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6.1. Introduction 

The identification of biomarkers that predict response to neoCRT, prior to initiation of 

treatment, are crucial for improved stratification, quality of life and outcomes for rectal cancer 

patients. Resistance to neoCRT is a major clinical problem in the management of rectal cancer, 

with a conservative estimate of 15-30% of patients achieving a pCR, which is associated with 

favourable prognosis in rectal cancer (44-47). The majority of patients who are resistant to 

standard of care treatments, are subject to therapy-associated toxicities, a delay in surgery 

and no apparent therapeutic gain. Currently, standard clinicopathological parameters do not 

predict patient response to treatment, highlighting the need for novel biomarkers predicting 

response to neoCRT, prior to initiation of treatment, for improved patient stratification. 

Altered tumour metabolism has been demonstrated as a mechanism underlying the 

resistance to radiation and chemotherapy (177-181), suggesting a potential role for metabolic 

markers as biomarkers predicting response to treatment. In chapters 2-4, altered energy 

metabolism was demonstrated to be associated with radioresistance in an in vitro model of 

radiosensitive/radioresistant CRC. However, the role of altered metabolism in the response to 

neoCRT in vivo is largely unknown. A number of studies have utilised metabolomic profiling to 

identify biomarkers predictive of therapeutic response in rectal cancer (423-425). In a recent 

study conducted by Rodriguez-Tomas et al., metabolomic profiling of sera from rectal cancer 

patients, identified two metabolites, succinate and valine, as preliminary biomarkers 

predictive of patient response to neoadjuvant CRT and relapse (423). Furthermore, another 

study of pre-treatment rectal cancer sera identified a multi-metabolite panel predictive of 

therapeutic response by metabolomic profiling (424). These findings highlight the role of 

altered metabolism in rectal cancer and the potential utility of metabolomic profiling in the 

identification of predictive biomarkers in rectal cancer. 

 Initial research to identify potential predictive biomarkers often involves the use of in 

vitro models, as they are cost-effective, easily powered, and accessible. However, there are a 

number of limitations to the use of in vitro models, primarily that they are an over-

simplification of a much more complex biological system (426). One approach to validate 

findings of in vitro studies, and to enhance the translation of laboratory-based research to the 

patient setting is the use of ex vivo samples. Ex vivo tumour tissue samples more accurately 

reflect the diverse cellular components of a tumour, including cancer cells, immune cells and 

stromal cells. Furthermore, the 3D structure of the tumour is maintained in ex vivo tumour 
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tissue biopsies, more accurately reflecting the tumour composition in vivo, when compared 

to 2D in vitro models. In addition, as an ideal biomarker is easily accessible, the identification 

of minimally-invasive circulating  biomarkers are of particular interest in biomarker discovery 

and development (315). Another beneficial strategy to identify and validate predictive 

biomarkers is to assess potential biomarkers in non-cancer tissue, to further elucidate the role 

of these biomarkers in tumour pathogenesis.  

 In recent years, ‘omic’ platforms have become more accessible, and have been widely 

utilised for the identification of biomarkers, and to give a more comprehensive view of 

biological systems and diseases (316). Transcriptomic analysis is the study of relative RNA 

transcript abundance (317).  Metabolomic profiling is the quantitation of small metabolites in 

a system, and gives an indication of the metabolic pathways being utilised (325). Evidence 

suggests that combining data from an ‘upstream’ omic platform, such as transcriptomics, with 

that from a ‘downstream’ omic platform, such as metabolomics, can provide a more detailed, 

dynamic and accurate portrayal of the flux of biological pathways in a system or disease (317). 

Multi-omic profiling has been performed to identify predictive and prognostic biomarkers of 

CRC (427-429). One study demonstrated that the integration of multi-omic data from 

metabolomic, gene expression, and copy number variation analyses, permitted identification 

of reliable biomarkers highly predictive of relapse in CRC patients, and highlighted the immune 

response as a biological signature of relapse in CRC (427). The authors also highlighted that 

the integration of multi-omic data permitted the elimination of redundant molecular features.   

 In this chapter, the role of altered metabolism in both the development and 

therapeutic response of rectal cancer was investigated by profiling the metabolome, 

secretome and transcriptome of pre-treatment sera and tumour samples from rectal cancer 

patients and rectal tissue samples from non-cancer controls.  
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6.2. Overall Objective and Specific Aims of Chapter 6 

The specific aims of this chapter were: 

• Investigate whether the metabolome in pre-treatment sera samples from rectal cancer 

patients is associated with subsequent pathological response to neoCRT and other 

clinicopathological characteristics. 

• Investigate if the metabolome and transcriptome of pre-treatment rectal cancer 

biopsies is associated with subsequent pathological response to neoCRT, and other 

clinicopathological characteristics. 

• Evaluate the real-time metabolic rate of pre-treatment rectal tumour and non-cancer 

rectal tissue biopsies, to investigate the basal metabolic phenotype 

• Characterise the metabolome of rectal cancer tissue, tumour conditioned media, and 

compare to that of non-cancer rectal tissue. 

• Profile and compare the inflammatory secretome of rectal cancer and non-cancer 

rectal tissue, and correlate with clinicopathological characteristics. 

• Characterise the basal transcriptome of rectal cancer tissue and non-cancer rectal 

tissue.  

• Investigate whether the altered metabolome and transcriptome of rectal cancer 

permit predictive clustering into cancer and non-cancer cohorts. 
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6.3. Materials and Methods 

6.3.1. Patient Cohort 

Ethical approval for patient sample collection for this study was granted by the Joint St. 

James’s Hospital/AMNCH ethical review board and the Beacon Hospital Research Ethics 

Committee. Patients undergoing lower gastrointestinal investigations or endoscopy for rectal 

cancer diagnosis were recruited between January 2018 and October 2021 from St. James’s 

Hospital, Dublin and Beacon Hospital, Dublin (n=36 cancers, n=31 non-cancers). A separate 

cohort of pre-treatment sera samples (n=52) from consenting rectal adenocarcinoma patients 

were also obtained in collaboration with Ahus and Oslo University Hospitals, Norway, 

collected between October 2013 and November 2017.  

6.3.2. Tissue Collection  

Pre-treatment rectal tumour biopsies were obtained from consenting patients by a qualified 

endoscopist at diagnostic endoscopy, prior to neoCRT. Normal (non-cancer) rectal tissue 

biopsies were obtained by a qualified endoscopist during colonoscopy from consenting 

patients who did not have a cancer diagnosis. Specimens were immediately placed in RNA-

later (Ambion, Warrington, UK) and refrigerated for 24 h, before removal of RNA-later and 

storage at -80oC. Biopsies were also snap-frozen in liquid nitrogen for 1-2 min, and stored at -

80°C. Patient data was pseudo-anonymised and coded with a unique biobank identifier. 

Histological confirmation of tumour tissue and non-malignant tissue in biopsies was 

performed by an experienced GI pathologist using haematoxylin and eosin staining. Patient 

data was pseudonymised and coded with unique biobank identifier.  

6.3.3. Patient treatment  

Rectal cancer patients from St. James’s Hospital or the Beacon hospital received either 

neoCRT, neoCT, neoRT, surgery only, or CT only. All rectal cancer patients from the Norway 

sera cohort received neoadjuvant chemoradiation therapy (neoCRT), prior to surgery. 

Chemotherapy consisted of capecitabine, FLOX (fluorouracil, leucovorin, oxaliplatin) or FLV (5-

FU, leucovorin). Radiation therapy was delivered in either 25 fractions of 2 Gy, or 5 fractions 

of 5 Gy.  

6.3.4. Pathological response 

Response to neoCRT was determined pathologically. All resected rectal specimens were 

assessed by an experienced pathologist who was blinded to the clinical data. Tumour 

regression score (TRS) in the Norwegian cohort was assessed using the college of American 
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pathologists/American joint committee of cancer (CAP/AJCC) four-point TRS scale. This scale 

is identical to the modified Ryan TRS scale used in the UK and Ireland, which was utilised in 

this study for patient samples obtained from St. James’s Hospital and the Beacon Hospital. In 

these scales TRS 0 (complete response) refers to no remaining viable cancer cells, TRS 1 

(moderate response) refers to only a small cluster or single cancer cells remaining, TRS 2 

(minimal response) refers to residual cancer remaining with fibrosis, and TRS 3 (poor 

response) refers to minimal or no tumour kill with extensive residual cancer (430).    

6.3.5. Generation of tumour conditioned media and non-cancer conditioned media 

Tumour conditioned media (TCM) and non-cancer conditioned media (NCM) was generated 

using fresh pre-treatment rectal cancer biopsies and normal rectal tissue biopsies, 

respectively. Biopsies were washed gently three times in PBS supplemented with 1% penicillin-

streptomycin, 0.1% gentamycin and 1% Fungizone™ (amphotericin B) (Merck, Sigma Aldrich). 

The biopsy was then placed in 1 mL M199 media, supplemented with FBS (10%), penicillin-

streptomycin (1%), Fungizone™ (1%), gentamycin (0.1%) and insulin (1 µg/mL) in a 12-well 

plate. The plate was incubated at 37°C at 5% CO2/ 95% atmospheric air overnight. Following 

24 h, the TCM or NCM was collected and stored at -80°C. Matched tissue biopsies were 

collected, snap-frozen in liquid nitrogen and stored at -80°C.  

6.3.6. Metabolite extraction from tissue  

Frozen tissue was weighted and grinded with liquid nitrogen followed by addition of ice-cold 

extraction solvent (Ethanol: PBS = 85:15). The samples were subsequently centrifuged at 

10000 × g for 5 min at 4°C. The supernatant was collected and stored at -80°C for metabolite 

measurement. 

6.3.7. TCM, NCM and serum sample preparation for metabolomic analysis 

TCM and serum samples were thawed and centrifuged at 2750 × g for 5 min at 4°C prior to 

metabolomic analysis.  

6.3.8. AbsoluteIDQ® p180 assay  

Metabolites were identified and quantified using the AbsoluteIDQ® p180 assay (Biocrates Life 

Sciences, Innsbruck, Austria) according to the manufacturers’ instructions. Detailed sample 

preparation and analysis were previously described (431). Briefly, 10 µL of sample supernatant 

from TCM, NCM, serum and tissue were added to the 96-well plate and dried under a stream 

of nitrogen. A total of 50 µL of 5% phenyl isothiocyanate solution was added and incubated 

for 25 min at room temperature. Following incubation, the plate was dried for 60 min under 
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the nitrogen stream. The extraction solvent (5 mM ammonium acetate in methanol, 300 µL) 

was added to each well and the plate was subsequently incubated for 30 min with shaking. 

The plate was centrifugated at 500 × g for 2 min to obtain the eluate, and 150 µL of eluate 

was diluted with 150 µL of HPLC grade water for liquid chromatography-tandem mass 

spectrometry (LC-MS/MS) run. A total of 50 µL of eluate was diluted with 450 µL mobile phase 

for the flow injection analysis-tandem mass spectrometry (FIA-MS/MS) run. 

The data was acquired on a SCIEX QTRAP 6500plus mass spectrometer coupled to 

SCIEX ExionLC™ Series UHPLC capability. During LC-MS/MS run, a UHPLC column provided with 

AbsoluteIDQ® p180 kit was installed for metabolite separation, and water and acetonitrile 

(both added 0.2% formic acid) were used as mobile phase A and B, respectively. Amino acids 

(n=21) and biogenic amines (n=21) were identified and quantified in positive mode. For the 

FIA-MS/MS analyses, methanol was employed as the running solvent, and 40 acylcarnitines, 

14 lysophosphatidylcholines (lysoPC), 38 acyl/acyl phosphatidylcholines (PC aa), 38 acyl/alkyl 

phosphatidylcholines (PC ae), 15 sphingomyelins (SMs), and the sum of hexoses (H1) were 

identified and quantified in positive mode. In this assay, all metabolites were quantified by 

multiple reaction monitoring (MRM) method which was optimized and provided by Biocrates 

Life Sciences. Data acquisition was conducted by the software of AB Sciex Analyst® 

version1.7.2. 

6.3.9. Data processing and metabolite quantification  

Amino acids and biogenic amines were quantified based on isotopically labelled internal 

standards and 7-point calibration curves using AB Sciex Analyst® version1.7.2 software. Other 

metabolites, such as acylcarnitines, lysoPCs, PCs, SMs and hexose were semi-quantified by 

using 14 internal standards in the MetIDQ™ software (Biocrates Life Sciences). Data quality 

was evaluated by checking the accuracy and reproducibility of QC samples included in the 

p180 kit. Finally, the concentrations of metabolites were reported in µM. For further statistical 

analyses, metabolites were included only when the concentrations of metabolites were above 

the limit of detection (LOD) in more than 50% of samples. 

6.3.10. Real-time metabolic profiling of rectal tumour and non-cancer rectal tissue biopsies 

Following informed consent, 2 biopsies per patient (either rectal cancer or non-cancer rectal 

tissue) were collected at colonoscopy, placed on saline-soaked gauze, and transported to the 

laboratory. Each biopsy was placed into an individual well of an XF24 Islet Capture Microplate 

(Agilent Technologies) and secured into place by islet capture screens. A volume of 1 mL 
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complete M199 (Gibco) supplemented with FBS (10%), penicillin-streptomycin (1%), 

Fungizone™ (1%), gentamycin (0.1%) and insulin (1 µg/mL) was placed in each well. The plate 

was placed at 37°C, in 5% CO2/95% atmospheric air for 30 min to equilibrate.  

 Three basal measurements of OCR and ECAR were measured over 24 min, of three 

repeats of mix (3 min)/ wait (2 min) / measurement (3 min) using the Seahorse XFe24 analyser. 

Biopsies and matching TCM or NCM were collected, snap-frozen in liquid nitrogen, and stored 

at -80°C until required. Metabolic rates were normalised to protein content using the BCA 

assay (Pierce) (Section 5.2.15). 

6.3.11. Multiplex enzyme-linked immunosorbent assay (ELISA) profiling of TCM and NCM  

The protein secretome of rectal cancer and non-cancer rectal tissue biopsies was assessed in 

TCM and NCM using the Meso Scale Diagnostics (MSD) Discovery multiplex ELISA platform. 

Angiogenic, vascular injury, pro-inflammatory, cytokine and chemokine protein secretions 

were assessed, as previously described (Section 5.2.16). Data was normalised to total protein 

content of matching biopsies, using the BCA assay (Section 5.2.14).  

6.3.12. Isolation and quantification of RNA  

Tissue biopsies were immediately placed in 600 µL RNAlater™ (Sigma Aldrich) following 

collection and stored at 4 °C for 24 h. Following 24 h, RNAlater™ liquid was removed to waste 

and the biopsy stored at -80 °C until required. To isolate RNA, the MiRNeasy Mini Kit (Qiagen) 

was utilised, as previously described (Section 5.2.9).  RNA was quantified using a Nanodrop 

1000 spectrophotometer, as described previously (Section. 5.2.10).  

6.3.13. Transcriptomic analysis of pre-treatment rectal and non-cancer rectal tissue biopsies 

Transcriptomic profiling by RNA-Seq, was conducted using Lexogen QuantSeq 3’mRNA-Seq, 

and a NovaSeq 6000 sequencing platform, as previously described (Section 2.3.16).  

 Briefly, RNA libraries were prepared for sequencing using the QuantSeq 3’ mRNA-Seq 

Library prep kit (Lexogen), according to the manufacturers instructions. First strand synthesis 

of RNA samples was conducted, and RNA samples were denatured. The RNA template was 

degraded prior to initiation of second strand synthesis of cDNA. The dsDNA library was purified 

using magnetic beads, to remove contaminants from reaction components. The library was 

amplified by PCR, using an optimised number of 15 PCR cycles, as described (Section 2.3.16). 

An equal molar amount was pooled for sequencing, with 320 pM loaded onto the NovaSeq 

flow cell for sequencing using the NovaSeq 6000 and an SP v1.5 sequencing kit, with 1 x 100 
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bp reads. Raw sequencing files were uploaded to the BlueBee platform for analysis (Section 

5.2.12).   

6.3.14. IPA analysis 

Significantly differentially expressed genes, and corresponding Log2 Fold Change values were 

imported to IPA bioinformatics software. Core analysis in IPA was performed, which utilises 

the Qiagen Knowledge Base, to identify networks and predict specific biological function and 

pathway involvement in the uploaded experimental transcriptomic dataset. Downstream 

Effects Analysis in IPA was utilised to predict alterations to downstream biological functions 

in uploaded experimental datasets. Canonical Pathway Analysis in IPA, utilising the Qiagen 

Knowledge Base, was used to predict involvement and activation or inhibition of specific 

biological pathways in the experimental dataset, as previously described (Section 5.2.13).  

6.3.15. Hierarchical clustering analysis  

Normalised, matched metabolomics and transcriptomics data were scaled individually before 

being integrated to create a single data matrix. Unsupervised hierarchical clustering with 

supporting heatmap and dendrograms were generated in R Studio (v21.09.0) using packages 

'ComplexHeatmap' (v2.6.2), 'RColorBrewer' (v1.1-2), 'gplots' (v3.1.1) and 'pheatmap' 

(v1.0.12). 

6.3.16. Statistical analysis 

All statistical analysis and graphing were performed using GraphPad Prism v9 software. Data 

is presented as mean ± SEM throughout. Metabolomic data analysis was performed by un-

paired t-testing, GLM analysis or as stated in the figure or table legends. For transcriptomic 

data analysis, BlueBee, DESeq2 R extension and IPA software were utilised for statistical 

analysis. DESeq2 utilised Wald testing, while IPA utilised Fisher’s Exact Test, as stated in 

figure/table legends. Analysis of MSD or seahorse data using patient samples used Mann-

Whitney U or Wilcoxon signed rank test, as appropriate. Spearman correlations were carried 

out using R software version 3.6.2 (432). Spearman correlations were generated using R 

package ‘Hmisc’ version 4.4-0 (433). Graphical representations of correlations were generated 

with the R package ‘corrplot’ version 0.84(434). All correlations with an associated p-value < 

0.05 following Holm-Bonferroni correction were considered statistically significant. Results 

were considered significant where probability (p) ≤ 0.05.  
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Table 6.1: Overview of patient samples utilised in each analysis in chapter  

Experiment Cohort Type of Sample Cancer (n) Non-Cancer (n) 

Metabolomics 

Norway Pre-treatment sera 52  

    

SJH/Beacon 

Pre-treatment tissue 32 20 

Matching 

conditioned media 
24 (of 32) 15 (of 20) 

     

Transcriptomics SJH/Beacon Pre-treatment tissue 36 31 

     

Real-time 

metabolic 

profiling 

SJH/Beacon Pre-treatment tissue 11 12 

     

Secretome 

profiling 
SJH/Beacon Conditioned media 12 12 

Abbreviations: SJH, St. James’s Hospital
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6.4. Results 

6.4.1. The metabolome of pre-treatment sera is significantly altered in rectal cancer patients 

having a poor response to neoCRT  

Having demonstrated in Chapters 1-3 that a radioresistant phenotype is associated with 

altered metabolism in rectal cancer in vitro, the potential role of altered energy metabolism 

in the response of rectal tumours to neoCRT was investigated. The metabolome of pre-

treatment sera samples from rectal adenocarcinoma patients (n = 52) was assessed by LC-MS 

and correlated with subsequent pathological response to neoCRT and other key clinical 

parameters to investigate the potential role for circulating metabolites as biomarkers 

predicting response to neoCRT. Patient characteristics are outlined in Table 6.2. 

 Generalised Linear Model (GLM) analysis was applied to estimate the significantly 

different features based on four clinicopathological features; tumour regression score (TRS) 

college of American pathologists/American joint committee of cancer (CAP/AJCC), lymph node 

involvement, differentiation stage or clinical T stage with BMI and sex used as covariates in 

the analysis. Adjusted p-values (FDR corrected) were corrected for multiple comparisons using 

the Benjamini-Hochburg (BH) procedure. 

 No altered metabolites were demonstrated to be associated with tumour 

differentiation status or tumour stage. One metabolite, PC ae C38:1 was significantly 

associated with lymph node involvement in pre-treatment sera from rectal cancer patients (p 

= 0.047) (Table 6.3). 

Interestingly, 16 metabolites were demonstrated to be significantly altered depending 

on TRS (Table 6.3). These 16 metabolites significantly associated with therapy response were 

all phosphatidylcholines (PCs). Post-hoc multiple comparisons GLM analysis demonstrated the 

significant differences in metabolite concentrations, when comparing each TRS (Fig. 6.1).  

