
Structural Characteristics of Knowledge Graphs 

Determine the Quality of Knowledge Graph Embeddings 

Across Model and Hyperparameter Choices 

Jeffrey Sardina1[0000-0003-0654-2938] and Declan O’Sullivan2[0000-0003-1090-3548] 

1 School of Computer Science and Statistics, Trinity College Dublin, Dublin, Ireland 
2 School of Computer Science and Statistics, Trinity College Dublin, Dublin, Ireland 

 

sardinaj@tcd.ie 

Abstract. The realm of biomedicine is producing information at a rate far beyond 

the capacity of clinicians, researchers, and machine learning experts to analyse 

in full. Recently, developments in Knowledge Graphs (KGs) have facilitated the 

representation of all this information in an easily-integrable and easily-queryable 

format. With increasing academic and clinical interest in Knowledge Graph Em-

beddings (KGEs), various KGE models have been developed to allow machine 

learning to efficiently run on these large Knowledge Graphs and predict new, 

previously unseen information about the domain. However, the need to validate 

hyperparameters for every new dataset, especially considering the time and ex-

pertise needed for validation and model training, have limited the use of KGEs 

in biology to those who have expertise in machine learning and knowledge engi-

neering. This research presents a framework by which the effect of hyperparam-

eters on model performance for a given KG can be modelled as a function of KG 

structure. The presented evaluation of the framework finds a clear effect of graph 

structure on hyperparameter fitness. This leads to the conclusion that more re-

search into cross-dataset hyperparameter prediction and re-use holds promise for 

increasing the accessibility and usability of KGEs for biomedical applications. 

Keywords: Knowledge Graphs, Hyperparameters, Knowledge Graph Embed-

dings 

1 Introduction 

Cancer biology and biomedical sciences are being revolutionised by Big Data. From 

projects such as Bio2RDF [1], the International Cancer Genome Consortium [2], the 

1,000 Genomes Project [3], and TumorMap [4], Big Data has become a centrepiece of 

biomedical research. With the ever-increasing magnitude of these datasets, several ap-

proaches have been taken to analyse and utilise them in full. Some projects, such as 

TumorMap, have focused on transforming the available data into a simpler format 

through dimensional reduction mechanisms, accepting a degree of information loss in 

exchange for easier usability [4]. On the other hand, recent Linked Open Data (LOD) 

systems have attempted to represent the entirety of the data in an easily-queryable 
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graph-based format [1, 5–7]. Among the projects that have taken this approach is 

Bio2RDF, an LOD data store that incorporates data from many biological datasets into 

a graph format [1]. Other groups have followed up upon such projects with graph-based 

machine learning methods called Knowledge Graph Embeddings (KGEs) and reason-

ing on KGs to process entire LOD datasets at once [6, 8, 9, 16]. These approaches have 

shown to effectively predict drug-drug interactions [16], identify potential cancer bi-

omarkers [6] and cancer drugs [8], and facilitate access to large cancer datasets [9].  

However, using Knowledge Graph Embeddings (KGEs) on Knowledge Graphs 

(KGs) requires the selection of hyperparameters to the models, and proper selection of 

hyperparameters is critical to enabling the model to best learn the data at hand [10, 11]. 

This research addresses whether the hyperparameters to KGE models on biological 

LOD proceed from the structure of the data. The data suggests that graph structure is 

the driving force behind hyperparameter preference. Our characterisation of the inter-

action between graph structure and model performance in the context of arbitrary hy-

perparameter sets suggests that model performance for given hyperparameters can be 

predicted from graph structure, even without data on the hyperparameters themselves. 

It is anticipated that relating hyperparameters and KGE performance to structure 

would allow predicting and explaining why certain models perform better than others 

and would allow these results to be generalised to similarly structured graphs from di-

verse domains. While in this work the cancer biology and biomedical fields are used—

due to their importance and due to the lead author’s previous experience in both—the 

goal of explaining results in terms of KG structure allows for wider generalisation. 

