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P H Y S I C S

Toward exact predictions of spin-phonon  
relaxation times: An ab initio implementation  
of open quantum systems theory
Alessandro Lunghi

Spin-phonon coupling is the main driver of spin relaxation and decoherence in solid-state semiconductors at fi-
nite temperature. Controlling this interaction is a central problem for many disciplines, ranging from magnetic 
resonance to quantum technologies. Spin relaxation theories have been developed for almost a century but often 
use a phenomenological description of phonons and their coupling to spin, resulting in a nonpredictive tool 
and hindering our detailed understanding of spin dynamics. Here, we combine time-local master equations up to 
the fourth order with advanced electronic structure methods and perform predictions of spin-phonon relaxation 
time for a series of solid-state coordination compounds based on both transition metals and lanthanide Kramers 
ions. The agreement between experiments and simulations demonstrates that an accurate, universal, and fully ab 
initio implementation of spin relaxation theory is possible, thus paving the way to a systematic study of spin-pho-
non relaxation in solid-state materials.

INTRODUCTION
Spin is a fundamental property of particles such as electrons and 
protons, and it is responsible for many emergent properties of 
materials, including fundamental ones such as the chemical bond 
and magnetic phenomena. Thanks to its natural weak coupling to 
other degrees of freedom, electron’s spin also represents a proto-
typical quantum system that can be coherently driven for long times. 
The establishment of thermal equilibrium in  localized spin mo-
ments in the condensed phase, a process called relaxation, is mainly 
driven by three interactions: spin-spin, spin-conduction electron, 
and spin-phonon coupling (1). In the case of magnetically diluted 
semiconductors at temperatures above a few kelvins, the latter is the 
most important one. In a nutshell, the coupling between spin and 
phonons is possible thanks to relativistic interactions, such as the 
spin-orbit one, which couples the spin degrees of freedom to the 
electrostatic potential of the nuclei. Spin can thus be seen as an open 
system, where the oscillatory thermal motion of atoms acts as a 
time-dependent perturbation that leads to spin thermalization and 
decoherence.

On the one hand, a full understanding of spin-phonon relaxation 
and spin-phonon coupling has the potential to open up previously 
unidentified ways to address central problems for modern technologies 
such as magnetic information storage (2), spintronics (3), quantum 
information science (4, 5), magnetic resonance (6), and more. On the 
other hand, the study of spin relaxation in the condensed phase rep-
resents a fundamental benchmark for our understanding of the theory 
of open quantum systems. Although a formally exact description of 
the quantum dynamics of open systems is achievable through 
time- convolutionless (7, 8) or Nakajima-Zwanzig (9) equations, 
their application is often done either in a parametric fashion or for 
simplified models, therefore escaping the ultimate benchmark of a 
full ab initio implementation for realistic systems. Spin-phonon 
coupling represents a paradigmatic example of open quantum system 

dynamics and offers a unique test bed for open quantum system 
theory and ab initio simulations at the same time.

Spin-phonon relaxation has now been debated for almost a cen-
tury starting with the seminal works of Waller (10), Van Vleck (11), 
Redfield (12), and Orbach (13). Redfield’s relaxation theory and its 
adaptations form the fundamental building block of our under-
standing of spin relaxation and have served as the basis to model 
both nuclear and electronic spin relaxation experiments. Redfield’s 
theory is generally adapted to the case of solid-state systems by 
accounting for a Debye-like phonon density of state and by including 
all the details about spin-phonon coupling under a single average 
phenomenological coupling constant (13). Despite the incredible 
usefulness of such a formalism for interpreting experiments, these 
approximations have the major drawback of making it impossible to 
use the theory as a real predictive tool. Only recently, fully ab initio 
methods to predict spin-phonon relaxation in solid-state materials 
have been proposed (14–19). At the heart of these methods, there is 
a combination of Redfield’s theory of relaxation and electronic 
structure methods. The latter are used to define all the coefficients 
needed to set up the former on a material-specific case and thus enable 
a nonparametric treatment of all the relevant interactions, such as spin 
and phonon spectra, and all the spin-phonon coupling coefficients. 
Applications of this method to magnetic molecules have recently 
generated large interest, with examples of studies in both molecular 
qubits (14, 17, 20–23) and single-ion magnets (15, 16, 24–30). Coor-
dination compounds offer a versatile playground to test relaxation 
theories as their chemical structure and properties can be finely 
controlled and characterized experimentally (31, 32). At the same 
time, they allow for the use of advanced electronic structure methods 
to accurately describe their lattice and magnetic properties (33–35).

Despite recent achievements in this field, a fully quantitative 
prediction of relaxation times has remained elusive until now, and 
deviations of orders of magnitude with respect to experimental data 
are commonly observed. Such a situation casts shadows on our 
understanding of spin-phonon relaxation and on the reliability of 
ab initio methods for blind predictions of spin relaxation time in 
the absence of experimental validation.
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In this contribution, we advance the field of ab initio spin 
dynamics by demonstrating that quantitative predictions of spin 
relaxation rate can be obtained for realistic solid-state compounds. 
We review the derivation of the dynamical equations for the 
spin-reduced density matrix in solid-state materials (17, 22, 27) and 
individuate the key importance of (i) comparing simulations with 
measurements done on magnetically diluted samples, (ii) including 
two-phonon contributions stemming from either the second- or the 
fourth-order perturbation theory, and (iii) accounting for the dynamics 
of the entire density matrix, i.e., including the explicit description 
of coherence terms’ dynamics. We perform simulations for three 
systems: (1) an S = 1/2 molecular qubit [VO(dmit)2]2− [dmit = 
(1,3-dithiole-2-thione-4,5-dithiolate)] (36), (2) an S = 3/2 mononuclear 
complex [CoL2]2− {H2L = [1,2-bis(methanesulfonamido)benzene]} 
(37,  38), and (3) a J = 15/2 mononuclear complex   [ DyCp 2  ttt ]   +    
Cp   ttt  = ([ C  5     H  5     t   Bu  3   − 1, 2, 4 ] )  (16). The molecular structures of 
(1) to (3) are reported in Fig.  1. These compounds represent the 
state of the art in molecular magnetism for what concerns molecular 
qubits and single-molecule magnets with long spin lifetime. More-
over, their properties span a large range of magnetic splitting, as 
depicted in Fig. 1, and relaxation times (vide infra), thus providing 
an extremely robust proof of concept that ab initio spin dynamics 
can now be used to predict and understand spin relaxation in 
solid-state magnetic systems.