 Lyso PC a C28:0, was demonstrated to be significantly lower in pre-treatment sera from 

patients with a subsequent TRS 2 and TRS 3, when compared to those with a complete 

response TRS 0 (p = 0.02, p = 0.013, respectively) (Fig. 6.1A). Six diacyl (aa) PC metabolites 

were significantly altered depending on TRS. Levels of PC aa C36:2 was significantly lower in 

the sera of patients with a TRS 1, 2 and 3, when compared to those with a complete response 

(TRS 0) (p = 0.012, p = 0.045, p = 0.011, respectively) (Fig. 6.1B). PC aa C40:2 levels were 

significantly decreased in sera from patients with TRS 2 and 3, when compared to those with 

TRS 0 (p = 0.007, p = 0.012, respectively) (Fig. 6.1C). Levels of PC aa C40:3 was significantly 
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lower in patients with no response to treatment (TRS 3), when compared to those with a 

complete response (TRS 0) (p = 0.024) (Fig. 6.1D). PC aa C42:1 levels were significantly lower 

in the sera from patients with a TRS 1, 2 and 3, when compared to TRS 0 (p = 0.025, p = 0.019, 

p = 0.04, respectively) (Fig. 6.1E). Sera levels of PC aa C42:2 were also significantly reduced in 

patients with a TRS of 1, 2, and 3, when compared to patients with a complete response to 

neoCRT (TRS 0) (p = 0.014, p = 0.009, p = 0.013, respectively) (Fig. 6.1F).  

Nine acyl alkyl (ae) PCs were significantly reduced in the sera of patients with 

increasing TRS. PC ae 34:2 levels were significantly reduced in the sera of patients with TRS 1, 

2 and 3, when compared to those with TRS 0 (p = 0.031, p = 0.012, p = 0.004, respectively) 

(Fig. 6.1G). A significant decrease in the concentration of PC ae C34:3 in the sera of rectal 

cancer patients with TRS 2 or 3 was demonstrated, when compared to those with TRS 0 (p = 

0.039, p = 0.02, respectively) (Fig. 6.1H). Levels of PC ae C36:0 were significantly higher in 

patients with TRS 0, when compared to TRS 1, 2, and 3 (p = 0.003, p = 0.004, p = 0.002, 

respectively) (Fig. 6.2A). Furthermore, PC ae C36:3 concentration was significantly lower in 

patients with TRS 1, 2 and 3, when compared to those with TRS 0 (p = 0.03, p = 0.034, p = 

0.006) (Fig. 6.2B). Levels of PC ae C38:1 were demonstrated to be significantly lower in the 

pre-treatment sera of rectal patients with a TRS of 1, 2 or 3, when compared to those with 

TRS 0 (p = 0.007, p = 0.047, p = 0.013, respectively) (Fig. 6.2C). Sera concentrations of PC ae 

C38:2 were significantly reduced in patients with TRS 1, 2 or 3, when compared to TRS 0 (p = 

0.008, p = 0.019, p = 0.003, respectively) (Fig. 6.2D). Levels of PC ae C40:1 were significantly 

lower in the sera of patients with TRS 1, 2 or 3, when compared to those with TRS 0 (p = 0.004, 

p = 0.012, p = 0.001, respectively) (Fig. 6.2E). The concentration of PC ae C40:3 were 

significantly higher in patients with TRS 0, when compared to those with TRS 1, 2 and 3 (p = 

0.048, p = 0.049, p = 0.02, respectively) (Fig. 6.2F). Sera levels of PC ae C42:2 were 

demonstrated to be significantly lower in the pre-treatment sera of patients with TRS 1, 2, and 

3, when compared to TRS 0 (p = 0.003, p = 0.001, p = 0.0002, respectively) (Fig. 6.2G). The 

concentration of PC ae C42:3 in the pre-treatment sera of rectal cancer patients with a TRS 0 

was significantly higher than those with TRS 1, 2 or 3 (p= 0.005, p = 0.007, p = 0.001, 

respectively) (Fig. 6.2H). 

Together, these data demonstrate that significant alterations in the levels of 16 

metabolites in the pre-treatment sera of rectal cancer patients is associated with subsequent 



298 
 

pathological response to neoCRT, supporting a potential role for these 16 metabolites as novel 

circulating predictive markers of treatment response in rectal cancer.  

 
 
Table 6.2: Patient characteristics of rectal cancer patients used in metabolomic analysis of 

pre-treatment sera samples  

  Cancer (n=52) 

Gender Male (n) 35 

Female (n) 17 

Age Mean (y) 62 

Range (y) 41-79 

Histology Adenocarcinoma (n) 52 

Differentiation Low (n) 3 

Mean/Moderate (n) 30 

High (n) 9 

N/A (n) 10 

BMI Underweight <18.5 (n) 2 

Normal 18.5-24.9 (n) 21 

Overweight 25-29.9 (n) 19 

Obese >30 10 

Clinical T stage  2 (n) 3 

3 (n) 25 

4 (n) 24 

Pathological Nodal involvement  Yes (n) 25 

No (n) 27 

Treatment NeoCRT (n) 52 

TRS (CAP/AJCC Scale) 0 (n) 4 

1 (n) 14 

2 (n) 22 

3 (n) 12 

Abbreviations; y, years; N/A, not available; BMI, body mass index; T stage, tumour stage 
neoCRT, neoadjuvant chemoradiation therapy; TRS, tumour regression score  
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Table 6.3: GLM analysis of metabolite alterations in pre-treatment sera from rectal cancer 
patients significantly associated with clinical parameters (OxyTarget cohort) 

Metabolites TRS (CAP/AJCC Scale) 

p-value (FDR Corrected) 

Lymph node positivity 

p-value (FDR corrected) 

LysoPC a C28:0 0.0143  

PC aa C36:2 0.0322  

PC aa C40:2 0.0143  

PC aa C40:3 0.025  

PC aa C42:1 0.0322  

PC aa C42:2 0.0243  

PC ae C34:2 0.0184  

PC ae C34:3 0.0250  

PC ae C36:0 0.0072  

PC ae C36:3 0.0322  

PC ae C38:1 0.0207 0.0473 

PC ae C38:2 0.0207  

PC ae C40:1 0.0033  

PC ae C40:3 0.0322  

PC ae C42:2 0.0010  

PC ae C42:3 0.0021  

GLM analysis was used to estimate the significantly different features based on TRS 
(CAP/AJCC) or lymph node positivity, with sex and BMI used as covariates. Based on 
metabolite levels from pre-treatment sera of n=52 rectal adenocarcinoma patients. TRS 0 n=4, 
TRS 1 n=14, TRS 2 n=22, TRS 3 n=12. Positive lymph nodes; Yes n=25, No n=27. p-value (FDR 
corrected) are corrected for multiple comparisons using the Benjamini-Hochburg (BH) 
procedure. 
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Fig. 6.1: Pre-treatment sera metabolite levels are significantly altered across tumour 
regression score in rectal cancer patients. Metabolite levels in pre-treatment sera from rectal 
adenocarcinoma patients (n =52) were assessed by liquid chromatography mass spectrometry 
(LC-MS) and correlated with subsequent pathological response to neoCRT. A) lysoPC a C28:0, 
B) PC aa C36:2, C) PC aa C40:2, D) PC aa C40:3, E) PC aa C42:1, F) PC aa C42:2, G) PC ae C34:2 
and H) PC ae C34:3 levels are significantly decreased with increasing TRS and worse 
therapeutic response. TRS 0 n=4, TRS 1 n=14, TRS 2 n=22, TRS 3 n=12. Data is presented as 
median ± minimum/maximum. Statistical analysis was performed by post-hoc unpaired GLM 
analysis. *p<0.05, **p < 0.01. 
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Fig. 6.2: Pre-treatment sera metabolite levels are significantly altered across tumour 
regression score in rectal cancer patients. Metabolite levels in pre-treatment sera from rectal 
adenocarcinoma patients (n =52) were assessed by liquid chromatography mass spectrometry 
(LC-MS) and correlated with subsequent pathological response to neoCRT. A) PC ae C36:0, B) 
PC ae C36:3, C) PC ae C38:1, D) PC ae C38:2, E) PC ae C40:1, F) PC ae C40:3, G) PC ae C42:2 and 
H) PC ae C42:2 levels are significantly decreased with increasing TRS and worse therapeutic 
response. TRS 0 n=4, TRS 1 n=14, TRS 2 n=22, TRS 3 n=12. Data is presented as median ± 
minimum/maximum. Statistical analysis was performed by post-hoc unpaired GLM analysis. 
*p<0.05, **p < 0.01, ***p < 0.001. 
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6.4.2. The intracellular and secreted metabolome of pre-treatment rectal tumour biopsies is 

significantly correlated with response to neoadjuvant treatment  

Having demonstrated that the circulating metabolome of pre-treatment sera is significantly 

altered in rectal cancer patients having a poor response to treatment, the intracellular 

metabolome of rectal tumour tissue (n=32) was profiled by LC-MS, and metabolite levels 

correlated with subsequent pathological response and other clinicopathological parameters.  

 The patient characteristics of the cohort used in the intracellular metabolome profiling 

of pre-treatment rectal cancer biopsies are demonstrated in Table 6.4. The levels of two 

metabolites in rectal tumour tissue were demonstrated to be significantly associated with 

subsequent TRS. Decreased levels of serotonin were demonstrated to be significantly 

associated with worsening TRS in rectal tumour tissue (p = 0.034, R value = -0.53). In addition, 

increasing lyso PC a C16:1 levels were significantly associated with worsening response to 

treatment (TRS) (p = 0.02, R-value = 0.57) (Fig. 6.3). The levels of three metabolites, C16, C18 

and putrescine were demonstrated to display significant positive correlation with advancing 

clinical T stage (Fig. 6.3). Seven metabolite levels were significantly negatively correlated with 

advancing N stage (C0, C2, C3, C3-DC(C4-OH), C4, alanine (ala) and symmetric 

dimethylarginine (SDMA)) (Fig. 6.3). Furthermore, while four intracellular metabolites were 

demonstrated to be positively correlated with pathological T stage (C4:1, lysoPC a 16:1, lysoPC 

a C20:4 and PC aa C28:1), one metabolite, lysoPC a C20:3 was significantly negatively 

correlated with pathological T stage (Fig. 6.3). In addition, levels of spermine, lysoPC a C16:1 

and lysoPC a C18:2 were associated with a significant positive correlation with pathological T 

stage (Fig. 6.3). Five metabolites were significantly negatively correlated with pathological N 

stage in rectal tumour tissue (PC ae C40:6, PC ae C42:3, PC ae C44:3, PC ae C44:4 and SM 

C26:0) (Fig. 6.3). Fifteen metabolites were demonstrated to be significantly correlated with 

BMI in rectal tumour tissue, including 11 amino acids (Fig. 6.3). 

 To investigate whether the secreted metabolome of rectal tumour tissue was 

associated with response to treatment and key clinical characteristics, the levels of 

metabolites secreted from rectal tumour was assessed in TCM (n=24) by LC-MS. The patient 

characteristics of this cohort are demonstrated in Table 6.5. The levels of one metabolite, PC 

aa C32:3 displayed significant positive correlation with worsening response to treatment (TRS) 

(p = 0.031, R-value = 0.65). Two metabolites, asparagine (Asn) and PC aa C30:2 were 

demonstrated not only to have a significant negative correlation with clinical N stage, but also 
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pathological N stage (Fig. 6.4). Eleven secreted metabolites were demonstrated to display a 

significant positive correlation with clinical T stage (C0, Ala, Clt, Glu, Gly, sarcosine, SDMA, PC 

aa C28:1, SM C16:0, SM C16:1 and SM C18:0) (Fig. 6.4). Secreted levels of two metabolites, 

threonine (Thr) and creatinine were demonstrated to have a positive correlation with 

pathological T stage (Fig. 6.4).  

 Together these data demonstrate that the intracellular and secreted metabolome of 

rectal cancer is significantly associated with subsequent pathological response to treatment 

and other key clinical and pathological parameters, further supporting a role for altered 

metabolism in the pathogenesis and therapeutic response of rectal cancer and highlighting 

the potential for metabolomic biomarkers predicting response to neoadjuvant treatment.  
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Table 6.4: Patient characteristics of rectal cancer patients used in intracellular metabolomic 

profiling of pre-treatment rectal tumour biopsies 

  Cancer (n=32) 

Gender Male (n)  20 

Female (n)  12 

Age  Mean ± SEM (y) 63.8 ± 1.7 

Range (y) 48-89 

Histology Adenocarcinoma (n)  32 

Differentiation Poor-Moderate (n)   2 

Moderate (n) 28 

Well (n) 1 

Unknown (n) 1 

Clinical T stage 1 (n) 1 

1/2 (n) 1 

2 (n) 8 

3 (n) 18 

3/4 (n) 1 

4 (n) 3 

Clinical N stage 0 (n) 17 

1 (n) 9 

1/2 (n) 1 

2 (n) 5 

Pathological T stage* 0 (n) 3 

1 (n) 4 

2 (n) 7 

3 (n) 10 

4 (n) 1 

Pathological N stage** 0 (n) 20 

1 (n) 4 

Treatment received NeoCRT (n) 16 

NeoRT (n) 2 
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NeoCT (n) 1 

Surgery only (n) 7 

CT + RT only (n) 4 

CT only (n) 1 

Awaited (n) 1 

TRS (Modified Ryan Scale) 

(neoCRT or neoRT)*** 

0 (n) 3 

1 (n) 7 

2 (n) 5 

3 (n) 1 

*Pathological T stage available for n=25 patients only. **Pathological N stage available for 
n=24 patients only. ***TRS available for n=16 patients only, receiving either neoCRT or neoRT. 
Abbreviations; SEM, standard error of the mean; y, years; T stage, tumour stage; N stage, 
nodal stage; TRS, tumour regression score; neo, neoadjuvant; CRT, chemoradiation therapy; 
RT, radiation therapy; CT, chemotherapy. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



306 
 

 

 
 
 
 
Fig. 6.3: Intracellular metabolite levels of rectal tumour biopsies significantly correlate with clinical and pathological characteristics. 
Intracellular metabolite levels of pre-treatment rectal tumour biopsies (n = 32) were assessed by LC-MS, and correlated with clinical and 
pathological characteristics, using R software.  Blue dots represent significant positive correlations, while red dots represent significant negative 
correlations. The x-axis demonstrates the R value denoting strength of correlations with increasing colour.
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Table 6.5: Patient characteristics of rectal cancer patients used in secreted metabolomic 

profiling of pre-treatment rectal tumour biopsies (TCM) 

  Cancer (n=24) 

Gender Male (n)  14 

Female (n)  10 

Age  Mean (y) 63 

Range (y) 48-78 

Histology Adenocarcinoma (n)  24 

Differentiation Poor-Moderate (n)   2 

Moderate (n) 14 

Well (n) 1 

Unknown (n) 1 

Clinical T stage 1 (n) 0 

1/2 (n) 1 

2 (n) 8 

3 (n) 11 

3/4 (n) 1 

4 (n) 3 

Clinical N stage 0 (n) 14 

1 (n) 6 

1/2 (n) 1 

2 (n) 3 

Pathological T stage* 0 (n) 2 

1 (n) 2 

2 (n)  6  

3 (n) 8 

4 (n) 1 

Pathological N stage** 0 (n) 15 

1 (n) 4 

TRS (Modified Ryan Scale) 

(neoCRT or neoRT)*** 

0 (n) 2 

1 (n) 4 



308 
 

2 (n) 5 

3 (n) 0 

*Pathological T stage available for n=19 patients only. **Pathological N stage available for 
n=19 patients only. ***TRS available for n=11 patients only, receiving either neoCRT or neoRT. 
Abbreviations; SEM, standard error of the mean; y, years; T stage, tumour stage; N stage, 
nodal stage; TRS, tumour regression score; neo, neoadjuvant; CRT, chemoradiation therapy; 
RT, radiation therapy; CT, chemotherapy. 
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Fig. 6.4: Secreted metabolite levels in rectal TCM significantly correlate with clinical characteristics. Secreted metabolite levels of pre-treatment 
rectal tumour biopsies were assessed in TCM (n=24) by LC-MS, and correlated with clinical characteristics (BMI, TRS, Clinical T/N stage, 
pathological T/N stage), using R software.  Blue dots represent significant positive correlations, while red dots represent significant negative 
correlations. The x-axis demonstrates the R value denoting strength of correlations with increasing colour
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6.4.3. The transcriptome of pre-treatment rectal tumour biopsies is significantly altered in 

patients with a poor response to neoadjuvant treatment  

Having demonstrated significant alterations to the circulating and tumour metabolome of 

rectal cancer patients with a poor response to treatment, the transcriptome of pre-treatment 

rectal tumour tissue (n = 36) was assessed using a Lexogen QuantSeq 3’ mRNA FWD 

sequencing kit to assess upstream alterations. Differential expression analysis was performed 

using BlueBee™ software and the DESeq2 R script extension.  

The patient characteristics of the patient cohort utilised in this study are demonstrated 

in Table 6.6. When comparing patients with a good response to neoadjuvant treatment [TRS 

0 (n=2) or TRS 1 (n=4)] to those with a poor response to treatment [TRS 2 (n=5)], two genes 

were demonstrated to be significantly differentially expressed between good and poor 

responders. H1-3, a histone coding gene, was demonstrated to be significantly downregulated 

in patients with a poor therapeutic response (TRS 2), when compared to those with a good 

response (TRS 0 and 1) (p-adj = 0.0002, Log2 fold change = -1.76) (Table 6.7). In addition, RNA-

Y, an RNA gene was demonstrated to be significantly downregulated in patients with a poor 

response to treatment (TRS 2), when compared to good responders (TRS 0 and 1) (p-adj = 

0.03, Log2 fold change = -1.68) (Table 6.7).  

In addition, these two genes were also the only genes significantly differentially 

expressed between patients with TRS 1 and those with TRS 2 (Table 6.7). H1-3 was 

demonstrated to be significantly downregulated in patients with TRS 2, when compared to 

those with TRS 1 (p-adj = 0.027, Log2 Fold Change = -1.65) (Table 6.7). In addition, RNA-Y 

expression was also demonstrated to be significantly downregulated in patients with TRS 2, 

when compared to those with TRS 1 (p-adj = 0.027, log2 fold change = -1.72) (Table 6.7).   

Five genes were demonstrated to be significantly altered in patients with a poor 

response to treatment (TRS 2), when compared to those with a complete response to 

treatment (TRS 0). Two genes were significantly downregulated in patients with poor response 

(TRS 2). Dual oxidase 2 (DUOX2), which is a member of the NADPH oxidase (NOX) family of 

proteins, was demonstrated to be significantly downregulated in patients with TRS 2, when 

compared to those with a TRS 0 (p-adj = 0.003, log2 Fold change = -2.58) (Table 6.7). Expression 

of apolipoprotein E (APOE), involved in regulation of lipid metabolism, was also significantly 

downregulated in patients with a poor response to treatment (TRS 2), when compared to 
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those with a complete response to treatment (TRS 0) (p-adj = 0.026, log2 Fold Change = -2.18) 

(Table 6.7).  

The expression of three ribosomal protein genes was demonstrated to be significantly 

upregulated in rectal tumour tissue of patients with a poor response to treatment (TRS 2), 

when compared to those with a complete response to treatment (TRS 0). Ribosomal protein 

L30 (RPL30) and RPL7A gene expression were demonstrated to be significantly upregulated in 

patients with a poor response to treatment (TRS 2), when compared to those with TRS 0 (p-

adj = 0.017, p = 0.023, respectively) (log2 fold change = 1.68, log2 fold change = 1.78, 

respectively) (Table 6.7).  Ribosomal protein S21 (RPS21) was also demonstrated to be 

significantly upregulated in tumour tissue of patients with a poor response to treatment (TRS 

2), when compared to those with a complete response (TRS 0) (Table 6.7).  