The characterisation achieved in this research, while not definitive, calls for further 

research into the possibility of allowing relational learning algorithms to operate on 

similarly-structured datasets using a consistent set of known hyperparameters, and on 

whether predicting these hyperparameters from graph structure alone without a hy-

perparameter search may be possible. Such a system would allow biological LOD da-

tasets to be analysed much more quickly, without the need for running a full search for 

optimal hyperparameters on every new dataset. Moreover, it would enable bioinfor-

maticians and clinicians who are not KG or KGE experts to more readily take advantage 

of the insights into biomedical data offered by relational learning systems. 

Please note that in this paper, references to “hyperparameters” refer not to only the 

parameters given to a KGE / relational learning model (such as the learning rate), but 

also to the choice of the models themselves; while differs from the formal definition of 

hyperparameters, it results in a simpler phrasing of the model choices made. 

The remained of this paper is structured as follows: Section 2 gives a background on 

KGs, KGEs, and the gap in the current state-of-the-art that this research seeks to fill. 

Section 3 details the methods by which experiments were performed, and Sections 4 

provides the results of these experiments. Section 5 concludes the paper and gives a 

discussion of the major findings, as well as the limitations of this study. 
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2 Background 

2.1 Knowledge Graphs 

The most popular KG format is RDF, the Resource Description Framework [12]. Like 

most KG formats, the smallest unit of information in the graph is a triple, a set of two 

entities and one predicate (or relationship) that links them [12]. As thus, Every KG is a 

special case of a graph G(V, E) with vertices V and edges E, where every vertex and 

edge is involved in at least one triple. Within the context of any one triple, the first 

entity is called the subject or the head, and the second entity the object or the tail [12]. 

This can be abbreviated simply as (subject, predicate, object). 

In this configuration, RDF triples mirror simple linguistic statements. For example, 

the statement “P53 is a protein” could be modelled as the triple (p53, is-a, protein). 

In the RDF format, subject, predicates, and objects are often represented by URLs 

which allows for entities and predicates to be easily reused and dereferenced, either 

within one data source or between different data sources [12]. The ability to reuse en-

tities and relationships means that various triples can be linked and connected logically 

to each other, either by sharing a head, a tail, or both. This allows KGs to connect data 

from multiple datasets with relative ease in RDF. 

2.2 Knowledge Graph Embeddings 

Representing Vertices and Edges 

Repeating entities as both a subject and an object allows linking triples to each other. 

While this can be used in many cases for logical reasoning using formal rules to extract 

more information from the graph [12], this property also allows machine learning tech-

niques to operate on the graph and learn to distinguish and relate entities based on the 

triples they are involved in [13, 14]. These machine learning techniques are referred to 

as relational machine learning since they learn based on these relations [13]. 

The output of this relational learning is a set of Knowledge Graph Embeddings, 

where entities are typically represented as vectors in Rn and relationships are repre-

sented by transformations on those vectors [13, 14]. These relationships are structured 

(for example) as functions that map Rn onto Rn, allowing them to convert from subjects 

to the expected objects of a relationship (the so-called “link prediction task”) [13, 14]. 

The choice of the dimension into which the entities are placed, as well as the choice 

of what sort of transformation is used to model the relationship (such as vector addition 

or matrix multiplication) are model design choices that must be investigated by devel-

opers to find the optimal combination for a given data set [13, 14]. 

Training on Negative Samples 

In order for the KGE model to effectively learn to predict true triples and reject false 

ones, it must be trained not only on the known-true triples but also on known-false 

triples [13, 14]. This is done using a technique called negative sampling [13, 14].  

There are various assumptions about the data that researchers can make to produce 

negative samples; the most common is the Local Closed-World Assumption, which 



4 

claims that if a given subject and predicate are observed with a certain set of objects, 

then that subject and predicate only match to objects of those types [13, 14]. This is a 

specific case of the Open-World Assumption, also commonly used, which assumes that 

there may be arbitrarily many true statements which are not contained in the KG [13, 

14]. However, the Open-World Assumption gives no way of predicting which triples 

that are not in the KG are true and which are false, and is less commonly used [13, 14]. 