RESULTS
Ab initio theory of spin-phonon relaxation
A quantum mechanical description of spin-phonon relaxation re-
quires the description of all the players involved: the spin, the pho-
nons, and their interaction. The total Hamiltonian operator is thus

    ̂  H   =    ̂  H    s   +    ̂  H    ph   +    ̂  H    s−ph     (1)

where the first two terms correspond to the spin and phonon 
Hamiltonians, respectively, and the third one represents the cou-
pling between the two subsystems. The spin Hamiltonian is chosen 
to describe the low-lying electronic states of the real all-electron 
system according to well-defined and accurate mapping strategies 
(33, 34). The phonon Hamiltonian is chosen as a simple sum of har-
monic oscillators. Under a weak-coupling assumption, the interac-
tion between a spin system and an ensemble of phonons, q, can be 
modeled with a spin-phonon coupling Hamiltonian of the form

     ̂  H    s−ph   =  ∑ 

       (     ∂    ̂  H    s   ─ ∂  q    

   )    
0

    q    (t ) +   ∑ 
≥

      (      ∂   2     ̂  H    s   ─ ∂  q     ∂  q    
   )    

0

    q    (t )  q    (t)  (2)

where the summations are understood to run over both phonon 
band indexes and reciprocal lattice q-points.

The spin-reduced density matrix in the interaction picture (7, 8), 
   ̂     s   , describes the state of the spin under the effect of the interaction 
with the phonon bath, and the formalism of time-convolutionless 
master equations provides an exact description of its time evolu-
tion (7, 8)

    d   ̂     s   ─ dt   =  ̂   ̂  R  (t )   ̂     s  (t)  (3)

The super-operator   ̂   ̂  R  (t)  describes how the density operator 
evolves in time, and it contains all the information about the 
phonons’ dynamics and their effect on the spin. If all the terms of 
Eq. 1 are known, then Eq. 3 can then, in principles, be solved exactly. 
However, to numerically solve Eq. 3,   ̂   ̂  R  (t)  is often systematically ex-
panded in a perturbative way (7,  8),   ̂   ̂  R  (t ) = ( ̂   ̂  R  2(t ) +  ̂   ̂  R  4(t ) + … ) , 
where contributions become progressively less important. Further 
simplifications are also commonly performed. For instance, assuming 
a separation of time scales between spin relaxation and the intrinsic 
relaxation rates of the phonons, it is possible to assume that the 
latter are always at thermal equilibrium and therefore apply the 

Fig. 1. Molecular structures. (Top) Left, middle, and right panels show the structures of (1), (2), and (3), respectively. Color code: Pink for vanadium, purple for cobalt, 
light green for dysprosium, green for carbon, blue for nitrogen, red for oxygen, yellow for sulfur, and white for hydrogen. (Bottom) Left, middle, and right panels show 
the spin states’ energy splitting for (1) in a field of ∼1 T and for (2) and (3) in the absence of external field, respectively.
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Born-Markov approximation. Namely, we assume that phonons 
have a much larger specific heat than the spin system [no phonon 
bottleneck (39)] and that they are able to rapidly equilibrate through 
anharmonic phonon-phonon scattering while at the same time 
exchanging energy with the spin.

Under these assumptions and considering only the second-order 
contribution   ̂   ̂  R  2(t) , Eq. 3 becomes identical to the well-known 
Redfield equations (17)

    
d   ab  s   (t)

 ─ dt   =  ∑ 
n
      ∑ 

cd
      e   i(   ac  +   db  )t  R  2 ab,cd  n−ph    cd  s   (t)  (4)

which describe how each element of the density matrix changes in 
time and the superscript n–ph describes the number of phonons 
simultaneously involved during this process. Diagonal elements of 
the density matrix,    aa  s    , describe the population of each spin state, 
while out-of-diagonal terms,    ab  s     with a ≠ b, describe the coherence 
of the system, the hallmark of quantumness.

Considering only the linear term of Eq. 2,   ̂   ̂  R    2   n−ph   becomes 
(a ≠ c and b ≠ d)

 R  2 ab,cd  1−ph   =    ─ 
2  ħ   2 

    ∑ 

     {  V ac  

    V db       G   1−ph (   bd  ,       ) +  V ac  
    V db       G   1−ph (   ac  ,       ) }  (5)

where the terms   V ab      are a short-hand notation for  〈a∣(∂    ̂  H    s   / ∂  q     ) ∣b〉 , 
and ∣a> and ∣b> are eigenstates of     ̂  H    s   . Last, ab = (Ea − Eb)/ħ, where 
Ea and Eb are eigenvalues of     ̂  H    s   . The full expression of Eq. 5 is 
reported in the Supplementary Materials. The function G1 − ph that 
appears in Eq. 5 is the Fourier transform of the single-phonon 
correlation function and reads

   G   1−ph (,       ) = ( −       )    _ n       + ( +       ) (   _ n       + 1)  (6)

where    n ̄       =  [exp(ħ       /  k  B   T ) − 1]   −1   is the Bose-Einstein distribution 
describing phonons’ thermal population, ħ is the -phonon energy, 
and kB is the Boltzmann constant. The function G1 − ph accounts for 
the spectral density and population of phonons. Equations 4 and 5 

describe one-phonon resonant spin transitions (see Fig. 2). The 
one-phonon transitions described by Eq. 5 can account for either 
the direct or the Orbach relaxation mechanism, where the former 
involves a single transition between spin states with opposite polariza-
tion (Ms = ±S) and the latter instead involves transitions to states 
with intermediate spin polarization.