Interestingly, the transcriptome was also demonstrated to be significantly altered 

based on pathological T stage. Differential expression analysis demonstrated a total of 78 

genes significantly differentially expressed in tumour tissue from rectal cancer patients with a 

pathological T stage of T3/T4, when compared to those with a pathological T stage of T0. In 

total, 55 genes were significantly upregulated in patients with a pathological T stage of T3/4, 

when compared to those with a pathological T stage of T0. Twenty-three genes were 

demonstrated to be significantly downregulated in patients with a pathological T stage of T3 

or 4, when compared to those with a pathological T stage of T0. Of the significantly altered 

genes, the top 20 upregulated and downregulated genes in patients with an advanced 

pathological T stage (T3/4), when compared to those with a pathological T stage of T0 are 

demonstrated (Fig. 6.5A-B). DEFA5 (Defensin Alpha 5), which is involved in host defence, was 

the most downregulated gene (as determined by fold change, Log2 Fold Change = -2.14) in 

patients with a pathological T stage of T3/4, when compared to those with a pathological T 

stage of T0 (Fig. 6.5A). RPL22L1 (Ribosomal protein L22 Like 1) was demonstrated to be the 

most upregulated gene (as determined by fold change, Log2 fold change = 2.24) in tumour 

tissue from patients with a higher pathological T stage (T3/4), when compared to those with 

a pathological T stage of T0. (Fig. 6.5B).  

The top 30 most significantly altered genes in patients with a pathological T stage of 

T3/T4, when compared to those with a pathological T stage of T0 (Table 6.8). FAU gene, which 

encodes the 40S ribosomal protein S30, was the most significantly upregulated gene in 

patients with high pathological T stage (T3/4), when compared to those with a pathological T 
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stage of T0 (as determined by p-adj, p-adj = 0.0002). LCN2 (Lipcalin 2) was demonstrated to 

be the most significantly downregulated gene in patients with a pathological T stage of T3/4, 

when compared to those with a pathological T stage of T0 (as determined by p-adj, p-adj = 

0.006) (Table 6.8). 

 These data demonstrate that the transcriptome of rectal cancer patients with a poor 

response to neoadjuvant treatment is significantly altered, when compared to good 

responders. These data also demonstrate significant alterations in the transcriptome of 

patients with an advanced pathological T stage of 3/4, when compared to those with no 

residual tumour. 
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Table 6.6: Patient characteristics of patient cohort used in transcriptomic analysis of pre-

treatment rectal tumour tissue biopsies 

  Cancer (n=36) 

Gender Male (n)  23  

Female (n) 13 

Age at diagnosis Median (y) 63  

Range (y) 48-89 

Histology Adenocarcinoma (n) 36  

Differentiation Poor-Moderate (n) 3 

Moderate (n) 31 

Well (n) 1 

Unknown (n) 1 

Body Mass Index (BMI) at 

diagnosis 

Normal (n) 3 

Overweight (n) 12 

Obese (n) 10 

N/A (n) 11 

Pathological T stage 0 (n) 4 

1 (n) 6 

2 (n) 6 

3 (n) 7 

4 (n) 1 

Treatment received NeoCRT (n) 18 

NeoRT (n) 2 

NeoCT (n) 1 

Surgery only (n) 8 

CT + RT (no surgery) 

(n) 

4 

CT only (n) 1 

Awaited (n) 2 
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TRS (Modified Ryan Scale) 

(neoCRT or neoRT)* 

0 5 

1 7 

2 5 

3 1 

Abbreviations; N/A, not available; BMI, body mass index; clinical T stage, clinical tumour stage; 
clinical N stage, clinical nodal stage; clinical M stage, clinical metastasis stage; MX, metastasis 
cannot be measured; neoCRT, neoadjuvant chemoradiation therapy; neoRT, neoadjuvant 
radiation therapy; neoCT, neoadjuvant chemotherapy; TRS, tumour regression score. *TRS 
only available for n=18 patients, (n=16 received neoCRT, n=2 received neoRT). 
 

Table 6.7: The transcriptome of pre-treatment rectal tumour tissue is significantly altered in 

patients with a poor response to treatment  

Good response (TRS 0 +1) vs Poor response (TRS 2) 

Gene Log2FoldChange p-adj 

RNA-Y -1.76 0.000242 

H1-3 -1.67 0.0335 

TRS 1 vs TRS 2 

Gene Log2FoldChange p-adj 

RNA-Y -1.73 0.0267 

H1-3 -1.65 0.0267 

TRS 0 vs TRS 2 

Gene Log2FoldChange p-adj 

DUOX2 -2.58 0.0025 

RPL30 1.68 0.0165 

RPL7A 1.78 0.023 

APOE -2.18 0.026 

RPS21 1.89 0.026 

Log2 Fold Change indicated the differential expression of each gene in patients with a good 
response, when compared to those with a poor response, with negative values indicating 
genes downregulated in poor responders, and positive values indicating genes upregulated in 
poor responders, when compared to good responders. The p-adj values indicate the statistical 
significance of the differential expression of each gene between good and poor responders. 
Statistical analysis performed using the Wald test, with corrections for multiple comparisons 
performed by the Benjamini-Hochberg correction (FDR). 
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Fig. 6.5: The basal transcriptome is significantly altered in pre-treatment rectal tumour 
biopsies from patients with pathological T stage of T3/4, when compared to those with 
pathological T stage T0. Transcriptomic profiling was performed on RNA isolated from pre-
treatment rectal cancer biopsies. Differential expression analysis was performed using 
BlueBee™ Software, using the DESeq2 R extension script. A) The top 20 downregulated genes 
(by fold change) in patients with pathological T stage T3/4, when compared to those with 
pathological T stage T0. B) The top 20 upregulated genes (by fold change) in in patients with 
pathological T stage T3/4, when compared to those with pathological T stage T0. Data is 
presented from patients with a pathological T stage of T0 (n=4) or T3/4 (n=8) patients. 
Statistical analysis was performed using the Wald test, with corrections for multiple 
comparisons performed by the Benjamini-Hochberg correction (FDR). 
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Table 6.8: Top 30 most significantly altered genes in rectal cancer patients with a 

pathological T stage of T3/4, when compared to those with a pathological T stage of T0 

Gene 
Up/Downregulated in 

pathological T stage T3/4 
Log2 Fold Change p-adj 

FAU Up 1.077705 0.000181 

RPL30 Up 1.412689 0.001647 

RPL22L1 Up 2.240567 0.002839 

ACO2 Up 1.547734 0.00528 

MT-CO2 Up 1.488552 0.006113 

ATP5F1B Up 1.255563 0.006113 

TUBA1C Up 1.199871 0.006113 

LCN2 Down -1.45057 0.006113 

TAB2 Down -1.45282 0.006113 

DVL1 Up 1.727825 0.007844 

RPS2 Up 1.301386 0.008871 

ATM Down -1.05221 0.010529 

ZNF621 Down -1.49793 0.010529 

RPL41 Down -1.30196 0.011402 

BBC3 Up 1.774344 0.012276 

COX7B Up 1.44649 0.012276 

RPL7A Up 1.396214 0.012276 

RP9 Up 1.934482 0.012635 

DDIT4 Up 1.572787 0.012635 

RPS21 Up 1.564903 0.012635 

CLDN4 Up 1.360476 0.012635 

RAC1 Up 1.163133 0.012635 

FBXL15 Up 1.795973 0.013586 

CALM3 Up 1.118701 0.015639 

HNRNPL Up 1.165144 0.017714 

VPS53 Down -1.18669 0.017714 

FBXW4 Up 1.652337 0.018784 

C6orf48 Up 1.87756 0.019038 

NDUFA4 Up 1.788272 0.021041 

SLC5A6 Up 1.450858 0.022409 

Log2 Fold Change indicated the differential expression of each gene in patients with a 
pathological T stage T0, when compared to those with a pathological T stage T3/4, with 
negative values indicating genes downregulated in those with pathological T3/4, and positive 
values indicating genes upregulated in those with pathological T3/4, when compared to good 
responders. The p-adj values indicate the statistical significance of the differential expression 
of each gene between patients with pathological T0 and pathological T3/4. Statistical analysis 
performed using the Wald test, with corrections for multiple comparisons performed by the 
Benjamini-Hochberg correction (FDR). 
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6.4.4. Pre-treatment rectal tumour biopsies from patients having a poor response to 

neoadjuvant treatment demonstrate significant alterations in biological function and 

canonical pathways 

To further interrogate the transcriptomic alterations demonstrated in pre-treatment rectal 

tumour biopsies from patients with a poor response to treatment, genes with a log2 fold 

change > 1.5 were assessed by IPA analysis, to predict and identify pathways altered in 

patients with a TRS 2 (n = 5), when compared to those with a complete response (TRS 0 (n = 

5). The p-values represent the statistical probability that selecting genes associated with each 

function is due to chance alone.  As each biological function is comprised of multiple functional 

pathways, significance is represented as p-value range. 

 In total, 29 genes were altered by ≥1.5 log2 fold change in rectal tumour tissue from 

patients with a poor response to treatment (TRS 2), when compared to those with a complete 

response (TRS 0), including 5 genes, which were significantly altered (Section 2.4.3).  

Molecular and cellular function analysis by IPA predicted significant alterations to 

numerous functional pathways (Fig. 6.6). The pathway most significantly altered in patients 

with a poor response to treatment (TRS 2) was ‘RNA damage and repair’ (p = 3.8 x 10-9- 2.14 

x10 -2). In addition, multiple pathways associated with cellular growth and survival were 

predicted to be significantly altered in patients with a poor response to treatment (TRS 2), 

when compared to complete responders (TRS 0), including ‘cell cycle’ (p = 1.2 x10 -4 – 4.25 x 

10-2), ‘cell death and survival’ (p = 4.2 x10 -4–3.86 x 10-2) and ‘cellular growth and proliferation’ 

(p = 2.54x10-3- 4.88x10-2). Interestingly,  a number of metabolic pathways were also predicted 

to be significantly altered in patients with a poor response to treatment, when compared to 

good responders, including ‘carbohydrate metabolism’, ‘lipid metabolism’, ‘energy 

production’, and ‘nucleic acid metabolism’ (Fig. 6.6).  

  Canonical pathway analysis by IPA also demonstrated canonical pathways predicted to 

be altered in patients with a poor response to treatment (TRS 2) (Table 6.9). The canonical 

pathway, eukaryotic initiation factor-2 (EIF2) signalling, involved in pro-inflammatory and 

stress response signalling was predicted to be significantly activated in patients with a poor 

response (TRS 2), when compared to those with a complete response (TRS 0) (Z-score = 2, -

log(p-value) = 6.65) (Table 6.9).  Interestingly, oxidative phosphorylation and mitochondrial 

dysfunction were predicted to be significantly altered in patients with a poor response to 

treatment (TRS 2), when compared to those with a complete response (TRS 0) (Table 6.9).  
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 IPA analysis was also performed on the 78 significantly altered genes in patients with 

pathological T stage T3/4, when compared to those with a pathological T stage T0. Similarly, 

molecular functions related to cellular growth and survival were demonstrated to be 

significantly altered in patient tissue who went on to have a high pathological T stage following 

treatment (T3/4), when compared to those with a pathological T stage of T0, including ‘cell 

death and survival’, ‘cellular growth and proliferation’ and ‘cell cycle’ (Fig. 6.7). In addition, 

numerous metabolic functions were also demonstrated to be significantly altered in patients 

with a pathological T stage of T3/4, when compared to those with pathological T stage T0, 

including ‘lipid metabolism’, ‘carbohydrate metabolism’, ‘amino acid metabolism’ and ‘nucleic 

acid metabolism’. Interestingly, ‘cellular response to therapeutics’ was also highlighted as a 

significantly altered biological process in samples from patients with a high pathological T 

stage (T3/4), when compared to those with a pathological T stage of T0. (Fig. 6.7).  

 To further investigate specific pathways predicted to be altered in the transcriptome 

of tumour tissue from patients who went on have a poor pathological T stage, canonical 

pathway analysis was performed in IPA. Interestingly, ‘oxidative phosphorylation’ was 

predicted to be significantly activated in tissue from patients who went on to have a poor 

pathological T stage (T3/4), when compared to those with a good pathological T stage (T0)(-

log10(p-value) = 5.63, Z-score = 2.44), with 6 oxidative phosphorylation related genes being 

significantly altered (Table 6.10). In addition, mitochondrial dysfunction, and the TCA cycle II 

pathways were also demonstrated to be significantly altered in these poor responders.  

These data demonstrate significant alterations in the molecular and biological 

functions of pre-treatment rectal cancer tissue, from patients who have a poor response to 

treatment, when compared to good responders and in patients with a pathological T stage of 

T3/4. Furthermore, many of these pathways and processes are related to energy metabolism, 

supporting altered metabolism in the therapeutic response and pathogenesis of rectal cancer 

and highlighting the potential role for metabolic markers as novel biomarkers predicting the 

response to treatment.  
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Fig. 6.6: Biological functions are significantly altered in pre-treatment rectal tumour biopsies from patients having a subsequent poor response 
to neoadjuvant treatment (TRS 2), when compared to good responders (TRS 0). Transcriptomic profiling was performed on pre-treatment rectal 
tumour biopsies. Biostatistical analysis was performed on genes with ≥1.5 log2 fold change difference between good responders [TRS 0 (n=5)] 
and poor responders [TRS 2 (n=5)], by IPA analysis to identify predicted altered biological functions. Statistical analysis was performed by right-
tailed Fisher’s exact test using IPA analysis.
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Table 6.9: Canonical pathways significantly altered in rectal cancer patients with a poor 

response to treatment (TRS 2), when compared to those with TRS 0. 

Ingenuity Canonical Pathways 
-log(p-
value) 

Genes 

EIF2 Signalling 6.65 RPL30,RPL37,RPL7A,RPL9,RPS2,RPS2
1 

mTOR Signalling 2.67 DDIT4,RPS2,RPS21 

SPINK1 General Cancer Pathway 2.57 MT1E,MT1G 

Oxidative Phosphorylation 2.1 MT-CO2,NDUFA4 

Aldosterone Signalling in Epithelial 
Cells 

1.76 HSPA1A/HSPA1B,HSPE1 

Mitochondrial Dysfunction 1.73 MT-CO2,NDUFA4 

Regulation of eIF4 and p70S6K 
Signalling 

1.69 RPS2,RPS21 

Coronavirus Pathogenesis Pathway 1.6 RPS2,RPS21 

Glucocorticoid Receptor Signalling 1.52 CD163,HSPA1A/HSPA1B,NDUFA4 

Protein Ubiquitination Pathway 1.34 HSPA1A/HSPA1B,HSPE1 

  
Biostatistical analysis was performed on genes with ≥1.5 log2 fold change difference between 
good responders [TRS 0 (n=5)] and poor responders [TRS 2 (n=5)] by IPA analysis to identify 
projected altered biological functions between the two groups. Statistical analysis performed 
by right-tailed Fisher’s exact test using IPA analysis. 
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Fig. 6.7: Biological functions are significantly altered in rectal cancer patients with a pathological T stage of T3/4, when compared to those 
with a pathological T stage of T0. Biostatistical analysis was performed on significantly altered genes between patients with a pathological T 
stage of T0 (n=4) and those with a pathological T stage of T3/4 (n=8), by IPA analysis to identify predicted altered biological functions. Statistical 
analysis was performed by right-tailed Fisher’s exact test using IPA analysis



322 
 

Table 6.10: Top 15 canonical pathways significantly altered in rectal cancer patients with a 

pathological T stage T3/4, when compared to those with a pathological T stage of 0.  

Ingenuity Canonical Pathways -log(p-
value) 

Genes 

EIF2 Signaling 
13.5 

EIF1,EIF1AX,EIF4G3,FAU,RPL22L1,RPL
30,RPL36AL,RPL41,RPL7A,RPL9,RPS13
,RPS16,RPS2,RPS21 

mTOR Signaling 
7.28 

DDIT4,EIF4G3,FAU,RAC1,RHOA,RPS13
,RPS16,RPS2,RPS21 

Regulation of eIF4 and p70S6K 
Signaling 

6.64 
EIF1,EIF1AX,EIF4G3,FAU,RPS13,RPS16
,RPS2,RPS21 

Mitochondrial Dysfunction 
5.65 

ACO2,ATP5F1B,COX7A2L,COX7B,MT-
CO2,NDUFA4,UQCRC2 

Oxidative Phosphorylation 
5.63 

ATP5F1B,COX7A2L,COX7B,MT-
CO2,NDUFA4,UQCRC2 

Sumoylation Pathway 3.31 PCNA,RAC1,RAN,RHOA 

Coronavirus Pathogenesis Pathway 3.16 FAU,RPS13,RPS16,RPS2,RPS21 

Molecular Mechanisms of Cancer 
2.98 

ATM,BBC3,DVL1,LRP1,RAC1,RHOA,TA
B2 

Role of Osteoblasts, Osteoclasts and 
Chondrocytes in Rheumatoid Arthritis 

2.92 
CALM1 (includes 
others),CSF1R,DVL1,LRP1,TAB2 

PCP (Planar Cell Polarity) Pathway 2.87 DVL1,RAC1,RHOA 

Macropinocytosis Signaling 2.58 CSF1R,RAC1,RHOA 

TCA Cycle II (Eukaryotic) 2.55 ACO2,IDH3G 

Biostatistical analysis was performed on significantly altered genes between patients with a 
pathological T stage of T0 (n=4) and those with a pathological T stage of T3/4 (n=8) by IPA 
analysis to identify projected altered biological functions between the two groups. Statistical 
analysis performed by right-tailed Fisher’s exact test. 
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6.4.5. Pre-treatment rectal tumour and non-cancer rectal biopsies display elevated oxidative 

phosphorylation    

Having demonstrated that significant alterations to the circulating and tumour metabolome 

of rectal cancer patients is associated with therapy response, and that enhanced reliance on 

oxidative phosphorylation is associated with enhanced radioresistance in rectal cancer in vitro 

(Chapter 2), the metabolic phenotype of rectal cancer was assessed and compared to the 

metabolic phenotype of non-cancer rectal tissue.  

 The baseline metabolic phenotype of pre-treatment ex vivo rectal cancer and non-

cancer rectal tissue biopsies were assessed in real-time using the Seahorse XFe24 analyser, 

within an hour of the patient undergoing colonoscopy. 

 Rectal cancer patient characteristics are outlined in Table 6.11. Non-cancer rectal 

tissue biopsies were obtained from a total of 12 patients [Male (n=6), Female (n=6)] with a 

histological confirmation of normal rectal tissue. The median age of non-cancer patients was 

41.5 years, with a range of 26-81 years.  

 Real-time metabolic profiling of live pre-treatment rectal cancer and non-cancer rectal 

tissue demonstrated heterogenous rates of oxygen consumption rate (OCR), a marker of 

oxidative phosphorylation and extracellular acidification rate (ECAR), a measure of glycolysis, 

across patient samples, with consistently higher OCR rates than ECAR rates in both tumour 

and non-cancer biopsies (Fig. 6.8A-B). Non-cancer rectal biopsies demonstrated significantly 

higher OCR, when compared to ECAR (p = 0.0015) (Mean ± SEM; OCR 267.4 ± 42.16 vs 109 ± 

20.16) (Fig. 6.8C). Furthermore, in rectal cancer biopsies, OCR was significantly higher than 

ECAR (p = 0.001) (Mean ± SEM; OCR 166.3 ± 19.06 vs ECAR 84.57 ± 15.76) (Fig. 6.8C). In 

addition, significantly higher OCR was demonstrated in non-cancer rectal biopsies, when 

compared to rectal cancer biopsies (p = 0.0374) (Mean normalised OCR ± SEM; non-cancer 

267.4 ± 42.16 vs cancer 166.3 ± 19.06) (Fig. 6.8C). No significant differences were 

demonstrated in ECAR rates, when comparing non-cancer rectal biopsies to rectal cancer 

tissue.  

 These data demonstrate that non-cancer rectal tissue display elevated oxidative 

phosphorylation rates, when compared to rectal cancer tissue. However, real-time metabolic 

profiling also demonstrates that in both cancer and non-cancer tissue, there is an enhanced 

reliance on oxidative phosphorylation, when compared to glycolysis.  
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Table 6.11: Patient characteristics of rectal cancer patients used in live real-time metabolic 

profiling of pre-treatment tumour biopsies. 