Choosing by what method or methods to sample negatives, and how many to sample, 

are also hyperparameters to KGE models. 

The TransE model for KGEs 

The most basic conceptualisation of KGEs is the TransE model [13, 14]. Under the 

TransE model, nodes are embedded as vectors, and relationships as vector displace-

ments between those nodes. If si is the embedding of a subject node, pi the embedding 

of a relationship, and oi the embedding of an object node, then TransE attempts to en-

force the following equality as closely as possible: 

 si +  pi = oi 

In essence, this gives an intuitive definition of embeddings: the subject embedding plus 

the predicate embedding should be close or equal to the object embedding [13, 14]. 

 A simple example of embedding a KGE into 2-space is given in Figure 1. 

 

Original Knowledge Graph Embedded Knowledge Graph 

  

Fig. 1. Visualisation of KGEs (TransE) 

Link prediction in TransE is formulated as taking the translation of some subject s under 

some predicate p, resulting in a vertex v’. The closest other vertex o to v’ in Rn is pre-

dicted to be the object of the relationship (s, p, o). A visualisation of this method is 

given in Figure 2. 
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Fig. 2. A visualisation of link prediction in TransE, where the object Ribosome would be pre-

dicted to produce the triple (SHH, made-by, Ribosome). The relationship made-by is shown as a 

red arrow transforming the subject SHH to a region closest to the predicted object, Ribosome. 

Other KGE Models 

Many other KGE models exist. While this paper describes TransE to build an intuition 

of KGE models, several variations were used in this work as described in Section 3. 

However, all these other KGE methods follow the same basic idea of using some trans-

formation (represented by an edge) on subjects to produce embeddings that can be 

matched by some metric to the correct objects [13, 14]. 

 In terms of model definition, it is very common that the operator used to represent 

edges, the comparison metric (i.e., Euclidean distance or cosine similarity) between 

transformed subjects and objects, the loss function used to score embeddings, and reg-

ularisation terms added differ between various models [10, 13, 14]. However, a large 

variety of even more diverse KGE methods exist [13, 14]. 

2.3 Gap in the State-of-the-Art 

The KGE models typically focus on producing a set of embeddings either for use as 

feature-vector inputs to a different machine learning application [15, 16] or directly for 

novel link prediction within the learned dataset [16]. Both run into the issue of selecting 

hyperparameters, which often involves a time-consuming brute-force search [16]. 

While various articles have established that KGEs are very sensitive to good hy-

perparameter choice [16], characterized the most important meta-elements of graphs 

such as structure and provenance [17], and noted the effect of graph structure on em-

beddings [18], no attempts have been made to relate these hyperparameters to KG struc-

tural features. Doing so would thus be a contribution both to the field of relational 

learning and to KGE-based bioinformatics. 
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3 Methods 

3.1 Datasets Chosen 

Selection of data sources occurred in two steps: selection of a multi-dataset LOD 

mashup, and selecting datasets from within that mashup. Selection of data from a single 

mashup rather than from solitary KGs was done for four reasons: simplicity, ease of 

reproducibility, relevance, and consistency. 

Simplicity and ease of reproducibility for LOD-based projects go hand in hand. 

Mashup systems such as Bio2RDF are intended to be used in many different contexts 

and by different applications [1]. Moreover, they are designed for easy access of their 

components by researchers [1]. Both attributes make the data attractive in terms of sim-

plicity: all the data is easily obtained from a single place. Moreover, ease of access to 

the data is a basis for ease of reproducibility, since other groups who wish to reproduce 

the results of this work need only reference data from a single location rather than many.  

In addition, these larger data mashups tend to have much higher overall relevance. 

Bio2RDF, for example, was constructed from the most common biological datasets [1], 

and now contains a total of 35 biological datasets [19]. 