Considering now the quadratic term of Eq. 2,   ̂   ̂  R    2   n−ph   becomes 
(22) (a ≠ c and b ≠ d)

   
 R  2 ab,cd  2−ph   =   π ─ 

4  ħ   2 
     ∑ 
α≥β

    {    V ac  
αβ   V db  αβ   G   2−ph ( ω  bd  ,  ω  α  ,  ω  β   ) + 

    
  V ac  

αβ   V db  αβ   G   2−ph ( ω  ac  ,  ω  α  ,  ω  β   )  }   
    (7)

where   V ab     now stands for  〈a∣( ∂   2     ̂  H    s   / ∂  q     ∂  q     ) ∣b〉 . The full expres-
sion of Eq. 5 is reported in the Supplementary Materials. The func-
tion G2 − ph accounts for three possible processes involving two 
phonons: absorption of two phonons, emission of two phonons, and 
simultaneous emission of one phonon and absorption of a second 
one. Here, we only report the latter contribution, which reads

   G   2−ph (   ba  ,      ,       ) = (   ba   −       +       )    _ n      (   _ n       + 1)  (8)

As evident from Eq. 8, in two-phonon transitions, only the sum 
or difference of the two phonons’ energies must be resonant with 
the spin transition, while there is no constraint on the energy of the 
single vibrations. Spin relaxation mechanisms due to two-phonon 
processes generally fall under the name of Raman relaxation mech-
anism, and those arising from Eq. 7 are schematically represented in 
the middle panel of Fig. 2.

At this point of the derivation of the Redfield equations, the sec-
ular approximation is generally performed. This approximation 
involves setting to zero the matrix elements of  R  2 ab,cd  2−ph    for which 
(ac + db) ≠ 0. This is justified by the fact that the terms (ac + db) 
appear as arguments of an oscillatory term in Eq. 4. These oscillat-
ing terms are averaged out for times commensurable to the spin 

Fig. 2. Schematic representation of spin-phonon transitions. (Left) A spin transition, from the state ∣a〉 to the state ∣b〉, due to a resonant one-phonon process as 
dictated by the super-operator R21 − ph. (Middle) A spin transition among the same states but mediated by a two-phonon process, where one phonon is emitted and one 
is simultaneously absorbed. This is a process accounted for by the super-operator R22 − ph. (Right) A spin transition among the same states induced by the super-operator 
R42 − ph, where a two-phonon process can occur thanks to virtual transitions (red dashed lines) to an excited spin state ∣c〉.
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relaxation time, , provided that the period of the natural spin oscilla-
tions (ab) is much shorter than . Bearing in mind that spin-phonon 
relaxation in magnetic molecules often occurs on time scales of 
nanoseconds to hundreds of seconds, depending on the value of 
T and the specific system, the secular approximation is generally 
fulfilled for systems with zero-field splitting or in the presence of 
small external or dipolar magnetic fields. Under these conditions, 
only the terms  R  2 aa,bb  n−ph   and  R  2 ab,ab  n−ph  , namely, population transfer and 
coherence relaxation terms, contribute to the dynamics of    ̂     s   . How-
ever, when dealing with Kramers systems in zero external magnetic 
field, additional terms of  R  2 ab,cd  2−ph    also survive the secular approxima-
tion in virtue of the spectrum degeneracy that makes additional 
terms (ac + db) vanish. For instance, the population-coherence 
transfer process  R  2 aa,bc  

n−ph  , with Eb = Ec, and coherence transfer terms 
 R  2 ad,bc  

n−ph  , with Eb = Ec and Ea = Ed, would not be washed out by the 
secular approximation and could, in principle, contribute to the 
spin-phonon dynamics (40, 41).

Extending the expansion of   ̂   ̂  R  (t)  up to the fourth order and con-
sidering only the linear term of spin-phonon coupling, we obtain 
another source of two-phonon spin transitions. A set of equations 
describing the diagonal population terms of    ̂     s    due to this contribu-
tion reads (8)

    d   aa  s   (t) ─ dt   =  ∑ 
b
    R  4 aa,bb  2−ph     bb  s   (t)  (9)

   ̂   ̂  R  4   2−ph   receives contributions from the same two-phonon processes 
as    ̂   ̂  R  2   2−ph  . Here, we explicitly discuss the sum/difference one and 
refer to the Supplementary Materials for the complete expression of 
   ̂   ̂  R  4   2−ph   and a discussion on its derivation and implementation sub-
tleties. For this contribution,    ̂   ̂  R  4   2−ph   reads

  R  4 aa,bb  2−ph   =    ─ 
2  ħ   2 

     ∑ 
≥

     ∣ ∑ 
c
       

〈a∣   ̂  V      ∣c〉〈c∣   ̂  V      ∣b〉
  ────────────────   E  c   −  E  b   + ħ      

   +   
〈a∣   ̂  V      ∣c〉〈c∣   ̂  V      ∣b〉

  ────────────────   E  c   −  E  b   − ħ      
  ∣    

2

  G   2−ph (   ba  ,      ,      )                                                  (10)

Differently from Eq. 7, the factor G2 − ph in Eq. 10 is multiplied by 
a prefactor accounting for the presence of excited spin states of 
energy Ec, i.e., the virtual states often invoked in perturbation theory. 
The processes described by Eq. 10 also contribute to the so-called 
Raman relaxation and are depicted in the right panel of Fig. 2. 
Equation 10 differs from a previously presented one, where not all 
the terms had been included (27, 30). Last, we note that Eq. 10 does 
not account for the dynamics of coherence terms, and it is therefore 
only strictly valid for nondegenerate spin spectra, where coherence 
and population terms are decoupled.

