
Exposure -3, -2, -1, 1, 2, 3

Hue -60, -40, -20, 20, 40, 60
Saturation -40, -20, 20, 40, 60

Training Procedure

For the data augmentation, we applied random patch extraction and random vertical and

horizontal flipping. Furthermore, we used the Adam optimizer [195] with a learning rate

equal to 0.0001. The neural networks were implemented with Pytorch [196].

Color Correction Quality Metrics

For the evaluation of the color correction methods, four different full-reference quality

metrics were applied between the color corrected and the ground truth target images. The

first quality metric ∆Ê∗ab [197] is the mean of the color differences between corresponding

pixels of a color corrected and the corresponding ground truth target image, where the

color difference is defined as follows

∆E∗ab =
√

(L∗1 − L∗2)2 + (a∗1 − a∗2)2 + (b∗1 − b∗2)2, (4.9)

with (L∗1, a
∗
1, b
∗
1) and (L∗2, a

∗
2, b
∗
2) representing colors defined in the CIELAB color space.

∆Ê∗ab was chosen because it is based on a perceptually uniform color space. The second

quality metric is the structural similarity index measure (SSIM) [188], the third is the

feature similarity index measure (FSIM) [198], and the last is the visual information

fidelity (VIF) [199]. ∆Ê∗ab is an indicator for the correctness of the color information,

while SSIM, FSIM, and VIF are more close to the human visual perception.

When evaluating the color corrected target images, left and right vertical borders

likely not containing matching pixels with the corresponding reference images were not

considered, since these borders are difficult to color correct and they are removed in the

color correction method for S3D ODIs presented next in Section 4.5, where the methods

for S3D standard images like the ones presented here are applied. Given the optical flow

(Fx(x, y), Fy(x, y)) computed by SIFT-Flow [174] that maps (x, y) in a target image to

(x+Fx(x, y), y+Fy(x, y)) in the corresponding reference image, and assuming that F min
x
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Table 4.2: Optimization of the depth of U-Net-PreProcNet.

Depth
1 2 3

LCC -0.9474 -0.9515 -0.9442

and F max
x are the minimal and maximal x-axis displacements, in the color corrected target

image a left vertical border with width equal to max(−F min
x , 0) and a right vertical border

with width equal to max(F max
x , 0) were ignored.

Hyperparameter Optimization

In this section, the main hyperparameters are optimized. For this analysis, the best CM

loss LCC computed on the validation set in the first 50 epochs of the training is used.

For U-Net-PreProcNet, we set the number of channels in the first convolutional layer

to 128, and we optimized the depth of U-Net, which is the number of times the resolution

of the feature maps is halved in the encoder. According to Table 4.2, which shows the

best loss LCC of the validation set for different depths, the best performance is obtained

with the depth equal to two.

For ResBSeq-E2ENet, we set the number of channels through the network to 64, and

we optimized the type and the number of the residual blocks. Two different types of

residual blocks were tested, ResBOne shown in Figure 4.10a, and ResBTwo with batch

normalization shown in Figure 4.10b. Table 4.3 shows the best loss LCC of the validation

set for different network variants, and according to this table, the optimal model has the

residual block type ResBOne, twelve residual blocks in the feature extraction component,

and eight residual blocks in the color correction component.

(a) ResBOne (b) ResBTwo

Figure 4.10: Residual blocks.
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Table 4.3: Optimization of the type and number of the residual blocks in ResBSeq-
E2ENet.

Feat. Extr. Col. Corr. LCC
4 ResBOne 4 ResBOne -0.9624
4 ResBTwo 4 ResBTwo -0.9498
8 ResBOne 4 ResBOne -0.9645
4 ResBOne 8 ResBOne -0.9659
8 ResBOne 8 ResBOne -0.9666
12 ResBOne 8 ResBOne -0.9690
8 ResBOne 12 ResBOne -0.9689
12 ResBOne 12 ResBOne -0.9680

Table 4.4: Optimization of EncDec-E2ENet.

Residual B. Depth I Layer Chan. LCC
ResBOne 1 32 -0.9583
ResBTwo 1 32 -0.9226
ResBOne 1 64 -0.9707
ResBOne 1 128 -0.9402
ResBOne 2 32 -0.9650
ResBOne 2 64 -0.9592

For EncDec-E2ENet, we tested the residual blocks ResBOne and ResBTwo, different

depths of the encoder (number of times when the feature map is downscaled to half

resolution), and different numbers of channels in the first layer of the encoder. As can

be seen from Table 4.4, which shows the best loss LCC of the validation set for different

network versions, ResBOne is better than ResBTwo in EncDec-E2ENet, and the best

network has the depth equal to one and 64 channels in the first layer.

Ablation Study

For the ablation study, the different CNNs were trained with 100 epochs, and the color

correction quality metrics presented before were applied to the corrected images of the

test set.

For PreProcNet, we studied the influence of the globally corrected target image by

replacing this input with the target image without any alteration. As can be seen in

Table 4.5, which reports the metric values of PreProcNet with and without global correc-

tion, the globally corrected target image helps to improve ∆Ê∗ab a little, while the other

metrics do not change too much. This can be explained by the fact that, in theory, the

CNN extracts mainly structure information from the target image. Therefore, the global
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Table 4.5: Performance of PreProcNet obtained using the identity function and Pitie et
al. [3] for the global correction component .

Method Glob. Corr. ∆Ê∗ab SSIM FSIM VIF
SRCNN-PreProcNet identity 4.9228 0.9543 0.9720 0.7304
SRCNN-PreProcNet Pitie et al. [3] 4.7770 0.9527 0.9762 0.7339
U-Net-PreProcNet identity 4.4693 0.9722 0.9870 0.8141
U-Net-PreProcNet Pitie et al. [3] 3.9046 0.9725 0.9874 0.8085

Table 4.6: Study of the influence of the parallax attention mechanism.

Method ∆Ê∗ab SSIM FSIM VIF
ResBSeq-E2ENet 4.4439 0.9710 0.9847 0.8283
ResBSeq-SIFT-Flow-E2ENet 5.3229 0.9657 0.9818 0.8114

color correction of the target image helps only marginally.

We also studied the contribution of PAM. For this study, we replaced PAM in ResBSeq-

E2ENet with a component that warps the feature map B of the reference image based on

correspondences obtained by SIFT-Flow [174]. We call this solution ResBSeq-SIFT-Flow-

E2ENet. As can be seen from Table 4.6, which compares ResBSeq-E2ENet with ResBSeq-

SIFT-Flow-E2ENet, PAM is important for improving the performance of ResBSeq-E2ENet.

Comparison

In this section, the optimized proposed solutions PreProcNet and E2ENet trained for 100

epochs are compared with four color correction methods based on the test set. These

methods are Dudek et al.’s local approach [52], and the global approaches of Grogan et

al. [147], Pitie et al. [3], and Reinhard et al. [142]. We did not compare against the most

recent deep learning based method [148] as neither code nor data are available. The metric

values are reported in Table 4.7. As can be seen in the table, U-Net-PreProcNet is better

than SRCNN-PreProcNet. This is expected since SRCNN is less complex than U-Net.

Between the two versions of E2ENet, EncDec-E2ENet reaches the best performance. And,

also among all methods, EncDec-E2ENet is the best. Except for the proposed methods,

the most competitive method is the one developed by Grogan et al.. As expected, Rein-

hard et al.’s method is the worst among all the evaluated methods due to the simplicity

of this approach. Figure 4.11 shows the visual comparison of the methods. Also here,

it is possible to observe that the best results are obtained by EncDec-E2ENet, U-Net-

PreProcNet, and Grogan et al.’s method. Especially by looking at the figure with the

truck, the quality of the color correction of the other methods is visibly worse.
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Table 4.7: Comparison of the color correction methods.

Method ∆Ê∗ab SSIM FSIM VIF
Dudek et al. [52] 6.4982 0.9366 0.9750 0.8258
Grogan et al. [147] 3.1523 0.9678 0.9822 0.7855
Pitie et al. [3] 5.8105 0.9350 0.9642 0.7038
Reinhard et al. [142] 13.4496 0.8247 0.9342 0.7384
SRCNN-PreProcNet 4.7770 0.9527 0.9762 0.7339
U-Net-PreProcNet 3.9046 0.9725 0.9874 0.8085
ResBSeq-E2ENet 4.4439 0.9710 0.9847 0.8283
EncDec-E2ENet 2.7334 0.9841 0.9912 0.8799

Figure 4.11: Visual comparison of the color correction methods.

70



Distortion-based Evaluation

In this section, the performance is studied separately for the different types of distortions

that were applied in our dataset and described in Sec 4.4.4. Figure 4.12 and 4.13 show

bar charts illustrating the distortion-based evaluation of EncDec-E2ENet and of Grogan

et al. [147]. As can be noticed, for the images without CM (see undist in Figure 4.12 and

4.13) and for the images with a very low CM (cont+20 and cont-20), our approach is not

able to reduce it. In reality, it slightly increases the CM. This behavior also characterizes

Grogan et al. [147], and it can be explained by the inaccuracy of the correspondence

estimation. Even in this evaluation, it is possible to notice the better performance of

EncDec-E2ENet compared to Grogan et al. [147].

