Springer Nature 2021 B TEX template

CLG Authorship Analytics: a library for
authorship verification

Erwan Moreau'?" and Carl Vogel!

"School of Computer Science and Statistics, Trinity College
Dublin, College Green, Dublin, 2, Ireland.
2Adapt Centre, Trinity College Dublin.

*Corresponding author(s). E-mail(s): moreaue@tcd.ie;
Contributing authors: vogel@tcd.ie;

Abstract

The task of authorship verification consists in detecting whether
two texts have been written by the same person. This paper
describes the CLG Authorship Analytics software, which implements
several individual methods as well as a stacked generalization sys-
tem for authorship verification. The approach relies primarily on
ensemble learning methods, i.e. repeatedly sampling the data in
order to capture the invariant stylistic patterns. The approach is
tested through a series of experiments designed to test the abil-
ity of the system to generalize, depending on various parameters.
The code and results of the experiments are publicly available.”

Keywords: Stylometry, authorship verification, Genetic learning, Stacked
generalization

1 Introduction

The task of authorship verification consists in detecting whether two texts
have been written by the same person. Literary studies, e.g. identifying the
anonymous author of a text, are the most traditional application of the task
of authorship verification; but it also has direct applications in forensics, e.g.
finding the author of anonymous threats [1, 2], and potentially in various

*https://github.com/erwanm/clg-authorship-experiments.

https://github.com/erwanm/clg-authorship-experiments

Springer Nature 2021 BTEX template

2 CLG Authorship Analytics

problems with social media, e.g. unmasking a user who posts messages under
several identities, or detecting identity theft when an account has been hacked.

authorship verification is the cornerstone of a range of authorship applica-
tions, because solving this question would contribute greatly to solving most
author identification problems [3]. In particular, the traditional task of author
identification, which consists in predicting the author of a text among a set
of known authors, can be expressed as multiple authorship verification prob-
lems. Importantly, authorship verification focuses on distinguishing a known
author from any other author, as opposed to only discriminating among a set
of known authors. This makes it usable not only for the traditional closed-set
classification problem of author identification but also for the open-set variant
of the problem, where the author can be one of the known authors or some
new unknown author. This makes authorship verification much more general in
theory and also much more useful in real-world applications such as forensics
applications, where problems are usually open-ended. In terms of methods, this
also means that authorship verification focuses on the most challenging part
of any authorship problem, which is the problem known in Machine Learning
(ML) as the bias-variance tradeoff: an authorship verification system must be
able to distinguish features which are characteristic of an author’s style (the
general author’s stylistic patterns) against features which are only characteris-
tic of the available documents by this author (for instance when the document
addresses a specific topic or belongs to a specific genre).

The authorship verification problem can be considered under different
angles, in particular in a supervised or unsupervised context. In the former
case, authorship verification is seen as a one-class classification problem; this
setting is usually favored because it provides more reliable results in general,
provided the tested data belongs to the same distribution as the training data.
However, this condition is not easy to satisfy in most real applications, either
by lack of adequate training data or simply because the type of data to pro-
cess cannot be predicted. On the other hand, the unsupervised approach is a
harder problem to tackle, but is by definition more robust and adaptable.

CLG Authorship Analytics is an open-source software! for solving author-
ship problems, with a particular focus on authorship verification. While the
system is intended to allow both supervised and unsupervised learning, the
latter is not very developed in the current version. The system originated from
the authors’ participation in the PAN shared tasks from 2013 to 2015 [4-6].2
It is based on the prototype which was ranked second at the 2015 shared task,
with significant improvements in efficiency and genericity. The system allows
various setups, ranging from applying a single unsupervised method to training
a meta-classifier with genetic learning, using distributed computing. Addition-
ally to the large range of options which can be used with the existing methods,
the system is designed to facilitate the integration of new methods at different
levels: new categories of features or specific similarity measures can be added,

! Available at https://github.com/erwanm/clg-authorship-analytics.
2 https://pan.webis.de/clefl5/panl5-web/authorship-verification.html

https://github.com/erwanm/clg-authorship-analytics
https://pan.webis.de/clef15/pan15-web/authorship-verification.html

Springer Nature 2021 BTEX template

CLG Authorship Analytics 3

new verification methods can be implemented and used in combination with
the existing ones, etc.

The approach relies primarily on ensemble learning methods to address
the challenging bias-variance tradeoff of authorship verification. By definition
ensemble methods require repeatedly sampling the data in order to capture
the invariant patterns, and this makes the system resource-intensive, in par-
ticular when training models with genetic learning. Additionally the numerous
options makes the system fairly complex and somewhat cumbersome. This is
why a detailed user guide has been written to accompany the present article.?
This user guide details the technical aspects of the software, so that read-
ers interested in testing or using the system may follow it in parallel to the
explanations provided in this paper.

The article is organized as follows: We briefly review the state of the art
in section 2; after describing the system in section 3, some new experiments
intended to test the ability of the system to solve authorship verification
problems under various conditions are presented in section 4 and analyzed
in section 5. The focus of these experiments is not performance per se, but
rather the study of the conditions which make the system perform well or
not. In particular, these experiments are designed to measure how well the
system generalizes to new unknown authors. For the sake of reproducibil-
ity, the code and results of the experiments are made available at https:
//github.com/erwanm/clg-authorship-experiments.

2 Related work

Various methods have been proposed in the literature to address author verifi-
cation. In particular ensemble methods have proved quite sucessful at tackling
the challenge of capturing the features relevant to the author’s style and dis-
carding the ones which are not [7-10, 21]. Author verification has also been the
focus of several iterations of the PAN shared tasks,* e.g. [11-14]. These events
contribute datasets and evaluation measures, thus allowing the community to
compare different methods on the same basis and in turn boosting the devel-
opment of author verification methods. The organizers also host a github.com
project page® which indexes the source code of a large number of participat-
ing systems, thus providing a rich collection of state of the art authorship
verification systems.

Recent years have seen the development of “big data” author verification
methods. Until recently, most methods used for author verification were still
relying on traditional supervised ML [15], even though the state of the art in
NLP had already moved towards deep (neural) representations. This obser-
vation motivated the PAN organizers to collect a very large dataset, in order
to allow neural methods, which need a high volume of training data, to show

3 Available at https://erwanm.github.io/clg-authorship-experiments/user-guide-part1.html.
“https://pan.webis.de/.
Shttps://github.com/pan-webis-de.

https://github.com/erwanm/clg-authorship-experiments
https://github.com/erwanm/clg-authorship-experiments
https://erwanm.github.io/clg-authorship-experiments/user-guide-part1.html
https://pan.webis.de/
https://github.com/pan-webis-de

Springer Nature 2021 BTEX template

4 CLG Authorship Analytics

their strength in the task of authorship verification [14]. This resulted in a new
neural networks-based methods being proposed, e.g. [16-20].

The approach presented in this paper belongs to the “traditional” category
of authorship verification methods, but a recent neural system is evaluated for
the sake of comparison ([19], see details in Section section 4.3).

