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Abstract

With the increasing number of Unmanned Aerial Vehicles (UAVs) and their applications,

such as performing search and rescue or transplant organ delivery, the need for improving

the UAV connectivity grows. Currently, User Equipment (UE)s have a range of connec-

tivity options, such as WiFi and Lora, depending on the manufacturer’s implementation.

The integration of the UAV as a UE of the mobile network can increase the guarantee

of the UAV’s Quality of Service (QoS) and the range of its available connectivity, due to

higher reliable and range of mobile networks, as the mobile network coverage is much

bigger than a WiFi router coverage, for example. This would, in turn, enable wider and

more reliable applications of UAVs. In this thesis, we investigate how to improve the

QoS of a UAV connected to the mobile network, without requiring changes to the mobile

network.

First research question that this thesis answers is "Which are the main challenges a

connected UAV may encounter if deployed in a typical modern-day cellular network?".

To derive our contributions, we investigate the challenges an operator should consider

as UAVs become UEs of the network. We analyse the 3rd Generation Partnership Pro-

gram (3GPP) specifications and the existing research literature. We illustrate our points

by analysing a real-world UAV connectivity dataset. We discuss the challenge of plan-

ning network coverage when considering coverage for flying UEs and the physical cell

identifier (PCI) collisions issues aggravated by such UEs. We observe that the identified

challenges can be addressed either by the operator, or by the UAV. In the remainder of

the thesis, we focus on the implementation on the UAV side, as it can accelerate the UAV
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integration to the network.

The second research question we investigate is "How to adapt the UAV height in order

to increase UAV’s QoS?". In contrast with existing approaches that define the horizontal

path only, we propose a Reinforcement Learning (RL)-based algorithm to optimise the

QoS by adapting the height of a UAV, as it moves dynamically within a range of legally

allowed heights, focusing on increasing its throughput. We investigate the proposed so-

lution on a dataset of a UAV flying in different altitudes in the city of Dublin. As the

empirical dataset is limited to two locations, in order to assess the wider applicability of

the proposed approach, we investigate the performance of the proposed RL approach in

a simulated environment. We vary the number of base stations and density of buildings

to investigate how do they affect the optimal height of the UAV. Our results show that,

in most scenarios, the proposed RL-based approach outperforms the closest related work

baselines, achieving up to 6% in both investigations using real data and in simulation.

In order to facilitate UAV’s use of the unlicensed spectrum, in this thesis we answer

the third and final research question "How to better characterise the unlicensed spectrum

in order to enable more efficient spectrum usage?". We propose a Convolutional Neural

Network (CNN) approach to characterise the spectrum and facilitate dynamic access. We

perform classification by processing spectrograms as images. We propose using object de-

tection and a feature extraction module to extract features from spectrograms. In contrast

to other methods, our proposed approach can recognise not only different Radio Access

Technologys (RATs) in the shared spectrum but also identify critical parameters such as
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inter-frame duration, frame duration, centre frequency, and signal bandwidth. The sce-

nario considered is the coexistence of WiFi and Long-Term Evolution (LTE) transmissions

in a shared spectrum. We implement and evaluate our solution with a real-world trans-

missions dataset and a test-bed environment. Our results show that our approach has an

accuracy of 96% in the classification of RATs with the real-world dataset.

In summary, the three main contributions of this thesis, towards the integration of

UAVs into 5G and beyond are: the identification of the mobility challenges a mobile oper-

ator may encounter if a UAV is integrated as a UE of the mobile network; a RL approach to

optimise the UAV’s QoS while adapting UAV’s height; and an object detection approach

that classify different RATs and extract features from the transmissions.
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"Be strong and of a good courage; be not afraid, neither be thou dismayed: for the

Lord thy God is with thee whithersoever thou goest.”

Joshua 1:9
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Chapter 1

Introduction

Nowadays, it is common to hear news on Unmanned Aerial Vehicles (UAVs), not only

as a toy but also performing roof inspections or streaming events. However, all these

applications require Line-of-Sight (LoS) between the pilot and the UAV. If the UAV had

the possibility of being controlled from any distance, the number of possible applications

using them would even increase. Fifth Generation Mobile Networks (5G) are the latest

generation of mobile networks, and one of its innovations is the support for different

types of User Equipments (UEs), including UAVs. The research community is investigat-

ing what technologies and protocols are needed to make this possible. In this thesis, we

explore how to improve UAV’s Quality of Service (QoS) when they operate as one of the

5G or Long-Term Evolution (LTE) UEs.