Figure 4.12: Difference between ∆Ê∗ab of the corrected and distorted target images for
each distortion: ∆Ê∗ab,corrected − ∆Ê∗ab,distorted (lower values are better). The labels of
the horizontal axis refer to the different distortions with their intensity levels (undist
corresponds to the undistorted images).
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Figure 4.13: Difference between SSIM of the corrected and distorted target images for
each distortion: SSIMcorrected − SSIMdistorted (higher values are better). The labels of
the horizontal axis refer to the different distortions with their intensity levels (undist
corresponds to the undistorted images).

4.5 Extension to Stereoscopic 3D Omnidirectional Im-

ages

In general, the simplest approach to process an S3D ODI consists of taking as input the

image in ERP format. For the proposed deep learning-based color correction solutions,

this would require too much memory. Moreover, there could be problems at the left and

right borders of the ERP format, since they would be processed as disconnected. For these

reasons, we propose another approach based on patches similar to the one presented in

Section 4.3. In this approach, planar patches are extracted from the ODI, and each patch

belonging to the target image is color corrected. Afterward, a left and right vertical border

are removed from each color corrected target patch, since they likely don’t have matching

pixels with the corresponding reference patch and they are difficult to color correct. In the

end, the color corrected target patches without the removed borders are merged. We use

planar patches evenly distributed on the spherical representation of the ODI according

to the evenly distributed points used for the planar Voronoi patches of Voro-CMC (see
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Section 2.2). Specifically, each planar patch is tangent on the sphere at one point of

the evenly distributed points, and its size is specified by an user-defined horizontal and

vertical field of view. The patches are extracted from the ODI based on the gnomonic

projection [74], and their pixels are obtained by sampling the ODI in ERP format using

bilinear interpolation. Once color corrected, the target patches without left and right

vertical borders are projected back to the ERP format. In particular, the pixels of the

projected patches in the ERP format are obtained by sampling the unprojected patches

with bilinear interpolation. The projected patches without borders are then blended using

linear combination. The patch pixel weights of the linear combination are obtained by

applying the Gaussian function to the spherical distance between each patch pixel and

the patch center on the sphere, like Voro-CMC.

We tested different patch parameters, and in the end, we decided to use 30 patches

like Voro-CMC, with a vertical and horizontal field of view equal to 70 degrees, and

a resolution 400×400. The left and right vertical borders of the color corrected target

patches that are removed have a width equal to 80 pixels.

4.6 Comparison of the Approaches for Stereoscopic

3D Omnidirectional Images

This section compares the method Voro-CMC introduced in Section 4.3 and the best

deep learning-based solution EncDec-E2ENet from Section 4.4 extended to S3D ODIs

according to the approach described in Section 4.5. In order to evaluate the proposed

methods, we selected 14 ODIs with the highest CM scores from the dataset introduced

in Section 3.4, and one ODI that was captured with a 360◦ mirror-rig. For the method

evaluation, we applied the CM detection method proposed in Section 3.6 assuming that

the input visual attention map is uniform. It is worth mentioning, that while the color

correction approaches work in the RGB color space, the CM detection method is applied

in the Lab color space. This allows a more objective and independent evaluation of the

still existing color discrepancies between the views.

Figure 4.14 shows a bar chart with the CM scores computed by our CM detection

method before and after applying the proposed color correction methods, while Figure 4.15

shows the CM analysis before and after color correction of ODI 1 and ODI 2, together with

some close-ups. Voro-CMC is able to reduce the CM scores in all ODIs by an average

of 74%. The largest CM score reduction, equal to 89%, was observed for ODI 1. As

can be noticed in Figure 4.15, Voro-CMC is able to drastically reduce the strong CM

in ODI 1 and ODI 2 everywhere. Apart from the good results, we also observed some
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Figure 4.14: Bar chart with the performance of the CM correction methods for S3D ODIs
based on a dataset with 15 ODIs (the used camera rigs are specified in brackets). The bar
chart shows the CM scores computed by our CM detection method (Section 3.6) before
and after color correction.

limitations of Voro-CMC. This method is based on a color transfer method that is robust to

pixel correspondence inaccuracies, but these inaccuracies still influence the performance

of Voro-CMC. Another limitation occurs when the patch is too large compared to the

region with CM, or when the patch contains regions with different types of CM. In this

case, the CM is reduced only partially.

In Figure 4.14, we can also notice that EncDec-E2ENet is able to reduce the CM scores

by an average of 36%. While, in Figure 4.15, we can see that the corrected ODI 1 still has

regions with large CM, and in ODI 2, moderate CM remains after the color correction.

Compared to Voro-CMC, EncDec-E2ENet has worse performance as noticeable both in

Figure 4.14 and in Figure 4.15. We have two main hypotheses about the reasons for this

performance. The first is the presence of CM in the undistorted images of the training

set mostly obtained with 3D cameras and not 2D-to-3D converted. Even if we selected

images with low CM, they still have a little of it. The second hypothesis is the overfitting

of the types of CM of the training dataset. On one hand, EncDec-E2ENet was trained

with images characterized by global CM and not local CM, while the 15 ODIs contain

local CM. On the other hand, the training dataset was obtained by applying a limited
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Figure 4.15: Sample ODIs with CM visualisation (red: strong mismatch, blue: no mis-
match) based on the CM scores computed by our CM detection method (Section 3.6) and
close-ups before and after color correction.

number (six) of Photoshop operators.

There are also some artifacts, like different glares in the two views or contamination

(rain, dust, etc.), that can be identified as CM by our two methods but that cannot

be completely removed. Problems can arise, for example, in the case of different glares

in both views, or in the case of stitching artifacts within a patch. This can reduce the

number of correct correspondences that are found in certain regions of the ODI, reducing

the likelihood that they will be successfully corrected.
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4.7 Conclusions

This chapter introduced Voro-CMC, which is a CM correction method for S3D ODIs based

on traditional visual computing techniques. Moreover, it also presented two general deep

learning-based methods for S3D standard images called PreProcNet and E2ENet, and

their extension to S3D ODIs. According to the evaluation of the methods, Voro-CMC

has a better performance than the deep learning-based methods.

Even if Voro-CMC reaches the best performance, it can still be improved by tackling

some of its limitations, especially the misalignment of the patch with the region affected

by CM. The possibility to have adaptable patches to the region with CM could be inves-

tigated.

Regarding the deep learning-based solutions, as previously discussed, there are two

main hypotheses about the reasons for their lower performance: the presence of some low

level of CM in the undistorted images of the training dataset, and the overfitting of the

types of CM that characterize the training dataset. In the future, we plan to improve the

performance of the deep learning-based approaches by creating a new training dataset.

For this new dataset, we could take 2D-to-3D converted or rendered S3D images, since

they do not have CM. In addition, more color transformations than the six Photoshop

operators used in our old dataset could be applied. Finally, local CM could be introduced

in the training dataset. This could be created by alpha blending globally transformed

images with an alpha map containing zero and one regions with a small transition area

between them, like in Figure 4.16.

Figure 4.16: Alpha map.
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Chapter 5

Voronoi-based Quality Metrics for

Monoscopic Omnidirectional Video

5.1 Introduction

Compared to traditional video, ODV introduces new technical challenges especially for

storage and transmission [20]. For the development and evaluation of new solutions to

these technical challenges subjective and especially objective quality assessment methods

are necessary. Currently, there are already quality metrics designed for monoscopic ODV

like [34, 35, 36, 37, 38, 39], but these metrics have a limited correlation with the subjective

quality scores. Thus, in order to improve the quality estimation performance, in this

chapter, we propose a new objective quality assessment framework for monoscopic ODV.

This framework was published in [54, 55, 56] and it was accepted as recommended method

for monoscopic ODV quality assessment by MPEG [200]. Since the framework deals with

monoscopic ODV, in the rest of the chapter, the term ODV refers to monoscopic ODV.

Quality assessment for ODV requires to consider its unique aspects, already mentioned

in Chapter 1. First, ODV is inherently a spherical signal, but it is stored and transmit-

ted in planar formats to be compatible with the existing video delivery pipelines. The

spherical projection techniques presented in Section 2.1.1 could be used for the conversion

into the planar formats, but they inevitably introduce distortions that must be taken into

account to accurately estimate the ODV quality [201]. Second, HMDs allow the viewer to

freely look around a scene [46], but they show only a part of the ODV, i.e., the viewport.

Therefore, for ODV it is important to consider visual attention. Various previous research

works emphasize the importance of visual attention in quality assessment [201, 202], and

existing studies show that visual attention improves the performance of quality assessment

[38, 39, 37, 203, 204].
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In this chapter, we propose an objective full-reference quality assessment framework

for ODV that takes into account the spherical nature of ODV and its viewing character-

istics. The framework first subdivides the ODV into planar Voronoi patches (Section 2.2)

with low projection distortions. Afterward, the framework applies a quality metric for tra-

ditional video to each planar Voronoi patch, obtaining a quality score for each patch. To

further consider the viewing characteristics of ODV, the proposed framework integrates

visual attention by computing a weight for each patch that accounts for the probability

of the patch being viewed. Finally, the framework computes a weighted average of the

patch scores based on the visual attention weights obtaining the final ODV quality score.