  Cancers (n=11) 

Gender  Male (n) 5 

 Female (n) 6 

Age at diagnosis Median (range) (y) 69 (47-78) 

BMI at Diagnosis* Median 28.45 

Normal (18.5-24.9) (n) 3 

Overweight (25-29.9) (n) 3 

Obese (≥30) (n) 4 

Clinical T stage* 2 (n) 3 

3 (n) 6 

4 (n) 1 

Clinical N stage* 0 (n) 6 

2 (n) 3 

3 (n) 1 

Differentiation Stage Moderate-poor (n) 2 

Moderate (n) 5 

Well (n) 1 

Awaiting (n) 3 

Treatment received NeoCRT (n) 5 

Surgery only (n) 3 

CT only (n) 1 

Awaiting (n) 2 

TRS (of neoCRT patients) 0 (n) 2 

1 (n) 1 

2 (n) 2 

*BMI at diagnosis, clinical tumour stage, clinical nodal stage only available for n=9 patients.  
Abbreviations; BMI, body mass index; Clinical T stage, clinical tumour stage, clinical N stage, 
clinical nodal stage; TRS, tumour regression score; neoCRT, Neoadjuvant chemoradiation 
therapy; CT, chemotherapy 
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Fig. 6.8: Oxidative phosphorylation is significantly higher than glycolysis in pre-treatment 
rectal cancer biopsies and non-cancer rectal tissue. The metabolic rate of pre-treatment 
rectal cancer biopsies and non-cancer rectal tissue biopsies were assessed using the Seahorse 
Biosciences XFe24 analyser. A) Basal OCR and ECAR rates in non-cancer rectal tissue biopsies. 
B) Basal OCR and ECAR rates in pre-treatment rectal cancer tissue biopsies. C) OCR is 
significantly elevated in non-cancer rectal tissue and rectal cancer tissue, when compared to 
ECAR. Data is normalised to protein content and presented as mean ± SEM from non-cancer 
(n=12) and rectal cancer (n=11) patients. Statistical analysis was performed by Wilcoxon 
ranked testing or Mann Whitney U testing as appropriate. *p<0.05, **p<0.01.  
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6.4.6. Real-time metabolic rates of pre-treatment rectal cancer biopsies is not dependent on 

clinical parameters 

Having demonstrated that pre-treatment rectal cancer biopsies display heterogenous 

metabolic rates, and display elevated OCR, when compared to ECAR, the impact of clinical 

parameters on metabolic rates was assessed.  

 The clinical characteristics of this pre-treatment rectal cancer cohort are displayed in 

Table 6.11.  OCR and ECAR rates were not significantly altered depending on clinical T stage, 

clinical N stage, BMI or TRS (Fig. 6.9A-H).  

 These data suggest that the metabolic phenotype of rectal cancer biopsies is not 

dependent on any examined clinical or pathological characteristic.  

6.4.7. Pre-treatment rectal tumour tissue has a distinct metabolome from non-cancer rectal 

tissue 

Having demonstrated that the real-time metabolic phenotype of rectal tumour tissue is 

distinct from non-cancer rectal tissue (Section 6.4.5), the intracellular metabolome of non-

cancer rectal tissue and rectal cancer was profiled by LC-MS. Treatment naïve tissue biopsies 

were obtained from rectal adenocarcinoma patients (n=32) undergoing diagnostic 

colonoscopy. Clinical data from these patients are demonstrated in Table 6.4. In addition, 

normal non-cancer rectal tissue was obtained from 20 patients undergoing endoscopic 

assessment, who did not have rectal cancer. The median age for non-cancer patients was 

60.95 years, with n =12 males, and n =8 females. 

 In total, twenty-three metabolites were demonstrated to be significantly altered in 

rectal cancer tissue, when compared to non-cancer rectal tissue (Table 6.12). Of these 23 

metabolites, 9 were demonstrated to be significantly increased in rectal cancer tissue, when 

compared to non-cancer tissue. These increased metabolites were primarily made up of 

phosphatidylcholines (PCs). Five PC diacyl metabolites, PC aa C32:2 (p-adj = 0.0019), PC aa 

C24:0 (p-adj = 0.0041), PC aa C32:1 (p-adj = 0.0041), PC aa C30:2 (p-adj = 0.036) and PC C42:6 

(p-adj = 0.042) were significantly increased in rectal cancer tissue, when compared to non-

cancer rectal tissue. In addition, two PC acyl alkyl metabolites were also demonstrated to be 

significantly increased in rectal cancer tissue, when compared to non-cancer rectal tissue; PC 

ae C30:0 (p-adj = 0.023) and PC ae C44:5 (p-adj = 0.029). In addition, the 

lysophosphatidylcholine, LysoPC a C16:1 was also demonstrated to be significantly 

upregulated in rectal cancer tissue, when compared to non-cancer rectal tissue (p-adj = 0.036). 
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Putrescine, a polyamine, was also demonstrated to be significantly increased in rectal cancer 

tissue, when compared to non-cancer rectal tissue (p-adj = 0.026). 

 In contrast, a total of 14 metabolites were significantly downregulated in rectal cancer 

tissue, when compared to non-cancer rectal tissue (Table 6.12). The most significantly 

downregulated metabolite in rectal cancer tissue was serotonin (p-adj = 5.9 x 10-14). 

Sphingolipids, including sphingomyelin (SM) species were significantly decreased in cancer 

tissue, when compared to non-cancer tissue, including SM (OH) C22:1 (p-adj = = 5.18 x10-6), 

SM C18:0 (p-adj  = 5.18 x10-6), SM C26:0 (p-adj = 0.0037), SM (OH) C16:1 (p-adj = 0.0138), SM 

C24:0 (p-adj = 0.041), SM (OH) C24:1 (p-adj = 0.048) and SM C20:2 (p-adj = 0.048). The 

polyamine spermine was also demonstrated to be significantly decreased in rectal cancer 

tissue, when compared to non-cancer rectal tissue (p-adj = 0.036). In addition, histamine, a 

biogenic amine, was demonstrated to be significantly decreased in rectal tumour tissue (p-adj 

= 0.042). Two PC metabolites were demonstrated to be significantly decreased in rectal cancer 

tissue, when compared to non-cancer tissue; PC ae C34:3 (p-adj = 0.0019) and lysoPC C16:0 

(p-adj = 0.042). In addition, the acylcarnitine C3-DC (C4-OH) was also demonstrated to be 

significantly reduced in rectal cancer tissue (p-adj = 0.042).  

 These data demonstrate significant alterations to the metabolome of rectal 

adenocarcinoma tissue, when compared to non-cancer rectal tissue.  

6.4.8. Significantly altered metabolites in rectal cancer tumour tissue permit predictive 

clustering into cancer and non-cancer cohorts  

Given that the intracellular metabolome of rectal cancer is distinct from that of non-cancer 

rectal tissue, unsupervised hierarchical clustering analysis was performed on the significantly 

altered metabolites between rectal cancer and non-cancer rectal tissue to assess the role of 

altered metabolism in the development of rectal cancer. 

 Unsupervised hierarchical clustering analysis was utilised using R software, based on 

the 10 most significantly altered metabolites distinguishing non-cancer and cancer tissue, as 

these provided the most accurate clustering (Fig. 6.10). Of the 20 non-cancer patients 

assessed, n=7 were misclassified as cancer samples by unsupervised hierarchical clustering. 

This analysis led to a clustering accuracy of 86.5%, with more false-positives than false-

negative cancer predictions based on the dataset.  

 These data demonstrate that the metabolome of cancer and non-cancer rectal tissue 

may be useful in distinguishing cancer and non-cancer.  
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Fig. 6.9: OCR and ECAR of pre-treatment rectal tumour biopsies are not significantly 
associated with T stage, N stage, BMI or TRS. OCR and ECAR were measured in pre-treatment 
rectal cancer biopsies using the Seahorse XFe24 analyser. OCR in biopsies was sub-divided 
according to A) Clinical T stage (n=10), C) Clinical N stage (n=10), E) BMI (n=10) and G) TRS (n 
= 6). ECAR in rectal cancer biopsies was sub-divided according to B) Clinical T stage (n=10), D) 
Clinical N stage (n = 10), F) BMI (n=10) and H) TRS (n=6). Data is presented as mean ± SEM. 
Statistical analysis was performed by un-paired Mann-Whitney U or Kruskal-Wallis testing 
with post-hoc multiple comparisons, as appropriate. 
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Table 6.12: Twenty-three metabolites are significantly altered between rectal cancer tissue 

and non-cancer tissue biopsies. 

Metabolite Increased or decreased in cancer p-value (FDR corrected) 

Serotonin Decreased 5.9071E-14 

SM (OH) C22:1 Decreased 5.1883E-6 

SM C18:0 Decreased 5.1883E-6 

PC aa C32:2 Increased 0.0018849 

PC ae C34:3 Decreased 0.0018849 

SM C26:0 Decreased 0.0037346 

PC aa C24:0 Increased 0.0041348 

PC aa C32:1 Increased 0.0041348 

SM (OH) C16:1 Decreased 0.013915 

PC ae C30:0 Increased 0.023149 

Putrescine Increased 0.025906 

PC ae C44:5 Increased 0.028952 

lysoPC a C17:0 Decreased 0.03602 

Spermine Decreased 0.03602 

lysoPC a C16:1 Increased 0.03602 

PC aa C30:2 Increased 0.03602 

SM C24:0 Decreased 0.041349 

Histamine Decreased 0.041954 

PC aa C42:6 Increased 0.042075 

C3-DC (C4-OH) Decreased 0.042075 

lysoPC a C16:0 Decreased 0.042075 

SM (OH) C24:1 Decreased 0.048006 

SM C20:2 Decreased 0.048365 

Statistical analysis performed by unpaired t-testing, on log transformed data. p-adjusted 
(FDR)<0.05. Cancer biopsies (n=32) non-cancer rectal tissue biopsies (n=20). Abbreviations; 
SM, sphingomyelin; PC, phosphatidylcholine. 
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Fig. 6.10: Hierarchical clustering analysis of metabolites significantly altered between pre-treatment rectal tumour biopsies and non-cancer 
rectal tissue biopsies. Metabolites from rectal tumour biopsies (n=32), and non-cancer rectal tissue biopsies (n=20) were assessed by LC-MS. 
Hierarchical clustering analysis was performed using R software to demonstrate the accuracy of clustering into non-cancer and cancer, based 
on the 10 most significantly altered metabolites between rectal cancer and non-cancer rectal tissue biopsies. 
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6.4.9. The secreted metabolome from rectal cancer tissue is significantly altered, when 

compared to non-cancer rectal tissue 

Having demonstrated that the intracellular metabolome of rectal cancer tissue is significantly 

altered, when compared to non-cancer rectal tissue (Section 6.4.7), the levels of metabolites 

secreted from rectal tumour and non-cancer tissue was assessed using TCM and NCM by LC-

MS. 

 In total, the secreted levels of 4 metabolites were demonstrated to be significantly 

altered in rectal TCM, when compared to NCM (Fig. 6.11) (Table 6.13). Two biogenic amines, 

dopamine (DOPA) and methionine sulfoxide (Met-SO) were demonstrated to be significantly 

increased in the conditioned media of rectal cancer tissue, when compared to that of non-

cancer tissue (p-adj = 0.0058, = 0.009 respectively) (Fig. 6.11A-B) (Table 6.13). In addition, the 

secretion of two lysoPC metabolites were demonstrated to be significantly reduced from 

rectal cancer tissue, when compared to non-cancer tissue. Lyso-PC a C17:0 levels were 

significantly lower in TCM, when compared to NCM (p-adj = 0.019) (Fig. 6.11C). Lyso PC a C18:0 

levels were also demonstrated to be significantly reduced in TCM, when compared to NCM 

(p-adj = 0.048) (Fig. 6.11D).  

 These data demonstrate that there are significant alterations in metabolites secreted 

from rectal cancer tissue, when compared to non-cancer rectal tissue.  

 

6.4.10. Significantly altered metabolites in rectal cancer TCM permit predictive clustering 

into cancer and non-cancer cohorts 

Given that the secreted metabolome of rectal cancer is distinct from that of non-cancer rectal 

tissue, unsupervised hierarchical clustering analysis was performed on the four metabolites 

altered between TCM and NCM to further assess altered metabolism in rectal cancer 

pathogenesis.  

Two patients of the 15 non-cancer patients were misclassified into the cancer cohort 

based on the secreted metabolome (Fig. 6.12). Of the 24 cancer patients, n=7 patients were 

misclassified into the non-cancer cohort based on the secreted metabolome (Fig. 6.12). In 

total, a clustering accuracy of 76.9% was demonstrated. 

 These data demonstrate moderate clustering accuracy based on differentially secreted 

metabolites between TCM and NCM.  
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Table 6.13: Four metabolites are significantly altered between rectal TCM and NCM 

Metabolite Name Increased or decreased in cancer p-value (FDR corrected) 

DOPA Increased 0.005781 

Met-SO Increased 0.0089648 

lysoPC a C17:0 Decreased 0.019384 

lysoPC a C18:0 Decreased 0.048125 

Statistical analysis performed by unpaired t-testing, on log-transformed data, normalised by 
sum. p-adjusted (FDR)<0.05. Rectal cancer TCM (n=24), non-cancer NCM (n=15). 
Abbreviations; DOPA, dopamine; Met-SO, methionine sulfoxide; PC, phosphatidylcholine. 
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Fig. 6.11: Four metabolites are significantly altered in rectal cancer TCM, when compared to 
non-cancer NCM. The levels of secreted metabolites in TCM and NCM from rectal cancer and 
non-cancer rectal tissue, respectively, was assessed by LC-MS. Concentration of A) dopamine 
(DOPA), B) methionine sulfoxide (Met-SO), C) Lyso-PC a C17:0 and D) Lyso-PC C18:0 in rectal 
NCM and TCM. Data is presented as mean ± SEM for TCM samples (n=24), or NCM samples 
(n=15). Statistical analysis performed by unpaired t-testing, on log-transformed data, 
normalised by sum. p-adjusted (FDR)<0.05. *p-adj<0.05, **p-adj<0.01.  
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Fig.6.12: Hierarchical clustering analysis of secreted metabolites significantly altered between rectal cancer and non-cancer rectal tissue. 
Secreted metabolites from non-cancer rectal tissue, and rectal cancer tissue biopsies were measured in TCM (n=15) and NCM (n=24), 
respectively by LC-MS. Hierarchical clustering analysis was performed using R software to demonstrate the accuracy of clustering into non-
cancer and cancer, based on significantly altered metabolites in the secreted metabolome from rectal cancer and non-cancer rectal tissue 
biopsies. The y-axis denotes metabolites assessed. The x-axis denotes the patient sample, with N representing non-cancer patients, and C 
representing rectal cancer patients.
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6.4.11. The protein secretome is significantly altered in pre-treatment rectal tumour biopsies, 

when compared to non-cancer rectal tissue 

Having demonstrated distinct alterations to the metabolic phenotype and metabolome of 

rectal cancer tissue (Sections 6.4.5, 6.4.7 and 6.4.9), the protein secretome of pre-treatment 

rectal cancer biopsies and non-cancer rectal tissue biopsies was assessed. TCM and NCM 

samples were profiled for inflammatory, angiogenic, chemokine and cytokine secretions using 

the MSD 54 multiplex ELISA systems.  

 The characteristics of the cancer patient cohort used in this study are demonstrated in 

Table 6.14.  In the non-cancer cohort (n=12; Male n=6 and Female n=6), the median age was 

41.5 years, with a range from 26–81 years.  

In total, the levels of 10 proteins were demonstrated to be significantly altered in TCM, 

when compared to NCM (Fig. 6.13 and 6.14). Of these 10, 3 proteins were related to 

angiogenesis. Flt-1, also referred to as vascular endothelial growth factor receptor 1 (VEGFR-

1), was demonstrated to be significantly increased in TCM, when compared to NCM (p = 

0.0036) (Mean concentration (pg/mL) per µg of protein ± SEM; NCM 434.2 ± 47.09 vs TCM 

1263 ± 233) (Fig. 6.13A). Placental growth factor (PIGF) was also demonstrated to be 

significantly increased in TCM, when compared to NCM (p = 0.012) (NCM 16.1 ± 3.4 vs TCM 

47.9 ± 10.99) (Fig. 6.13B). VEGF-C was significantly increased in TCM, when compared to NCM 

(p = 0.016) (NCM 61.86 ± 20.85 vs TCM 210.1 ± 51.66) (Fig. 6.13C). 

 The secreted levels of two TH17-related proteins, interleukin (IL)-23, and macrophage 

inflammatory protein -3 alpha (MIP-3α) were demonstrated to be significantly altered in TCM. 

MIP-3α was significantly increased in TCM, when compared to NCM (p = 0.0009) (NCM 12.4 ± 

1.76 vs TCM 62.25 ± 18.28) (Fig. 6.13D). In contrast, IL-23 levels were significantly decreased 

in TCM, when compared to NCM (p = 0.004) (NCM 11.45 ± 2.17 vs TCM 4.52 ± 1.47) (Fig. 

6.13E). A trend towards lower levels of IL-21, another TH-17 related cytokine, in TCM, when 

compared to NCM was demonstrated, but did not reach statistical significance (p = 0.057) 

(NCM 5.28 ± 1.8 vs TCM 1.27 ± 0.43) (Fig. 6.13F).  

 The levels of three other cytokines were significantly altered in the secretome of rectal 

cancer, when compared to non-cancer rectal tissue. Granculocyte-macrophage colony 

stimulating factor (GM-CSF) levels were demonstrated to be significantly increased in TCM, 

when compared to NCM (p = 0.004) (NCM 40.82 ± 9.3 vs TCM 753.8 ± 314.1) (Fig. 6.14A). IL-5 

levels were significantly lower in TCM, when compared to NCM (p = 0.033) (NCM 28.4 ± 3.89 



336 
 

vs TCM 19.28 ± 3.78) (Fig. 6.14B). Levels of a pro-inflammatory cytokine, IL-8, were also 

demonstrated to be significantly lower in TCM, when compared to NCM (p = 0.002) (NCM 

45922 ± 17731 vs TCM 7226 ± 6433) (Fig. 6.14C).  

 C-reactive protein (CRP), a marker of vascular injury, was demonstrated to be 

significantly increased in TCM, when compared to NCM (p = 0.004) (NCM 18,774 ± 4,088 vs 

TCM 168,946 ± 109,816) (Fig. 6.14D). In addition, interferon γ-induced protein (IP-10), also 

known as CXCL10, was demonstrated to be significantly increased in cancer TCM, when 

compared to NCM (p = 0.0008) (NCM 3.53 ± 1.91 vs TCM 151.7 ± 74.6) (Fig. 6.14E). A trend 

towards increased secretion of another chemokine, MIP1α, from cancer biopsies, when 

compared to non-cancer rectal biopsies was demonstrated, however this did not reach 

statistical significance (p = 0.056) (Fig. 6.14F). 

 Together these data demonstrate significant alterations to the protein secretome of 

rectal cancer, when compared to non-cancer rectal tissue.  

 

6.4.12. The secretome of rectal cancer is significantly associated with subsequent 

pathological response to neoadjuvant treatment and other clinicopathological 

parameters 

Having demonstrated significant alterations to the protein secretome in rectal cancer, these 

factors were correlated to key clinical and pathological characteristics. 

 sVCAM-1, was demonstrated to be significantly positively correlated with TRS in rectal 

cancer patients (p = 0.014, R-value = 0.95). In addition, sVCAM-1 was also demonstrated to 

have a significant positive correlation with pathological T stage (p = 0.0058, R-value 0.83). 

Secreted levels of IL-16 were also demonstrated to be significantly associated with 

pathological T stage (p = 0.038, R-value = 0.69) (Table 6.15).  

 These data demonstrate that alterations in the secretome of rectal cancer are 

significantly associated with tumour response to therapy and pathological T stage.  
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Table 6.14: Patient characteristics of rectal cancer patients used in multiplex ELISA profiling 

of the secretome of rectal tumour biopsies. 