As long as the Born-Markov and secular approximations hold, 
the equations just detailed provide an exact description of spin 
relaxation up to two-phonon processes. The only remaining 
challenge to their implementation lies in the definition of the many 
coefficients that enter these equations. This challenge is tackled 
with electronic structure methods. Methods such as complete active 
space self-consistent field (CASSCF) and density functional theory 
(DFT) have now reached a high degree of sophistication in the 
prediction of spin Hamiltonian parameters of magnetic molecules 
(33, 34) as well to predict phonons’ frequencies and normal modes 
of vibrations (42).

Spin-phonon relaxation in S = 1/2 systems
Compound (1) is a V4+ coordination complex with an S = 1/2 
ground state and a nuclear spin I = 7/2 (36). The spin Hamiltonian 
can be modeled as

     ̂  H    s   =    B    → B  · g ·   
→

 S  +    N    → B  ·   → I  +   
→

 S  · A ·   → I   (11)

where B is the electron’s Bohr magneton, g is the effective electronic 
Landè tensor, N is the nuclear gyromagnetic factor of 51V, and A is 
the hyperfine coupling tensor. Compound (1) crystallizes in a 
monoclinic unit cell containing four molecular units and eight 
tetraphenylphosphonium counter ions. The entire unit cell was 
optimized with periodic DFT (pDFT) and used for a -point pho-
non calculation as detailed in Materials and Methods. The vibra-
tional density of states is reported in fig. S1. The tensors g and A 
were computed with DFT after the structural optimization. Predicted 
values of (gxx, gyy, gzz) = (1.976,1.986,1.988) are in perfect agreement 
with experimental ones (36). Computed values of A are found sen-
sitive to the choice of scalar relativistic corrections used in the DFT 
simulation, with zeroth order regular approximation (ZORA) under-
estimating the values up to 23% and Douglas-Kroll-Hess (DKH) 
approximation overestimating them up to 38%. All the terms of the 
spin- phonon coupling Hamiltonian of (1), including second-order 
terms, are computed by taking the numerical derivative of all the 
parameters in Eq. 11 that depend on molecular coordinates and affect 
spin dynamics, namely, g and A. Notably, here we perform the cal-
culation of second-order spin-phonon coupling coefficients fully 
ab initio and without using any machine learning interpolator as done 
in previous work (22). We neglect the contributions of Eq. 5 to 
relaxation, which are known to lead to direct relaxation (17). The 
latter only overcome two-phonon relaxation for T < 10 K (22, 36). 
In that regime, experimental values of  are affected by spin diffusion, 
which would make the comparison with simulations not straight-
forward. For (1), we also exclude the contributions coming from 
Eq. 10. This is justified by the fact that a spin 1/2 is a two-level sys-
tem and lacks excited spin states able to act as virtual states in 
Eq. 10. In principle, one could include transitions to higher elec-
tronic excited states. However, in (1), these states lie 20,000 cm−1 
above the ground state (20), far away from any phonon excitation.

The magnetization dynamics of (1) is thus computed by solving 
Eqs. 4 and 7. All the secular terms are included, but no degenerate 
states are present because of the presence of the external fields, thus 
decoupling entirely population and coherence terms of the density 
matrix. The density matrix is initialized by applying  rotation of 
the electronic spin to the canonical equilibrium distribution. This 
initial state is chosen to mimic the experimental condition of an 
inversion recovery electron paramagnetic resonance (EPR) ex-
periment used to measure T1. The time dependence of the magne-
tization of the electronic spin is computed to reach equilibrium 
following a stretched-exponential decay   M  z  (t ) = ( M  z  (0 ) −  M z  

eq )  exp 
[−  (t / )     ] +  M z  

eq   with  ∼ 0.7 − 0.9 for A-driven relaxation (see fig. S2) 
and  = 1 for g-driven relaxation. Figure 3 reports the comparison 
between the values of T1 measured with X and Q band EPR on mag-
netically diluted samples, together with the predicted values of  as 
a function of temperature by assuming the modulation of A (top 
panel) and g (bottom panel) as the sole relaxation mechanisms.

Results obtained considering the modulation of the hyperfine 
interaction show a good agreement with inversion recovery experi-
ments, both in terms of absolute values and external field dependence. 
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Depending on the fine details of the DFT calculations, agreement 
up to a factor five and not exceeding one order of magnitude is 
observed. Conversely, the modulation of the Zeeman interaction is 
shown to overestimate spin lifetime by at least one order of magni-
tude. The relaxation rate due to the modulation of g is found to 
depend on the magnitude of the external field as B2, which does 
not fit the generally observed experimental trend for Raman relax-
ation in this class of complexes. For the field considered, the modu-
lation of A is always the faster relaxation pathway, and the results 
reported in the top panel of Fig. 3 are unchanged if the modulation 
of A and g is simultaneously considered.

The computational results for (1) are in qualitative agreement 
with a previous study on the crystal of VO(acac)2 (22). However, 
differently from the VO(acac)2 case, T1 data obtained on diluted 
crystals for (1) are available (36), making it possible to demonstrate 
that once cross-relaxation mediated by dipolar interactions is 
excluded, the deviation between simulations and experiments is 

below one order of magnitude and the  versus T profile is nicely 
reproduced (see top panel of Fig. 3). When nondiluted crystals are 
instead measured, such as in AC magnetometry experiments, a very 
different profile of  versus T is often observed (see top panel of 
Fig. 3). The residual deviation between simulations and inversion 
recovery measurements is consistent with the lack of phonons 
outside the -point and the inaccuracies of electronic structure 
methods (22). To determine the most important phonons for 
relaxation, we perform simulations by including only vibrations in 
the low-energy window and starting from the first optical mode 
at -point, here computed at ∼12 cm−1. We find that the lowest- 
energy lying optical phonons are mainly responsible for spin 
relaxation even at room temperature and that phonons with energy 
above ∼50 cm−1 have no contribution (see fig. S3). This can be 
interpreted as an effect of thermal population, which is always larger 
for lowest-energy phonons. As discussed previously, low-energy 
vibrations of 1 are an admixture of molecular rotations and delocalized 
intramolecular distortions (20). The animation of the first optical 
mode at the -point is reported in the Supplementary Materials.