The results show that both the ODV subdivision into planar Voronoi patches and the

integration of visual attention improve the performance of ODV quality assessment and

are crucial for achieving state-of-the-art performance.

To evaluate the proposed framework, we created a dataset of ODVs with scaling and

compression distortions, and we conducted subjective experiments in order to gather

the subjective quality scores and the visual attention data for our ODV dataset. The

evaluation consists in the analysis of the framework components, such as the number and

angular resolution of the planar Voronoi patches, the visual attention estimation method,

and the temporal pooling of the frame scores. We also performed a comparative analysis

with existing quality metrics.

The rest of this chapter is organized as follows. Section 5.2 discusses the related work

on both subjective and objective ODV quality assessment. Then, Section 5.3 describes the

proposed quality assessment framework. The details of our ODV dataset and the related

subjective experiments are explained in Section 5.4. Based on the proposed dataset,

Section 5.5 presents the study of the framework components and the extensive comparative

analysis with several existing quality metrics.

5.2 Background

Although there are many studies about subjective and objective ODV quality assessment,

in the following, we outline only those that are most related to our work together with their

limitations. For a comprehensive overview of recent research in the field, we recommend

the overview paper of Li et al. [205].

5.2.1 Subjective Quality Assessment

Creating datasets and gathering subjective quality scores are fundamental requirements

to understand the perceived quality of distorted omnidirectional images [202] and videos
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[37, 206, 207, 208]. For this purpose, Li et al. [37] conducted a subjective experiment

to establish an ODV quality dataset. Their dataset contains subjective scores for 600

compressed ODVs across 221 participants. Eye and head movement data were also gath-

ered during the subjective experiment. Another recent work [206] established a dataset

that contains subjective quality scores of 30 participants across 50 different ODVs com-

pressed with the HEVC/H.265 video coding standard [69]. In this work, the optimal

resolution of ODVs displayed by the HMD was used in order to reduce the sampling

distortions when extracting the viewport from the ODV. Furthermore, Singla et al. [207]

and Schatz et al. [208] conducted subjective experiments to assess the perceived quality

of ODV streaming.

Various existing studies related to quality assessment, e.g., [206, 209, 201, 210, 211],

consider only compression distortions of ODVs with low spatial resolution due to the

computational complexity of ODV rendering. However, hardware for the rendering of 8K

ODV is now on the market, providing a higher quality of experience. In our research,

we created an ODV dataset, which is based on the typical visual distortions in adaptive

streaming systems, namely, compression and scaling distortions, applied to uncompressed

ODVs with 8K resolution. We also organized subjective experiments to collect the sub-

jective scores together with the viewport trajectories for the ODVs.

5.2.2 Objective Quality Assessment

Many quality metrics developed for ODV are the extended versions of the traditional

PSNR metric. Sun et al. [34], for instance, developed the weighted spherical PSNR

metric (WS-PSNR) with weights that consider the projection distortions of the pixels

in the planar format. The Craster parabolic projection PSNR metric (CPP-PSNR) [35]

computes the PSNR in the Craster parabolic projection characterized by low projection

distortions. Furthermore, the spherical PSNR metric (S-PSNR) [36] estimates the PSNR

for uniformly sampled points on the sphere. This quality metric has two different variants,

namely, S-PSNR-NN and S-PSNR-I. When sampling pixels, they use the nearest neighbor

or bicubic interpolation, respectively.

Subjective quality studies reported various findings on the PSNR-based quality metrics

for ODV. On one hand, Zhang et al. [206] and Sun et al. [201] recently reported that

the existing PSNR-based quality metrics for ODV have superior performance than the

traditional PSNR. On the other hand, Tran et al. [210] claimed that the traditional

PSNR is the most appropriate metric for quality evaluation in ODV communication.

Furthermore, Upenik et al. [96] showed that the existing PSNR-based quality metrics for

ODV do not have a high correlation with subjective scores. A similar conclusion was
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reached in another study [209].

In addition to the PSNR-based metrics, the structure similarity index metric (SSIM)

was also extended to ODV by Chen et al. [212] based on weights that take into account

the projection distortions. Moreover, a recent study [211] investigated the performance

of the video multimethod assessment fusion metric (VMAF) [213] applied to ODV, which

is a metric for traditional video developed to evaluate the distortions introduced by the

adaptive streaming systems (i.e., compression and scaling distortions) and characterized

by high correlation with subjective scores [214, 215, 216]. Specifically, the study in [211]

created a dataset of ODVs in ERP compressed using constant quantization parameters,

and showed that VMAF can be used as a metric also for ODVs without modifications.

In our research, we showed based on an ODV dataset with compression and scaling

distortions, that the performance of VMAF can be improved using planar Voronoi patches.

We did not only study VMAF, but we developed a new objective quality assessment

framework for ODV based on planar Voronoi patches. With our framework, existing

quality metrics for traditional video (e.g., VMAF) can be applied to ODV based on

planar Voronoi patches achieving a high correlation with subjective scores.

5.2.3 Visual Attention in Objective Quality Assessment

As already shown in [201, 202], visual attention is crucial when evaluating the quality of

ODV. Similarly, Li et al. [37] showed that the incorporation of head and eye movement

data in objective quality assessment, more specifically in PSNR, increases the prediction

performance. Upenik et al. [38] also proposed to incorporate visual attention in PSNR

for ODV quality assessment. Furthermore, Ozcinar et al. [39] developed a quality metric

based on PSNR that considers visual attention and projection distortions, with the aim of

ODV streaming optimization. However, these works [37, 38, 39] that use visual attention

are based on PSNR, which does not correlate well with subjective scores. Differently, in

our research, we developed a new quality assessment framework, which works with visual

attention and robust quality metrics for traditional video.

5.3 Proposed Framework

This section introduces the proposed framework for objective full-reference quality as-

sessment based on planar Voronoi patches (Section 2.2) and visual attention, which is

illustrated in Figure 5.1. Initially, we introduce the Voronoi-based framework without

visual attention, and then the Voronoi-based framework integrated with visual attention.
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Figure 5.1: Voronoi-based framework with visual attention.

5.3.1 Voronoi-based Framework

The quality framework presented in this section extends full-reference metrics for tra-

ditional video to ODV. The extended metrics for ODV are called VI-METRIC, where

VI stands for Voronoi, and METRIC ∈ {PSNR, SSIM,MS-SSIM,VMAF, . . .} is a full-

reference metric for traditional video. Since we are dealing with full-reference quality

assessment, the inputs of the framework are a distorted (e.g., compressed) ODV and the

corresponding undistorted reference ODV. Initially, the quality framework extracts M

planar Voronoi patches Π′k (k = 1, . . . ,M) from the distorted ODV and other M from the

reference ODV according to the method presented in Section 2.2. Then, a full-reference

metric for traditional video is applied to the planar Voronoi patches Π′k of the distorted

and reference ODV, obtaining M patch scores Γk. In our study, we apply the following

full-reference metrics: PSNR, SSIM [188], MS-SSIM [217], and VMAF [213]. Since these

metrics take rectangular video frames as input, we modified the first three of them, so

that they can deal with any patch shape. While for VMAF, we take the bounding box

of the patch as input, as it is not straightforward to modify VMAF for different patch

shapes. Specifically, for PSNR we compute the mean squared error at the basis of this

metric only inside the patches. SSIM computes different comparison measurements at

each pixel, namely, luminance, contrast, and structure. We adapted SSIM to the planar

Voronoi patches by considering only the comparison measurements inside the patches.

Similar to SSIM, MS-SSIM computes comparison measurements for each pixel at differ-

ent resolutions of the input images. MS-SSIM was adapted to the planar Voronoi patches

by resizing these patches and by considering only the comparison measurements inside

the resized patches. In the end, the final ODV quality score is obtained by computing the

arithmetic mean of the patch scores Γk as follows:

VI-METRIC =

∑M
k=1 Γk
M

. (5.1)
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5.3.2 Integration of Visual Attention

(a) VMAF scores of 20
Voronoi patches.

(b) Visual attention map
generated with the Kent
distribution method [45].

(c) Visual attention patch
weights νi,k of 20 Voronoi
patches from the visual
attention map in (b).

Figure 5.2: Visualization of the VMAF patch scores, visual attention map, and the visual
attention patch weights νi,k. Please refer to the color bars beside the figures for the used
color code.

As already mentioned in Section 5.1, since the viewers tend to look at the regions that

attract their visual attention, and since different parts of the ODV can have different

quality, it is important to consider visual attention during quality assessment and give

more weight to the regions that are most likely viewed.

We now propose to integrate visual attention into the original Voronoi-based frame-

work and refer to its metrics as VI-VA-METRIC, where VA stands for visual attention.

Different methods can be used for the computation of visual attention maps. We investi-

gate the effects of different visual attention estimation methods in Section 5.5.1. Figure 5.2

shows a sample visual attention map generated using the Kent distribution method [45].