From within Bio2RDF, a small selection of datasets was chosen based on their rele-

vance to biomedical research, as well as on their overall size. 

In terms of the first criterion, datasets from Bio2RDF that were immediately relevant 

to cancer and biomedical research were selected given the lead author’s experience and 

interest in these domains. These domains, of course, are very broad and can encompass 

a variety of types and sources of data. Specifically, in order to select the datasets most 

relevant to these categories, datasets containing information on drugs, molecular biol-

ogy, clinical data, and genetics were selected as the most highly relevant. Datasets con-

taining data exclusively from non-human animals were excluded to focus more clearly 

on biomedical modelling in the human context. This left a list of 15 potential datasets. 

Once this list of datasets was obtained, a subset of datasets to be used in analysis was 

selected based on dataset size. This filter was introduced for purely practical reasons: 

larger datasets take significantly longer to pre-process and train, even at low epochs. 

In order to strike a balance between including enough datasets in the pool for analy-

sis and minimizing the overall computational time and power spent, any datasets in 

excess of 20GB were removed from consideration. Moreover, datasets measuring under 

1 MB were removed for containing too little information, since the goal of this work is 

to focus on big data rather than learning from small KGs. This resulted in a list of 9 

datasets from the Bio2RDF mashup being used: BioPortal (18.3 GB), Database of sin-

gle nucleotide polymorphism (DBSNP, 2.9 GB), DrugBank (1.6 GB), Gene Ontology 

Annotation (GOA, 17.1 GB), HUGO Gene Nomenclature Committee (HGNC, 844.8 

MB), the Kyoto Encyclopedia of Genes and Genomes (KEGG, 18.1 GB), the Life Sci-

ence Resource Registry (LSR, 12.1 MB), Online Mendelian Inheritance in Man 

(OMIM, 2.2 GB), and Pharmacogenomics Knowledge Base (PharmGKB, 1.5 GB).  
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3.2 KGE Implementation 

In this research, KGE models were implemented in PyTorch-BigGraph (PBG) [10]. 

PBG allows the user to define a KGE model by choosing an operator (to transform 

subject embeddings to object embeddings), a comparator (to define how to measure 

closeness of two embeddings) and a loss function (to optimize the model) [10]. 

Importantly, PBG also allows the main graph to be split into partitions. Each parti-

tion is loaded into memory one at a time, and each one represents the fraction of the 

graph that can fit in system memory at once [10]. PBG then handles communicating 

the results of training on different partitions between partitions and uses this to create 

an overall KGE model [10]. As a result, PBG is well-suited for large-scale biomedical 

(or other) LOD datasets; an example of its use may be seen in [20]. 

The authors showed that, for large KGs, this system approximates the results that 

would be obtained using an identical configuration on non-partitioned graphs [10]. 

However, they did note that creating partitions on smaller graphs could have some neg-

ative effects on embedding quality [10]. 

3.3 Hyperparameter Selection 

In order to select hyperparameters, a modified version of the grid search was used. In a 

traditional grid search, all values of all hyperparameters in question are varied over a 

grid, and the best choice from among them is chosen. However, the large number of 

KGE models and hyperparameters involved made such an approach infeasible (for a 

listing of hyperparameters involved, see Table 2). Thus, an arbitrary set hyperparame-

ters values given in [21] were used to initialize the model.  

Only five of the 9 total datasets were used in the initial round of hyperparameter 

selection; these were BioPortal, DBSNP, DrugBank, OMIM, and PharmGKB. This ap-

proach was undertaken so that the resulting hyperparameter configurations could be run 

on datasets for which they had not been created as a measure of how well the hyperpa-

rameter configurations worked across different datasets. 

Three grid searches were then carried out: in the first, model-related hyperparame-

ters were varied. These were, specifically: comparator, learning rate, loss function, op-

erator, and regularisation coefficient. It should be noted that, due to the design of PBG, 

a regularization coefficient hyperparameter is not given to KGE models using the affine 

operator [21]. As such, this combination of operator and regularization coefficient was 

not allowed when searching for optimal hyper parameter calculations.  