Spin-phonon relaxation in S > 1/2 systems
Next, we address the spin dynamics of (2) as an example of relaxation 
in a mononuclear transition metal complex with large zero-field 
splitting. This molecule contains a high-spin Co2+ ion that can be 
described with an effective S = 3/2 Hamiltonian

     ̂  H    s   = D    ̂  S   z  
2
  + E(   ̂  S   x  

2
  −    ̂  S   y  

2
 )  (12)

where the large axial anisotropy term, experimentally estimated at 
D ∼ −115 cm−1, and vanishing rhombic term E remove the degeneracy 
of the two Kramers doublets (KDs) Ms = ±3/2 and Ms = ±1/2 
(37, 38). This compound crystallizes in an orthorhombic lattice 
with four molecules in the unit cell and eight   NHEt 3  +   counter ion 
molecules (37). The spin Hamiltonian coefficients, spin-phonon 
coupling coefficients, and the phonons for this compound were 
computed in a previous work using CASSCF- and DFT-based 
machine learning force fields (MLFFs), respectively (27). The use of 
vibrational density of states and spin-phonon coupling intensity is 
reported in figs. S5 and S6.

We note that direct transitions within the ground-state KD 
(Ms = ±3/2) are prohibited by symmetry. As a consequence, both 
Eqs. 5 and 7 can only lead to relaxation through pathways involving 
excited KDs, thus involving high-energy phonons. Two-phonon 
contributions to Raman relaxation arising from Eq. 7 are here 
neglected in virtue of the fact that first-order contributions are 
expected to dominate. The same is not true for two-phonon contri-
butions coming from Eq. 10, where a direct intra-Kramers double 
transition is made possible by the presence of virtual states. Accord-
ingly, in our previous work, the time evolution of    ̂      s   was studied 
with the diagonal terms of Eqs. 5 and 10. However, simulations were 
conducted in zero field, therefore neglecting the role of coherence 
terms. To investigate the impact of this approximation, we compute 
all the terms of  R  2 ab,cd  1−ph   . The left panel of Fig. 4 shows the value of 
 R  2 ab,cd  1−ph    when all terms that fulfil the condition (ac + db) = 0 are 
retained. We will refer to this level of approximation as nondiagonal 
secular approximation from now on. Instead, the central panel of 
Fig. 4 shows the value of  R  2 ab,cd  1−ph    when only the terms  R  2 aa,bb  1−ph    and 
 R  2 ab,ab  1−ph    are retained. We will refer to this approximation as diagonal 
secular approximation from now on. As it is evident from the 

Fig. 3. Spin-phonon relaxation time for (1). Simulated values of  for (1) including 
the contribution of A-tensor (top) and g-tensor (bottom) modulations to the 
Raman mechanism of relaxation. Simulations are carried out for two values of the 
magnetic field B = 0.33 T (black continuous line) and B = 1.2 T (dashed red line) to 
be comparable with EPR measurements of T1 at X (black triangles) and Q bands 
(red squares), respectively. Results in the top panel are the average between calcu-
lations carried out with the DKH and ZORA scalar relativistic corrections, and the 
sky blue shade represents the two limiting values. The experimental measurement 
of  from AC magnetometry at the field of 1 T for nonmagnetically diluted samples 
is reported in the top panel with a continuous blue line.
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comparison of the left and central panels of Fig. 4, the nondiago-
nal secular approximation includes non-negligible terms that 
couple coherence and population elements of    ab  s    . Last, the right 
panel of Fig.  4 shows that the diagonal secular approximation 
becomes fulfilled when Kramers degeneracy is removed by apply-
ing a small external field of 0.01 T (or smaller) along the molecule’s 
easy axis. We note that the eigenvalues of the matrices reported in 
the left and right panels of Fig. 4 are virtually identical and, at the 
same time, different from those of the matrix reported in the middle 
panel of Fig. 4. Moreover, we find that the spectrum of    ̂   ̂  R  2   1−ph   in 
the diagonal secular approximation is not rotationally invariant 
even in zero field, a clear indication of inconsistency.

To determine the importance of including coherence-transfer 
terms into the description of spin-phonon relaxation, we compute 
the value of spin lifetime  for (2) by taking the inverse of the first 
nonzero eigenvalue of the matrix  R  2 ab,cd  1−ph   , as commonly done for 
Markov processes. The latter is equivalent to studying the decay of 
Mz(t) for a molecule with the magnetization easy axis parallel to z. 
Figure  5 shows the results for the two different levels of secular 
approximation, together with experimental results obtained in the 
presence of a small external field. The application of a small external 
field in experiments helps in removing the effect of dipolar relax-
ation (38) not included in the simulations and therefore makes the 
comparison between theory and experiments more reliable. The 
relaxation time predicted with the diagonal secular approximation 
is close to the one reported before (27), and despite the qualitative 
agreement with experiments, it shows between one and two orders 
of magnitude of underestimation of spin lifetime. Once the non-
diagonal secular approximation is introduced for one-phonon 
processes with the use of Eq. 5, the agreement between experimen-
tal and simulated  becomes virtually exact in the high-T relaxation 
regime, where the Orbach mechanism drives relaxation. For tem-
perature below 20 K, the two-phonon Raman relaxation described 
in Eq. 10 takes over the Orbach one. Although a nondiagonal secu-
lar approximation for this process is not available, we attempted to 
remove the effect of coherence transfer by applying a small external 
field along the molecular easy axis of magnetization. As suggested 
by the study of  R  2 ab,cd  1−ph    matrix elements, the results for the diagonal 
and nondiagonal secular approximations become identical under 

these conditions (see fig. S7). This is indeed the case for (1), which 
was studied and simulated under applied field. Applying this strategy 
to  R  4 aa,bb  2−ph   , results improve significantly with only a negligible residual 
deviation left between experiments and simulations. Last, we note 
that simulations for (2) have been found extremely robust with 
respect to the choice of basis set, scalar relativistic effects, and 
dynamical correlation (see fig. S8). Moreover, predictions obtained 
with -point phonons computed from MLFF or DFT agree very 
well among them, thus validating the use of MLFF (43) to integrate 
the phonons’ Brillouin zone and converge the values of  below 
10 K, where border zone and acoustic phonons start contributing 
(see fig. S8). As discussed elsewhere (27) and in agreement with 
what is observed here for (1), low-energy phonons up to ∼50 cm−1 
are the main drive for Raman spin relaxation in (2) (see fig. S9). 
Also in this case, it was found that these low-energy vibrations 