For the computation of the VI-VA-METRICs, first a quality score for each video frame

of the distorted ODV is computed based on visual attention, and then the frame scores

are pooled into a final quality score. For the computation of the frame scores, initially

M planar Voronoi patches Π′k (k = 1, . . . ,M) are extracted from each frame i of the

distorted and reference ODV. Then, a full-reference metric for traditional video is applied

to the planar Voronoi patches Π′k of each frame i, obtaining M patch scores Γi,k for each

frame. At this point, the visual attention map Υi of each frame i of the distorted ODV is

estimated. Then, M planar Voronoi patches Π′k are extracted from each visual attention

map Υi, and the sums νi,k of the visual attention pixel values inside each patch Π′k of each

map Υi are computed. The sum νi,k is related to the probability of patch Π′k of frame i

being viewed. Next, the frame scores Ti are obtained through a weighted average of the

patch scores Γi,k using the visual attention sums νi,k as weights according to the following

equation:

Ti =

∑M
k=1 νi,kΓi,k∑M
k=1 νi,k

. (5.2)
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In the last step, the frame scores Ti are combined using a temporal pooling approach

Ptempo obtaining the final video score:

VI-VA-METRIC = Ptempo(T1, T2, . . . , TN), (5.3)

where N is the number of frames. Different pooling approaches Ptempo can be applied,

like the arithmetic and harmonic mean, the median, the minimum, etc. In this study, we

analyze the following metrics obtained with the framework: VI-VA-PSNR, VI-VA-SSIM,

VI-VA-MS-SSIM, and VI-VA-VMAF.

Figure 5.2 shows the patch scores obtained by applying VMAF to 20 Voronoi patches,

the visual attention map computed by the Kent distribution method [45] from the view-

port trajectories obtained in our subjective experiments, and the visual attention patch

weights νi,k corresponding to 20 Voronoi patches. As can be seen in the figure, different

regions of the ODV can have noticeably different qualities, and also clearly different visual

attention values. For this reason, we integrate visual attention in our proposed quality

assessment framework in a way to give more importance to patches that attract visual

attention.

5.4 Dataset and Subjective Experiments

In this section, we introduce our dataset, and we describe the technical details of the two

subjective experiments that we conducted in order to collect the subjective quality scores

and the viewport trajectories for our dataset. This section terminates with the analysis

of the collected subjective data.

5.4.1 Omnidirectional Video Quality Dataset

Considering a streaming application scenario, we built our dataset using ODVs with

different spatial resolutions and different compression levels. For our dataset and sub-

jective experiments, we first selected a total of nine uncompressed reference ODVs in

YUV420p format of 10 sec. length, 8K×4K ERP resolution, and with different character-

istics. These ODVs were selected from the videos of the Joint Video Exploration Team of

ITU-T VCEG and ISO/IEC MPEG [218, 219, 220]. The selected videos are Basketball,

Dancing, Gaslamp, Harbor, JamSession, KiteFlite, SkateboardTrick, Train, and Trolley.

Sample frames of these videos are shown in Figure 5.3. Basketball, Dancing, Harbor,

JamSession, KiteFlite were rated in the first subjective experiment, and Gaslamp, Skate-

boardTrick, Trolley were rated in the second experiment. The Train sequence was used
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Train (Training)SkateboardTrick TrolleyGaslamp

Basketball Dancing Harbor JamSession KiteFlite

Figure 5.3: Sample frames of the nine reference ODVs used in the subjective experiments.
The top five ODVs were rated in the first experiment, and the bottom left three ODVs
were rated in the second experiment. Train was used for the experiment training.

only as training material in both experiments.

After the selection of the nine reference ODVs, they were downsampled to three dif-

ferent resolutions in ERP format: 8128×4064, 3600×1800, and 2032×1016. For the

downsampling, we used the bicubic scaling algorithm of the FFmpeg software (ver. 4.0.3-

1 18.04). Next, the ODVs were compressed with the HEVC/H.265 video coding standard

[69]. For this, we used the libx265 codec (ver. 2.9) [221] in FFmpeg [222] with the video

buffering verifier method to set the target bitrates. As this database was created to con-

sider possible cases that might be encountered in an adaptive streaming scenario, to ensure

constant bitrate, each ODV was compressed using two-pass encoding with 150 percent

constrained variable bitrate configuration, following the recommendations of streaming

providers [223]. We also defined the buffer size during encoding to limit the output bi-

trate to twice the maximum bitrate for handling large bitrate spikes. To avoid any possible

impact of the unknown resampling algorithm used by the video player, we upsampled the

decoded ODVs to 8128×4064 resolution using the bicubic scaling algorithm of FFmpeg.

For the downsampling and compression of the reference ODVs, we used the following

FFmpeg commands:

ffmpeg −y −f rawvideo −pix fmt iVideoFormat −s iVideoRes −r

iVideoFramerate − i iVideoFn −c : v l i bx265 −p r e s e t medium −f rames : v

iVideoFrames −vf s c a l e=oVideoRes −x265−params p r o f i l e=main :

key int =48:min−key int =48: scenecut =0: r e f =5: bframes =3:b−adapt =2:

b i t r a t e=oVideoBitRate : vbv−maxrate=oVideoMaxRate : vbv−b u f s i z e=

oVideoBufSize : pass=1 −f mp4 /dev/ n u l l

ffmpeg −y −f rawvideo −pix fmt iVideoFormat −s iVideoRes −r

iVideoFramerate − i iVideoFn −c : v l i bx265 −p r e s e t medium −f rames : v

iVideoFrames −vf s c a l e=oVideoRes −x265−params p r o f i l e=main :
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key int =48:min−key int =48: scenecut =0: r e f =5: bframes =3:b−adapt =2:

b i t r a t e=oVideoBitRate : vbv−maxrate=oVideoMaxRate : vbv−b u f s i z e=

oVideoBufSize : pass=2 oVideoFn

where

• iVideoFn: filename of input video,

• iVideoRes : resolution of input video,

• iVideoFormat : format of input video (in our case yuv420p),

• iVideoFramerate: framerate of input video,

• iVideoFrames : number of frames of input video,

• oVideoFn: filename of output video,

• oVideoRes : resolution of output video,

• oVideoBitRate: target bitrate of output video in Kbps,

• oVideoMaxRate: maximum bitrate (in our case 1.5× oVideoBitRate),

• oVideoBufSize: buffer size (in our case 2× oVideoMaxRate).

To ensure that the distorted ODVs in our database are uniformly distributed across

different quality levels, five different target bitrates were selected independently for each

reference ODV in a pilot test with three experts using HTC Vive HMD. For this pilot test,

before encoding, the reference ODVs were resized to the resolution 3600×1800, which was

found to be the optimal ODV resolution for HTC Vive HMD by Zhang et al. [206], ac-

cording to their calculation considering the HMD’s display resolution and its field of view.

The ODVs were then encoded with different bitrates ∈ {500, 1000, 2000, 5000, 7000, 10000,

13000, 15000} Kbps, and among them five different bitrates were selected in the pilot test

corresponding to five different quality levels, namely, “bad”, “poor”, “fair”, “good”, and

“excellent”. The selected bitrates are reported in Table 5.1.

5.4.2 Subjective Experiments

This section describes the technical details of the two subjective experiments that we

organized. Their main characteristics are shown in Table 5.2.
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Table 5.1: Bitrates (in Kbps) for the selected ODVs.

ODV BR1 BR2 BR3 BR4 BR5
Basketball

500 1000 2000 5000 13000
Dancing
Harbor

500 1000 2000 7000 13000
JamSession
Gaslamp
SkateboardTrick
Trolley
KiteFlite 500 1000 5000 7000 13000

Table 5.2: Statistics of the stimuli and the participants in the subjective quality assessment
experiments.

Subjective Experiment # of Stimuli # of Participants Min – Mean – Max Age Ratio of Women
First 75 + 5 Ref 24 22 – 29.7 – 38 16%
Second 45 + 3 Ref 23 25 – 31.6— 42 26%

Experiment Setup

The subjective experiments were conducted in a dedicated experiment room equipped

with an HTC Vive HMD, which was used to present the stimuli to the viewers. Par-

ticipants were seated in a swivel chair and allowed to turn freely. To ensure that the

participants could vote without removing the HMD, we used the Virtual Desktop appli-

cation. Virtual Desktop is an ODV player and an application that enables the users to

watch and interact with the desktop using the HMD and VR controllers. Using this appli-

cation and the open-source MATLAB GUI presented in [224, 225], participants were able

to vote each stimulus. Additionally, with a special application, the viewport trajectories

were also recorded during the presentation of each stimulus for the computation of the

visual attention maps.