3 Approach
3.1 General design

The task of authorship verification consists essentially in answering the fol-
lowing question: given two distinct texts, have these texts been written by the
same person? We opt for a general interpretation of this question, formally
defined as follows: given two sets of texts {a1,..,a;} and {b1,..,b;}, knowing
that all the a; texts were authored by A and that all the b; texts were authored
by B, are A and B the same person? Naturally this definition includes the most
simple case where a single text a; is compared against a single text b;. It also
includes the PAN 13-15 variant of the question where a set of texts {a1,..,ar}
written by a “known author” is compared against a single document by (the
“unknown” or “questioned” document). We also adopt the same probabilis-
tic representation as PAN, defining the output of a verification problem as
a numerical value in the interval [0, 1] which represents the probability that
the answer is positive (same author). The intended interpretation is for 0 to
mean “different author” with maximum certainty, for 1 to mean “same author”
with maximum certainty, and any intermediate value describes the likelihood
of a positive answer. Again this is the most general representation, since this
numerical value can easily be converted to a boolean answer by thresholding
it at 0.5.

As a post hoc analysis, the organizers of PAN 2014 evaluated a meta-
model based on all the individual systems answers. They observed that “ this
meta-classifier was better than each individual submitted method while its ROC
curve clearly outperformed the convexr hull of all submitted approaches. This
demonstrates the great potential of heterogeneous models in author verification,
a practically unexplored area.” [11].

This idea of combining the strengths of multiple heterogeneous systems
forms the basis of our supervised approach: many individual systems are
trained, then their predictions are used to train a meta-model which com-
bines them optimally to predict the final answer (stacked generalization).
In this approach, the final model performs theoretically at least as well as
any individual learner, and potentially better. However this has two main
disadvantages:

® There is a high risk of overfitting the model due to the optimization of a
possibly very large number of parameters based on a limited training dataset.

Springer Nature 2021 BTEX template

CLG Authorship Analytics 5

® The system is complex and computation-heavy, since it requires training
multiple different models and minimizing overfitting by repeatedly sampling
the data.

It is worth noting that every possible individual learner can be used as an
independent unsupervised authorship verification system, but the system is
not particularly adapted for this usage for two reasons:

® An individual model depends on a set of hyper-parameters with many
possible values. This is because the individual models are intended to be
optimized and used as independent heterogeneous learners in a supervised
context. The choice of these values can have an important impact on the
performance of the system, but there is no indication of which one to choose
in an unsupervised context.

¢ The individual models can (and usually do) deliver multiple features as
output (see also below). Depending on the method, some of the features
may be used individually as an answer to the verification problem, but in
general this output is not directly interpretable.

3.2 Common parameters

We call observation types the different types of raw features used by the indi-
vidual models.® An observation can be any observable feature in a text. The
most common type is n-grams, but observation types are unrestricted. A doc-
ument can be represented as a collection of n-grams (e.g. bag-of-words or
bag-of-characters) of a single observation type.

Different types of observations can be taken into account, e.g. words
bigrams, character 5-grams, POS trigrams, etc. The different kinds of obser-
vations are distributed among different categories (called observations families
in the system):

® Token-based n-grams. Examples: T represents unigram tokens, TT represents
bigrams, etc. A skip-gram is represented with a S, e.g. TST is a skip-gram
of length 3 where the middle token is skipped; the result is a bigram which
contains the 1st and 3rd token.

e Character-based n-grams. Examples: CC represents character bigrams, CSSCC
skip-grams of length 5 where the 2nd and 3rd chars are skipped; the result
is a trigram which contains the 1st, 4th and 5th token.

o Part-Of-speech-based n-grams, which can combine tokens (T), POS tags (P),
lemmas (L) and skip (S).

e (Class-based observations, which represent specific mappings of words to
predefined classes, for example:

— Morphology classes, such as “number”, “punctuation”, “capital first
letter”;

STo prevent any confusion, we reserve the word “features” for the information fed to the
supervised learning algorithms.

Springer Nature 2021 BTEX template

6 CLG Authorship Analytics

— Token length classes, where the tokens are classified depending on their
length.

Every observation type also has two parameters which control (1) the min-
imum frequency for an observation to be taken into account, and (2) whether
they should be extracted when they overlap several text units, typically sen-
tences. Additionally, the token-based features accept an option which specifies
which words to take into account as predefined vocabulary. This causes all the
words which are not in the vocabulary to be replaced by a placeholder symbol.
It can be used to count only patterns involving frequent words (often called
stop words), in order to avoid content words which are less likely to be good
indicators of an author style. Note that this is different from the minimum
frequency option, which discards full observations, as opposed to some of the
words in an observation.

3.3 Strategies

A strategy is a method to produce indicators about the answer to a verification
problem. It is possible for a verification strategy to return only one feature
value which answers the question directly, but in general the output is a set of
features, the meaning of which depends on the strategy. This set of features
is intended to be used as input to a learning algorithm. A strategy can have
multiple hyper-parameters which can be optimized in the supervised context
using genetic learning (see section 3.4.3). Three strategies described below are
currently implemented in the system. Every strategy receives as input a set
of observation types, each corresponding to a particular representation of the
input documents.

3.3.1 Basic strategy

As its name suggests, the basic strategy is a simple method. It computes the
similarity between two documents according to a similarity measure for every
input observation type:

® The only similarity measures currently available in the system are cosine
and minmax.”

® An output feature is produced for every input observation type, containing
the value of the corresponding similarity score.

3.3.2 General Impostor strategy

This method is described fully in [10], used in previous PAN workshops
by [22] and in a modified form by [23] and [24]. It repeateadly compares
portions of the tested documents against each other and against other exter-
nal (portions of) external documents which represent the impostors. If the

> min(z;,y;)

"Minmax is defined as S man(ey)’
i irYi

where (z;, y;) represent the frequency of the observation

i in the two documents.

Springer Nature 2021 BTEX template

CLG Authorship Analytics 7

similarity between the tested documents is significantly higher than the simi-
larity obtained between a tested document and an impostor, then the tested
documents are likely to be from the same author.

Randomness plays a crucial role in this method: at every run, the portions
of document, the impostor document, the observation type and the subset
of observations are picked randomly. Additionally the method takes several
parameters, the most important of which are listed below:

e Number of iterations.

® Preselection of the most similar impostors documents. This option allows a
subset of impostors documents to be used instead of the full set in order to
compare roughly comparable documents.

® Proportion of observations to select at every iteration.

® The similarity measure to use.

® Method to count the most similar features. Available methods include the
original one defined in [10] as well as two variants.

The choice of the set of impostors documents is an important parameter.
Different options have been proposed in the literature. A common option is
to use the results of some Google queries formed by randomly picking words
from the set of input documents as impostors.® In the experiments presented
below (see section 5), we opt for using all the training documents as impostors.
While this option is not ideal since the documents obviously include precisely
the documents to be compared, it is a reasonable simplification if the training
set is diverse enough in terms of authors and if the number of iterations is large
enough to prevent the occasional wrong comparison from having a significant
effect on the output features.