In this introductory chapter, we outline the motivation for our research and state the

main contributions of this thesis. The chapter is structured as follows. We begin by dis-

cussing the differences between a connected UAV and a standard UE. We then describe
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the envisioned architecture considered in this thesis. Then we describe the main contri-

butions of this thesis and list the publications associated with this research.

1.1 Motivation

As soon as the cellular mobile device started being part of society, it impacted our lives,

changing the way we communicate. In the UK, 87% of adults have smartphones, ac-

counting for almost 50% of the internet traffic [1]. 5G provides data more efficiently when

compared to previous generations, enabling new use cases for the mobile cellular net-

work. 5G is a paradigm shift from previous generations of the mobile network; it enables

a massive amount of data transfer and a higher degree of connectivity, lower latency and

several new user types, for example, autonomous cars and UAVs applications.

A UAV, also known as a drone, is an aircraft that does not need a pilot on board, al-

though it needs some communication with its pilot. Nowadays, UAVs use the unlicensed

spectrum for their communications. The most used Radio Access Technologys (RATs) are

WiFi and Lora for general control with LoS [2]. The industry has also shown some concern

about the UAV security and has invested in encryption to protect the messages exchanged

between the pilot and the UAV. The security of transmissions in the unlicensed spectrum

is a concern for all UEs that use this spectrum. Figure 1.1 shows an example of a UAV that

can transmit in 2.4 to 2.48 GHz (unlicensed spectrum).

Even though UAVs are starting to be used for delivering goods and other applications,

they still need LoS with the pilot or a pilot helper extended visual line-of-sight (EVLOS).

Many countries, as stated in regulations in European countries and the United Kingdom

Erika G. P. da FONSECA Ph.D. Thesis
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FIGURE 1.1: DJI-mini 2 [3].

[4], [5] expressly mention the need for LoS between the pilot and the UAV. LoS is needed

because, to date, there is no other way to guarantee a continuous connection to the UAV,

which is indispensable for its secure operation and localisation of the communication be-

tween the UAV and its pilot or controlling entity.

With the rise of UAV technology, UAVs may play the role of infrastructure for the

5G network (providing connectivity for ground users), or as the users of the network

themselves. They can operate as a flying Base Station (BS) and provide extra coverage to

Ph.D. Thesis Erika G. P. da FONSECA
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isolated areas, after natural disasters, for example. They can also be users of the network,

making use of the cellular connectivity to provide security surveillance, search and rescue

operations, building inspections (roofs, chimneys, siding), agricultural surveys, under-

water inspections, mapping and surveying, delivery, streaming data at shows and events,

etc. [6]. Considering all of these possible applications and several others which may ap-

pear in the future, it is essential that these new users can be connected to the 5G and future

networks.

The connected UAV is a fundamentally new UE of the network, as its movement and

altitude are different from those of the Ground User Equipment (GUE), which were the

leading clients in the previous mobile network generations.

The mobile network, so far, has been designed for GUEs. A smartphone is an example

of GUE, as much as an autonomous vehicle. These users are usually located around 1.5

meters off the ground and sometimes inside buildings [7]. The way these GUEs move

usually depends on the street design and the speed they can achieve; for example, if a

smartphone is inside a car, it can move much faster than if it is carried by a person walking

on the street. However, all these possible behaviours can be easily predicted, as if the GUE

is inside a car, it needs to move on the street subject to a maximum speed. If a walking

person is carrying it, one can also predict the person is following a walking path and at

an average speed. It means that the existing mobile network has had, so far, predictable

user behaviours and could optimise its coverage and QoS to improve the UE experiences.

With the introduction of UAVs as a UE of the mobile network, there is a paradigm-shift

from the perspective of UE behaviour, location and movement. For example, a UAV may

Erika G. P. da FONSECA Ph.D. Thesis
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need constant connection with its pilot, or be transmitting data during all of its flight (in

case of security and surveillance, for example), or periodically send its location updates

to regulatory entities. These connection requirements are different from the ones a smart-

phone would have in its normal utilisation. Table 1.1 shows the requirements defined in

LTE Release 15 regarding UAV connectivity. They specify, for example, a high altitude for

UAVs to maintain connection when compared to the maximum altitude allowed by reg-

ulators in most European countries [4], [5]. To meet the requirements presented in Table

1.1 and the even stricter requirements which are expected in future releases, the network

will need to adapt to be able to serve the connected UAVs.