In the second round, batch hyperparameters were varied; these were batch size, the 

number of batch negatives to use, and the number of uniformly sampled negatives to 

use. In the final round, the number of epochs and embedding dimensions were varied. 

Rather than conducting the hyperparameter search on the entire dataset, datasets 

were subsetted randomly to make the search feasible in the available time. In order to 

do this, the decision of how large to make the subsets was critical to ensuring that they 

could well represent the data from which they were drawn. 
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Table 1. A summary of the hyperparameter search rounds. 

Gird Search Round Hyperparameters Involved 

1 (Model-related hyperparameters) comparator, learning rate, loss function, 

operator, regularisation coefficient 

2 (Batch-related Hyperparameters) Batch size, number of batch negatives, 

number of uniform negatives 

3 (Epochs and Dimensions) Embedding dimension, number of 

epochs 

 

All subsets taken were taken in a single-pass traversal of the graph in which a triple 

was randomly chosen with probability equal to the desired number of triples divided by 

the total number of triples in the graph. The desired number of triples was set to 4,000. 

For all rounds, model performance was measured using the “r1” metric, which is the 

probability that a true triple would be preferred over all of the negative triples created 

samples for it under the Local Closed-World Assumption during link prediction [21]. 

4 Results 

4.1 Hyperparameter Sets Selected 

Ultimately, two different sets of hyperparameters were created: one for BioPortal, and 

one for DBSNP, DrugBank, OMIM, and PharmGKB. The reason for these two sets was 

that, in each of the hyperparameter validation rounds, in almost all cases the distribution 

of r1 scores given different hyperparameter combinations for DBSNP, DrugBank, 

OMIM, and PharmGKB matched very closely, while BioPortal did not follow this 

trend. It is worth noting, however, that BioPortal was  expected to differ: unlike the 

other datasets in the search, it contains multiple RDF graphs within it and thus has a 

very different structure [19]. The hyperparameters selected are shown in Table 2. Once 

all the hyperparameters had been obtained, all datasets were run using both sets of hy-

perparameters. The output r1 scores for all runs are shown in Table 3. 

Interestingly, the general configuration yielded its best scores on datasets it had not 

been created to accommodate (BioPortal and KEGG). Those datasets it was trained on 

were (DBSNP, DrugBank, OMIM, and PharmGKB) universally had lower perfor-

mance when trained on that hyperparameter set. 

The BioPortal configuration outperformed the general configuration on all datasets 

except one: BioPortal. However, this difference was small and is quite possibly insig-

nificant as its variance was not estimated. In any case, the BioPortal configuration was 

not clearly better for BioPortal itself. 

The departure of these results from the expected ones—that the BioPortal configu-

ration would be optimal for BioPortal by a large margin and the general configuration 

would be similarly superior for DBSNP, DrugBank, OMIM, and PharmGKB from 

which it was created—suggest that the selected hyperparameter values are not optimal. 
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Table 2. Hyperparameter configurations selected during the modified grid search 

BioPortal (“BioPortal Configura-

tion”) 

DBSNP, DrugBank, OMIM, and 

PharmGKB (“General Configura-

tion”) 

Hyperparameter Value 

Model-related 

Hyperparameters 

 

Comparator L2 

Learning rate 1e-2 

Loss function Ranking 

Operator Translation 

regularisation co-

efficient 

1e-1 

Batch-related Hy-

perparameters 

 

Batch size 1000 

Number of batch 

negatives 

500 

Number of uni-

form negatives 

100 

Epochs and Di-

mensions 

 

Embedding di-

mension 

200 

Number of epochs 50 
 

Hyperparameter Value 

Model-related 

Hyperparameters 

 

Comparator L2 

Learning rate 1e-4 

Loss function SoftMax 

Operator Translation 

regularisation co-

efficient 

1e-3 

Batch-related Hy-

perparameters 

 

Batch size 500 

Number of batch 

negatives 

100 

Number of uni-

form negatives 

250 

Epochs and Di-

mensions 

 

Embedding di-

mension 

100 

Number of epochs 200 
 

Table 3. R1 Scores of all datasets using both hyperparameter configurations. 