3.3.3 Universum Inference strategy

This strategy follows the idea described in [8]: in this paper, a large corpus
containing several “categories” (the input documents in our task) is split into
small chunks. A chunk of category A is compared against many chunks from
other categories and from category A as well, picked randomly. It was shown
that a reliable measure of the category homogeneity can be derived from exam-
ining how different the level of similarity is between comparing A to A and
comparing A to some distinct category X.

We adapted the approach to the case of smaller documents in the following
way. Let A and B be two documents, the following process is repeated N times
with different random subsets:

1. The two documents are split into three parts randomly: A, A, A3 and
By, Bs, Bs; one of the thirds is split again into two parts: X3 = X}, X/

2. The pieces of text are re-organized under three categories, each containing
two parts and all the parts being of similar size: C4 = {A;, A2}; Cp =
{B1, Ba2}; Cpizea = {A5 U B%, Ay U BY}.

8The system includes a script to this effect.

Springer Nature 2021 BTEX template

8 CLG Authorship Analytics

3. The three categories are compared in the same way as in [8], that is, both
against itself (using the two parts belonging to this category) and against
each other category (picking one of the two parts randomly).

In other words, different portions of A and B are mixed together repeat-
edly, then we compare the similarity obtained between A and A, B and B, A
and B, mixed-AB and A, mixed-AB and B, mixed-AB and mixed-AB. If A
and B have the same author, the resulting similarity scores should be all simi-
lar. The hyper-parameters specify the number of iterations, the proportion of
observations to pick at every iteration, the similarity measure, as well as sev-
eral parameters which determine the calculations used to obtain the output
features.

3.4 Supervised learning
3.4.1 General principle

A strategy returns a set of features for every verification problem. A prob-
lem can be labelled, i.e. provided with the gold-standard answer indicating
whether the two groups of documents are actually from the same author or
not. Naturally, a set of labelled verification problems can be used to train
a supervised model, using the features returned by the strategy to represent
every problem as an instance. The most simple option would be to treat the
task as binary classification, but since we are also interested in quantifying the
level of the confidence of the system (see section 3.1), the supervised setting
is implemented as a regression task:

¢ During training, the problems are provided with the answer as 0 (different
author) or 1 (same author). The model is trained to predict this numeri-
cal value based on the features returned by the strategy for multiple such
problems.

® When the model is applied, the predicted value for the answer may vary
between 0 and 1. A value close to 0 (resp. 1) indicates probably different
(resp. same) author, and a value around 0.5 indicates uncertainty.

Thus a regression model is trained (or applied) to the features which have
been computed for all the input problems (instances for the model). As learning
algorithms, we use the Weka [25] (version 3.8.5) implementation of SVM regres-
sion (with polynomial or RBF kernel) [26] as well as decision trees regression
[27], with variants depending on their parameters.

Optionally, a second model can be trained in order to evaluate the confi-
dence of the model in each answer, and possibly replace it with the special value
0.5, meaning that the case is unanswered in the PAN evaluation methodology.
This classification “confidence model” can use any of the available features,
as well as the score computed with the first regression model. In the learn-
ing stage, the model which was trained is applied to the instances. Depending
on the configuration, the instances can be split up so that the second model

Springer Nature 2021 BTEX template

CLG Authorship Analytics 9

is based on unseen instances, but then less instances are used to train each
model. This option is not used in the experiments presented in this paper.

3.4.2 Evaluation
The system supports three evaluation measures:

® Accuracy, i.e. the proportion of problems predicted correctly. The system
actually uses the modified accuracy c¢@1, which was introduced in [28] in
order to take into account the possible absence of answer (represented as
the special value 0.5), i.e. cases where the system chooses to answer “I don’t
know”. Such cases are less penalized than wrong predictions by c@1. Since
we do not use the confidence evaluation system in these experiments (see
above), the system is very unlikely to predict exactly 0.5 so this measure is
practically equivalent to accuracy in our case.

o Area Under the ROC curve (AUC), which can be interpreted as the prob-
ability that a true negative case obtains a score lower than a true positive
case.

® The product of two above scores, which was the official evaluation measure
at PAN15 [12]. It is worth noting that this evaluation score is mathematically
lower than accuracy or AUC (it is equal only in the case of perfect perfor-
mance). In particular, the random baseline corresponds to a performance of
0.5 for both accuracy and AUC but to 0.25 for their product.

3.4.3 Genetic algorithm

As mentioned above, a verification strategy may be applied to any set of obser-
vation types and may accept a number of specific hyper-parameters. These
input parameters are provided to the strategy in the form of a configuration,
which represents every possible option as a name-value pair: C = {p; —
V1, ...,Pn > vyt Naturally the total number of possible configurations, i.e. all
the combinations of name-value pairs, can be extremely high. The genetic algo-
rithm is used to explore the space of all the possible configurations efficiently
and discover the best performing ones for a particular training set. In other
words, this process is essentially hyper-parameter tuning with an extremely
large number of parameter values.

The genetic algorithm works with configurations as “individuals”: each con-
figuration describes the hyper-parameters of a strategy. A multi-configuration
associates multiple values to one parameter:

MC = {p1 — {v%,...,v}nl},...7pn — {v?,...,vﬁln}}

In theory, a set of multi-configurations can be used to describe the set
of meaningful combinations of parameters, in a way similar to a disjunctive
normal form. For the sake of simplicity we use a single multi-configuration
by strategy, leaving the selection of relevant combinations to the genetic
algorithm. A multi-configuration is the input of the genetic algorithm:

Springer Nature 2021 BTEX template

10 CLG Authorship Analytics

® The first generation of configurations is initialized randomly: N configu-
rations are selected among the possible combinations represented by the
multi-configuration.

e After the first one, every generation is obtained based on the individual
performance of the configurations from the previous generation:

— The “breeders” are selected in a way such that the probability of a
configuration being selected is proportional to its rank by performance.

— For every new configuration, two parents are selected randomly among
the breeders and every parameter is assigned the value of either one of
the parents value, with a small possibility of mutation.

Additionally, the algorithm allows for a proportion of the new genera-
tion to be selected fully randomly, and for a proportion of the best previous
configurations to be cloned to the next one (elitism).

The convergence of the algorithm is assessed automatically: at the end of
every generation, the mean performance over a window of the last n genera-
tions is calculated. If this value does not increase anymore over a fixed number
of windows, the stop criterion is met. The user can specify various parameters
in order to adapt the process to the task at hand and the available computing
resources: the multi-configuration which defines the search space, the param-
eters which control the genetic algorithm, and the stop criterion. This way
the genetic process can be configured to favor speed or a more exhaustive
exploration of the search space.