Parameters Value
Latency for traffic 50 ms
UL/DL data rate 60-100 kbps

Application data rate (UL) up to 50 Mbps
UAV UE height up to 300 m
UAV UE speed up to 160 km/h

TABLE 1.1: UAV requirements in 3GPP Release 15.

The UAV also brings a challenge from the BS coverage perspective, as the coverage

was designed for the GUEs. The network was designed to serve the GUEs with the best

coverage, which means that the planned and optimised coverage is at the ground level.

UAVs can fly much higher than building heights, in addition to having a less predictable

movement pattern, as they can move in any direction.

Previous work, such as [8], [9], investigates the feasibility of using existing network

infrastructure to provide reliable wireless connectivity for UAVs. These studies conclude

Ph.D. Thesis Erika G. P. da FONSECA
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that currently deployed networks would need to adapt some of their design configura-

tions, such as increasing BS heights [10] or changing the tilt of the antennas [11] so as to

enable connectivity for UAVs. Redesigning the terrestrial network infrastructure may be

unfeasible, and an adaptive solution on the UAV side may be necessary to accelerate the

UAV integration into the network.

To model the performance and behaviour of UAV connectivity in order to devise a

solution, one can use stochastic geometry as in [12]. Stochastic geometry is a study of

random spacial patterns that uses statistical information of the environment for its mod-

els. However, as the UAV will fly in many different cities and with different paths, the

researcher would need to have access to the statistical distribution of the features of the

environment for each position the UAV takes. Also, if any changes happen to the environ-

ment, they could affect the calculations. That is why the use of Machine Learning (ML) is

well suited to solve UAV connectivity issues [13], [14]. If the UAV is using the unlicensed

spectrum (as they are nowadays), there is also the difficulty in achieving efficient access

to the spectrum, as it is susceptible to jamming attacks and can be overused by greedy

UEs. Works as [15], [16] investigate applications of intelligent RATs in unlicensed spec-

trum and their future trends. The authors argue that intelligent access to the unlicensed

spectrum is fundamental for connected UAVs, and demonstrate that ML technologies are

a suitable solution to access the spectrum opportunistically.

One way to possibly improve the UAV’s QoS when connected to the mobile cellular

network is to optimise its flight path. Several works in the literature have looked into the
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problem of optimising the UAV’s path with different objectives, like shortest path discov-

ery so as to avoid building collisions [17], or considering battery recharging requirements

[18]. There are even a few works that consider the UAV connectivity to the cellular mobile

network when deciding the UAV’s horizontal path [14], [19]. However, these works do

not consider UAV dynamic height optimisation in their solutions.

Another way to improve the UAV’s QoS is for the UAV to improve how efficiently

it uses the spectrum. Nowadays, UAVs primarily use unlicensed spectrum, which is in-

creasingly being shared by a variety of UEs. It is important that the UAVs manage to have

access to the spectrum efficiently. In [20], authors present the issue that if no changes

are made to the way UAVs communicate, UAVs can lead the unlicensed bands to seri-

ous spectrum scarcity and security issues. They also propose the use of cognitive radios

for UAVs. Cognitive radio is a programmable radio that can be configured dynamically

to use different wireless channels. It is commonly used to increase spectrum efficiency,

avoiding interference and congestion. In case a UAV is equipped with such a radio, it can

dynamically change wireless channels in order to guarantee its best QoS on the licensed

or unlicensed spectrum. In [21], authors study the spectrum sensing for aircraft in or-

der to not interfere with other transmissions with the command tower, assuming that the

aircraft also will have access to a cognitive radio.

A possible way the UAV could acquire information to improve its QoS is by perform-

ing more detailed sensing of the spectrum in order to use it dynamically. A UE usually

makes periodic measurements on the spectrum that are used by the BS to decide when the

UE should perform a handover [22]. As the UAV faces a completely new and unplanned
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environment, it could benefit from performing more detailed sensing in order to make a

more reasoned decision about its mobility management1, and consequently, improve its

QoS. In the case of the UAV being able to operate on licensed and unlicensed bands, a

spectrum characterisation mechanism could help the UAV to choose which band is the

most advantageous to its application. Furthermore, spectrum characterisation can also

provide information to the BS to take a centralised decision about the UAV mobility.

To address the issues identified with UAV connectivity, in this thesis we investigate the

issue of how to adapt the height at which the UAV flies to improve the UAV’s connectivity

and how to effectively perform spectrum characterisation in shared spectrum. In addition

to the challenges described above, we consider the challenge of providing UAV connec-

tivity using the current infrastructure. We take this approach to understand what can be

achievable to these UEs without additional infrastructure being deployed nor modified

in order to accommodate connected UAVs. To evaluate our approaches, we make use of

both real-world data and simulations.