Dataset r1 

Under BioPortal 

Configuration 

 

BioPortal 0.3894 

DBSNP 0.1907 

DrugBank 0.2068 

OMIM 0.1381 

PharmGKB 0.1312 

GOA 0.3099 

HGNC 0.1257 

KEGG 0.2948 

LSR 0.1873 
 

Dataset r1 

Under General 

Configuration 

 

BioPortal 0.3912 

DBSNP 0.1306 

DrugBank 0.1067 

OMIM 0.1209 

PharmGKB 0.0757 

GOA 0.2373 

HGNC 0.0711 

KEGG 0.0938 

LSR 0.1460 
 

 

However, it was noted that even in the absence of optimal or near-optimal hyperpa-

rameters, the data can be interpreted as coming from arbitrary hyperparameter 
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selections, making no assumptions about the goodness (or lack thereof) of the model 

choices, it is under this assumption that the remaining analysis was carried out. 

4.2 Relating KG Structure, Hyperparameters, and Model Performance 

Relating KG structure to model performance and hyperparameters was formulated as a 

regression problem: given a set of structural characteristics, predict the r1 scores of a 

model under a single hyperparameter set. Each prediction was made in the context of 

data from all datasets under a single hyperparameter configuration only. 

The first step in this process was to identify relevant structural features from each 

KG. Since it has been noted that KG  connectivity—particularly centrality—impacts 

KGEs [18], two different methods to examining centrality were applied The first was 

by measuring the counts and proportions of sources (nodes that are only ever subjects), 

sinks (nodes that are only ever objects) and repeats (nodes that and a subject and an 

object at least once in the KG). The second was by measuring the distribution of the 

centrality of nodes, where centrality was calculated as the total degree of a node. The 

outputs of both of these methods are shown below in Tables 4 and 5. 

From these features, a subset was selected as inputs to a regressor. The structural 

features selected to measure the effect of the high prevalence of sinks versus sources 

and repeats were the ratios of sinks and repeats to triples. The ratio of sources to triples 

was not included, since in all cases it was nearly identical to the ratio of repeats to 

triples and thus was redundant. Moreover, adding in more features on datasets with few 

data points can lead to machine learning models overfitting by memorizing data rather 

than learning general trends, which would make interpretation of the results less clear. 

Table 4. A summary of KG structure on basis of the sources, sinks, and repeats. These are given 

as raw counts and as ratios to the number of triples in the KG. 

Dataset Number 

of Sinks 

Number 

of 

Sources 

Number 

of Re-

peats 

Ratio 

of 

Sinks 

to Tri-

ples 

Ratio of 

Sources 

to Tri-

ples 

Ratio 

of Re-

peats 

to Tri-

ples 

BioPortal 13623972 4385915 4577592 0.1496 0.0482 0.0503 

DBSNP 2981629 586130 550671 0.2360 0.0464 0.0436 

DrugBank 2079154 414454 399251 0.3200 0.0638 0.0614 

OMIM 4507308 1121071 1122401 0.4291 0.1067 0.1068 

PharmGKB 2811465 641974 521171 0.3952 0.0902 0.0733 

GOA 15674396 3073804 3091543 0.1814 0.0356 0.0358 

HGNC 1897778 415958 416245 0.4447 0.0975 0.0975 

KEGG 27216889 8622153 8504190 0.3051 0.0967 0.0953 

LSR 26089 6137 6130 0.4298 0.1011 0.1010 
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Table 5. Centrality statistics for all datasets, where centrality is measured by node degree. Aver-

age is the average centrality, Q1 the 1st quartile of centrality, Median its median, Q3 the 3rd quar-

tile, Max the single highest centrality seen, and Max to triples ratio the ratio of the highest cen-

trality seen to the number of triples in the KG. 