The disadvantage of using a genetic algorithm, especially with a vast set of
possible configurations, is the risk of overfitting. We use cross-validation inside
the genetic algorithm: every generated configuration is evaluated using k-fold
cross-validation, and the resulting performance is used as the fitness function
by the genetic algorithm. We use several other techniques in order to keep
overfitting to a minimum:

e The partitioning for the k-fold cross-validation is randomly (re-)generated
at every generation.

® The system allows to chain multiple stages of genetic learning with different
parameters, in particular different values of k& and different values for the
size and number of windows in the stop criterion. At every new stage, the
previously selected set of configuration is used as first generation, and re-
evaluated under the new parameters. This allows the process to check and
progressively refine the optimal configurations and/or adjust the trade-off
between the precision of the process and the required computing power.

e At the end of the last stage, the N best configurations are re-evaluated
using a 10x2 cross-validation setting,” in order to control the influence of
the cross-validation partitioning on the performance variance.

The genetic learning process is applied to every strategy independently,
resulting in a set of N best configurations for each strategy.

9Repeat 2-fold cross-validation 10 times with a different split every time.

Springer Nature 2021 BTEX template

CLG Authorship Analytics 11

3.5 Meta-model (stacked generalization)

Training the meta-classifier consists in finding an optimal way to combine the
results obtained by the N best individual strategy configurations returned for
each of the strategies (e.g. if three strategies are trained, there are N x 3
configurations available as features for the meta-training; in the experiments
below we use N = 50). Among these, the strategy configurations which prove
useful are selected (in the experiments, the meta-model usually selects between
50 and 70 individual models out of 150 available), the other ones are discarded
(feature selection). The method to combine them is also selected during this
stage. This process results in a set of M best meta-models, each model being
a combination of a selection of strategy configurations. The initial N best
individual strategy configurations are also re-evaluated, to allow selecting a
single strategy model instead of the best meta-model. In the below experiments
we also use this option in order to study the performance of the meta-model
in relation to individual models.

The predicted scores of the N best strategy configurations for every
strategy are used as features by the meta-classifier. A subset of strategy config-
urations, together with a method to combine them, forms a meta-configuration.
The genetic learning algorithm is used once again at this stage in order to find
the optimal meta-configuration(s).

In a meta-configuration, an additional parameter indicates how the strat-
egy predictions are combined. In order to avoid another potential source of
overfitting, we restrict this combination to the simplest methods: the algo-
rithm can select only the arithmetic mean, geometric mean or the median. The
system allows using a regression algorithm; while this might provide better
results, it would also increase the risk of overfitting.

The cross-validation setting is quite complex because it needs to balance
the limited amount of instances with the need to assess the model on fresh
instances at three different levels. The computational complexity is also an
issue that must be taken into account. Importantly, the instances used to
train the individual strategy models cannot be reused to train the meta-model:
the selected configurations have been optimized during the previous stages,
therefore their predicted scores otained on these instances are unrealistically
accurate. This would result in the trained meta-classifier expecting higher
quality features than those actually obtained from fresh instances, causing a
large performance drop on the test set. For these reasons, the system applies
a method which does not correspond to a proper nested cross-validation set-
ting but is somewhat similar: at the outermost level, the training data is split
into two subsets A and B. The following process is run independently twice,
once with A as training set and B as test set and once with the opposite
training/test assignment:

1. The strategy genetic training uses the outermost training set only (50%).
The genetic process uses cross-validation internally at every generation,
then returns the set of N best models for every strategy.

Springer Nature 2021 BTEX template

12 CLG Authorship Analytics

2. The outermost test set (50% of the full data) is split further into meta
training set (25%) and validation set (25%).

3. The meta-model is trained using only the meta training set. Again, the
genetic process uses cross-validation internally at every generation.

4. The best meta-models, as well as the best individual strategy models, are
finally evaluated on the validation set, i.e. the last unseen 25% instances.
This evaluation uses a variant of bagging (bootstrap aggregation):' the
models are evaluated 20 times against a different random half of the
instances (thus one can manually control for variance).

But there are still two issues left:

® The last evaluation stage is done on a small proportion of instances, so the
results might not be very reliable.

® The resulting models from the two outermost cross-validation runs are not
comparable together. Moreover, it is possible that one of the runs would
perform better than the other in average because of the different subsets the
two use for training and testing.

This is why an additional stage of evaluation of all the resulting models
is carried out on the whole dataset, using our variant of bagging again. This
unusual methodology relies on the fact that the meta-models have not directly
seen the outermost training instances used for the strategy training stage. In
other words, this is a pragmatic workaround for the two issues above. Testing
proved that the performance on these instances was, in general, not overeval-
uated compared to the actual fresh instances of the validation set. There is an
obvious risk of bias with this final evaluation method, thus it might be prefer-
able to rely on the validation set results, at least when the number of instances
is large enough.

4 Experimental setup

4.1 Data

The Diachronic Corpus for Literary Style Analysis (DCLSA), proposed by
[29], is made of 554 books written by 22 American literary authors from the
mid 19th to early 20th century. The books were collected mostly from Project
Gutenberg!!, supplemented with books from the Internet Archive'2. [29] indi-
cates that books from the latter source were scanned using Optical Character
Recognition (OCR), causing various OCR errors which were corrected using a
semi-automatic method.

We opted for an English literature corpus because the experiments are
aimed at exploring how well the system distinguishes authors by varying
parameters such as the size of the documents or the number of verification

10Strictly speaking, the process differs from bagging because the instances are sampled without
replacement.

Hhttps://www.gutenberg.org/.

2https://archive.org/.

https://www.gutenberg.org/
https://archive.org/

Springer Nature 2021 BTEX template

CLG Authorship Analytics 13

problems used as training data. This corpus offers a quite diverse collection
of authors and multiple long texts for most authors, thus allowing the selec-
tion of subsets of data along different dimensions. Literary texts are notably
less challenging for stylometry systems than user-generated content such as
social media texts, since the authors are professional writers who are able to
maintain stylistic consistency. Since we are interested in comparing perfor-
mance between different settings, high quality texts are more suitable in order
to minimize variations due to the texts themselves. The corpus was originally
compiled for the purpose of studying changes in the authors’ style across time,
but we do not consider this aspect in this paper.

The experiments presented below in section 5 are made with limited por-
tions of the full books. The size of the portions is counted in number of lines,
knowing that all the documents are formatted with standard-size lines: in aver-
age a non-empty line contains 10.3 words or 56.6 characters, with 99% of the
lines made of less than 76 characters. Thus a 100 lines document, as used in
most of the experiments, corresponds to approximately 1,030 words or 5,700
characters. All the books except one are more than 1,000 lines long, ranging
from 230 lines to 30,000 with an average of 10,344 lines. Contiguous portions
of text are extracted randomly from a document, after discarding empty lines
in order to maintain a consistent document size. The random selection is done
only once in the first experiment (see section 5.1).