1.2 Scenario of Interest

The envisioned architecture in our research consists of 3 main components, as shown in

Figure 1.2: the connected UAV, the BS from LTE or 5G, and the GUEs. We also consider

other users of the unlicensed spectrum, like sensors, WiFi users and routers, etc., when

investigating the unlicensed spectrum usage.

1In this thesis when we refer to mobility management we mean the mobile cellular network handover
management.
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We define connected UAV as a UAV that is a UE of the cellular mobile network, con-

nected by LTE or 5G technology. We assume the GUEs and BSs will behave as described

in the 3rd Generation Partnership Program (3GPP) regulations, being able to operate in li-

censed and unlicensed spectrum. The UAV is equipped with an omnidirectional antenna

that is used for the communication. The BS, when in a real environment, is divided into

cells, each of them with a directional antenna2 that employs Multiple Input Multiple Out-

put (MIMO) technology. In the simulator environment, we assume a directional antenna

for each BS.

We assume the UAV as a UE of the network does not have any extra modifications

when compared to a GUE, as in [19]. The main difference between a UAV and a GUE is

the 3D movement and height of the UAV that can be adapted.

FIGURE 1.2: Network architecture considered in the thesis.

2More details on the antenna characteristics of real-world measurements are described in Chapter 4
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Figure 1.3 illustrates how the UAV connection may arise. Usually, BSs antennas are

pointed to the ground, where the GUEs stay. The angle β is the antenna’s azimuth that

can be configured mechanically or electrically by the network operators. This strategy is

used so the main lobe of the antenna, which is the one where most of the transmission

power is directed, would be covering most of the UEs. The signal coming from the serv-

ing BS is a desirable one, and the signal coming from other BSs are interference. Buildings,

mountains and other objects can cause physical blockage, which helps avoid the interfer-

ence from other main-lobes for GUEs. The side lobes usually do not generate interference

for the GUE, as they are pointed to the sky. As there was no need to understand what was

happening in the sky coverage, it was a subject that was ignored for long time.

With the use of connected UAVs, the air coverage became a topic of investigation.

Researches from Qualcomm investigated in [23] that UAVs have coverage from the side-

lobes of the antennas. Even though the side-lobes have a weaker signal power, as there are

no obstacles between the UAV and the BSs, the strength is enough to provide connection

to the UAV.

An issue that the UAV faces, that GUEs did not meet before, is that the UAV has LoS

to many antennas at once. LoS is usually desirable when one wants a reliable connection.

However, LoS with more than one BS generates interference and other challenges that will

be discussed further in Chapter 3.
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FIGURE 1.3: BS-UAV connection.

1.3 Research Questions

Motivated by the main challenges a UAV can encounter when it is connected to the mo-

bile cellular network and the research gaps, this thesis aims to provide an answer to the

research question of "How to improve the QoS of a connected UAV?". We propose that

there is more than one way to answer this question, and in Chapter 3 we introduce the

main challenges a mobile operator will encounter as more UAVs become UEs of the net-

work. We propose several directions in which these challenges can be addressed on the

network side. However, as the adaptations on the network side may take several years to

deploy or may not be implemented by a network operator at all, we also present direc-

tions on how the UAV itself can improve its QoS or help the network to do so. In order to

avoid poor coverage and other issues presented in Chapter 3, we investigate more deeply

the biggest difference a connected UAV has to a GUE: its freedom to change its height.

This narrows down the research question to "How to adapt the UAV height in order to
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increase UAV’s QoS?". Once the UAV avoids the poor coverage areas, if it is using the

unlicensed spectrum it is essential to determine when there is a transmission or not, to

share it. In order to not only use it, but use it optimally, we investigate the efficient use

of the unlicensed spectrum (the one that is used for UAVs so far). This narrow down the

research question "How to better characterise the unlicensed spectrum in order to enable

more efficient spectrum usage?".

The research questions are described and enumerated as follow:

• RQ1: Which are the main challenges a connected UAV may encounter if deployed

in a typical modern-day cellular network?

• RQ2: How to adapt the UAV height in order to increase UAV’s QoS?

• RQ3: How to better characterise the unlicensed spectrum in order to enable more

efficient spectrum usage?

In possession of the research questions, next we discuss the proposed solutions.