Methodology

The modified-absolute category rating (M-ACR) [226] methodology was chosen for our

subjective experiments. We chose M-ACR, because it was demonstrated in the evalua-

tions [226, 227] that it is more reliable than existing methods developed for traditional

video. This methodology increases the duration of exposition time by showing each stim-

ulus twice with a mid-gray screen displayed for three seconds in between the two pre-

sentations of each stimulus. The reference sequences were also included in the subjective

experiments as hidden references. That is, the participants were not told of reference

sequences, and they voted the hidden references like any other stimulus.
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The subjective quality scores for all the videos were collected in two experiments

with different ODVs and participants. The first experiment comprised of two sessions

of 30 minutes, one hour in total. The second experiment had only one session of 30

minutes. At the beginning of both experiments, there was a training phase when the

Train video sequence with five different quality levels was displayed. After the training

phase, the experiment ODVs were randomly displayed avoiding consecutive presentation

of the same content, and the quality scores were assigned by the participants based on a

continuous grading scale in the range [0,100], with 100 corresponding to the best score,

as recommended in ITU-R BT.500-13 [228].

Participants

24 participants, 20 males and four females, took part in the first experiment. These

participants were aged between 22 and 38 years with an average of 29.7 years. 23 partic-

ipants, 17 males and six females, took part in the second experiment. These participants

were aged between 25 and 42 years with an average of 31.6 years. The gathered quality

scores were screened for outliers using the outlier detection method recommended in ITU-

R BT.500-13 [228]. Three outliers in the first experiment and two outliers in the second

experiment were found and removed. All participants were screened for visual acuity and

found to have normal or corrected-to-normal vision.

5.4.3 Subjective Quality Analysis

To represent the subjective quality of each stimulus, difference mean opinion scores

(DMOS) [229] were calculated by applying the standard approach described in [230].

To calculate DMOS, first, the difference scores are computed as: dij = srij − sij, where

sij and srij are the raw subjective score assigned by participant i to the distorted ODV j

and the raw subjective score assigned to the corresponding hidden reference ODV, respec-

tively. These difference scores dij are converted to z-scores as follows: zij = (dij − µi)/σi,
where µi and σi are the mean and standard deviation of the raw scores assigned by the

participant i. Afterward, the outliers are detected based on the z-scores as recommended

in ITU-R BT.500-13 [228]. Then, the z-scores are linearly rescaled in the interval [0,100]

as follows: z′ij = 100(zij+3)/6. The rescaling is based on the assumption that the z-scores

zij are normally distributed with mean equal to zero and standard deviation equal to one,

which means, that 99% of the z-scores zij are in the interval [-3,3], and consequently 99%

of the rescaled z-scores z′ij are in the interval [0,100]. The final DMOS of ODV j is then

obtained by averaging the rescaled z-scores z′ij of the K participants excluding the outliers
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as follows:

DMOSj =
1

K

K∑
i=1

z′ij. (5.4)

Small DMOS indicate that the distorted stimulus is closer to the reference, and hence

small DMOS is better. Figure 5.4 shows the DMOS of the ODVs included in the exper-

iments. As expected, we can notice that there is an inverse relationship between DMOS

and bitrate. From the plots, we can also see that the ODVs with the highest spatial reso-

lution have the worst quality (highest DMOS) for low bitrate and the best quality for high

bitrate. This shows that the 8128×4064 ODVs are coarsely compressed at the low bitrates

due to the high number of pixels present. As the bitrate increases, the perceived quality

of these videos gets better. Conversely, the perceived quality of the 2032×1016 ODVs

becomes the worst at high bitrates, due to the scaling distortions [20]. These findings are

especially important for ODV adaptive streaming systems [20], where the selection of the

optimal encoding parameters is crucial.

5.4.4 Visual Attention Analysis

Table 5.3 shows the comparison between the visual attention maps of the reference ODVs

and the corresponding ODVs with resolution 8128×4064 and encoded at the five bitrates

reported in Table 5.1. For the comparison, first uniformly distributed points on the sphere

are sampled from the visual attention maps, and then the Pearson’s linear correlation co-

efficient (PLCC) and the Kullback–Leibler divergence (KLD) are applied to the sampled

points [41]. Large PLCC values and small KLD values correspond to high similarity. As

can be noticed from Table 5.3, the visual attention maps of the reference and correspond-

ing distorted ODVs can be different, especially for the smallest bitrate BR1. This can

also be noticed in Figure 5.5, where the visual attention maps of the JamSession refer-

ence ODV and the corresponding encoded ODVs at the smallest and largest bitrates with

resolution 8128×4064 are shown. In Table 5.3, there is also the average of the PLCC and

KLD values for each bitrate. It can be seen that by increasing the bitrate the average

PLCC increases while the average KLD decreases. Based on these observations and to

ensure the most accurate results, in our framework we use, for each undistorted and dis-

torted ODV, the corresponding visual attention map and not only the visual attention

maps of the undistorted ODVs.
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(a) Basketball (b) Dancing (c) Gaslamp

(d) Harbor (e) JamSession (f) KiteFlite

(g) SkateboardTrick (h) Trolley

Figure 5.4: Bitrate vs. DMOS plots of each ODV used in the subjective experiments.
The vertical bars show 95% confidence intervals.

Table 5.3: PLCC and KLD computed between the visual attention maps of the reference
ODVs and the corresponding ODVs with resolution 8128x4064 and encoded at the five
bitrates reported in Table 5.1.

BR1 BR2 BR3 BR4 BR5
ODV PLCC KLD PLCC KLD PLCC KLD PLCC KLD PLCC KLD

Basketball 0.8914 0.5939 0.9134 0.6394 0.8838 0.7101 0.9019 0.8640 0.9195 0.6801
Dancing 0.6410 1.3625 0.6911 1.0891 0.7226 1.2005 0.7841 0.7137 0.7205 1.0115
Harbor 0.7316 0.7843 0.7134 0.6718 0.8341 0.4486 0.8348 0.5310 0.8536 0.4550

JamSession 0.5781 1.4356 0.8312 0.7140 0.7313 0.8753 0.8640 0.5990 0.8457 0.4435
KiteFlite 0.7273 0.8362 0.8136 1.0684 0.8486 0.5353 0.8352 0.6136 0.8557 0.5614
Gaslamp 0.7769 0.8339 0.7981 0.6213 0.8457 0.4773 0.8739 0.5137 0.8421 0.6517

SkateboardTrick 0.8705 0.7316 0.8713 1.0611 0.9413 0.4834 0.8901 0.5517 0.8976 0.3951
Trolley 0.8586 0.8713 0.7891 0.9610 0.8232 0.8207 0.8945 0.5879 0.9162 0.5906
Average 0.7594 0.9312 0.8026 0.8533 0.8288 0.6939 0.8598 0.6218 0.8564 0.5986
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(a) JamSession 8128×4064
reference ODV.

(b) JamSession 8128×4064
encoded ODV at 13000

Kbps.

(c) JamSession 8128×4064
encoded ODV at 500 Kbps.

Figure 5.5: Comparison of the visual attention maps of the JamSession reference ODV
and two corresponding encoded ODVs. See the color bar for the used color code.
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5.5 Analysis and Evaluation

In this section, we first investigate the components of the proposed framework, and then

we compare the metrics of the framework with existing quality metrics. With this aim, we

use our ODV dataset with the gathered subjective quality scores presented in Section 5.4,

and we analyze the correlation between the metric scores and the subjective scores. For the

correlation analysis, we first convert the metric scores into the subjective scores by fitting

the logistic function proposed in [141] and already presented in Section 3.5.3. Here, the

subjective score predicted by the logistic function is the reversed DMOS (i.e., subtracted

from 100).

To evaluate how well the logistic function predicts the subjective scores, i.e., how

well the metric estimates the subjective quality, the following measures are applied to

the real and predicted subjective scores: Pearson’s linear correlation coefficient (PLCC),

Spearman’s rank ordered correlation coefficient (SROCC), root mean squared prediction

error (RMSE), and mean absolute prediction error (MAE).

To visualize the relationship between the metric and subjective scores, sample plots are

shown in Figure 5.6 for the metrics SSIM and VMAF applied to the ERP format (SSIMERP

and VMAFERP ), and in the Voronoi-based quality assessment framework without and

with visual attention. In these plots, the increase of the correlation between the metric

scores and DMOS is noticeable for the VI-METRICs and the VI-VA-METRICs compared

to the metrics calculated in ERP format.

5.5.1 Analysis of the Framework Components

In this section, we fine-tune the proposed framework by analyzing its components.

Estimation of the optimal angular resolution and number of planar Voronoi

patches

We first analyze the two main parameters of the proposed framework that have an impact

on the accuracy of the quality estimation, namely, the angular resolution and the number

of the planar Voronoi patches.

For the Voronoi-based metrics obtained with the proposed framework without and

with visual attention, i.e., VI-METRICs and VI-VA-METRICs, Table 5.4 shows PLCC

and SROCC for different parameter values. Three angular resolutions are investigated,

namely {10, 15, 20} pix/deg, which are close to the resolution of the HTC Vive HMD

used in our subjective experiments. Moreover, we also consider three different numbers

of planar Voronoi patches, that is, M = {10, 15, 20}.
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Table 5.4: PLCC and SROCC of the Voronoi-based metrics with different angular resolu-
tions and numbers of patches. The best performance values for each resolution (i.e., each
row) are in bold, while the best performance values among all the metrics are in blue.