4.2 Design of the experiments

In order to measure the effect of various parameters and preserve comparability
of the results, the documents are split in a controlled way between the training
and test set:

1. The 22 authors'® are randomly split into three groups of approximately
equal size:

¢ Authors assigned to the training set only;
® Authors assigned to the test set only;
® Authors shared between the training and test set.

2. For every author, their books are pre-assigned to either the training or test
set:

e If the author belongs to the training set only group (resp. test set only)
then all their books are pre-assigned to the training set (resp. test set);

e [f the author belongs to the shared group, their books are randomly
pre-assigned to either the training and test set.

As a result of this method, a book cannot belong to both the training and
test set in any of the experiments. For every experiment, books are randomly
picked according to these pre-assignments in order to build a labelled dataset

3 Note: according to the filenames identifying the authors in the DCLSA, the dataset contains
two additional authors with one book each. It is not clear to the author whether this was intended
or not. In our experiments these two isolated authors are automatically assigned to the test set.

Springer Nature 2021 BTEX template

14 CLG Authorship Analytics

of verification problems, i.e. a set of of pairs of same/different authors groups.
The specific training and test set vary for every experiment (see section 5),
but the pre-assignments described above is maintained identical across all the
experiments. As a consequence the variations in performance cannot be due
to a particular author or book being assigned to either the training or test set.
The “shared author” category is used to compare the performance on the test
set between authors seen vs. unseen in the training set. An ideal verification
system should be able to perform as well whether the involved authors were
known from the training or not. All the test set problems containing at least
one group where the author was seen in the training set are marked as “author
seen in the trainining set”.!* The difference in performance between the cases
where the author was seen in the training set versus those where they were
not is called the known author bias in the analysis presented below.

All the experiments described below follow the same general design: given a
particular parameter as target of the experiment, a range of appropriate values
for this parameter is studied. An individual experiment is prepared for each
such value, where the training and test data are generated randomly but fol-
lowing various constraints (specific to the study) in order to maintain “all other
things equal” as much as possible. The results of the experiments are obtained
in a standard way, by using the training set for the full training process
(including the nested cross-validation splitting described in section 3.5), then
calculating the performance of every model on the unseen test set. The prod-
uct of accuracy and AUC is used to measure performance (see section 3.4.2).
Additionally the performance on the training set is calculated in order to mea-
sure overfitting, and the test set performance is also calculated separately for
the “author seen in the trainining set” instances vs. “author not seen”. Finally
we also extract not only the top model returned by the training stage (called
the selected model below), but also the best model for each of the four types
(one for each of the three strategies plus one meta-model). This allows the
analysis of the differences between types of models, in particular with respect
to overfitting.

Ideally the experiments would be performed multiple times in order to
minimize the effect of randomness on performance. Unfortunately the com-
plexity of the system makes this difficult, as a single training process take
one to three days using 40 cores under the default parameters. This is why
each experiment is run only once, but with several values of the varying
parameter in order to obtain an accurate picture of the performance varia-
tions across values. The code used for the experiments is available at https:
//github.com/erwanm/clg-authorship-experiments.

4.3 Baseline systems

Experiments are also carried out with a third-party system for the sake of
comparison. To this end, a recent neural system has been trained and tested

M Note: this includes cases where one author is known from the training set and the other is not.

https://github.com/erwanm/clg-authorship-experiments
https://github.com/erwanm/clg-authorship-experiments

Springer Nature 2021 BTEX template

CLG Authorship Analytics 15

in the same way as the main system. The AdHominem/02D2 system [19]'°
is a hybrid neural-probabilistic end-to-end framework, which includes neu-
ral feature extraction and deep metric learning, deep Bayes factor scoring,
uncertainty modeling and adaptation, a combined loss function, and an out-
of-distribution detector for defining non-responses. This system achieved the
best performance at the PAN 21 authorship verification task. Thus in theory
this system is a competitive baseline, but it is designed to be trained with a
high volume of data. This is why two models are used in every experiment:

® The regular AH model is trained on the same data as our system.

® The pretrained AH.pan21 model submitted to PAN 21 (made available by
the authors), trained on the PAN official training data [14]: 148,000 same-
author and 128,000 different-author pairs across 1,600 fandoms “fanfiction”.

We do not use the out-of-distribution detector (02D2) part of the model,
consistently with the exclusion of the confidence evaluation system in our own
model (see section 3.4). We originally intended to use the predictions of the
Uncertainty Adaptation Layer (UAL), i.e. the output of the model immediately
before the O2D2 component is applied. However preliminary tests showed very
poor performance with both models, due to the models always predicting a
positive case. This happens with both the regular and pretrained model, ruling
out an error in the training process for AH.'S Because of this issue, it was
decided to use the predictions of the Deep Metric Learning (DML) part, i.e.
the first component of the model.

In the following experiments, the performance of the two AH models is
shown in the main performance graph (first from the left). These systems
are excluded from the graphs showing the training/test and the seen/unseen
authors difference in performance. Additionally they are excluded from the
second experiment about the number of documents by group, because the
AdHominem/02D2 is designed only for pairs of single documents.

5 Experiments

5.1 Document size

In this experiment we measure the effect of the documents size on the per-
formance of the system. Both the training and test set contain 100 instances
(problems). Every problem is made of a pair of single documents (i.e. no group
of multiple documents is used to represent an author). Both the training and
test set contain an equal number of positive and negative instances. Addition-
ally the books are picked without replacement, so that a book never appears

15The authors made their system available at https://github.com/boenninghoff/pan_2020-2021_
authorship_verification. Some adaptations were required in order to train and apply the system
to our dataset, these modifications are made available at https://github.com/erwanm/pan_2020_
2021_authorship_verification.

16AdHomi'rLem/OQDQ is a complex system, and despite our best efforts it is possible that an
error was made is some other part of the process.

https://github.com/boenninghoff/pan_2020_2021_authorship_verification
https://github.com/boenninghoff/pan_2020_2021_authorship_verification
https://github.com/erwanm/pan_2020_2021_authorship_verification
https://github.com/erwanm/pan_2020_2021_authorship_verification

Springer Nature 2021 BTEX template

16 CLG Authorship Analytics

twice neither in the training set nor in the test set. The different sizes of
documents are applied to both the training and the test set.