Dataset Aver-

age 

Q1 Median Q3 90% Max Max to 

Triples 

Ratio 

BioPortal 9.2939 1 2 6 15 6504014 0.0714 

DBSNP 7.0801 1 1 1 17 697049 0.0552 

DrugBank 5.2104 1 1 1 12 428085 0.0659 

OMIM 3.7322 1 1 1 7 1185612 0.1129 

PharmGKB 4.1191 1 1 1 8 666924 0.0938 

GOA 9.2163 1 1 1 16 6080694 0.0704 

HGNC 3.6888 1 1 1 8 416264 0.0975 

KEGG 4.9774 1 2 2 12 1211549

8 

0.1358 

LSR 3.7672 1 1 2 8 4359 0.0718 

 

The ratio of the maximum centrality to the number of triples, as well as median, 3rd 

quartile, and 90th percentile centralities were used to represent the effects of centrality. 

Notably, the first quartile was not included since it was identical in all datasets. Other 

values were not included because they varied similarly to data already in the dataset 

and would result in introducing too many features, potentially leading to overfitting. 

Data from all datasets was normalised prior to being input into the regression mod-

els, and all regression models were run with 5-fold cross-validation using an L1 (or 

“Lasso”) penalty to select the regularisation coefficient. The Lasso regression penalty 

was chosen since it tends to drive the values of parameters that are not needed in the 

regression decision to zero, thus providing an easy tool for the detection of which struc-

tural elements are important and which are of no use for gaining predictive power. R2 

scores were obtained by from the final Lasso model on the full training data available. 

As a result, this value is an overestimate of how well these regressors would generalise 

to other datasets; thus, it should be interpreted primarily in the context of these datasets.  

Since all input values were normalized, the parameter values themselves can be used 

as an estimate of their importance to the regression decision within the context of a 

single model: those with higher values represent structural features that have a created 

correlation to the final r1 score obtained by the KGE model. It must be noted, however, 

that care must still be taken in this interpretation of the parameter values, especially 

since interaction terms were not considered and thus some effects of the variance of 

each parameter on the model may not be fully contained in the given data. 

The results of Lasso regression and the final Lasso models are given in Tables 6 – 8. 
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Table 6. R2 values of a Lasso regressor trained the given type of structural data to predict r1 

scores as obtained for each dataset by the specified hyperparameter configuration. 

Data used BioPortal Configuration General Configuration 

Sink-repeat ratios 0.9076 0.6278 

Centrality distribution 0.8282 0.8129 

Table 7. The coefficients in the Lasso model to each parameter from the source-sink structural 

statistics data. 
 

Sinks:Triples 

ratio 

Repeats:Triples ratio 

BioPortal configuration -0.1359 0.0674 

General configuration -0.1089 0.0375 

Table 8. The coefficients in the Lasso model to each parameter from the centrality statistics data. 

Configura-

tion 

Median 

centrality  

3rd quartile 

centrality  

90th percen-

tile centrality  

Max centrality to 

Triples Ratio 

BioPortal 0.0290 0.0237 0.0373 0 

General 0 0.0675 0.0199 -0.0115 

 

All models examined achieved R2 values of at least 0.60; all but one was above 0.80. 

While all the models based on sink and repeat frequencies used both features in the 

final regression model, none of the models using centrality distribution statistics used 

all the available features; in both cases one of them was ignored by the regressor. 

 These results suggest that, for datasets trained on the same hyperparameters, their 

structures correlate strongly with their performance under that hyperparameter set. This 

suggests a possible effect of KG structure on how well a model performs given an ar-

bitrary set of hyperparameters. Or, put differently, it suggests that the fitness of a hy-

perparameter set for a given KG, and ultimate KGE performance under that set, can be 

determined from the structure of the KG alone. 