  Cancers (n=12) 

Gender  Male (n) 6 

Female (n) 6 

Age at diagnosis Median (y)(range) 69 (47-78) 

BMI at diagnosis* Median 27.7 

Normal (18.5-24.9) (n) 3 

Overweight (25-29.9) (n) 4 

Obese (≥30) (n) 4 

Clinical T stage* 1/2 (n) 1 

2 (n)  3 

3 (n) 6 

4 (n) 1 

Clinical N stage* 0 (n) 7 

2 (n) 3 

3 (n) 1 

Differentiation stage Moderate-poor(n) 2 

Moderate (n) 6 

Well (n) 1 

Awaiting (n) 3 

Treatment received NeoCRT (n) 5 

Surgery only (n) 4 

CT only (n) 1 

Awaiting (n) 2 

TRS (of neoCRT patients) 0 (n) 2 

1 (n) 1 

2 (n) 2 

*BMI at diagnosis, clinical tumour stage, clinical nodal stage only available for n = 11 patients. 
Abbreviations; y, years; BMI, body mass index; clinical T stage, clinical tumour stage; clinical N 
stage, clinical nodal stage; NeoCRT, neoadjuvant chemoradiation therapy; CT, chemotherapy; 
TRS, tumour regression score. 
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Fig. 6.13: The protein secretome of rectal cancer is significantly altered, when compared to 
non-cancer rectal tissue. The protein secretome of non-cancer rectal tissue and rectal cancer 
tissue was assessed by multiplex ELISA, assessing levels of 54 proteins. Secreted levels of 
angiogenic proteins A) Flt-1, B) PIGF and C) VEGF-C from non-cancer rectal tissue and pre-
treatment rectal cancer biopsies. Secreted levels of TH17 pathway proteins D) MIP-1α, E) IL-
23 and F) IL-21 from non-cancer rectal tissue and pre-treatment rectal cancer biopsies. Data 
is normalised to protein content and presented ± SEM from non-cancer (n=12) and rectal 
cancer (n=12) patients. Statistical analysis was performed by Mann-Whitney U testing. 
*p<0.05, **p<0.01, ***p<0.001. 
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Fig. 6.14: The protein secretome of rectal cancer is significantly altered, when compared to 
non-cancer rectal tissue. The protein secretome of non-cancer rectal tissue and rectal cancer 
tissue was assessed by multiplex ELISA, assessing levels of 54 proteins. Secreted levels of 
cytokines A) GM-CSF and B) IL-5 and C) IL-8 from non-cancer rectal tissue and pre-treatment 
rectal cancer biopsies. Secreted levels of vascular injury protein D) CRP and chemokines E) IP-
10 and F) MIP-1α from non-cancer rectal tissue and pre-treatment rectal cancer biopsies. Data 
is normalised to protein content and presented ± SEM from non-cancer (n=12) and rectal 
cancer (n=12) patients. Statistical analysis was performed by Mann-Whitney U testing. 
*p<0.05, **p<0.01, ***p<0.001. 
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Table 6.15: Correlation analysis of rectal cancer secretome with patient characteristics 
 

IL-16 sVCAM-1 

 p-value R-value p-value R-value 

BMI  0.433441 -0.26364 0.957685 -0.01818 

TRS 0.111367 0.790569 0.013847 0.948683 

Clinical T Stage 0.377373 -0.29567 0.605965 -0.1754 

Clinical N stage 0.135398 -0.4797 0.390751 -0.28782 

Pathological T stage 0.037741 0.694879 0.00579 0.82851 

Pathological N stage 0.725369 -0.13693 0.475797 0.273861 

Abbreviations; BMI, body mass index; TRS, tumour regression score; Clinical/pathological T 
stage, Clinical/pathological tumour stage; clinical/pathological N stage, clinical pathological 
nodal stage. Values in red denote significantly correlated factors.  
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6.4.13. The transcriptome of rectal cancer is significantly altered, when compared to non-

cancer rectal tissue 

Having demonstrated alterations to the secretome and metabolome of rectal tumour tissue, 

the transcriptome of rectal tumour tissue (n=36) and non-cancer rectal tissue (n=31) was 

assessed using a Lexogen QuantSeq 3’ mRNA FWD sequencing kit. Differential expression 

analysis was performed using BlueBee™ software and the DESeq2 R script extension.  

 The patient characteristics of the cancer patient cohort used in this study are 

demonstrated in Table 6.6. The non-cancer cohort was composed of 51.6% (n=16) males, and 

48.4% (n=15) females. The median age of patients in the non-cancer cohort was 59 years, with 

a range from 28-81 years.  

In total, 33,383 genes were expressed across cancer and non-cancer samples. 

Differential expression analysis demonstrated that 470 genes were differentially expressed 

between non-cancer and cancer samples. In total, 207 genes were significantly 

downregulated, and 263 genes were upregulated in rectal cancer tissue, when compared to 

non-cancer rectal tissue (p-adj < 0.05) (Fig. 6.15A). Of the significantly altered genes, the top 

25 downregulated and upregulated genes in cancer, when compared to non-cancer tissue are 

demonstrated in Fig. 6.15B-C. ITLN1 (Intelectin1), also known as Omentin, which is involved 

in carbohydrate binding in the intestine, was the most downregulated gene (as determined 

by fold change, Log2 Fold Change = -2.64) in rectal cancer tissue, when compared to non-

cancer rectal tissue (Fig. 6.15B). MMP3 (matrix metallopeptidase 3), which is involved in tissue 

remodelling, was the most upregulated gene (as determined by fold change Log2 Fold Change 

= 2.35) in rectal cancer, when compared to non-cancer tissue (Fig. 6.15C).  

 The top 30 genes most significantly altered in rectal cancer tissue, when compared to 

non-cancer rectal tissue are displayed in Table 6.16. ITLN1 was again the most significantly 

downregulated gene (as determined by p-adj, p-adj = 1.33 x10-9) in rectal cancer, when 

compared to non-cancer rectal tissue. COL1A1 (collagen type I alpha 1 chain), which encodes 

for type I collagens, was demonstrated to be the most significantly upregulated gene in rectal 

cancer, when compared to non-cancer rectal tissue (as determined by p-adj, p-adj = 1.7 x 10-

8).  

 These data demonstrate that the transcriptome of rectal cancer tissue is significantly 

altered from that of non-cancer rectal tissue.  
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6.4.14. Rectal cancer has significantly altered biological functions, when compared to non-

cancer rectal tissue 

Having demonstrated significant alterations in the transcriptome of rectal cancer, the 

differentially expressed genes were analysed by IPA to predict and identify altered biological 

functional pathways in rectal cancer.  

 The top 15 significantly altered biological and cellular functions identified in rectal 

cancer tissue, when compared to non-cancer rectal tissue are demonstrated in Fig. 6.16. The 

p-values represent the statistical probability that selecting genes associated with each 

function is due to chance alone.  As each biological function is comprised of multiple functional 

pathways, significance is represented as p-value range.  

The most significantly altered biological function in rectal cancer, when compared to 

non-cancer rectal tissue was ‘cellular movement’ (p-adj range 1.08x10-32 - 6.33x10-5). Other 

functions, and hallmarks of cancer predicted to be altered in rectal cancer tissue included ‘cell 

death and survival’ (p-adj range 1.34x10-09 - 5.73x10-05) and ‘cellular growth and proliferation 

(p-adj range 1.97x10-15 - 1.65x10-05). Interestingly, metabolic pathways were also predicted to 

be significantly altered in rectal cancer, when compared to non-cancer tissue, including 

carbohydrate metabolism (p-adj range 2.52x10-06 - 1.13x10-05) and lipid metabolism (p-adj 

range 5.89x10-05 - 5.89x10-05) (Fig. 6.16).  

 These data demonstrate significant alterations in the molecular and cellular functions 

in rectal cancer, when compared to non-cancer rectal tissue, including functions related to 

energy metabolism.  
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Fig. 6.15: The basal transcriptome is significantly altered in rectal cancer, when compared 
to non-cancer rectal tissue. Transcriptomic profiling was performed on RNA isolated from 
non-cancer rectal tissue and pre-treatment rectal cancer biopsies. Differential expression 
analysis was performed using BlueBee™ Software, using the DESeq2 R extension script. A) 
Volcano plot demonstrating 470 genes significantly altered in rectal cancer tissue, when 
compared to non-cancer rectal tissue. The y-axis corresponds to the -log10(p-adj), and the x-
axis demonstrates the Log2 (Fold Change). Dots in blue and red represent the significantly 
downregulated/upregulated genes in rectal cancer, respectively, when compared to non-
cancer rectal tissue. Dots in black represent the genes that did not reach statistical significance 
(p-adj > 0.05). B) The top 25 downregulated genes (by fold change) in rectal cancer tissue, 
when compared to non-cancer rectal tissue biopsies. C) The top 25 upregulated genes (by fold 
change) in rectal cancer tissue, when compared to non-cancer rectal tissue biopsies. Data is 
presented from non-cancer (n=31) and rectal cancer (n=36) patients. Statistical analysis was 
performed using the Wald test, with corrections for multiple comparisons performed by the 
Benjamini-Hochberg correction (FDR). 
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Table 6.16: Top 30 most significantly altered genes in rectal tumour biopsies, when 

compared to non-cancer rectal tissue 

Gene 
Upregulated or 

downregulated in rectal 
cancer 

Log2 Fold Change p-adj 

ITLN1 Downregulated -2.63911 1.33E-09 

CLCA1 Downregulated -2.3561 1.70E-08 

COL1A1 Upregulated 2.089303 1.70E-08 

WFDC2 Downregulated -1.88241 1.13E-07 

PCK1 Downregulated -1.65268 2.42E-07 

MAOA Downregulated -1.35166 2.60E-07 

PDCD4 Downregulated -1.11212 2.88E-07 

COL5A2 Upregulated 1.694068 3.25E-07 

COL12A1 Upregulated 1.744134 3.25E-07 

COL1A2 Upregulated 1.787971 3.25E-07 

ST6GALNAC1 Downregulated -1.37758 3.33E-07 

COL6A3 Upregulated 1.772576 3.33E-07 

S100A9 Upregulated 2.294154 3.33E-07 

B3GNT7 Downregulated -2.34964 3.87E-07 

PYY Downregulated -2.24218 3.87E-07 

CA2 Downregulated -1.92174 3.87E-07 

SLC26A2 Downregulated -1.52927 3.87E-07 

ADH1C Downregulated -2.05658 4.26E-07 

COL3A1 Upregulated 1.601953 4.26E-07 

RAB31 Upregulated 1.542433 6.27E-07 

PADI2 Downregulated -1.79996 7.21E-07 

VCAN Upregulated 1.357066 8.20E-07 

COL4A1 Upregulated 1.610918 8.20E-07 

CHP2 Downregulated -1.8692 9.99E-07 

COL4A2 Upregulated 1.583106 1.07E-06 

SPARC Upregulated 1.663728 1.07E-06 

IL1B Upregulated 2.159954 1.25E-06 

ITM2C Downregulated -1.81272 1.25E-06 

COL18A1 Upregulated 1.525965 1.69E-06 

Log2 Fold Change indicated the differential expression of each gene in pre-treatment rectal 
tumour biopsies, when compared to non-cancer rectal tissue, with negative values indicating 
genes downregulated in cancer, and positive values indicating genes upregulated in cancer. 
The p-adj values indicate the statistical significance of the differential expression of each gene 
between rectal cancer and non-cancer rectal tissue. Statistical analysis performed using the 
Wald test, with corrections for multiple comparisons performed by the Benjamini-Hochberg 
correction (FDR). 
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Fig. 6.16: Biological functions are significantly altered in rectal cancer, when compared to non-cancer rectal tissue. Biostatistical analysis was 
performed on genes significantly altered between non-cancer rectal tissue and rectal cancer tissue by IPA analysis to identify predicted altered 
biological functions. Statistical analysis was performed by right-tailed Fisher’s exact test using IPA analysis. 
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6.4.15. Canonical pathways are significantly altered in rectal cancer, when compared to non-

cancer rectal tissue 

As biological functions were demonstrated to be significantly altered in rectal cancer, when 

compared to non-cancer rectal tissue, the specific pathways involved in these processes were 

assessed. Transcriptomic data was analysed using IPA canonical pathway analysis, which 

predicts activation or inhibition of pathways in a dataset, based on the dataset itself, and the 

Ingenuity Knowledge Base.  

 The top 40 most significantly altered canonical pathways in rectal cancer tissue, when 

compared to non-cancer rectal tissue are demonstrated in Table 6.17. The p-value represents 

the significance in the overlap of the dataset and the ingenuity knowledge base, which 

indicates the confidence in the involvement of each pathway. The Z-score refers to software 

prediction of the activation or inhibition of each affected canonical pathway, with a Z-score ≥ 

2, or ≤ -2 indicating significant activation or inhibition of each pathway, respectively.  

 The canonical pathway most significantly predicted to be altered in rectal cancer, when 

compared to non-cancer tissue, was demonstrated to be ‘hepatic fibrosis/hepatic stellate cell 

activation’ indicating that rectal cancer may share signalling patterns with this canonical 

pathway. The ‘GP6 signalling pathway’ was predicted to be significantly activated in rectal 

cancer (Z-score = 4.796). Other pathways significantly altered in rectal cancer biopsies 

included the ‘tumour microenvironment’ canonical pathway, which was predicted to be 

significantly activated in rectal cancer, when compared to non-cancer tissue (-log10(p-value) 

= 7.87, Z-score = 4.123). ‘Molecular mechanisms of cancer’ was also demonstrated to be 

significantly altered in rectal cancer, when compared to non-cancer tissue (-log10(p-value) = 

1.78). ‘Wound healing signalling pathway’ was also predicted to be significantly upregulated 

in rectal cancer, when compared to non-cancer (-log10(p-value) = 12.4, Z-score = 4.158) (Table 

6.17).  

 Several  pathways associated with metastasis and extracellular matrix remodelling 

were predicted to be altered in  rectal cancer biopsies, when compared to non-cancer rectal 

tissue, including activation of ‘colorectal cancer metastasis signalling pathway’ (-log10(p-

value) = 2.68, Z-score 2.53), inhibition of ‘inhibition of matrix metalloproteases’ (log10(p-

value) = 8.22, Z-score = -1) and activation of ‘integrin signalling’ (log10(p-value) = 1.83, Z-score 

1.4) (Table 6.17).  



347 
 

 These data demonstrate alterations to multiple canonical signalling pathways in rectal 

cancer tissue, when compared to non-cancer tissue.  

 

6.4.16. Significantly altered genes in rectal cancer tissue correlate with pathological 

response to treatment, and clinical and pathological T and N stage 

Having demonstrated significant alterations in the transcriptome of rectal cancer, when 

compared to non-cancer rectal tissue, the correlation between significantly altered genes and 

clinicopathological factors were examined by spearman correlation in R software.  

 Of the 263 genes significantly upregulated in rectal cancer (Section 6.4.13), when 

compared to non-cancer rectal tissue, 17 genes were significantly positively correlated with 

TRS (Table 6.18). The R values of these correlations ranged from 0.49 to 0.66, indicating 

moderate correlation.   

 In addition, significantly upregulated genes in rectal cancer were demonstrated to 

significantly correlate with other clinicopathological factors (Table 6.19). One gene, PDE4B 

significantly positively correlated with clinical T stage. Another gene, CEMIP displayed a 

significant negative correlation with clinical N stage. NCL, was demonstrated to have a 

significant positive correlation with pathological T stage. Eleven genes upregulated in rectal 

cancer were demonstrated to significantly correlate with pathological N stage (Table 6.19).  

 In addition, of the 207 genes demonstrated to be significantly downregulated in rectal 

cancer (Section 6.4.13), when compared to non-cancer rectal tissue, five were significantly 

correlated with TRS (ANTXR1, CD9, INSL5, MT-TT and TST) (Table 6.20). Four genes were 

demonstrated to be significantly positively correlated with clinical T stage (CHGA, KIAA1324, 

TGFBI, and TPH1) (Table 6.20). In addition, two genes displayed a significant positive 

correlation with clinical N stage (SLC28A2, and TPH1). One gene, SEMA4G, was demonstrated 

to have a significant negative correlation with pathological N stage (Table 6.20).  

 These data demonstrate that genes, which are significantly altered in rectal cancer also 

display significant correlations to patient characteristics, including patient pathological 

response to treatment. 
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Table 6.17: Top 40 canonical pathways predicted to be significantly altered between non-
cancer rectal tissue and rectal tissue biopsies 

Ingenuity Canonical Pathways -log(p-value) z-score 

Hepatic Fibrosis / Hepatic Stellate Cell Activation 18.7 N/A 

GP6 Signalling Pathway 14.5 4.796 

Pulmonary Fibrosis Idiopathic Signalling Pathway 12.7 5.745 

Wound Healing Signalling Pathway 12.4 4.158 

Agranulocyte Adhesion and Diapedesis 11.8 N/A 

Osteoarthritis Pathway 10.3 1.886 

Granulocyte Adhesion and Diapedesis 9.63 N/A 

Inhibition of Matrix Metalloproteases 8.22 -1 

Tumour Microenvironment Pathway 7.87 4.123 

Role of IL-17A in Psoriasis 6.57 2.449 

Hepatic Fibrosis Signalling Pathway 6.32 3.962 

Atherosclerosis Signalling 6.17 N/A 

Semaphorin Neuronal Repulsive Signalling Pathway 6.17 0.535 

Leukocyte Extravasation Signalling 6.04 2.84 

Axonal Guidance Signalling 5.4 N/A 

HOTAIR Regulatory Pathway 4.97 3.464 

GPCR-Mediated Integration of Enteroendocrine Signalling 
Exemplified by an L Cell 

4.49 -1.134 

GPCR-Mediated Nutrient Sensing in Enteroendocrine Cells 4.29 -1 

Apelin Liver Signalling Pathway 3.66 2.236 

Role of IL-17A in Arthritis 3.64 N/A 

Role of Osteoblasts, Osteoclasts and Chondrocytes in 
Rheumatoid Arthritis 

3.47 N/A 

Adrenomedullin signalling pathway 3.46 1.155 

Endocannabinoid Cancer Inhibition Pathway 3.44 -2.121 

Role of IL-17F in Allergic Inflammatory Airway Diseases 3.33 2 

IL-17 Signalling 3.23 3.464 

P2Y Purigenic Receptor Signalling Pathway 3.19 0 

Cardiac Hypertrophy Signalling (Enhanced) 3.19 1.414 

Hepatic Cholestasis 3.11 N/A 

LXR/RXR Activation 2.82 -1.633 

Endocannabinoid Neuronal Synapse Pathway 2.81 1.414 

Role of Macrophages, Fibroblasts and Endothelial Cells in 
Rheumatoid Arthritis 

2.78 N/A 

Sertoli Cell-Sertoli Cell Junction Signalling 2.78 N/A 

BEX2 Signalling Pathway 2.74 1.633 

Intrinsic Prothrombin Activation Pathway 2.72 1.342 

PPAR Signalling 2.7 -1.89 

Colorectal Cancer Metastasis Signalling 2.68 2.53 

SPINK1 General Cancer Pathway 2.68 2.449 

Signalling by Rho Family GTPases 2.67 3 
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Table 6.18: Significantly upregulated genes in rectal cancer are positively correlated with 
patient pathological response to treatment  

  TRS 

Gene p-value R-value 

ACTA2 0.012 0.578 

ADAMDEC1 0.005 0.636 

COL18A1 0.038 0.493 

COLGALT1 0.003 0.656 

DDX52 0.016 0.558 

ITGA2 0.006 0.623 

METTL7A 0.025 0.525 

NCL 0.013 0.571 

NCOR2 0.012 0.578 

PCDH17 0.021 0.538 

PMEPA1 0.021 0.538 

POMP 0.002 0.669 

PTPN12 0.015 0.565 

SCD 0.021 0.538 

TFF3 0.025 0.525 

TLN1 0.041 0.486 

ZNF91 0.023 0.532 

Abbreviations: TRS, tumour regression score. 

Table 6.19: Significantly upregulated genes in rectal cancer are significantly correlated with 
patient characteristics 

  
  

Clinical T stage Clinical N stage 
Pathological T 

stage 
Pathological N 

stage 

p-value R-value p-value R-value p-value R-value p-value R-value 

ADAM12             0.019 -0.456 

CEMIP     0.046 -0.339     0.024 -0.441 

DPYSL3             0.024 -0.441 

EMILIN1             0.044 -0.398 

MOGAT2             0.044 -0.398 

NCL         0.034 0.402     

NNMT             0.044 -0.398 

NTM             0.033 -0.420 

PALD1             0.044 -0.398 

PDE4B 0.037 0.349             

PRRX1             0.019 -0.455 

RBMS1             0.036 -0.412 

ST6GALNAC
6 

            0.044 -0.398 

Abbreviations: T stage, tumour stage; N stage, nodal stage.  
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Table 6.20: Significantly downregulated genes in rectal cancer are significantly correlated 
with patient characteristics, including pathological response to treatment  

 
TRS 

Clinical T 
stage 

Clinical N 
stage 

Pathological N 
stage 

p-value R-value p-value R-value p-value R-value p-value R-value 

ANTXR1 0.037 0.494       

CD9 0.037 0.494       

CHGA   0.038 0.347     

INSL5 0.049 0.471       

KIAA1324   0.034 0.354     

MT-TT 0.004 0.643       

SEMA4G       0.036 -0.413 

SLC28A2     0.048 0.336   

TGFBI   0.041 0.342     

TPH1   0.032 0.358 0.009 0.438   

TST 0.035 0.499       

Abbreviations: TRS, tumour regression score; T stage, tumour stage; N stage, nodal stage
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6.4.17. Significantly altered genes in rectal cancer tissue permit modest predictive clustering 

into cancer and non-cancer cohorts 

Given that the transcriptome of rectal cancer is altered, when compared to non-cancer rectal 

tissue (Section 6.4.13), unsupervised hierarchical clustering analysis was performed on the 

ten most significantly altered genes between rectal cancer tissue and non-cancer rectal tissue 

to assess their potential in distinguishing cancer from normal tissue.  