Fig. 4. Redfield transition rates for (2). Transition rates among general elements of the density matrix predicted by the Redfield theory using the nondiagonal secular 
approximation and diagonal secular approximation are reported in the (left) and (middle), respectively. (Right) The same rates of nondiagonal secular approximation 
after rotating the molecular geometry to align the magnetic easy axis along z and applying a small external field along the same direction. The transitions rates have been 
computed at T = 40 K. The first four elements correspond to the population terms, and all the remaining elements correspond to coherence terms. All matrix elements are 
expressed on the basis of the spin Hamiltonian eigenstates.

Fig. 5. Spin-phonon relaxation time for (2). Experimental relaxation times measured 
at 1000 Oe with AC magnetometry are reported as black continuous lines (38). Simulated 
Orbach rates computed with the nondiagonal (continuous line and triangles) and 
diagonal secular approximation (dashed line and circles) are reported in red. Simulated 
Raman rates computed with the diagonal secular approximation with external field 
Bz = 0.01 T (continuous line and triangles) and Bz = 0.0 T (dashed line and circles) are 
reported in green. Raman rates in nonzero external field are computed by rotating 
the molecular geometry in the frame of the g-tensor’s eigenvectors.
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correspond to molecular rotations combined to small and delocalized 
intramolecular distortions (27).

Spin-phonon relaxation in J = 15/2 lanthanide systems
To further test the ability of our models, we extended our study to 
(3). This molecule exhibits a Dy3+ ion in almost perfectly axial crys-
tal field. This coordination stabilizes a J = 15/2 ground state and 
imposes a strong zero-field splitting that separates the ground and 
highest excited KDs (Mj = ± 15/2 and Mj = ± 1/2, respectively) 
by ∼1500 cm−1 (16). The spin states of (3) can be described with a 
generalized spin Hamiltonian (34, 44)

     ̂  H    s   =   ∑ 
l=2,4,6

     ∑ 
m=−l

  
l
     B m  l      ̂  O   m  

l
  (  → J )  (13)

where     ̂  O   m  
l
  (  → J )  are tesseral tensor operators (45). (3) crystallizes in a 

triclinic unit cell with two molecular units and two [B(C6F5)4]− (16) 
molecules as counter ions. Phonons and spin-phonon coupling 
coefficients were computed for (3) following the strategy validated 
on (2) and involves the computation of -point phonons with pDFT 
and linear spin-phonon coupling coefficients with CASSCF. Vibra-
tional density of states and spin-phonon coupling intensities are 
reported in figs. S11 to S14. Results of spin relaxation for the 
one-phonon Orbach process in (3) are reported in Fig. 6 together 
with experimental values. Once again, the agreement between the 
simulated and experimental Orbach relaxation rates is excellent, 
but only after the nondiagonal secular approximation is introduced. 
The prediction of Orbach rates obtained using the diagonal secular 
approximation is off by many orders of magnitude, depending on 
the value of T. Such a large disagreement is mostly due to the fact 
that, in the absence of the nondiagonal secular approximation, 
relaxation is predicted to be promoted by the first excited KD, 
computed at ∼477 cm−1, instead of being driven by absorption of 
phonons in resonance with the KD with energy ∼1300 cm−1. We 

tested the effect of removing Kramers degeneracy by aligning the 
Cartesian frame along the molecular easy axis, as expressed by the 
eigenvectors of ground-state KD’s g-tensor and by applying an external 
field of 0.01 T along the same direction. In agreement with what is 
observed for (2), under these conditions, Orbach relaxation rates 
predicted with the diagonal and the nondiagonal secular approxima-
tions are coincident among them and with experimental relaxation 
rates. Exporting our computational strategy to the case of Raman 
relaxation, we observe a massive improvement of results, with a 
negligible factor of residual deviation between experiments and 
simulations. Differently from (2), we note a slight dependence of 
results with respect to basis set, the number of CASSCF’s solutions 
considered, and the inclusion of dynamical correlation (see figs. S15 
and S16), hinting to the possibility to further improve results upon 
a systematic exploration of these technicalities. We also note that 
the total relaxation time is given by the sum of Orbach and Raman 
relaxation rates. At temperature below 60 K, Raman relaxation is 
the only relevant mechanism, but at high temperature, Raman 
and Orbach rates are computed similar to one another, possible due 
to a slight overestimation of the former, and the total relaxation 
time is thus slightly faster than the Orbach one (see fig. S21).