5 Discussion and Conclusions 

5.1 Key Contributions 

It is expected that this work contributes to relational learning and bioinformatics in two 

key ways. First, it suggests that KGE performance is very responsive to structure, par-

ticularly with respect to proportions of sources, sinks, and repeated entities in the graph 

and to the distribution of the centrality of nodes in the graph. 

It also demonstrates that the performance of a KGE with a given set of hyperparam-

eters can be predicted with high accuracy considering only KG structure. This suggests 

that it would be possible to rapidly predict what KGs may fit a given set of hyperpa-

rameters using only a linear regression model, rather than a time-intensive grid search. 

The work also indicates two important future directions, which if followed could 

provide critical insights to the field. On one side, this research suggests that it may be 
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possible to create a regression model that predicts model performance not only based 

off the KG structure, but also upon hyperparameters, in the absence of a traditional 

hyperparameter search. This could allow for the rapid detection of optimal hyperpa-

rameter configurations—even those never examined before—by finding what values of 

hyperparameters in the regression model maximise performance for a given structure. 

Secondly, it suggests that hyperparameter selection may be able to be formulated as 

a classification problem, mapping from KG structure to one of several models and sets 

of hyperparameters, without any need for traditional hyperparameter selection methods. 

5.2 Limitations of this Work 

Since the method for selecting hyperparameters was found to be sub-optimal for the 

intended datasets, the hyperparameter sets produced are known to be imperfect. This is 

possibly a result of having subsetted the graphs, producing subgraphs that could be 

easily grid-searched, but whose structure was notably different in some respects from 

the structure of the original KG. Unfortunately, the extent by which they vary from the 

optimum configurations was impossible to estimate, as the optimal configurations are 

not known. As a result, the results of this study are interpreted as presenting data in the 

context of arbitrary hyperparameter configurations, rather than optimal or near optimal 

ones. However, the structural analysis of KGE scores under these configurations re-

mains valid since it made no assumption of optimality of the configurations it used. 

In addition, in this work only biomedical datasets were considered, and all these 

datasets were observed to have an extremely strong skewness of centrality values. 

Given the findings of this research, examining how other datasets with very different 

centrality distributions than those seen here interact with optimal hyperparameters to 

KGE models is expected to be of benefit to the relational learning and KGE fields. 

Finally, in this work even the final hyperparameter configurations identified yielded 

low r1 scores which never exceeded 0.4. Scores observed in the hyperparameter search 

were similarly low, often significantly lower, but the reason for these low scores was 

not directly identified. As outlined in Wang et al., KGs learn by understanding the re-

lationships between entities [14]. This suggests, then, that entities with very few ob-

served relationships would be harder to learn to embed properly. Therefore, an effect 

of structure would be observed here as well, very likely in terms of the number of sinks 

and sources in the graph relative to the number of triples in total. This effect may be 

partly agnostic to the hyperparameters involved, although this determination could not 

be made with the data available. Further research in this direction would be merited. 

5.3 Final Observations 

It is hoped that this work contributes to the understanding of hyperparameter choices 

not only in the realm of KGEs, but in the context of machine learning models generally. 

The finding that the structural elements of KGs are very highly predictive of model 

performance under different hyperparameter configurations suggests that data structure 

and model choice may be best understood in the context of each other. 
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Creating machine learning models by which structural elements could lead to opti-

mal hyperparameter prediction and predictions of model performance is well merited. 

Moreover, it would be equally merited to extend this work to other machine learning 

domains, to understand if all hyperparameters and model performance—or only those 

for KGEs—can be modelled as a function of dataset structure. 

The author of this work hypotheses that such dataset-structure based approaches 

would yield fruitful results, advancing understanding of machine learning models and 

facilitating optimal hyperparameter selection in machine learning domains outside of 

KGEs alone. Furthermore, it is hypothesised that structure-based optimal or near-opti-

mal hyperparameter determination may be possible even in the absence of any form of 

traditional hyperparameter search for KGEs, and it is suggested that further work in this 

area examine whether such approaches are effective and practical. 
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