Nine non-cancer patients were misclassified into the cancer cohort based on the 

secreted metabolome (Fig. 6.17). Eleven rectal cancer patients were misclassified into the 

non-cancer cohort based on the secreted metabolome (Fig. 6.17). In total, a clustering 

accuracy of 66% was demonstrated. 

 These data demonstrate very modest clustering accuracy based on differentially 

expressed genes in rectal cancer and non-cancer rectal tissue.  

6.4.18. Combination of metabolomic and transcriptomic data permits enhanced predictive 

clustering into cancer and non-cancer cohorts 

Having demonstrated that the tissue metabolome permits accurate predictive clustering into 

cancer and rectal cancer cohorts (section 6.4.8), the impact of combining the top ten 

significantly altered metabolites and genes in rectal tumour biopsies on the accuracy of 

predictive clustering was assessed.  

 Integration of the top 10 genes and metabolites differentially expressed between 

rectal cancer and non-cancer rectal tissue resulted in seven non-cancer patients being 

misclassified into the cancer cohort, and no cancer patients being misclassified into the non-

cancer cohort. This led to a clustering accuracy of 85.1% (Fig. 6.18). 

 These data demonstrate that while the addition of metabolomic data to transcriptomic 

data results in enhanced clustering accuracy, it is not superior to the clustering provided by 

metabolomic data alone, highlighting the potential utility of metabolomic data as biomarkers. 
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Fig. 6.17: Hierarchical clustering analysis of genes significantly altered between pre-treatment rectal tumour biopsies and non-cancer rectal 
tissue biopsies. Significantly altered genes between rectal tumour biopsies (n = 36), and non-cancer rectal tissue biopsies (n = 31) were assessed 
by transcriptomic profiling. Hierarchical clustering analysis was performed using R software to demonstrate the accuracy of clustering into non-
cancer and cancer, based on the 10 most significantly altered genes between rectal cancer and non-cancer rectal tissue biopsies.  X-axis denotes 
samples, y-axis denotes significantly altered genes. 



353 
 

 
 
 
 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.18: Hierarchical clustering analysis of top 10 genes and metabolites significantly altered between pre-treatment rectal tumour biopsies 
and non-cancer rectal tissue biopsies. Significantly altered metabolites and genes between rectal tumour biopsies (n = 31), and non-cancer rectal 
tissue biopsies (n = 20) were assessed by LC-MS and transcriptomic profiling, respectively. Hierarchical clustering analysis was performed using 
R software to demonstrate the accuracy of clustering into non-cancer and cancer, based on the 10 most significantly altered metabolites and 
genes between rectal cancer and non-cancer rectal tissue biopsies. X-axis denotes samples, y-axis denotes significantly altered genes.



354 
 

6.5. Summary of main findings of Chapter 6 

• Metabolomic profiling of pre-treatment rectal cancer sera identified 16 metabolites 

significantly associated with subsequent pathological response to neoCRT.  

• Metabolomic profiling of pre-treatment rectal tumour biopsies and TCM demonstrates 

significant correlations with clinicopathological factors, including tumour response.  

• Transcriptomic profiling of pre-treatment rectal tumour biopsies demonstrated 

significantly altered gene expression in patients having a subsequent poor pathological 

response (TRS 2) to treatment, when compared to good responders (TRS 0).  

• Transcriptomic profiling of pre-treatment rectal tumour biopsies demonstrated 

significantly altered gene expression in patients who had a pathological T stage T3/4, 

when compared to those with a pathological T stage T0. 

• IPA analysis of the transcriptomic alterations demonstrated significant alterations to 

cell survival and metabolic pathways in patients with a poor response to therapy 

(TRS2), and patients with a pathological T stage T3/4.  

• Real-time metabolic phenotyping of rectal tumour and non-cancer rectal tissue 

demonstrated significantly elevated levels of OCR, a marker of oxidative 

phosphorylation, when compared in ECAR, a marker of glycolysis. 

• Real-time metabolic phenotyping demonstrated that non-cancer rectal tissue displays 

significantly elevated OCR, when compared to rectal cancer tissue.  

• Metabolomic profiling of pre-treatment rectal cancer tissue, and non-cancer rectal 

tissue demonstrated 23 metabolites significantly altered in rectal cancer. These 

metabolites were primarily phosphatidylcholines. 

• Metabolomic profiling of TCM and NCM demonstrated significantly altered secretion 

of four metabolites from rectal tumour tissue, when compared to non-cancer rectal 

tissue.  

• The protein secretome of rectal tumour tissue was demonstrated to be significantly 

altered from non-cancer rectal tissue, with the levels of 10 proteins significantly 

different between TCM and NCM.  

• The basal transcriptome of rectal tumour tissue was demonstrated to be significantly 

altered, when compared to non-cancer rectal tissue. 
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• IPA analysis revealed significant alterations in pathways commonly associated with 

tumour development and progression in the transcriptome of rectal cancer.  

• IPA analysis predicted alterations in metabolism, including lipid and carbohydrate 

metabolism in rectal cancer tissue, when compared to non-cancer rectal tissue.  

• Hierarchical clustering analysis demonstrated accurate clustering into cancer and non-

cancer cohorts using metabolomic data, however the addition of transcriptomic data 

did not enhance clustering accuracy.  

 

6.6. Discussion 

In previous chapters, the role of altered energy metabolism in the radioresponse was assessed 

in an in vitro model of radiosensitive/radioresistant CRC. This chapter aimed to investigate the 

role of altered metabolism in both the response to therapy and the development of rectal 

cancer by performing multi-omic profiling of sera and tumour biopsy samples from rectal 

cancer patients and normal rectal tissue samples from non-cancer controls.  

 In Chapter 1, altered energy metabolism, specifically reduced reliance on glycolysis and 

elevated levels of oxidative phosphorylation were demonstrated to be associated with 

radioresistance in an in vitro model of rectal cancer. In addition, in chapter 3, targeting 

oxidative phosphorylation using the clinically-approved drug metformin, was demonstrated 

to radiosensitise the in vitro model of radiosensitive/radioresistant CRC. To further investigate 

the potential role of metabolism in the therapeutic response of rectal cancer, the metabolome 

of pre-treatment sera from rectal cancer patients was assessed, and correlated with 

subsequent pathological response to neoCRT. GLM analysis demonstrated that 16 metabolites 

were significantly associated with response to neoCRT. These metabolites were significantly 

reduced with increasing TRS, using the CAP/AJCC four-point scale, highlighting a potential role 

for these 16 metabolites as novel circulating minimally-invasive predictive biomarkers of 

response to neoCRT in rectal cancer. These findings support previous data from Jia et al. in 

which metabolic profiling of pre-treatment sera from rectal cancer identified 15 metabolites 

predictive of therapeutic response (324). Interestingly, 3 of these 15 altered metabolites were 

PCs, which was the predominant group of metabolites identified in this study to be associated 

with therapy response.  
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 PC metabolism has been under investigation for its role in tumourigenesis and 

therapeutic response in cancer for decades. Catabolism of phosphatidylcholine is mediated by 

phospholipases (A2, C and D) and produces choline-containing phospholipids and lipid 

mediators, which have been implicated in pro-tumour signalling (435, 436). These lipid 

mediators include arachidonic acid, diacylglycerol and platelet-activating factor (PAF), and are 

deemed as lipid second messengers, associated with resistance to cancer therapy (436). One 

such PC-derived lipid messenger is lysophosphatidic acid (LPA), which is produced by the 

action of the phospholipase enzyme autotaxin (ATX) (436). ATX-LPA signalling has been 

demonstrated to promote chemoresistance in colon cancer (437). In addition, ATX-LPA 

signalling has been associated with radioresistance in models of breast cancer and 

glioblastoma, and has been demonstrated to protect against oxidative damage through Nrf2 

stabilisation in various cancer types (438-440). Another phosphatidylcholine-derived lipid 

signalling molecule is phosphatidic acid, which stabilises and activates mTOR signalling on 

cancer cells, promoting survival (441). In this study, a progressive decrease in circulating PC 

levels was demonstrated with worsening therapeutic response, which may reflect enhanced 

catabolism of PC, and therefore the enhanced production of these secondary lipid signalling 

messengers, associated with poor therapy response.  

 Having demonstrated significant alterations in the pre-treatment circulating 

metabolome of rectal cancer patients according to pathological response, the metabolome of 

rectal cancer was further assessed in relation to clinicopathological factors. The levels of two 

metabolites in the intracellular metabolome of rectal cancer tissue were demonstrated to be 

significantly correlated with TRS. Serotonin levels were demonstrated to have a significant 

negative correlation with TRS. Research has proposed that serotonin may inhibit oxidative 

stress and DNA damage in cancer, which may support elevated serotonin levels in patients 

with a good response to treatment (442). In addition, supporting findings of altered PC 

metabolism associated with TRS in the circulating metabolome of rectal cancer, intracellular 

PC metabolites were also significantly correlated with clinicopathological factors, including 

pathological T and N stage. In addition, intracellular PC C16:1 levels displayed a significant 

positive correlation with TRS in rectal cancer biopsies. As mentioned, alterations in PC 

metabolism are frequently implicated in relation to pathogenesis and therapeutic response in 

cancers (443-445), supporting evidence of PC metabolites correlating with clinicopathological 

factors. Furthermore, significant correlations were demonstrated between intracellular amino 
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acid levels and BMI in rectal cancer tissue. Metabolism and obesity are intrinsically linked, 

with the impact of obesity on cancer metabolism having been extensively studied (446). 

Metabolism of branched chain amino acids, including those demonstrated to be significantly 

correlated with BMI in our dataset, have been associated with both obesity and cancer (447). 

A recent study demonstrated that BMI was associated with higher sera levels of valine, 

isoleucine and glutamate, and higher levels of asparagine, glutamine, glycine and serine, 

alongside alterations to PC metabolites (448). Furthermore, the metabolic signature of BMI 

was significantly associated with risk of endometrial cancer in this study (448). The branched-

chain amino acid leucine has also been demonstrated to significantly correlate with obesity 

related cancers (449). These studies support findings of an altered metabolome correlating 

with BMI.  

 The secreted metabolome of rectal tumour biopsies was also correlated with 

clinicopathological data. Many amino acids which were demonstrated to significantly 

correlate with BMI in the intracellular metabolome, also positively correlated with BMI in the 

secreted metabolome of rectal cancer. For example, histidine, methionine, tryptophan and 

valine were demonstrated to have a significant positive correlation with BMI in both the 

intracellular and secreted metabolome of rectal cancer, supporting evidence of altered 

metabolome with BMI in cancer (448, 449). In addition, significantly correlations between PC 

metabolites and clinicopathological factors were demonstrated in the secreted metabolome 

of rectal tumour tissue. Levels of PC aa C32:3 in the secreted metabolome was demonstrated 

to be significantly positively correlated with TRS. A closely related diacyl PC metabolite, PC aa 

C32:0 has been previously demonstrated to be significantly elevated in stage IV CRC patients, 

when compared to Stage I, supporting the altered PC metabolism in the pathogenesis of CRC 

(450). Together these data support altered metabolism in therapeutic response, and 

pathogenesis of rectal cancer. 

 Transcriptomic profiling of pre-treatment rectal cancer biopsies was also performed to 

identify genes altered in patients with a poor response to treatment. RNA-Y expression was 

demonstrated to be significantly downregulated in patients with a poor therapeutic response 

(TRS 2), when compared to patients with a good response (TRS 0+1, or TRS 0 only). 

Downregulation of RNA-Y has recently been demonstrated to be significantly associated with 

poor prognosis in breast cancer (451). In addition, H1-3 gene was demonstrated to be 

significantly elevated in patient with a poor TRS, when compared to those with a good 
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response. H1-3 histone has been proposed to act as a prognostic biomarker in pancreatic 

cancer (452). DUOX2 was also demonstrated to be significantly downregulated in patients 

with a poor response to treatment (TRS 2), when compared to those with a complete response 

(TRS 0). In contrast to these findings, evidence in the literature has demonstrated 

overexpression of DUOX2 to be associated with 5-FU resistance in colon cancer cells (453) and 

doxorubicin resistance in pancreatic cancer (454). APOE expression was also demonstrated to 

be significantly downregulated in patients with a poor response to treatment (TRS 2), when 

compared to complete responders, which is in contrast to evidence in the literature, 

highlighting APOE upregulation as a potential prognostic and diagnostic biomarker in many 

cancers, including colorectal and breast cancer (455, 456). However, alterations to APOE 

supports alterations in lipid metabolites in rectal cancer patients with a poor prognosis 

demonstrated here.  

IPA analysis of genes significantly altered in patients with a poor response to treatment 

(TRS 2), and those with a more advanced pathological T stage, also demonstrated significant 

alterations to metabolic pathways associated with worse prognosis. Importantly, in patients 

with advanced pathological T stage, oxidative phosphorylation was predicted to be 

significantly activated, with enhanced expression of 6 oxidative phosphorylation related 

genes. In addition, pathological T stage has been demonstrated to have implications on 

patient outcome in rectal cancer. In a recent study of over 44,000 rectal cancer patients, it 

was demonstrated that higher pathological T stage predicted reduced survival in rectal cancer 

patients having received neoCRT, independent of the pre-therapy clinical stage, 

demonstrating the importance of pathological T stage in rectal cancer patient outcome (457). 

Together, these data support findings in Chapters 2-5 of this thesis, and previous research in 

our laboratory, highlighting the importance of oxidative phosphorylation in therapy response 

and pathogenesis of rectal cancer (213). 

Having demonstrated that the tumour metabolome was significantly associated with 

therapy response, energy metabolism in rectal cancer was further investigated. Real-time 

metabolic phenotyping of pre-treatment rectal cancer biopsies demonstrated that OCR, a 

marker of oxidative phosphorylation, was significantly higher, when compared to ECAR. These 

findings support in vitro data from Chapter 1, highlighting the importance of oxidative energy 

metabolism in rectal cancer. Furthermore, the real-time metabolic phenotype of non-cancer 

rectal tissue was also assessed, demonstrating significantly higher rates of OCR in non-cancer 
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rectal tissue, when compared to ECAR. In addition, OCR rates were demonstrated to be 

significantly elevated in non-cancer rectal tissue biopsies, when compared to rectal cancer 

biopsies. Importantly, no significant alterations in ECAR, a marker of glycolysis, were 

demonstrated between rectal cancer biopsies and non-cancer rectal tissue. These data 

demonstrate the importance of oxidative phosphorylation in both non-malignant and 

malignant rectal tissue. 

 To further investigate altered energy metabolism in the pathogenesis of rectal cancer, 

metabolomic profiling of pre-treatment rectal cancer biopsies and non-cancer rectal biopsies 

was assessed. Twenty-three metabolites were demonstrated to be significantly altered in 

rectal cancer tissue, when compared to non-cancer rectal tissue. PCs were significantly 

elevated in rectal cancer tissue, when compared to non-cancer tissue. PC functions not only 

as a structural building block to support cell proliferation, but also acts as an important source 

of secondary signalling molecules (436). PC levels have been demonstrated to be significantly 

elevated in multiple cancer types (436, 443). Intermediates of PC metabolism, including 

choline, glycerophosphocholine (GPC) and phosphocholine have been demonstrated to be 

significantly elevated in cancer (443, 458). Interestingly, the ratio of phosphocholine/GPC has 

been proposed as a marker of malignant transformation and tumour progression in breast 

and ovarian cancer (443, 444, 459). In a study conducted by Kurabe et al., PC (16:0/16:1) was 

demonstrated to be significantly elevated in CRC tissue, when compared to non-neoplastic 

tissue, highlighting this metabolite as a potential diagnostic biomarker of  CRC (460). 

Decreased levels of sphingomyelin (SM) metabolites were also demonstrated in rectal cancer 

tissue, when compared to non-cancer rectal tissue. Hydrolysis of SM has been demonstrated 

in cancer cells, to contribute to elevated phosphatidylcholine generation (436). Together 

these data suggest extensive alterations to choline, and subsequent lipid metabolism in rectal 

cancer.  

 Serotonin and histamine, two biogenic amines, were also significantly downregulated 

in rectal cancer tissue, when compared to non-cancer rectal tissue. Histamine has been 

demonstrated to induce both pro and anti-tumour effects, depending on tumour features and 

type (461). One study demonstrated elevated levels of histamine in colon cancer tissue, when 

compared to surrounding tissue (462). However, overexpression of a histamine receptor, 

H4HR, and histamine exposure has been demonstrated to induce growth arrest in CRC cells 

(463), indicating an incomplete understanding of the role of histamine signalling in CRC.  
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The majority of serotonin in the body is produced in the intestine, and serotonin 

signalling is crucial for the maintenance of intestinal function, and proliferation of intestinal 

crypts (464). It has been proposed that serotonin may act as a protective factor against the 

development of colorectal tumours (464). Interestingly, this is supported by an observational 

study conducted by Coogan et al., in which patients using selective serotonin reuptake 

inhibitor (SSRI) drugs have a reduced risk of developing CRC (465). The mechanism by which 

serotonin may protect against tumorigenesis is under investigation, however recent evidence 

suggests that serotonin may counteract oxidative stress and DNA damage (442). In contrast, 

studies have also demonstrated that serotonin may promote proliferation of CRC cells (466). 

In addition, serotonin levels have been demonstrated to be elevated in the plasma of CRC 

patients, when compared to healthy controls, and predicts recurrence and poor prognosis 

(467). These significant alterations to serotonin in rectal cancer tissue may be reflective of 

dysbiosis in the microbiome of patients with rectal cancer (468) 

Alterations in the secreted metabolome of rectal cancer and non-cancer rectal tissue 

were also demonstrated, with four metabolites significantly altered in TCM and NCM. One 

metabolite demonstrated to be significantly increased in TCM was dopamine. In a recent 

paper conducted by Lee et al., elevated expression of the dopamine receptor D2 (DRD2), was 

demonstrated to be significantly associated with a poor survival rate in CRC patients (469). In 

addition, inhibition of this receptor in vitro and in vivo was demonstrated to inhibit CRC cell 

growth and motility (469). These findings support dopamine activity in CRC pathogenesis.  

To further assess the secretome of rectal cancer and non-cancer rectal tissue, TCM and 

NCM samples were assessed by multiplex ELISA. Ten inflammatory mediators were 

demonstrated to be significantly altered in the secretome of rectal cancer tissue, when 

compared to non-cancer rectal tissue. Significant alterations to the concentration of Th-17 

related cytokines were demonstrated in rectal cancer. The pro-tumourigenic role of Th-17 

cells and cytokines in CRC has been extensively studied (470). A trend towards reduced IL-21 

production was demonstrated in TCM, when compared to NCM, and this has been supported 

in the literature to have potent anti-tumour effects (471).  

Angiogenesis related proteins (Flt-1, PlGF and VEGF-C) were also demonstrated to be 

significantly elevated in TCM, when compared to NCM. The crucial role of angiogenesis in the 

development and progression of CRC is well established, with an anti-VEGF treatment, 

bevacizumab, being a mainstay of treatment in advanced CRC (472). Previous studies have 
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also demonstrated that expression of PlGF gene is elevated in CRC patients, when compared 

to non-cancer tissues and is associated with tumour progression (473). In addition, sera PlGF 

levels have been demonstrated to be elevated in CRC patients, and to act as a prognostic 

indicator of survival and recurrence in these patients (474). In addition, CRC  patients with 

elevated Flt-1 and PIGF expression in their tissue have been demonstrated to have a poor 

prognosis (475). These findings support the role of angiogenesis in rectal cancer development 

and progression.  