1.00- 1.00- 1.00-
© 075 © 075 o 075
(5} o o
=4 =4 c
I < <
£ 0.50- €o50- AL == £ 0.50-
5} 5 # =5 5 2=/
20.25- E =2 S 2 0.25- >

(=] =) g [/A
AH -~ basic meta
model.type evaluated.on test == train evaluated.on testseen == testunseen
0.00- AH.pan21 - Gl univ. 0.00- 0.00-
50 100 150 200 50 100 150 200 50 100 150 200
Size of documents Size of documents Size of documents

1.00- 1.00- 1.00-
0075 o 075 © 075
o o o
c c f=4
8 e I o\] IS) 2 -
£ 050 £ 050- e = =2 € o.50- - A==\,
ks ks g ZASA-AN
g g g

0.25- 0.25- 0.25- *

AH -~ basic meta
model.type evaluated.on = test —- train evaluated.on - testseen = testunseen
0.00- AH.pan21l =~ Gl univ 0.00- 0.00-
250 500 750 1000 250 500 750 1000 250 500 750 1000
Size of documents Size of documents Size of documents

Fig. 1 Performance by document size. Left: performance of the three best strategy
learners and meta-learner, with the models selected by the training stage for every size
marked with a black square box.!”Middle: performance of the selected model on the training
and test set. Right: performance of the selected model (test set) when separating instances
whether the author was “seen during training” or not. The middle and right graphs show
the linear regression lines (dashed lines). For the sake of readability the data points are split
into two series, with sizes from 20 to 200 by step of 20 shown in the top graphs and sizes
from 100 to 1,000 by step of 1000 shown at the bottom.

Fig. 1 shows the performance of the system for different sizes of documents.
As expected, the performance tends to increase with the size. However the
variations in performance are very large even when reaching large sizes. These
variations are very likely due to the different portions of documents being
picked randomly at different sizes, making the set of verification problems more
or less difficult to solve. The training stage tends to overestimate performance,
which is a clear indication of overfitting. While overfitting tends to reduce
as the size of the documents increases, the opposite is true about the known
author bias. There is too much noise in the observations to draw any solid
conclusion, but it is possible that larger documents cause the models to become
more specific about their authors.

5.2 Number of documents by group

Recall that a problem is represented as two sets of texts {ai,..,ar} and
{b1,..,bs}, with all the a; texts authored by A and all the b; texts authored by
B. In this experiment we measure the effect of the number of documents in the

17Some model types may not have a value for every size because the system returns only the top
50 models. As a consequence, a model type is ignored if it did not reach the top 50 during training.

Springer Nature 2021 BTEX template

CLG Authorship Analytics 17

group on one side of a verification problem, that is we make the number I of
documents a; vary, while the second group {by,..,b;} always contains a single
document (J = 1). This is an important parameter because when I > 1 the
system can leverage the similarities and differences between the documents a;
to characterize the style of author A more accurately. Both the training and
test set contain 100 instances (problems) equally divided between positive and
negative instances. The documents are picked with replacement in the train-
ing, allowing a book to appear several times in the training set. However the
same book never appears twice in the the test set. All the documents are 100
lines long.

H
o
3
-
o
3

1.00-

)
3
a
<)
3
a

0.75-

performance
o
@
3

performance
o
b
3
k
|
performance
o
@
3
1

0.25- ———

)
N
&
o
N
o

model.type @ basic @ GI @ meta & univ evaluated.on - test =~ train evaluated.on ~+ testseen =~ testunseen
0 0.00-

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Documents by group Documents by group Documents by group

o
o
]

Fig. 2 Performance by group size. See the explanations about the different graphs in
the caption of fig. 1.

As expected, fig. 2 shows that the performance increases with the number
of documents by group. However there is no observable reduction in overfitting
as the group size increases. The difference in performance between author seen
vs. unseen instances is important, but decreases significantly when the group
size increases. This tends to indicate that the system generalizes better to new
author if it is fed with verification problems made of large groups of documents.

5.3 Number of problems in the training set

This experiment examines the role of the number of problems in the training
set. A high number of instances is likely to reduce the risk of overfitting. The
test set is once again made of 100 instances without any duplicate book, while
the training set contains a varying number of instances in which books are
picked with replacement. Both the training and test set instances are made
of a single document by group and the positive/negative cases are balanced.
All the documents are 100 lines long. It is also worth noting that the training
process is much longer when the number of instances in the training set is
large.

Increasing the number of instances in the training set reduces overfitting,
as expected. The training and test performance become quickly much closer
to each other, and there is no visible overfitting starting from around 500
instances. Interestingly, this gives the meta model a clear advantage over the
individual models: compared to the other experiments where the number of
intances is always 100, the meta model is more often selected as the best

Springer Nature 2021 BTEX template

18 CLG Authorship Analytics

1.00- 1.00- 1.00-

0.75-

o
3
o
o
3
o

7]
performance
°
&

g
performance
°
&

g

5]
N
@
o
N
a

performance

°
3

€]

5]

£l
[
=

0.25-

AH -»— basic meta
model.type evaluated.on test = train evaluated.on testseen == test.unseen
0.00- AH.pan21 -~ Gl univ 0.00-
250 500 750 1000 250 500 750 1000 250 500 750 1000

Training data size Training data size Training data size

o
o
S

Fig. 3 Performance by number of problems in the training set. See the
explanations about the different graphs in the caption of fig. 1.

model by the training stage, and does indeed perform best on the test set
most of the time. However the overall performance increases only moderately
with more instances. Finally the difference in performance between author seen
vs. unseen instances is large, and even appears to increase as the size of the
training set increases. It seems that the larger number of training instances
causes the model to “specialize” in the authors found in the training set. But
the variations in seen/unseen author are very large across the different sizes,
so it is unclear whether this observation is a real pattern or due to chance.

5.4 Author diversity in the training set

In this experiment we study how the number of distinct authors in the training
set impacts the performance of the verification system. This makes it possible
to measure how author-wise diversity in the training set influences the ability
of the model to generalize to unseen authors found only in the test set. The
experiment setting is as follows: the test set contains 100 instances split equally
between positive and negative cases, with no duplicate book. The training set
also contains 100 instances but can contain duplicate books. The problems
are all defined with groups made of single documents and the documents are
100 lines long. In order to guarantee a minimum of document-level diversity
in the training set when the variable number of authors is low, the training
set authors are first ranked by decreasing order of their number of books, and
then added to the training set in order. This means that more distinct books
are added at every increment for the low values in number of authors than for
the high values.

It can be observed in fig. 4 that overfitting decreases drastically when the
number of authors increases: the performance on the test set and training set
converges when reaching the highest number of authors. Curiously though,
the performance on authors unseen during training increases only slightly and
stays far below the performance on seen authors, even when reaching the high-
est number of authors. This might indicate that author diversity contributes
mostly to a more accurate estimation of performance during training, but not
(or very slightly) to a higher performance on the test set. However this inter-
pretation would require more experiments to be confirmed, since it may be a
consequence of the important performance variations.

Springer Nature 2021 BTEX template

CLG Authorship Analytics 19

1.00-

N
o
3
i
o
3

0.75-

o
b
a
o
3
o

0.50

ELEE@?‘EEE
0.25-

AH -»— basic meta
model.type evaluated.on test = train evaluated.on testseen = testunseen
0.00- AH.pan21 e Gl univ 0.00-
25 5.0 75 100 12 25 50 75 10.0 12, 25 5.0 75 10.0 12.
Number of authors in the training set Number of authors in the training set Number of authors in the training set

performance
performance

°

&

g
performance

°

&

g

NS g /= S

5]
N
@

0.25-

o
o
S

Fig. 4 Performance by number of distinct authors in the training set. See the
explanations about the different graphs in the caption of fig. 1.