10 patches 15 patches 20 patches
Metrics Resolutions PLCC SROCC PLCC SROCC PLCC SROCC

VI-PSNR
10 pix/deg 0.8700 0.8584 0.8775 0.8634 0.8676 0.8551
15 pix/deg 0.8700 0.8584 0.8775 0.8636 0.8675 0.8553
20 pix/deg 0.8700 0.8584 0.8775 0.8634 0.8676 0.8553

VI-SSIM
10 pix/deg 0.8757 0.8667 0.8821 0.8763 0.8823 0.8763
15 pix/deg 0.8423 0.8301 0.8509 0.8411 0.8516 0.8414
20 pix/deg 0.8132 0.7995 0.8227 0.8072 0.8237 0.8079

VI-MS-SSIM
10 pix/deg 0.9468 0.9432 0.9488 0.9446 0.9486 0.9450
15 pix/deg 0.9385 0.9361 0.9411 0.9381 0.9409 0.9398
20 pix/deg 0.9314 0.9260 0.9343 0.9303 0.9339 0.9291

VI-VMAF
10 pix/deg 0.9634 0.9553 0.9615 0.9529 0.9646 0.9581
15 pix/deg 0.9532 0.9444 0.9544 0.9470 0.9581 0.9497
20 pix/deg 0.9387 0.9288 0.9435 0.9363 0.9476 0.9401

VI-VA-PSNR
10 pix/deg 0.8977 0.8812 0.8760 0.8563 0.8876 0.8712
15 pix/deg 0.8977 0.8817 0.8760 0.8564 0.8876 0.8708
20 pix/deg 0.8977 0.8817 0.8760 0.8564 0.8876 0.8707

VI-VA-SSIM
10 pix/deg 0.8947 0.8848 0.8921 0.8832 0.9106 0.9007
15 pix/deg 0.8633 0.8510 0.8537 0.8426 0.8777 0.8663
20 pix/deg 0.8353 0.8214 0.8188 0.8136 0.8463 0.8323

VI-VA-MS-SSIM
10 pix/deg 0.9563 0.9505 0.9628 0.9581 0.9676 0.9635
15 pix/deg 0.9501 0.9438 0.9552 0.9506 0.9627 0.9573
20 pix/deg 0.9445 0.9371 0.9482 0.9424 0.9572 0.9517

VI-VA-VMAF
10 pix/deg 0.9661 0.9589 0.9738 0.9667 0.9773 0.9717
15 pix/deg 0.9580 0.9491 0.9678 0.9599 0.9723 0.9658
20 pix/deg 0.9444 0.9349 0.9553 0.9482 0.9623 0.9564
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(a) SSIMERP (b) VI-SSIM (c) VI-VA-SSIM

(d) VMAFERP (e) VI-VMAF (f) VI-VA-VMAF

Figure 5.6: Metric vs subjective score plots with the fitted logistic functions. Red points
indicate the data points, and blue lines indicate the logistic functions.

As can be seen in the table, the reduction of the patch resolution improves the per-

formance of the Voronoi-based metrics in most of the cases. For the other cases, the per-

formance remains almost constant. On the other hand, increasing the number of patches

seems to positively influence the performance of the Voronoi-based metrics almost always,

except for VI-PSNR and VI-VA-PSNR. This can be explained by the reduction of the pro-

jection distortions when the number of patches increases and consequently the patch size

decreases. For the VI-VA-METRICs that use visual attention, the improvement of the

performance can also be explained by the fact that with more patches the visual attention

weights νi,k are localized to smaller regions and consequently more accurate.

As a result of this analysis, we select 10 pix/deg and 20 patches (M = 20) as the

optimal parameter values for our proposed framework. We use these two parameters for

the rest of this chapter. Please note that although we select these optimal parameter

values, independently of the studied parameter values, the Voronoi-based metrics are

characterized by a better performance than the performance of the corresponding original

metrics for traditional video applied to the ERP and CMP formats, as shown later in

Table 5.7.
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(a) Kent distribution
method.

(b) Uniform viewport
method.

(c) Equator bias method.

Figure 5.7: Visual attention maps computed with different methods using as input five
different viewport positions.

Investigation of applying different visual attention estimation methods

The proposed quality framework can make use of different visual attention estimation

methods, as the visual attention weights νi,k can be computed from any visual attention

map generated by different algorithms. Here, we investigate the effect of three different

visual attention methods on VI-VA-METRIC performance, namely, the Kent distribution

method [45], the uniform viewport method, and the equator-bias method. The first

of the three estimation methods is based on the Kent distribution, which is a Gaussian

distribution defined on the surface of a unit sphere, as explained in [45]. With this method,

we compute the visual attention maps using the viewport trajectories and the default

parameters proposed in [45]. For the uniform viewport method, we also use viewport

trajectories from the viewers. In this method, each point of the viewport trajectories is

replaced with a uniform viewport that is projected to ERP. The final visual attention

map is obtained as the summation of the projected viewports. The equator-bias method

does not require the viewport trajectories. Instead, it computes the visual attention map

as a vertical bias from the equator defined by the Gaussian curve centered on the equator.

Figure 5.7 shows the visual attention maps obtained with these three methods based on

five discrete viewport positions.

Table 5.5 shows the performance of the Voronoi-based metrics integrated with visual

attention. As can be noticed, both the Kent distribution method [45] and the uniform

viewport method are able to improve the performance of the Voronoi-based metrics. On

the other hand, the equator-bias method is capable to improve VI-PSNR and VI-SSIM,

while the performance values of VI-MS-SSIM and VI-VMAF remain almost constant. In

conclusion, these results show that adding a characterization of the actual parts of the

ODV that are likely watched improves the performance of the Voronoi-based metrics.

As can be seen from the table, the metrics of the proposed framework achieve the best

performance when applying the Kent distribution method. Since this method is the most

plausible and similar to the human eye-tracking results [44], it is expected to perform
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Table 5.5: Performance evaluation of the Voronoi-based metrics integrated with visual
attention estimated with three methods. The best performance values are in bold.

Metrics Vis. Att. PLCC SROCC RMSE MAE
VI-PSNR – 0.8676 0.8551 7.5743 5.8377
VI-VA-PSNR Equator-bias 0.8781 0.8628 7.2995 5.5508
VI-VA-PSNR Uniform 0.8774 0.8585 7.4141 5.7168
VI-VA-PSNR Kent 0.8876 0.8712 7.1818 5.5072
VI-SSIM – 0.8823 0.8763 7.1172 5.2867
VI-VA-SSIM Equator-bias 0.8879 0.8850 6.9454 5.1687
VI-VA-SSIM Uniform 0.8981 0.8929 6.8103 5.0647
VI-VA-SSIM Kent 0.9106 0.9007 6.4345 4.8097
VI-MS-SSIM – 0.9486 0.9450 4.8743 3.8475
VI-VA-MS-SSIM Equator-bias 0.9486 0.9450 4.8790 3.8343
VI-VA-MS-SSIM Uniform 0.9634 0.9583 4.1350 3.3506
VI-VA-MS-SSIM Kent 0.9676 0.9635 3.8982 3.1526
VI-VMAF – 0.9646 0.9581 4.2096 3.1548
VI-VA-VMAF Equator-bias 0.9650 0.9576 4.1959 3.1393
VI-VA-VMAF Uniform 0.9749 0.9671 3.5602 2.7569
VI-VA-VMAF Kent 0.9773 0.9717 3.3753 2.5948

better than the other methods. Therefore, we use the visual attention maps estimated by

the Kent distribution method in the rest of this thesis.

Investigation of different temporal pooling methods of the frame scores

Since the selection of the temporal pooling method Ptempo for the combination of the frame

scores Ti (see Equation 5.3) might affect the overall performance, in this paper, we also

investigate its effect. For this purpose, motivated by the pooling methods which are used

in VMAF code [231], we evaluate the following ones: mean, harmonic mean, min, median,

5th percentile, 10th percentile, and 20th percentile. Table 5.6 shows the performance of

VI-VA-VMAF with these pooling methods. As can be noticed, the performance is not

influenced too much by the choice of the pooling method. Therefore, in the rest of the

paper, we consider only the mean pooling method.

5.5.2 Comparison with Existing Metrics

This section evaluates the performance of our Voronoi-based metrics and existing well-

known metrics used in ODV quality assessment studies. Four of the existing metrics

that we evaluate were developed for traditional image/video quality assessment: PSNR,

SSIM [188], MS-SSIM [217], and VMAF [213]. These metrics were applied to ODVs in two

different formats, namely, ERP and CMP, and to distinguish them we use a subscript,
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Table 5.6: Comparison of different temporal pooling methods for the combination of the
frame scores applied in VI-VA-VMAF.