The protein secretome of rectal cancer was also correlated with clinicopathological 

factors. These data demonstrate significant positive correlations between pathological T stage 

and two proteins, IL-16 and sVCAM. IL-16 levels have been demonstrated to be significantly 

elevated in the sera of CRC and gastric cancer patients, when compared to healthy controls, 

and were also significantly associated with poor prognosis and tumour recurrence in gastric 

cancer (476, 477). As pathological T stage is associated with worse survival and patient 

outcome following neoCRT treatment in rectal cancer (457), these data suggest that IL-16 may 

be contributing to pathogenesis and worse outcomes in rectal cancer patients. In addition, 

sVCAM, an adhesion molecule, was demonstrated to have a significant positive correlation 

with pathological T stage and TRS in the rectal cancer secretome. Previous research has 

demonstrated significant correlations between sera sVCAM levels and TNM stage and lymph 

node involvement (478). Furthermore, plasma levels of sVCAM have been demonstrated to 

be associated with progression in CRC (479). In addition, preoperative sVCAM levels in the 

sera of ovarian cancer patients has been demonstrated to be elevated in patients with early 

tumour progression or relapse (480). Together these data demonstrate significant correlations 

between the tumour secretome and the pathogenesis and therapeutic response of rectal 

cancer.  

To further characterise the molecular alterations between rectal cancer and non-

cancer rectal tissue, transcriptomic profiling was performed. While a number of previous 

studies have assessed the transcriptome of CRC, many of these studies utilised colon cancer 

tissue only, did not specify whether rectal or colon tissue was included, or use matched 

adjacent ‘normal’ tissue as a comparator (481-483). Importantly, this study utilised rectal 

adenocarcinoma tissue only, and compared to rectal tissue from non-cancer patients. 

Transcriptomic profiling revealed extensive alterations to the transcriptome of rectal cancer, 

when compared to non-cancer rectal tissue, with 470 genes being differentially expressed. IPA 
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analysis demonstrated significant alterations to cancer-related molecular pathways. In 

addition, alterations to carbohydrate and lipid metabolism were identified in rectal cancer 

tissue, supporting findings from the metabolomic profiling in this study.  

Transcriptomic profiling supported alterations demonstrated by metabolome and 

secretome profiling of rectal cancer. Serotonin was demonstrated to be significantly elevated 

in rectal cancer tissue by metabolomic profiling. IPA profiling of transcriptomic data predicted 

significant alterations to serotonin-associated pathways. ‘Serotonin receptor signalling’ was 

demonstrated to be altered in rectal cancer tissue, with 4 related genes being significantly 

differentially expressed (GUCY1A1, GUCY1B1, MAOA, TPH1). In addition, ‘serotonin 

degradation’ was a canonical pathway predicted to be significantly inhibited in rectal cancer 

tissue, when compared to non-cancer tissue, (Z-score = -2), supporting the demonstrated 

increase in serotonin identified by metabolomic profiling of rectal cancer tissue. In addition, 

dopamine was significantly elevated in TCM, when compared to NCM. This was supported at 

the transcriptome level, with multiple dopamine-related genes demonstrated to be 

significantly altered in rectal cancer tissue. For example, the monoamine oxidase A (MAOA) 

gene was significantly downregulated in rectal cancer tissue. MAOA is an enzyme which 

degrades dopamine, and the downregulation of this gene in rectal cancer tissue may 

contribute to the elevated dopamine demonstrated in TCM.  

Multiplex ELISA profiling of the secretome of rectal cancer and non-cancer tissue 

biopsies revealed significant alterations to cytokine levels in TCM, when compared to NCM. 

This was supported by transcriptomic profiling, which also demonstrated significant 

alterations to the gene expression of numerous cytokine and chemokine genes in rectal 

cancer, including the increased expression of CXCL-1, CXCL5, CXCL8 and CXCL-11 genes. 

Interestingly, while the gene expression of CXCL8 was demonstrated to be significantly 

elevated in rectal cancer, the secreted level of CXCL8 (IL-8) was demonstrated to be 

significantly reduced in TCM, when compared to NCM. IL-8 is a pro-inflammatory cytokine, 

which has been previously demonstrated to be significantly increased in CRC, and associated 

with early progression and poor response (484). It would be interesting to investigate 

intracellular levels of IL-8 to determine if secreted levels are reflective of the intracellular 

tumour environment. Multiplex profiling of the secretome also significantly altered Th-17 

related cytokines. IPA analysis of transcriptomic data supported findings of altered Th-17 

signalling in rectal cancer tissue, predicting activation of IL-17 related signalling. In addition, 
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RUNX1, a transcription factor that regulates the differentiation of Th-17 cells, was 

demonstrated to be significantly upregulated in rectal cancer tissue, when compared to non-

cancer rectal tissue. Together these data highlight congruence between upstream 

transcriptomic analysis and downstream proteomic and metabolomic analysis in 

differentiating rectal cancer from non-cancer rectal tissue.  

The significantly altered genes in rectal cancer, when compared to non-cancer rectal 

tissue, were subsequently correlated with clinicopathological factors. Transcriptomic profiling 

has been utilised to identify predictive biomarkers of therapeutic response in cancer (485-

487). In a recent study conducted by Cao et al., transcriptomic profiling was utilised to identify 

biomarkers predictive of adjuvant therapy response in CRC patients (486) Seventeen genes 

which were significantly upregulated, and five genes which were significantly downregulated 

in rectal cancer were also demonstrated to have a significant positive correlation with TRS. 

Two of these upregulated genes, NCL (nucleolin), and PTPN12 (protein tyrosine phosphatase 

non-receptor type 12) are involved in the regulation of lipid metabolism, supporting data 

demonstrating altered lipid metabolism in rectal cancer. Furthermore, lipid metabolism has 

been demonstrated to be associated with response and resistance to cancer treatment (488).  

While transcriptomic profiling is utilised in the identification of biomarkers predictive 

of response in cancer, very few have been validated in clinical trials (487). Hierarchical 

clustering analysis using the top 10 genes and top 10 metabolites significantly altered in rectal 

cancer, when compared to non-cancer rectal tissue was utilised to identify whether these 

transcripts/metabolites could accurately cluster patients. While the most significantly altered 

metabolites permitted moderate clustering into non-cancer and cancer cohorts, clustering 

utilising the top ten significantly altered genes yielded poor clustering accuracy of 65%. 

Combining the most significant transcriptomic and metabolomic alterations however resulted 

in enhanced predictive clustering into non-cancer and cancer cohorts. Importantly, combining 

metabolic and transcriptomic data did not result in any false positive predictions of cancer in 

non-cancer patients. These data demonstrate the combined utility of metabolomic and 

transcriptomic data in the identification of the pathogenesis of rectal cancer.  

In summary, this chapter demonstrated significant alterations to the metabolome of 

rectal cancer and identified metabolites predictive of therapeutic response in rectal cancer 

sera. These data also demonstrated significant correlations between the intracellular and 

secreted metabolome of rectal cancer and clinicopathological factors, including TRS. In 
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addition, significant alterations in the transcriptome of rectal cancer were demonstrated 

based on response to treatment (TRS) and pathological T stage. These data also highlighted 

significant alterations in the transcriptome, metabolome and protein secretome of rectal 

cancer, when compared to non-cancer rectal tissue. These data support a role for altered 

energy metabolism in the pathogenesis and therapeutic response of rectal cancer and 

supports the combined use of multi-omic platforms for identification of biomarkers in rectal 

cancer.  
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7. Chapter 7: Discussion and Future Directions 
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7.1. Discussion 

CRC is the 3rd most commonly diagnosed cancer in the world, and accounts for an estimated 

10% of all cancer diagnoses (1). One in three cases of CRC occur in the rectum (6). Incidence 

rates of rectal cancer are increasing, in particular in the younger age demographic, who often 

present at a later, more advanced stage (10-12, 14, 15). The standard of care for locally-

advanced rectal cancer is neoCRT, followed by surgery (6). Patients with locally advanced 

disease typically receive 5-FU/capecitabine based chemotherapy, in combination with either 

SCRT (5 fractions of 5 Gy radiation) or LCRT (45-50.4 Gy total, in 15-28 fractions of 1.8 Gy 

radiation) prior to TME surgery (6). However, resistance to treatment is a clinical challenge in 

the management of rectal cancer, with only an estimated 15-30% of patients achieving a pCR 

following neoCRT (44-47). Importantly, pCR is associated with favourable prognosis, and 

improved patient outcomes in rectal cancer (44-47).  There are currently no routinely used 

biomarkers to predict, prior to initiation of treatment, those patients who are likely to have a 

good response and conversely, those patients who are likely to be resistant to the standard of 

care.  

Consequently, there is an unmet global need to identify predictive biomarkers of 

response to treatment to improve patient stratification, and to identify novel therapeutic 

targets to boost response to neoCRT for those majority of patients who are resistant to 

treatment.  This study aimed to investigate mechanisms underpinning radioresistance in rectal 

cancer using both in vitro models and patient tissue and serum samples, to identify potential 

novel biomarkers predicting response to treatment and to investigate novel radiosensitising 

drugs to boost radiation efficacy in rectal cancer. 

Clinicopathological factors do not predict the response to radiation therapy, 

suggesting that molecular and cellular alterations are involved in the radioresistance of rectal 

tumours. In vitro models of radioresistant rectal cancer are a key tool to investigate 

mechanisms underlying radioresistance, however, as there are few characterised rectal 

cancer cell lines available, the majority of in vitro rectal cancer research is performed utilising 

cell lines of colon cancer origin (35, 36). Not only are colon and rectal cancers anatomically 

distinct, but it has been demonstrated that there are differing underlying molecular and 

immunological phenotypes between rectal and colon cancers (32-34), highlighting the 

importance of utilising models derived from primary rectal cancers in future studies.  
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In this study, the generation of novel in vitro isogenic model of radioresistant colon 

and rectal cancer was attempted by chronic exposure of colon and rectal cancer cell lines to 

clinically-relevant fractionated doses of X-ray radiation. However, the three irradiation 

regimens utilised in this study did not result in a radioresistant phenotype in either HCT116 or 

SW837 cell lines. Isogenic models of radioresistance are a useful tool in examining underlying 

mechanisms of radioresistance, as parental and radioresistant lines are derived from the same 

origin, therefore eliminating genetic variability as a confounding factor in identifying 

mechanisms of radioresistance. However, this elimination of underlying genetic variability 

does not accurately portray inherent genetic aberrations between patients. For a biomarker 

of radioresistance to be reliable, it must emerge despite the huge variability between patients, 

and not only in its absence. In addition, isogenic models of radioresistance reflect acquired 

radioresistance, developed as a direct result of exposure to radiation. However, in the 

development of biomarkers predictive of patient response, resistance should be identified 

prior to treatment initiation. Isogenic models of acquired radioresistance therefore may not 

be an accurate representation of the clinical challenge, and so a model of intrinsic 

radioresistance would be of greater benefit in predictive biomarker identification. 

Importantly, this study profiled the inherent radioresistance of 3 rectal and 1 colon 

cancer cell line to identify an in vitro model of inherently radioresistant rectal cancer (SW837 

cells) and radiosensitive colon cancer (HCT116 cells). Importantly, this model reflects inherent 

radioresistance, which may more accurately mimic the clinical challenge in rectal cancer 

therapeutic resistance and permits the identification of predictive biomarkers of response.  

Radioresistant SW837 cells were also demonstrated to be significantly more resistant 

to 5-FU treatment, when compared to radiosensitive HCT116 cells, demonstrating SW837 cells 

as a highly treatment resistant cell line, supporting previous findings (355, 356). This inherent 

model of radiosensitive/radioresistant CRC was then characterised in terms of factors often 

implicated in radioresistance, including proliferation, cell cycle, DNA damage induction and 

repair, cell death and energy metabolism to identify underlying mechanisms of 

radioresistance. 

 Radiosensitive HCT116 cells were demonstrated to have an elevated proliferative rate, 

when compared to radioresistant SW837 cells. These data support previous findings 

suggesting that enhanced proliferation is significantly associated with enhanced sensitivity to 
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radiation therapy in lung cancer and oral squamous cell carcinoma (357, 358), and may be a 

potential contributing factor to the radiosensitivity of HCT116 cells.  

In addition, cell cycle distribution and progression are commonly implicated in 

radioresistance, with cells in the S phase being the most radioresistant, while G2/M phase 

cells being the most radiosensitive cell cycle phase (52). SW837 cells were demonstrated to 

display a more radioresistant basal cell cycle distribution, when compared to HCT116 cells, 

with an elevated proportion of cells in the G0/G1 and S phase, and a reduced proportion of 

G2/M phase cells basally. These data support previous research which demonstrated a low 

proportion of G2/M phase cells in SW837 cells basally (355). Furthermore, progression 

through the cell cycle was also demonstrated to be significantly different in SW837 cells 

following radiation, when compared to HCT116 cells. While extensive alterations to the cell 

cycle distribution of radiosensitive HCT116 cells was demonstrated following clinically-

relevant doses of 1.8 Gy radiation, no significant alterations to SW837 cell cycle phase 

distribution was demonstrated following 1.8 Gy radiation. Furthermore, transcriptomic 

profiling also demonstrated significant alterations to cell cycle related genes and canonical 

pathways in SW837 cells, when compared to HCT116 cells. These data support previous 

research, highlighting cell cycle checkpoint regulation as a potential mechanism of 

radioresistance in rectal cancer (344). Together, these data suggest a potential role for altered 

cell cycle distribution and progression following radiation treatment in the radioresistance of 

SW837 rectal cancer cells.  

 Radioresistant SW837 cells also displayed enhanced repair of radiation-induced DNA 

damage, when compared to HCT116 cells. This was supported by transcriptomic profiling in 

these cells, which demonstrated altered expression of DNA repair genes, highlighting 

enhanced DNA damage repair capacity as a mechanism of radioresistance in this in vitro model 

of radioresistant rectal cancer. High DNA damage repair capacity  has been previously 

demonstrated to be a feature of radioresistant cancers (361).  

 Importantly, both cell cycle and DNA repair require energy and are therefore 

functionally dependant on energy metabolism. Increasing evidence supports altered 

metabolism as a contributing factor underlying therapeutic resistance. To investigate this, the 

in vitro model of radiosensitive/radioresistant CRC was assessed by Seahorse™ technology. 

This demonstrated significantly lower levels of ECAR, a marker of glycolysis, in radioresistant 

cells, and an elevated OCR:ECAR ratio, indicating enhanced reliance on oxidative 
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phosphorylation in radioresistant cells. In addition, spare respiratory capacity was significantly 

elevated in SW837 cells, when compared to HCT116 cells, suggesting that radioresistant 

SW837 cells have an enhanced ability to respond to energetic demands. Furthermore, 

transcriptomic profiling and IPA analysis demonstrated significant alterations to many 

metabolic pathways in SW837 cells, when compared to HCT116 cells. Supporting functional 

experiments, oxidative phosphorylation was the most significantly activated pathway in 

SW837 cells, when compared to HCT116, as assessed by IPA analysis. In total, 33 oxidative 

phosphorylation genes were demonstrated to be significantly upregulated in SW837 cells, 

when compared to HCT116 cells. These data support previous studies by our department, in 

which elevated oxidative phosphorylation levels were demonstrated to be associated with 

radioresistance in oesophageal adenocarcinoma (212, 213, 392) and suggest a common role 

for altered energy metabolism in the response of gastrointestinal cancers to radiation. 

Together these data support a potential role of altered tumour energy metabolism in 

radioresistance of rectal cancer. 

 Data in chapter 2 identified potential mechanisms underpinning radioresistance in 

rectal cancer, and highlighted the importance of combining transcriptomic and functional 

analyses. Data from functional assays was supported by transcriptomic analysis. As 

transcriptomic technology is becoming more widespread and accessible, these data support 

the use of transcriptomic analysis in the identification of novel biomarkers, and for the 

validation of functional in vitro assays.  

 Having characterised the in vitro model of inherently radiosensitive or radioresistant 

CRC and identified potential mechanisms of radioresistance, this model was subsequently 

assessed under hypoxic conditions (0.5% O2) in Chapter 3. Hypoxia is not only a common 

feature of solid malignancies but is also a major contributing factor to tumour radioresistance 

(231, 363, 364), and therefore, it was important to validate this in vitro model in conditions 

that mimic the in vivo tumour microenvironment.  

Hypoxia was demonstrated to enhance the radioresistance of radiosensitive HCT116 

cells and importantly, SW837 cells remained significantly more resistant to radiation 

treatment under hypoxia, when compared to HCT116, demonstrating the robustness of this 

model of inherent radioresistance/radiosensitivity. These data are supported by the literature, 

demonstrating enhanced clonogenic survival in HCT116 cells, when irradiated under hypoxic 

conditions (489).  
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HCT116 and SW837 cells were also characterised in terms of hallmarks of 

radioresistance, under hypoxic conditions. Hypoxia induced significant cell death in 

radiosensitive HCT116 cells, and not in SW837 cells, suggesting that SW837 cells are more 

resilient to hypoxia exposure, which is potentially due in part to the elevated spare respiratory 

capacity demonstrated in these cells in Chapter 2. In addition, hypoxia altered the basal cell 

cycle distribution and progression following radiation exposure in both HCT116 and SW837 

cells and may contribute to the enhanced radioresistance demonstrated in both cell lines 

under hypoxic conditions. In HCT116 cells, the increased proportion of S phase cells in hypoxia, 

when compared to normoxia, is supported by the literature as being a potential mechanism 

of enhanced radioresistance (376, 379). Furthermore, radiation-induced DNA damage was 

demonstrated to be efficiently and rapidly repaired under hypoxia in both HCT116 and SW837 

cells. Hypoxia has previously been demonstrated to be associated with enhanced DNA damage 

repair pathways, including HRR and NHEJ, and enhanced resolution of DNA damage, 

supporting these data (376, 380-382).  

The metabolism of HCT116 and SW837 cells was also demonstrated to be significantly 

altered under hypoxic conditions, with significantly inhibited OCR rates, and a shift in 

OCR:ECAR, supporting elevated glycolysis under hypoxia. In addition, hypoxic exposure was 

demonstrated to induce mitochondrial dysfunction in these cell lines. These data are 

supported by previous studies, which demonstrate that a metabolic shift under hypoxia from 

oxidative phosphorylation, which is limited by low oxygen availability, to enhanced glycolysis, 

which is HIF1-α regulated, occurs in cells under hypoxic conditions (226, 371). In addition, it 

has been demonstrated that under hypoxia, mitochondrial biogenesis and growth occurs, and 

is proposed to act as a mechanism to prime cells to resist cell death and induce radioresistance 

(373-376). 

Having demonstrated that this model of radioresistant and radiosensitive CRC is robust 

under both normoxic and hypoxic conditions and that energy metabolism is associated with 

radioresistance in this model, the impact of targeting metabolism on radiosensitivity was 

assessed in chapter 4. 

P3 is a small molecule inhibitor drug, which has been demonstrated to display anti-

angiogenic and anti-metabolic effects in oesophageal adenocarcinoma in vitro and ex vivo 

(212). Importantly, P3 has also been demonstrated to inhibit oxidative phosphorylation, the 

metabolic pathway associated with radioresistance in this cancer type, and glycolysis both in 
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vitro and ex vivo in oesophageal cancer (212, 392). In chapter 4, P3 treatment was 

demonstrated to significantly inhibit both OCR and ECAR in radioresistant SW837 cells and 

alter mitochondrial function. However, P3 treatment, at any dose examined, did not 

significantly sensitise HCT116 or SW837 cells to clinically-relevant doses of radiation, under 

normoxic or hypoxic conditions. One potential explanation for this is that the molecular target 

and  mechanism underlying  P3-mediated radiosensitisation is not currently known. As P3 

displayed similar anti-metabolic effects in CRC cells as it did in oesophageal cancer cells, but 

did not radiosensitise CRC cells, it is possible that the molecular target of P3 that results in P3-

mediated radiosensitisation of oesophageal cancer cells may not be expressed in HCT116 or 

SW837 cells.  