Previous reports on the ab initio prediction of Orbach relaxation in 
(3) using the diagonal secular approximation are available (16, 28). 
In those contributions, relaxation rates were overestimated by no 
more than two orders of magnitude, and the overall T profile above 
70 K was correctly captured. Despite differences in the ab initio 
setup, we were able to qualitatively reproduce those results by using 
the diagonal secular approximation and the same molecular orien-
tation of (16, 28) (see fig. S17), thus validating the reproducibility of 
our conclusions. Turning to the analysis of phonon contributions to 
Raman spin relaxation in (3), relaxation was found to receive con-
tributions from several optical phonons with energy up to 80 cm−1 
(see fig. S18). A visual inspection of these modes shows that, 
similarly to (2), they are dominated by local molecular rotations 
overlapped to small intramolecular distortions. The latter mainly 
involve the tBu groups and the position of Dy3+ ion within the two 
Cp− rings. The animation of the mode with energy ∼50 cm−1 is re-
ported in the Supplementary Materials. This mode has the largest 
coupling among those in the sub–80 cm−1 energy range. Last, we 
determined the contribution of different excited KDs in Eq. 10 
by including only one of them at the time in the simulation of  at 
40 K. This analysis shows that the first excited KD has the largest 
impact on Raman relaxation (see fig. S19), further pointing to 
the crucial role of low-energy modes as the main source of Raman 
relaxation.

DISCUSSION
Although the theory of relaxation for d/f block ions has been 
thoroughly investigated for decades, the many parameters populating 
its equations have prevented its use as a predictive tool. However, 
once relaxation theory is combined with ab initio methods, it be-
comes possible to estimate spin relaxation time without any input 
from experiments. Such a method stands out as a key tool to bench-
mark our understanding of spin-phonon interaction and relaxation 
in an unbiased way and to provide previously unidentified strategies 
toward optimization of relaxation times. Nonetheless, a computa-
tional method of this complexity has many assumptions and ap-
proximations that require validation.

Fig. 6. Spin-phonon relaxation time for (3). Experimental relaxation times 
measured in zero field with AC magnetometry and magnetization decay are 
reported as a black continuous line (16). Simulated Orbach rates computed with 
the nondiagonal (continuous line and triangles) and diagonal secular approxima-
tion (dashed line and circles) are reported in red. Simulated Raman rates computed 
with the diagonal secular approximation with external field Bz = 0.01 T (continuous 
line and triangles) and Bz = 0.0 T (dashed line and circles) are reported in green. 
Raman rates in the presence of nonzero external field are computed by rotating 
the molecular geometry in the frame of the g-tensor’s eigenvectors of the 
ground-state KD.
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In this work, we have determined the main missing pieces to the 
puzzle of accurate spin-phonon relaxation times. The study of com-
pound (1), an isotropic S = 1/2 system, highlighted the importance 
of a careful comparison with experimental data not affected by 
dipolar cross-relaxation. Compounds (2) and (3) instead showed that 
for S > 1/2, Kramers system processes up to the fourth-order and 
accounting for coherence terms in the Redfield equations are key for 
obtaining quantitative predictions. We have shown how seemingly 
small details, such as neglecting the coherence terms of the density 
matrix, can lead to many orders of magnitude of deviation between 
predictions and experiments. As long as a parametric approach to 
open quantum system dynamics is used, it is impossible to detect 
these pitfalls, as errors are removed by rescaling factors. These 
results thus provide a unique proof of concept that open quantum 
system theory can be applied in a parameter-free fashion for 
complex systems such as solid state.

We envisage that further improvement of the agreement be-
tween experiments and simulations could be achieved by carefully 
benchmarking both electronic structure methods and the remaining 
theoretical approximations to the open quantum system dynamical 
equations. The former includes a careful study of how van der Waals 
(vdW) corrections to DFT affect phonons’ simulations and how 
much electronic structure correlation and the choice of basis set 
affect the prediction of spin Hamiltonian and spin-phonon coupling 
coefficients. From a theoretical point of view, the derivation of a full 
fourth-order master equation that explicitly includes the coherence 
terms stands out as the next fundamental challenge. Assessing the 
validity of the Markov approximation in situations of phonon 
bottleneck (39) and the inclusion of spin-spin interactions into the 
formalism are two other important directions for the field. Despite 
the approximations done, the methods used in this work only 
strongly rely on the possibility to correctly map the electronic struc-
ture of the compound of interest onto a spin Hamiltonian. This can 
be readily and accurately done for virtually any type of localized 
spin system, going from organic radicals, transition metal, or 
lanthanide ions to nuclear spins and solid-state defects. We argue 
that the molecules studied in this work, ranging from isotropic S = 1/2 
to strongly correlated lanthanides, already cover the entire spectrum 
of complexity of localized magnetic systems. Moreover, we argue 
that the present findings also applied to situations where a spin 
Hamiltonian formalism breaks down. The formalism of (18, 19) can 
be extended to include our results on quadratic and higher-order 
time-dependent perturbation theory, provided that an accurate- 
enough single-particle representation of the electronic structure 
theory is available.

The unprecedented level of accuracy of simulations for these 
different compounds also validates the theoretical framework and 
the ab initio methods at the same time, making it possible to confirm 
recent theoretical findings in terms of spin relaxation mechanism in 
vdW crystals of molecular Kramers system (17, 22, 27, 30, 46, 47). 
Direct and Orbach relaxations due to resonant phonons are correctly 
accounted for by second-order contributions to density matrix dynamics 
and linear spin-phonon coupling. Two-phonon spin relaxation 
due to second-order contributions to density matrix dynamics and 
quadratic spin-phonon coupling is the main source of Raman re-
laxation for S = 1/2, while fourth-order perturbation theory and 
linear coupling are necessary to explain Raman relaxation in S > 1/2 
with large uniaxial anisotropy. Simulations support the use of the 
expression

      −1  =  ∑ 
i
      A i  

1−ph    1 ─ 
( e      i    − 1)

   +  ∑ 
i
      A i  

2−ph     e      i    ─ 
 ( e      i    − 1)   

2
 
    (14)

to fit one- and two-phonon contributions to experimental spin life-
time of vdW crystals of magnetic molecules (22). The first term in 
Eq. 14 can lead to either direct or Orbach relaxation depending on 
the energy of resonant phonons. The second term in Eq. 14 instead 
describes the Raman processes, which are found to be dominated by 
the lowest-energy phonons with a nonzero spin-phonon coupling, 
often in the subterahertz frequency range. This expression has been 
used already on a few occasions to aid the interpretation of experi-
mental data. Restricting the sums in Eq. 14 to a few modes, whose 
energy and coupling are left as adjustable parameters, it was shown 
that additional insights on spin relaxation can be obtained with 
respect to a fitting done with simple power laws (23, 48–50).