Model type Best on training set Best on test set

GI 69.8% 51.2%
basic 2.3% 11.6%
meta 2.3% 32.6%
univ 25.6% 4.6%

Table 1 Overall statistics by model type.

5.5 Global observations

Table 1 shows how often every type of model is estimated as the best model
during the training stage and (2) actually performs best out of the four model
types on the test set.

While GI is clearly the best individual strategy, the second best strategy
on the training set is univ even though it almost never performs best on the
test set. This is due to overfitting, as observed in the various experiments: univ
tends to perform well on the training set, but drastically underperforms on
the test set. By contrast, the meta-model barely suffers from overfitting and
achieves the best performance on the test set almost a third of the time.

The better stability of the meta method is also confirmed by a small study
of the case where the size of the documents is 100, the number of documents
by group is one, the number of training instances is 100 and the number of
authors is maximum. This combination of parameters is present in all four
experiments. We calculated the standard deviation of the performance on the
test set for the four model types: all three individual models have a standard
deviation between 0.066 and 0.069, while the meta model has only 0.026. The
sample is too small for this observation to be conclusive, but this observation
evidences the better stability of the meta-model.

The AH baseline models perform decently in most experiments but not as
well as the best models, GI and the meta-model. As mentioned in section 4.3,
this is probably due to the fact that this model was designed for a massive
volume of training data and that the pretrained model is too specific to the
domain of fanfiction. In particular, the AH model performs especially bad
in experiments 1 and 3 when the number of instances or authors is low. It
can reasonably be assumed that these models would likely outperform our
model if provided with a lot more training data. It is however questionable

Springer Nature 2021 BTEX template

20 CLG Authorship Analytics

whether a high volume of training data is a realistic setting in the perspective
of authorship verification applications.

6 Conclusion

We described the CLG Authorship Analytics system, which implements sev-
eral individual methods as well as a meta-model for the task of authorship
verification. We performed a series of experiments in order to measure the
impact of various standard parameters of the authorship verification task on
performance. The analysis shows that the size of the documents as well as
the number of instances in the training set tend to reduce overfitting but to
increase the known author bias. On the contrary, increasing the number of
documents by group has little or no effect on overfitting but tends to decrease
the known author bias.

Overall, the General Impostor method performs best. The results also show
that the stacked generalization approach tends to cause less overfitting and
more stable performance overall. However our experimemts did not establish
clearly the superiority of the meta-model: the best individual strategy, GI,
performs as well or slightly better most of the time. Despite the variety of
the hyper-parameters for each individual strategy and the multiple learners
combined in the meta-model (usually 50 to 70), the meta-model could certainly
benefit from more having diversity to choose from in the type of models. Future
work should focus on adding new and diverse models, in order to improve the
performance of the meta-model.

7 Declarations

This work was supported by the ADAPT Centre for Digital Content Technol-
ogy, funded under the SFI Research Centres Programme (Grant 13/RC/2106)
and co-funded under the European Regional Development Fund.

The authors have no relevant financial or non-financial interests to disclose.

References

[1] Lambers, M., Veenman, C.J.: Forensic authorship attribution using
compression distances to prototypes. In: Geradts, Z.J.M.H., Franke,
K.Y., Veenman, C.J. (eds.) Computational Forensics: Third Interna-
tional Workshop, IWCF 2009, The Hague, The Netherlands, August
13-14, 2009. Proceedings, pp. 13-24. Springer, Berlin, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03521-0_2. http://dx.doi.org/
10.1007/978-3-642-03521-0_2

[2] Abbasi, A., Chen, H.: Applying authorship analysis to extremist-group
web forum messages. IEEE Intelligent Systems 20(5), 67-75 (2005). https:
//doi.org/10.1109/MIS.2005.81

https://doi.org/10.1007/978-3-642-03521-0_2
http://dx.doi.org/10.1007/978-3-642-03521-0_2
http://dx.doi.org/10.1007/978-3-642-03521-0_2
https://doi.org/10.1109/MIS.2005.81
https://doi.org/10.1109/MIS.2005.81

3]

Springer Nature 2021 BTEX template

CLG Authorship Analytics 21

Koppel, M., Schler, J., Argamon, S., Winter, Y.: The “fundamen-
tal problem” of authorship attribution. English Studies 93(3), 284-291
(2012) https://arxiv.org/abs/http://dx.doi.org/10.1080/0013838X.2012.
668794. https://doi.org/10.1080/0013838X.2012.668794

Moreau, E., Vogel, C.: Style-based distance features for author verification
- notebook for pan at CLEF 2013. In: CLEF 2013 Evaluation Labs and
Workshop - Working Notes Papers, Valencia, Spain, p. (2013)

Moreau, E., Jayapal, A., Vogel, C.: Author Verification: Exploring a Large
set of Parameters using a Genetic Algorithm - Notebook for PAN at CLEF
2014. In: Cappellato, L., Ferro, N., Halvey, M., Kraaij, W. (eds.) Work-
ing Notes for CLEF 2014 Conference, vol. 1180, p. 12. CEUR Workshop
Proceedings, Sheffield, United Kingdom (2014)

Moreau, E., Jayapal, A., Lynch, G., Vogel, C.: Author Verification: Basic
Stacked Generalization Applied To Predictions from a Set of Heteroge-
neous Learners - Notebook for PAN at CLEF 2015. In: Cappellato, L.,
Ferro, N., Jones, G.J.F., SanJuan, E. (eds.) CLEF 2015 - Conference and
Labs of the Evaluation Forum. CEUR Workshop Proceedings. CEUR,
Toulouse, France (2015)

Koppel, M., Schler, J., Bonchek-Dokow, E.: Measuring differentiabil-
ity: Unmasking pseudonymous authors. Journal of Machine Learning
Research 8, 1261-1276 (2007)

Vogel, C., Lynch, G., Janssen, J.: Universum inference and corpus homo-
geneity. In: Bramer, M., Petridis, M., Coenen, F. (eds.) Research and
Development in Intelligent Systems XXV, pp. 367-372. Springer, 777
(2009). https://doi.org/10.1007/978-1-84882-171-2_29

Koppel, M., Seidman, S.: Automatically identifying pseudepigraphic
texts. In: Proceedings of the 2013 Conference on Empirical Methods in
Natural Language Processing, EMNLP, A Meeting of SIGDAT, a Special
Interest Group of The ACL, pp. 1449-1454. ACL, Grand Hyatt Seattle,
Seattle, Washington, USA (2013)

Koppel, M., Winter, Y.: Determining if two documents are written by
the same author. Journal of the Association for Information Science and
Technology 65(1), 178-187 (2014)