To further investigate the potential of metabolic inhibitors as radiosensitising drugs in 

rectal cancer, the clinically-approved drug metformin was investigated. Metformin is used in 

the management of diabetes, but in recent years has been associated with enhanced 

therapeutic response in various cancer types (231, 300-302, 305). In addition, metformin is a 

demonstrated inhibitor of complex I of the electron transport chain, and subsequently inhibits 

oxidative phosphorylation (279, 386). Metformin treatment was demonstrated to significantly 

inhibit oxidative phosphorylation under both normoxic and hypoxic conditions in both HCT116 

and SW837 cells. In addition, metformin treatment was demonstrated to increase glycolysis 

rates in both cell lines, potentially as a compensatory mechanism. Furthermore, metformin 

treatment was demonstrated to significantly induce mitochondrial dysfunction, by increasing 

mitochondrial mass, mitochondrial membrane potential and ROS production, which are 

supported by previous studies in many cancers, including CRC, lung, prostate, endometrial 

cancer  (396-400). In addition, enhancing mitochondrial targeting of metformin, through the 

development of novel metformin analogues, including mito-metformin10, has been 

demonstrated to enhance metformin-mediated inhibition of mitochondrial respiration, and 

enhance radiosensitivity in models of prostate cancer (490). This demonstrates the 

importance of metformin targeted inhibition of mitochondrial respiration in its 

radiosensitising capacity.  

Importantly, metformin treatment was demonstrated to significantly sensitise both 

HCT116 and SW837 cells to clinically relevant doses of 1.8 Gy radiation. Metformin-induced 

radiosensitisation of HCT116 cells is supported by previous studies (232, 305, 404), however, 

this study is the first to demonstrate metformin-mediated radiosensitisation in radioresistant 
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SW837 cells. Importantly, metformin-mediated radiosensitisation was demonstrated to be 

superior to that induced by clinical standard radiosensitiser 5-FU.   

The precise mechanisms of action of metformin are largely unknown, but are believed 

to be centrally mediated through its effects on energy metabolism (275). Chapter 5 

investigated the potential underlying mechanisms of metformin-induced radiosensitivity in 

this in vitro model of radiosensitive and radioresistant CRC. Metformin treatment was 

demonstrated to significantly alter both basal cell cycle distribution, and cell cycle progression 

following radiation in HCT116 and SW837 cells. Importantly, metformin treatment was 

demonstrated to significantly decrease the proportion of cells in the G2/M phase, and 

overcome radiation-induced G2/M blockade. This reduction in the proportion of G2/M phase 

cells in HCT116 cells following Metformin treatment has been supported by previous studies 

(491). Elimination of the G2/M blockade induced by radiation has been proposed as an 

effective strategy to overcome radioresistance (97, 407), which suggests that this may 

contribute to the metformin-mediated radiosensitisation demonstrated in these cells. 

Furthermore, transcriptomic profiling of SW837 cells treated with metformin demonstrated 

altered expression of cell cycle related genes following metformin treatment, supporting 

functional studies.  

In addition, metformin treatment was demonstrated to impair radiation-induced DNA 

damage repair in HCT116 cells. Transcriptomic analysis also confirmed inhibition of DNA-

damage repair pathways in metformin treated SW837 cells, which supports previous studies 

investigating metformin treatment in other cancer types, including nasopharyngeal and 

pancreatic cancer (306, 307). In addition, metformin treatment was also demonstrated to 

induce oxidative stress in HCT116 and SW837 cells, with an imbalance of ROS production and 

antioxidant capacity demonstrated. Together, these data suggest that metformin-induced 

radiosensitisation in this in vitro CRC model may be mediated by alterations in cell cycle, DNA 

damage repair, and oxidative stress.  

Importantly, these mechanisms of radioresistance are intrinsically linked with 

metabolism and metabolic flux. Having demonstrated that oxidative phosphorylation was 

significantly inhibited in metformin treated SW837 and HCT116 cells and given that 

transcriptomic data also supported inhibition of oxidative phosphorylation in metformin 

treated SW837 cells, the impact of metformin on the metabolic phenotype of rectal cancer 

tissue biopsies was investigated.  
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While 2D cell line in vitro models have great utility in basic cancer research, they do 

not reflect the tumour microenvironment. Tumour explant models offer a number of 

advantages in cancer research as they more accurately mimic the 3D architecture and diverse 

tumour microenvironment, which contains tumour, stromal and immune cells. Importantly, 

these cancer and stromal cells form a diverse signalling network and crosstalk, which has 

implications for the development, progression and therapeutic response of cancer (416). 

Importantly, these ex vivo explant models are also a more accurate representation of inherent 

patient variability, when compared to cell lines, and thus are an important research model in 

biomarker development and drug discovery.   

Supporting in vitro data, metformin was demonstrated to significantly inhibit OCR, a 

marker of oxidative phosphorylation, in fresh rectal cancer biopsies. In addition, metformin 

treatment was demonstrated to significantly inhibit ECAR, a marker of glycolysis in rectal 

cancer tissue biopsies. Furthermore, metformin significantly altered the protein secretome of 

rectal cancer tissue biopsies, with significant alterations to 7 proteins, five of which were 

cytokines, demonstrated. These data support recent findings in the literature, proposing 

metformin as an immune modulator in ovarian cancer, in which metformin promoted an 

immunoreactive microenvironment (492). Furthermore, the importance of the 

immunomodulatory effects of metformin in the context of its radiosensitising effects were 

recently demonstrated in a study by Tojo et al. (493). This study demonstrated, in a murine 

model of LARC, that metformin treatment enhanced not only local effects of radiation 

therapy, but also induced abscopal effects (493). Interestingly, this enhanced effect of 

radiation by combination metformin treatment was mediated through the activation of 

immune cells, namely enhanced T cells and NK cell activation (493). Our research 

demonstrated that metformin treatment in rectal cancer tissue induced increased secretion 

of IL-15, a known mediator of CD8+ T cell and NK cell activation (419, 420), supporting this 

potential mechanism of metformin-mediated immune cell activation.  

An important factor to consider in the development of radiosensitising drugs is the 

therapeutic index. The ultimate aim of an effective radiosensitiser is to enhance tumour 

radiosensitivity, while sparing normal tissue (418). Therefore, it is important to assess the 

radiosensitising effects of any novel radiosensitising drugs on non-cancer normal cells. 

However, there is limited availability of non-cancer rectal cell lines. The effects of metformin 

on the radiosensitivity of CRL-1831 cells, which are non-malignant ‘normal’ embryonic cells 
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and are reported in the literature as being of either ‘colon’ or ‘rectal’ origin was investigated 

using the gold standard clonogenic assay. However, no colonies formed, despite optimisation 

of conditions and therefore the effects of metformin on the radiosensitivity of these ‘normal’ 

cells could not be assessed. A recent study conducted by Warkad et al. demonstrated that 

while metformin treatment significantly induced DNA damage, cell death and ROS production 

in an in vitro model of pancreatic cancer, minimal effects on normal human primary dermal 

fibroblasts were demonstrated (399). This study indicates that the anti-cancer effects of 

metformin may spare normal cells.  

As a proxy to ‘normal’ cell lines, the effect of metformin on rectal tissue biopsies, from 

patients who did not have cancer was investigated. While metabolic inhibition was 

demonstrated in rectal cancer biopsies following metformin treatment, no significant 

alteration in the real-time metabolic phenotype of non-cancer rectal tissue biopsies was 

demonstrated. In addition, the secretome of non-cancer rectal tissue biopsies demonstrated 

significant alterations to only three inflammatory proteins, in comparison to the 7 proteins 

altered in the rectal cancer secretome following metformin treatment. These data suggest 

that metformin has differential effects on energy metabolism and the inflammatory 

secretome of normal non-cancer rectal tissue and rectal cancer tissue, further supporting its 

potential utility as a radiosensitiser in rectal cancer. 

Having demonstrated that altered metabolism is associated with radioresistance in 

rectal cancer in vitro, and that targeting metabolism using metformin can enhance 

radiosensitivity, the role of altered metabolism in the therapeutic response of rectal cancer 

patients was assessed by multi-omic profiling of blood and tumour biopsy samples. 

Metabolomic profiling of pre-treatment sera from rectal cancer patients identified 16 

metabolites which were significantly associated with subsequent pathological TRS. These 

metabolites were primarily PCs, which have been previously demonstrated to be significantly 

associated with tumourigenesis and therapeutic resistance in many cancer types (435, 436). 

In a study conducted by Jia et al., a panel of 15 metabolic markers, which included three PCs, 

were identified as predictive of response to neoCRT in the sera of rectal cancer patients, 

supporting their potential as predictive biomarkers in rectal cancer (424).  

Correlation analysis of the intracellular and secreted metabolome of rectal cancer was 

also performed on a second independent cohort of rectal cancer patient samples. Although 

limited by sample size, these data demonstrated significant correlations between metabolites 
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and clinical parameters in rectal cancer, including those related to therapeutic response (TRS, 

pathological N stage, pathological T stage). Previous research has supported the capacity of 

metabolomic profiling to characterise CRC according to different clinicopathological features 

(494). These findings support previous research demonstrating the identification of 

metabolites significantly associated with therapy response in rectal cancer (324, 423).  

Although further validation of these metabolomic alterations is required in an independent 

cohort to further assess their utility as biomarkers, these data support the potential use of 

metabolomic profiling for the identification of biomarkers. Importantly, an advantage to this 

study is the profiling of the intracellular, secreted and circulating metabolome of rectal cancer, 

to comprehensively assess tumour metabolism. However, traditional metabolomic profiling 

methodologies, including LC-MS are not easily accessible in the clinic, limiting the applicability 

of metabolomic derived biomarkers. To counteract this, promising novel metabolomic 

profiling methods, which are more user friendly, and therefore easier to integrate into the 

clinic, are currently in development (495, 496). 

To further investigate the role of altered metabolism in rectal cancer, real-time 

metabolic phenotyping of fresh ex vivo rectal cancer biopsies and non-cancer rectal biopsies 

was investigated. These data demonstrated a significant dependence on oxidative 

phosphorylation in both rectal cancer and non-cancer rectal tissue, supporting previous 

findings in our department in oesophageal adenocarcinoma (392). This is the first time in 

which real-time metabolic phenotyping has been performed on both rectal cancer tissue and 

non-cancer tissue. Importantly, these data highlight the complexity of tumour metabolism, 

and suggest that the traditional viewpoint of the Warburg effect being a predominant feature 

of cancer tissue may not accurately reflect tumour metabolism. In addition, these data again 

highlight the importance of oxidative phosphorylation in cancer metabolism (178).  

It is important to understand metabolism of non-cancer tissue in addition to cancer 

tissue, to interrogate altered metabolism in rectal cancer pathogenesis, and also to investigate 

the impact targeting metabolism in the tumour may have in normal tissue. Therefore, the 

metabolome of pre-treatment rectal cancer and non-cancer rectal cancer tissue was profiled. 

Twenty-three metabolites were demonstrated to be significantly altered between cancer and 

non-cancer tissue. In addition, the secreted levels of four metabolites were demonstrated to 

be significantly altered in cancer, when compared to non-cancer. Again, elevation of PC levels 

in cancer tissue was demonstrated, which is supported in a number of cancer types (436, 443). 
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A recent study profiling the tissue metabolome of CRC tissue, when compared to that of 

normal adjacent mucosa demonstrated lipid metabolism as being associated with tumour 

development and progression in CRC (494). Profiling of the secreted metabolome of rectal 

cancer and non-cancer rectal tissue also demonstrated 4 metabolites significantly altered in 

rectal cancer. Together these data suggest an important role of altered metabolism in the 

pathogenesis of rectal cancer. 

In addition, the inflammatory secretome of rectal cancer demonstrated significant 

alterations to inflammatory mediators, Th-17 related cytokines, and angiogenic factors, when 

compared to non-cancer tissue. Th-17 cells have been demonstrated to be significantly 

associated with tumourigenesis in CRC studies (470). To further characterise the inflammatory 

secretome in rectal cancer, secreted protein levels were correlated with clinicopathological 

factors. Two proteins, sVCAM and IL-16 were demonstrated to be significantly associated with 

response to therapy (TRS). Each of these proteins have been previously demonstrated to be 

significantly associated with poor prognosis in cancer (476, 477, 479, 480). Together, these 

data demonstrate significant alterations to the protein secretome associated with rectal 

cancer pathogenesis and therapeutic response.   

Transcriptomic profiling of non-cancer rectal tissue and rectal cancer tissue 

demonstrated 470 genes that were significantly altered in rectal cancer. IPA analysis 

supported many of the metabolomic and inflammatory findings from previous studies. 

Serotonin was demonstrated to be significantly downregulated in the metabolome of rectal 

cancer, when compared to non-cancer tissue. Transcriptomic analysis also identified 

alterations to serotonin degradation and signalling pathways in rectal cancer tissue, 

supporting the combined use of omic platforms. While the use of single-omic methods is 

commonly utilised in biomarker research, very few biomarkers have been reliably identified 

using these approaches (331). By combining upstream and downstream omic platforms, a 

more comprehensive and dynamic understanding of the biology of disease can be obtained 

(331, 497). Indeed, the combined use of multi-omic methodology have identified reliable 

biomarkers of disease in cancer (497), highlighting the importance of combined omic profiling 

in the identification and development of cancer biomarkers.  

Importantly, genes associated with metabolic pathways, including carbohydrate 

metabolism and lipid metabolism were demonstrated to be significantly altered in the 

transcriptome of rectal cancer, when compared to non-cancer rectal tissue. Furthermore, 
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correlation analysis of significantly altered genes in rectal cancer, when compared to non-

cancer rectal tissue demonstrated significant correlations with clinicopathological factors, 

including TRS. Importantly, two genes involved in lipid metabolism regulation were 

demonstrated to significantly correlate with TRS in rectal cancer. These findings further 

highlight the importance of altered metabolism in rectal cancer. 

This study importantly utilised non-cancer rectal biopsy explant models. The majority 

of research comparing cancer tissue to non-cancer tissue includes the use of normal adjacent 

tissue. However, growing evidence demonstrates that normal adjacent tissue is not in fact 

normal, but actually may represent an intermediate state between healthy and cancer tissue 

(498). Normal adjacent tissue has been demonstrated to display an inflammatory response to 

the tumour, and is therefore not an accurate ‘healthy’ control (498). 

Together this thesis demonstrates that altered energy metabolism is a major factor in 

both the development and therapeutic response of rectal cancer, highlighting the potential 

role of metabolic markers as both diagnostic and predictive biomarkers of treatment response 

in rectal cancer. Importantly, while the identification of predictive biomarkers will improve 

patient stratification, there are no alternative treatments available for those patients 

predicted to be resistant to the standard of care. Therefore, it is crucial that a two-armed 

theranostic approach is utilised, in order to boost response in patients predicted to have a 

poor response to existing treatment. The potential utility of metformin, as a novel anti-

metabolic radiosensitiser in rectal cancer is also demonstrated for the first time, with 

alterations to cell cycle, DNA damage repair, and oxidative stress demonstrated as potential 

mechanisms underlying metformin-mediated radiosensitisation in rectal cancer. 
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7.2. Future directions 

The results of this thesis have highlighted a number of further research directions. 

1. We have profiled the transcriptome and metabolome of rectal cancer and non-cancer 

tissue. Further interrogation of this multi-omic data generated from assessing rectal 

cancer and non-cancer tissue is required to identify an integrated multi-omic 

metabolic diagnostic signature. This multi-omic signature may have superior 

diagnostic ability to that obtained using a single omic method alone. In addition, 

combining the upstream transcriptomic data with downstream metabolomic data will 

provide more information on the precise metabolic pathways altered in rectal cancer. 

Through a collaboration with the Amber Centre, TCD, we will perform this analysis 

combining the data obtained from both metabolomic and transcriptomic analyses with 

their biostatistical support and expertise. In addition, these data will need to be 

validated in independent cohorts. 

2. Furthermore, multiple analyses of the metabolome, transcriptome and secretome of 

both rectal cancer and non-cancer rectal samples have been performed in this study. 

However, due to the prospective manner of patient sample collection employed 

throughout this study, only a limited number of matched samples were assessed by 

multiple analytical approaches. We therefore aim to increase the power of the 

matched samples assessed. Assessing the intracellular, secreted and circulating 

metabolome of matched samples from rectal cancer patients, and non-cancer 

patients, would permit a more comprehensive understanding of the precise metabolic 

alterations in rectal cancer, when compared to non-cancer. The Lower GI Biobank, 

established through this study in the Dept. of Surgery, is continuing patient 

recruitment and sample collection of both rectal cancer and non-cancer samples, 

which will aid increasing the power of matched samples available for further analysis.  

3. Due to the prospective collection method of rectal cancer patient samples, the number 

of patients receiving neoCRT, and given a subsequent TRS was limited. Further 

investigation of the metabolome and transcriptome in relation to therapy response in 

a larger patient cohort is warranted. In addition, the 16 metabolites identified in pre-

treatment patient sera as being predictive of patient response will be validated in 

independent multi-centred cohorts of rectal cancer patients, which are currently being 

collected.  
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4. Having identified metabolites involved in the pathogenesis and therapeutic response 

of rectal cancer patient samples, it would be interesting to mechanistically interrogate 

these metabolic pathways to further elucidate their role in radioresponse. For 

example, utilising inhibitors/activators of PC metabolism in vitro, to investigate the 

impact on cellular radioresponse. 

5. Further investigation of the therapeutic index of metformin is required. While the 

effects of metformin treatment on the metabolic phenotype and secretome of non-

cancer rectal tissue was assessed, further examination of the effects of metformin 

treatment on the radiosensitivity of normal rectal tissue should be determined.   

6. Having identified various potential mechanisms of metformin-mediated 

radiosensitisation in this study using in vitro models, it would be necessary to validate 

these findings using other methodologies. A limitation to this study is the small number 

of methodologies utilised to assess each potential mechanism. For example, this study 

utilised only annexin-V/PI flow cytometry to measure apoptosis. To strengthen these 

data, other methodologies, such as western blot and caspase assays should be 

investigated.   

7. Further investigation of the safety and efficacy of metformin as a radiosensitising drug 

in rectal cancer in vivo (using animal models) is required.  

8. Having demonstrated metformin induced alterations to the inflammatory secretome 

of both rectal cancer and non-cancer rectal tissue, it would be important to assess the 

impact of metformin treatment on immune cells, to ensure that metformin treatment 

does not promote pro-tumour immunity. Furthermore, given recent evidence in the 

literature highlighting the radiosensitising effects of metformin being partially 

mediated through its impact on effector CD8+ T cells and NK cells, these cells could be 

assessed in rectal cancer tissue treated with metformin. 

9. To further investigate altered metabolism in rectal cancer, the use of Carbon-13 

metabolic flux analysis would be of great benefit. This method is a powerful tool, 

allowing for the identification and tracking of specific alterations to metabolic 

pathways in cancer cells, and would be of great benefit to further elucidate the specific 

metabolic pathways activated in rectal cancer. Furthermore, this method would be of 

interest to further investigate how metformin treatment alters metabolic flux in rectal 

cancer.  
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10. In addition, the Lower GI Biobank in the Dept. of Surgery has recently initiated the 

collection of post-treatment surgical specimens from rectal cancer patients. These 

samples are an invaluable resource, which will allow for further assessment of 

metabolic alterations in rectal cancer, but also assessment of the predictive biomarker 

panel identified in this study. 
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Appendix 1: Representative images of gating strategy employed for flow cytometry 
experiments. A) Gating on cells to exclude debris. B) Gating on single cells, to exclude 
doublets. 
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Appendix 2: Representative images of γH2AX flow cytometry histograms. A) Representative image of controls. B) Representative image of 
γH2AX MFI of unirradiated HCT116 cells at 20 min, 6 h, 10 h and 24 h post mock-irradiation, stained with γH2AX-Alexa 488 antibody, assessed 
using FITC channel. C) Representative image of γH2AX MFI of HCT116 cells irradiated with 1.8 Gy at 20 min, 6 h, 10 h and 24 h post radiation, 
stained with γH2AX-Alexa 488 antibody, assessed using FITC channel. 
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Appendix 3: Representative image of cell cycle flow cytometry histogram. Cell cycle 
distribution was assessed by PI staining. Image demonstrating the proportion of cells in each 
cell cycle phase following H2O treatment (Blue) or metformin (10 mM) treatment (red), at 48 
h post treatment in SW837 cells. 
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Appendix 4: Representative images of Annexin V/PI staining for apoptosis by flow 
cytometry. A) Representative scatter plot. B) Unstained control. C) Annexin-V only positive 
control. D) PI only positive control. E) Unirradiated HCT116 cells 48 h post mock-irradiation. F) 
HCT116 cells 48 h post exposure to 1.8 Gy radiation.  