Pooling PLCC SROCC RMSE MAE
Mean 0.9773 0.9717 3.3753 2.5948
Harmonic Mean 0.9775 0.9718 3.3681 2.5911
Min 0.9753 0.9705 3.4920 2.6887
Median 0.9761 0.9715 3.4093 2.6275
5th Percentile 0.9759 0.9708 3.4489 2.6437
10th Percentile 0.9776 0.9711 3.3636 2.5776
20th Percentile 0.9764 0.9714 3.3866 2.6041

e.g. PSNRERP and PSNRCMP . Moreover, we analyze extra four metrics which were

specifically designed for ODV: S-PSNR-I [36], S-PSNR-NN [36], WS-PSNR [34], and CPP-

PSNR [35]. The implementation used in our evaluation for PSNR, SSIM, and MS-SSIM

is the one provided by the Video Quality Measurement Tool [232]; for VMAF we used

the code provided by its developers [231]; while for S-PSNR-I, S-PSNR-NN, WS-PSNR,

and CPP-PSNR, we used the 360Lib standard software [233].

Table 5.7 shows the performance evaluation of the selected existing metrics and our

Voronoi-based metrics. By looking at the results, we can notice a slightly higher correla-

tion between the subjective and metric scores when the metrics PSNR, SSIM, and VMAF

are applied to the CMP format instead of the ERP format. The reason for this could be

the lower projection distortions of CMP compared to ERP. We also observe that the per-

formance of the PSNR-based metrics developed for ODV is better than the performance

of the traditional PSNR. Furthermore, among all the evaluated metrics in Table 5.7, SSIM

is characterized by the worst performance, even worse than PSNR. The reason might be

that the inevitable projection distortions negatively affect the performance of SSIM, as

some regions are stretched to much bigger areas (especially the top and bottom parts of

ERP). Therefore, SSIM scores could be dominated by these regions, and this could cause

SSIM to have lower correlation scores than PSNR, even though, for traditional video,

SSIM is much closer to human perception than PSNR. On the other hand, among the

selected existing metrics that are not Voronoi-based, MS-SSIM and VMAF have the best

performance. This is not unexpected, since these metrics, which have state-of-the-art

performance for traditional video [216], consider scaling and compression distortions that

characterize our dataset. Between these two metrics, MS-SSIM is slightly better than

VMAF for both projection formats. The reason can be explained by the fact that VMAF

was neither modeled for 8K nor ODV.

The results also show that when the metrics are applied to planar Voronoi patches

instead of the ERP and CMP formats, they achieve better performance. This is expected
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Table 5.7: Performance evaluation of the selected existing metrics and our Voronoi-based
metrics. The subscripts ERP and CMP indicate when the metric is applied to the corre-
sponding projection formats. The best performance values are in bold.

Metrics PLCC SROCC RMSE MAE
PSNRERP 0.8408 0.8237 8.2326 6.3169
PSNRCMP 0.8480 0.8323 8.0419 6.2085
S-PSNR-I 0.8580 0.8438 7.8207 5.9715
S-PSNR-NN 0.8584 0.8433 7.8066 5.9648
WS-PSNR 0.8582 0.8430 7.8107 5.9772
CPP-PSNR 0.8579 0.8439 7.8200 5.9779
SSIMERP 0.7659 0.7551 9.7734 7.7396
SSIMCMP 0.7701 0.7546 9.6583 7.6036
MS-SSIMERP 0.9224 0.9160 5.8232 4.4205
MS-SSIMCMP 0.9132 0.9081 6.1422 4.7378
VMAFERP 0.8978 0.8864 6.7433 5.3631
VMAFCMP 0.9063 0.8945 6.5630 5.2229
VI-PSNR 0.8676 0.8551 7.5743 5.8377
VI-SSIM 0.8823 0.8763 7.1172 5.2867
VI-MS-SSIM 0.9486 0.9450 4.8743 3.8475
VI-VMAF 0.9646 0.9581 4.2096 3.1548
VI-VA-PSNR 0.8876 0.8712 7.1818 5.5072
VI-VA-SSIM 0.9106 0.9007 6.4345 4.8097
VI-VA-MS-SSIM 0.9676 0.9635 3.8982 3.1526
VI-VA-VMAF 0.9773 0.9717 3.3753 2.5948
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Figure 5.8: Statistical significance analysis of the difference between PLCC, SROCC, and
RMSE of the quality metrics, obtained according to ITU-T Recommendation P.1401 [9].
There is statistically significant equivalence between two quality metrics, if they are
aligned with the same vertical bar; e.g., there is a statistically significant difference be-
tween VI-VA-VMAF and MS-SSIMERP in terms of PCC, SROCC, and RMSE.

because of the lower projection distortions of the planar Voronoi patches compared to

ERP and CMP, and because of the similar angular resolutions of the patches and the

HMD viewport. Moreover, as already noticed before, the Voronoi-based metrics inte-

grated with visual attention (i.e., VI-VA-METRICs) achieve better performance than the

corresponding ones without visual attention (i.e., VI-METRICs). The best performing

metric among all compared is VI-VA-VMAF followed by VI-VA-MS-SSIM.

In addition to the numerical results, a statistical significance analysis of the difference

between PLCC, SROCC, and RMSE of the quality metrics was conducted according

to ITU-T Recommendation P.1401 [9]. Figure 5.8 illustrates the statistical significance

analysis of the evaluated metrics in Table 5.7. The vertical bars show that there is no

statistically significant difference between the metrics aligned with the same bar. As can

be noticed in Figure 5.8, the first four best quality metrics are statistically equivalent.

The significance analysis results also show that the addition of visual attention might not

always yield a statistically significant difference. Nevertheless, the numerical results show

that integrating visual attention improved the metric performance in all the cases, as we

can also see in Table 5.4.

To further evaluate the Voronoi-based metrics in a different condition and analyze the
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effect of different spatial resolutions of the ODVs, we calculate the correlation coefficients

separately for each spatial resolution of our dataset (i.e., 2K, 4K, and 8K). The results of

this analysis are shown in Table 5.8. It is interesting to notice that for most of the selected

existing and Voronoi-based metrics the correlations PLCC and SROCC improve when

the resolution is increased. This can be attributed to scaling distortions (blur) present

at 2K and 4K resolutions. Assuming that most of the metrics were developed mainly for

compression distortions and/or noise, the presence of scaling distortions could decrease

the correlation between DMOS and metric scores in the cases of 2K and 4K. Nevertheless,

we notice again that the integration of visual attention increases the performance of the

Voronoi-based metrics.

Regardless of the case, the integration of visual attention (i.e., VI-VA-METRICs)

improves the Voronoi-based metrics (i.e., VI-METRICs) in every situation. These im-

provements can be seen not only in Table 5.7 but also in Table 5.5 and 5.8. These

consistent improvements show that the integration of visual attention is an important

factor to consider in objective ODV quality assessment in the presence of compression

and scaling distortions, i.e., uniform artifacts, and it needs to be taken into account to

increase the metric performance.

5.5.3 Limitations of the Proposed Framework and Future Im-

provements

As discussed in the previous section, the proposed framework integrated with visual at-

tention achieves state-of-the-art performance. Nevertheless, it has also limitations that

we plan to tackle in future work.

First, the current framework only considers visual attention maps generated using the

viewport trajectories collected from the participants of subjective experiments. In prac-

tice, this type of data is not available, as it is not possible to find the viewport trajectories

for new content without conducting a subjective experiment first. Instead, automatic vi-

sual attention estimation algorithms [234] might be used for most of the practical cases.

Nevertheless, the integration of the said automatic visual attention estimation methods

and the performance analysis in this case remain as future work.

Second, in our study and in particular in our dataset, we considered only the typ-

ical artifacts introduced by the encoding pipeline of the adaptive streaming systems,

i.e., compression and scaling distortions. However, the ODV processing pipeline can in-

troduce other visual artifacts (see Section 3.2). The perceptual impact of the other visual

artifacts can be investigated and integrated into our proposed framework.

Third, with the current unoptimized code, the computation of VI-VA-VMAF requires
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Table 5.8: PLCC and SROCC of the evaluated metrics computed separately for the
resolutions 2K, 4K, and 8K. The best performance values for each resolution are in bold.

2K 4K 8K
Metrics PLCC SROCC PLCC SROCC PLCC SROCC
PSNRERP 0.7388 0.6139 0.8360 0.8343 0.9202 0.9183
PSNRCMP 0.7517 0.6203 0.8431 0.8450 0.9221 0.9163
S-PSNR-I 0.7634 0.6469 0.8568 0.8615 0.9304 0.9228
S-PSNR-NN 0.7649 0.6433 0.8570 0.8574 0.9300 0.9227
WS-PSNR 0.7650 0.6366 0.8570 0.8574 0.9299 0.9230
CPP-PSNR 0.7638 0.6432 0.8567 0.8615 0.9302 0.9230
SSIMERP 0.6996 0.5570 0.7703 0.7951 0.8600 0.8482
SSIMCMP 0.7011 0.5591 0.7714 0.7878 0.8565 0.8484
MS-SSIMERP 0.8841 0.7992 0.9150 0.9351 0.9652 0.9478
MS-SSIMCMP 0.8673 0.7824 0.9071 0.9276 0.9583 0.9446
VMAFERP 0.9202 0.8735 0.9203 0.9071 0.9515 0.9240
VMAFCMP 0.9226 0.8790 0.9309 0.9156 0.9567 0.9285
VI-PSNR 0.7640 0.6321 0.8660 0.8769 0.9358 0.9247
VI-SSIM 0.8346 0.7109 0.8794 0.9060 0.9367 0.9249
VI-MS-SSIM 0.8642 0.8807 0.8140 0.9437 0.9767 0.9557
VI-VMAF 0.9627 0.9287 0.9577 0.9458 0.9789 0.9500
VI-VA-PSNR 0.7960 0.6644 0.9050 0.9006 0.9451 0.9321
VI-VA-SSIM 0.8434 0.7326 0.9200 0.9321 0.9593 0.9392
VI-VA-MS-SSIM 0.9529 0.9105 0.8332 0.9674 0.9829 0.9634
VI-VA-VMAF 0.9762 0.9493 0.9737 0.9625 0.9862 0.9593

considerable computational resources. For an 8K ODV with 300 frames, the computation

of VI-VA-VMAF with 20 patches and with 10 pix/deg patch resolution takes about three

minutes using a PC with a 4GHz Intel Core i7-6700K processor. Moreover, VI-VA-VMAF

requires as input also a visual attention map for each frame. On a machine with two Intel

Xeon Gold 6134 processors, the parallel computation of 400x800 visual attention maps

using the code of the Kent method provided in [45] takes about nine seconds per map.