In conclusion, we have studied spin-phonon relaxation in three 
molecular compounds representing the most relevant classes of 
slow-relaxing molecular Kramers systems and have shown that 
open quantum system theory can be implemented in a fully ab 
initio fashion and used to accurately predict spin relaxation rates. 
Now that ab initio spin dynamics is rapidly maturing into a quanti-
tative predictive tool, it will be possible to deploy it to study other 
systems such as polynuclear ion clusters (51), organic radicals (6), 
nuclear spins (52), paramagnetic defects in semiconductors (53), 
and magnetic impurities in solid-state hosts (4) or adsorbed on 
surfaces (54). We anticipate that our Message Passing Interface (MPI) 
parallel software implementation of the present formalism will 
facilitate it (55).

MATERIALS AND METHODS
Electronic structure simulations
The unit cell x-ray structures of (1) (36) and (3) (16) were used as 
starting points for a pDFT optimization with the software CP2K 
(56). DFT with the Perdew-Burke-Ernzerhof (PBE) functional (57), 
including Grimme’s D3 vdW corrections (58), was used together 
with a double-zeta polarized MOLOPT basis set. A plane wave 
cutoff of 2500 rydberg (Ry) and 1500 Ry were used for (1) and (3), 
respectively. All the unit cell lattice force constants were computed 
with a two-point numerical differentiation with a step of 0.01 Å, 
thus providing access to only -point phonons. Geometry optimi-
zation, phonons, and generation of a MLFF for (2) were presented 
before. The use of an MLFF for (2) provides access to super cell 
simulations and all the phonons of the Brillouin zone. Integration 
grids up to 8 × 8 × 8 were used to converge the relaxation time with 
respect to the q-point number (see fig. S10). The ORCA software 
(59) has been used for the calculation of all spin Hamiltonian terms. 
Simulations with ORCA were carried out on molecular geometries 
optimized with pDFT. The tensors g and A for (1) were computed 
with DFT using the PBE0 functional (60). The spin Hamiltonian of 
(3) was computed with CASSCF using a (9,7) active space and by 
using all the solutions with multiplicity 6, 128 solutions with multi-
plicity 4, and 130 solutions with multiplicity 2. Spin-orbit contribu-
tions were included through quasi-degenerate perturbation theory. 
ZORA and DKH scalar relativistic corrections were used for (1) and (3), 
respectively. The calculation of spin-phonon coupling coefficients 
for (1) was also repeated with DKH scalar relativistic corrections. 
The RIJCOSX approximation with GridX6 integration grid was 
used for both (1) and (3). The basis set DKH/ZORA-def2-TZVPP 
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was used for V, S, C, and H. SARC-DKH-TZVPP was used for Dy 
instead. Spin-phonon coupling coefficients for (3) were computed 
using a slightly cheaper setup: State-average CASSCF simulations 
only included the roots with multiplicity 6, and RIJCOSX was used 
with the GridX4 option. The basis sets DKH-SARC-def2-QZVP, 
DKH-def2-TZVPP, and DKH-def2-SVP were used for Dy, C, and H, 
respectively. The crystal field Hamiltonian coefficients for (3) 
were obtained by fitting ORCA’s spin-orbit coupling matrix com-
puted on the basis of CASSCF solutions. For this purpose, we used 
the tool getCF available as part of the MolForge software suite (55). 
Spin Hamiltonian and spin-phonon coupling coefficients for (2) 
were computed previously with CASSCF (27).

Spin-phonon relaxation simulations
Phonons’ frequency and normal modes of vibrations were computed 
by diagonalization of the dynamical matrix

   D  ij  (q ) =  ∑ 
l
       ij  0,l   e   iq· R  l     (15)

where q is a Brillouin zone vector and    ij  0,l   is the mass-weighed 
lattice force constant between the degree of freedom i in the reference 
unit cell l = 0 and the degree of freedom j in the unit cell l. Force 
constants and phonons were computed starting from DFT forces 
with the use of the tools getFC and PhonDy available as part of the 
MolForge software suite (55). First-order spin-phonon coupling 
coefficients are computed with the expression

    (     ∂    ̂  H    s   ─ ∂  q  q     )   =  ∑ 
i
  

3N
     √ 
_

   ħ ─  N  q      q    m  i  
      L i  

q   (     ∂    ̂  H    s   ─ ∂  X  i  
   )     (16)

where   L i  
q    and    q  2    are the eigenvectors and eigenvalues of Dij(q), 

respectively, Nq is the total number of q-points used to integrate the 
Brillouin zone, and the sum over i is extended to the 3N molecular 
degrees of freedom. A similar expression is used for second-order 
spin-phonon coupling (22). The derivatives of the spin Hamiltonian 
terms appearing in Eq. 16 are computed by numerical differentia-
tion. In the case of  (∂  B m  l   / ∂  X  i  ) , the parameters   B m  l    were computed 
for six distortions between ±0.05 Å for each molecular degree of 
freedom. Their value was then interpolated with a third-order 
polynomial function, where the linear coefficient corresponds to 
 (∂  B m  l   / ∂  X  i  ) . For the second-order differentiation of g and A, we 
used a four-point finite-difference expression with a step of 0.01 Å.  
Dirac’s delta functions appearing in the spin dynamics equations 
are smeared out with a Gaussian function with  = 10 cm−1. A value 
of i is also added to the denominators of Eq. 10 to prevent possible 
divergence of calculated rates. Results are found to be well converged 
with respect to  according to a strategy previously tested (see figs. 
S4 and S20) (22, 27). Low-temperature results for Raman relaxation in 
(2) were also converged by sampling the vibrational Brillouin zone 
thanks to super cell phonons calculations (see fig. S10) (27).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abn7880
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