Stamatatos, E., Daelemans, W., Verhoeven, B., Stein, B., Potthast, M.,
Juola, P., Sanchez-Pérez, M.A., Barrén-Cedefio, A.: Overview of the
author identification task at PAN 2014. In: Cappellato, L., Ferro, N.,
Halvey, M., Kraaij, W. (eds.) Working Notes for CLEF 2014 Conference.
CEUR Workshop Proceedings, vol. 1180, pp. 877-897. CEUR-WS.org,
Sheffield, UK (2014). http://ceur-ws.org/Vol-1180

{http://dx.doi.org/10.1080/0013838X.2012.668794}
{http://dx.doi.org/10.1080/0013838X.2012.668794}
https://doi.org/10.1080/0013838X.2012.668794
https://doi.org/10.1007/978-1-84882-171-2_29
http://ceur-ws.org/Vol-1180

22

[12]

[13]

Springer Nature 2021 BTEX template

CLG Authorship Analytics

Stamatatos, E., Daelemans, W., Verhoeven, B., Juola, P., Lopez Lopez,
A., Potthast, M., Stein, B.: Overview of the Author Identification Task at
PAN 2015. In: Working Notes Papers of the CLEF 2015 Evaluation Labs.
CEUR Workshop Proceedings. CLEF and CEUR-WS.org, Toulouse,
France (2015). http://www.clef-initiative.eu/publication/working-notes

Bevendorff, J., Ghanem, B., Giachanou, A., Kestemont, M., Manjava-
cas, E., Markov, 1., Mayerl, M., Potthast, M., Rangel, F., Rosso, P., et
al.: Overview of pan 2020: Authorship verification, celebrity profiling,
profiling fake news spreaders on twitter, and style change detection. In:
International Conference of the Cross-Language Evaluation Forum for
European Languages, pp. 372-383 (2020). Springer

Kestemont, M., Manjavacas, E., Markov, 1., Bevendorff, J., Wiegmann,
M., Stamatatos, E., Stein, B., Potthast, M.: Overview of the cross-domain
authorship verification task at pan 2021. In: CLEF (Working Notes)
(2021)

Stamatatos, E.: Authorship verification: a review of recent advances.
Research in Computing Science 123, 9-25 (2016)

Schaetti, N., Emile-Argand, R.: Author verification in stream of text with
echo state network-based recurrent neural models. In: SwissText (2019)

Tyo, J., Dhingra, B., Lipton, Z.C.: Siamese bert for authorship verifica-
tion. In: CLEF (Working Notes), pp. 2169-2177 (2021)

Manolache, A., Brad, F., Burceanu, E., Barbalau, A., Ionescu, R.,
Popescu, M.: Transferring bert-like transformers’ knowledge for author-
ship verification. arXiv preprint arXiv:2112.05125 (2021)

Boenninghoff, B., Nickel, R.M., Kolossa, D.: 02d2: Out-of-distribution
detector to capture undecidable trials in authorship verification. arXiv
preprint arXiv:2106.15825 (2021)

Boenninghoff, B., Kolossa, D., Nickel, R.M.: Self-calibrating neural-
probabilistic model for authorship verification under covariate shift. In:
International Conference of the Cross-Language Evaluation Forum for
European Languages, pp. 145-158 (2021). Springer

Potha, N., Stamatatos, E.: Dynamic ensemble selection for author veri-
fication. In: European Conference on Information Retrieval, pp. 102-115
(2019). Springer

Seidman, S.: Authorship verification using the impostors method. In:
CLEF 2013 Evaluation Labs and Workshop-Online Working Notes (2013)

http://www.clef-initiative.eu/publication/working-notes

23]

[26]

27]

29]

Springer Nature 2021 BTEX template

CLG Authorship Analytics 23

Mayor, C., Gutierrez, J., Toledo, A., Martinez, R., Ledesma, P., Fuentes,
G., Meza, L.: A single author style representation for the author verifica-
tion task. In: CLEF 2014 Evaluation Labs and Workshop-Online Working
Notes (2014)

Khonji, M., Iraqi, Y.: A slightly-modified gi-based author-verifier with
lots of features (ASGALF). In: Cappellato, L., Ferro, N., Halvey, M.,
Kraaij, W. (eds.) Working Notes for CLEF 2014 Conference, Sheffield,
UK, September 15-18, 2014. CEUR Workshop Proceedings, vol. 1180,
pp. 977-983. CEUR-WS.org, Sheffield, UK (2014). http://ceur-ws.org/
Vol-1180

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Wit-
ten, L.LH.: The weka data mining software: an update. ACM SIGKDD
Explorations Newsletter 11(1), 10-18 (2009)

Keerthi, S.S., Shevade, S.K., Bhattacharyya, C., Murthy, K.R.K.:
Improvements to platt’s SMO algorithm for SVM classifier design. Neural
Comput. 13(3), 637-649 (2001)

Quinlan, J.R.: Learning with continuous classes. In: Proceedings of the
5th Australian Joint Conference on Artificial Intelligence, pp. 343-348
(1992). Singapore

Penas, A., Rodrigo, A.: A simple measure to assess non-response. In:
Proceedings of the 49th Annual Meeting of the ACL: Human Language
Technologies, pp. 1415-1424. Association for Computational Linguis-
tics, Portland, Oregon, USA (2011). http://www.aclweb.org/anthology/
P11-1142

Klaussner, C., Vogel, C.: A diachronic corpus for literary style analy-
sis. In: Calzolari, N., Choukri, K., Cieri, C., Declerck, T., Goggi, S.,
Hasida, K., Isahara, H., Maegaard, B., Mariani, J., Mazo, H., Moreno,
A., Odijk, J., Piperidis, S., Tokunaga, T. (eds.) Proceedings of the
Eleventh International Conference on Language Resources and Evalua-
tion, LREC 2018. European Language Resources Association (ELRA),
Miyazaki, Japan (2018). http://www.lrec-conf.org/proceedings/Irec2018/
summaries/864.html

Cappellato, L., Ferro, N., Halvey, M., Kraaij, W. (eds.): Working Notes for
CLEF 2014 Conference. CEUR Workshop Proceedings, vol. 1180. CEUR-
WS.org, Sheffield, UK (2014). http://ceur-ws.org/Vol-1180

http://ceur-ws.org/Vol-1180
http://ceur-ws.org/Vol-1180
http://www.aclweb.org/anthology/P11-1142
http://www.aclweb.org/anthology/P11-1142
http://www.lrec-conf.org/proceedings/lrec2018/summaries/864.html
http://www.lrec-conf.org/proceedings/lrec2018/summaries/864.html
http://ceur-ws.org/Vol-1180

	Introduction
	Related work
	Approach
	General design
	Common parameters
	Strategies
	Basic strategy
	General Impostor strategy
	Universum Inference strategy

	Supervised learning
	General principle
	Evaluation
	Genetic algorithm

	Meta-model (stacked generalization)

	Experimental setup
	Data
	Design of the experiments
	Baseline systems

	Experiments
	Document size
	Number of documents by group
	Number of problems in the training set
	Author diversity in the training set
	Global observations

	Conclusion
	Declarations