5.6 Conclusions

This Chapter presented a framework for objective ODV quality assessment that takes

into account the spherical nature of ODV and the ODV viewing characteristics. The

proposed framework is based on the subdivision of ODV into planar Voronoi patches with

low projection distortions obtained with the spherical Voronoi diagram. Furthermore, it

also exploits visual attention to identify the regions that are consumed by the viewer with

high probability, which have a big influence on the perception of the video quality. For
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the evaluation of the framework, we created an ODV dataset with a total of 120 distorted

videos from 8 undistorted reference videos. Subjective scores and viewport trajectories

for the new ODVs were also collected in subjective experiments.

In the evaluation of the framework, first the framework components were analyzed.

This analysis showed how planar Voronoi patches and visual attention are important to

achieve a high correlation between subjective and metric scores. Moreover, the framework

was also compared with existing metrics, and this showed that our framework can achieve

state-of-the-art performance.

As future work, we plan to further explore the visual attention estimation methods

for ODV that do not require viewport trajectories, as visual attention maps obtained

from subjective tests are not practical to obtain. We also intend to extend our frame-

work to distortions different from the ones considered here, i.e., compression and scaling

distortions.
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Chapter 6

Conclusions

Omnidirectional video has been gaining popularity especially in recent years. Neverthe-

less, there still remain some important challenges that can introduce distortions in ODV

and compromise the quality of experience while watching it. This thesis proposes solu-

tions that help overcome these challenges and improve the quality of ODV. This final

chapter summarizes how the research objectives were realized and how the research ques-

tion was answered. First, the thesis contributions are recapped, and then the future work

is presented.

6.1 Summary

Thanks to the maturity of the ODV technology and the facility of accessing and con-

suming ODV, we are experiencing a marked growth in the popularity of this immersive

imaging technique. The current technology of production, coding, and transmission of

ODV has reached a level of maturity able to attract content producers and foster the

success of ODV. Nevertheless, there are still various important challenges that need to be

tackled. Examples are the artifacts introduced during capture and post-production, and

the challenges related to coding and transmission. This thesis contributes to the solution

of these challenges. Specifically, at the beginning of the thesis, three research areas were

identified, and three corresponding research objectives were defined:

1. Artifact Detection: our objective was to develop methods usable by artists for

the detection and localization of artifacts mostly introduced during capture and

post-production. The realization of this objective, which is described in Chapter 3,

is a general artifact detection framework that extends detection methods for S3D

standard images to S3D ODIs based on a new subdivision of ODIs, namely planar

Voronoi patches, and visual attention. Moreover, two methods for the detection of
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sharpness mismatch and one method for the detection of color mismatch were devel-

oped. We also showed that one of our two sharpness mismatch detection methods

reaches superior performance than the existing state-of-the-art approaches. For the

evaluation of the framework, a dataset of S3D ODIs with visual attention data was

created.

2. Artifact Correction: the aim was to design methods for the correction of com-

mon artifacts that can improve quality and reduce time and efforts in the production

workflow. To achieve this goal, we decided to study one of the most common ar-

tifacts, namely color mismatch, and develop methods for its correction, which are

described in Chapter 4. Precisely, one approach based on traditional visual comput-

ing techniques and two alternative deep learning-based solutions were developed.

3. Quality Assessment: the goal was to develop quality metrics for the optimization

of coding and transmission solutions for ODV. To fulfill this objective, we developed

a general framework for full-reference objective quality assessment of monoscopic

ODV based on planar Voronoi patches and visual attention, which is described in

Chapter 5. For its evaluation, a new ODV dataset with subjective quality scores

and visual attention data was created. The comparison with commonly used quality

metrics for ODV shows the state-of-the-art performance of our quality framework.

In conclusion, the original research question regarding ways to optimize the quality

of ODV was answered by realizing the three research objectives with the contributions

briefly summarized in this chapter.

6.2 Future Work

In the short term, some aspects of the contributions could be further studied and de-

veloped. For example, this thesis considers two common artifacts present in ODV in

particular, namely color and sharpness mismatch. There are other common artifacts like

stitching and blending artifacts that require better solutions to conceal them. In partic-

ular, stitching artifacts are almost inevitable in the case of monoscopic ODV captured

with different cameras not sharing the same center of projection. Artists usually hide

them in regions with low visual attention, but it would be better to find a way to remove

them. This would probably require estimating the scene geometry or applying inpainting

methods that would fill the regions occupied by the stitching lines.

Moreover, in our solutions, we used visual attention estimated from viewers. It would

be useful to replace visual attention estimated from viewers with visual attention esti-

mated by algorithms. In particular, it would be interesting to investigate the performance
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of the full-reference quality framework presented in Chapter 5 with visual attention esti-

mated by algorithms instead of visual attention estimated from viewers.

Another point is the difficulty of correspondence estimation in S3D images in the

presence of artifacts. In our solutions, we used correspondence estimation methods that

seem to be accurate also in the presence of artifacts even if they were developed for

artifact-free S3D images. We could study in-depth how artifacts influence these methods,

and if necessary, develop new approaches robust to them.

Furthermore, deep learning started to become popular quite recently, but it has already

been successfully applied in different fields like visual computing, speech processing, etc.

We used deep learning only for the correction of color mismatch. Nevertheless, it could

be applied also for the correction of other artifacts, and even for other tasks like artifact

detection and quality assessment [235]. A requirement of deep learning-based solutions

that must be taken into consideration is large training datasets. Creating them is not

easy, especially for quality assessment, where ODIs or ODVs need to be annotated with

subjective scores.

In the long term, the assessment of the QoE when watching ODV could be further

studied by taking into account not only the visual quality considered in this thesis, but

also other factors like the audio signal, the user discomfort, and the HMD ergonomics.

This research is a contribution to the improvement of the ODV technology. For the

challenges that remain to be tackled, we hope that the solutions presented in this thesis

could be further developed to solve at least some of them.
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Appendix A

Abbreviations

Short Term Expanded Term

CM Color Mismatch

CNN Convolutional Neural Network

CPBD Cumulative Probability of Blur Detection

CPP-PSNR Craster Parabolic Projection PSNR

DMOS Difference Mean Opinion Score

EMD Earth Mover’s Distance

ERP Equirectangular Projection

FSIM Feature Similarity Index Measure

GMM Gaussian Mixture Model

HMD Head-Mounted Display

HSMD Histogram-Based Sharpness Mismatch Detection

Method

HVS Human Visual System

JNB Just Noticeable Blur

JNSM Just Noticeable Sharpness Mismatch

KLD Kullback-Leibler Divergence

M-ACR Modified-Absolute Category Rating

MAE Mean Absolute Prediction Error

MOS Mean Opinion Score

MS-SSIM Multi-Scale Structural Similarity Index Measure

MSE Mean Squared Error

NN Neural Network

ODI Omnidirectional Image

ODV Omnidirectional Video
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OR Outlier Ratio

PAM Parallax Attention Mechanism

PLCC Pearson’s Linear Correlation Coefficient

PSM Probability of Sharpness Mismatch

PSNR Peak Signal-to-Noise Ratio

QoE Quality of Experience

RMSE Root Mean Squared Prediction Error

S-PSNR Spherical PSNR

S-PSNR-I Spherical PSNR with Bicubic Interpolation

S-PSNR-NN Spherical PSNR with Nearest Neighbor Interpolation

S3D Stereoscopic 3D

SM Sharpness Mismatch

SROCC Spearman’s Rank Ordered Correlation Coefficient

SSIM Structural Similarity Index Measure

TPS Thin Plate Spline

VA Visual Attention

VI-METRIC Voronoi-Based Metric

VI-VA-METRIC Voronoi-Based Metric with Visual Attention

VIF Visual Information Fidelity

VMAF Video Multimethod Assessment Fusion Metric

Voro-CMC Voronoi-Based Color Mismatch Correction Method

VR Virtual Reality

WS-PSNR Weighted Spherical PSNR
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