1.4 Main Contributions

Our contribution in this thesis is to investigate the main challenges associated with inte-

grating UAVs into existing cellular networks and propose directions to improve UAV’s

QoS. In the proposed approaches, we utilise ML techniques to assist the UAV to charac-

terise the spectrum and to take decisions of its height path, as illustrated in Figure 1.4.

Our main contribution point-by-point are:
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FIGURE 1.4: Summary of contributions.

• C1: it is a contribution provided to address RQ1. We investigate in detail the 3GPP

regulations and analyse what could be an issue in the mobility management per-

spective, in case a connected UAV start being a UE of the mobile network without

any change to the actual network configuration. We discuss the challenge of plan-

ning network coverage when considering coverage for flying users, and the physical

cell identifier (PCI) collision and confusion issues that can be aggravated by these

users. We also explain the future handover challenges the UAV might encounter,

specifically the frequent number of handovers and the possibility that the UAV dis-

connects because of handover issues. We propose directions to solve the challenges

a UAV could bring to the network, either in the network and the UAV, in order to
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avoid main issues to UEs.

• C2: It is a contribution provided to address RQ2. We investigate how the UAV could

improve its own QoS adapting its height. The height adaptation helps the UAV to

maximise its own throughput as it moves through the environment. We propose

novel Reinforcement Learning (RL) approach based on common UE measurements,

as Reference Signal Received Power (RSRP) and UAV height. The UAV optimise its

height in order to increase throughput. We show that the RL proposed model can

adapt to different scenarios.

• C3: It is a contribution provided to address RQ3. As another way for improving

an UE’s QoS in unlicensed spectrum, we propose an approach that combines the

application of a Convolutional Neural Network (CNN) model that makes Object

Detection (OD) on spectrograms for classifying different RATs and a feature extrac-

tion component for characterising the RATs. We show that OD applied to real-world

data is an efficient way to detect and classify different RATs under different levels

of interference, and that the precision of the extracted features are defined by the

size of the analysed image. The proposed approach can be useful in spectrum mon-

itoring that is needed for unlicensed UEs as UAVs, for facilitating the coexistence of

different RATs in a shared spectrum.

During the thesis we noticed lack of studies with commercial transmissions and data,

to minimise it, we provide all the algorithms developed for analysing the real-world data,

either for the UAV collected data in the Dublin city centre, as well for the one used for
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OD with WiFi and LTE transmissions collected in Belgium. The algorithms are available

to the community in our public available GitHub repository3.

Labelled data is a challenge to OD as it has to be done manually. In order to run our

experiments and help the research community, we provide a dataset of labelled spectro-

grams of real-world transmission of LTE and WiFi. This dataset can be access in our public

available GitHub repository4.

1.5 Outline

The remainder of this thesis is organised as follows:

• Chapter 2 Concept Review introduces the necessary background to understand the

investigated challenges presented in this thesis. It explains concepts as mobility

management in 5G, UAV in the unlicensed spectrum and ML concepts to under-

stand the proposed approaches.

• Chapter 3 Connected-UAV Integration to the Network: Open Challenges answers RQ1

and presents C1. It introduces a deep investigation on the mobility management

challenges a connect-UAV would encounter if no adaptations are done at the net-

work and UAV level. Following the discussion about the challenges, this chapter

presents analysis of existing literature addressing research questions related to ours,

to motivate the literature gap our thesis is addressing

3https://github.com/Erikagpf/WiFi-LTE-commercial-data–labelled-for-OD
4https://github.com/Erikagpf/DQN-for-UAV-height-adaptation
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• Chapter 4 Adaptive Height Optimisation for Connected UAVs - Investigation based on

real-world measurements introduces a RL solution for RQ2 and presents C2 in an ex-

perimental scenario approach. The proposed solution is trained and tested on real-

world data collected in Dublin city centre in two different locations.

• Chapter 5 Adaptive Height Optimisation for Connected UAVs - A simulation investigation

answers RQ2 and presents C2 with an investigative solution proposed in Chapter 4.

We have extended the evaluation to simulation environment, so that we can vary

the building density and BS density and evaluate how it affects the UAV’s QoS.

• Chapter 6 Radio Access Technology Characterisation Through Object Detection addresses

RQ3 and presents C3. It examines the application of OD to not just classify the RATs

in the spectrum, but also to extract features through the position of the transmissions

on a spectrogram.

• Chapter 7 Conclusion and future investigation discusses the main conclusions from

this PhD thesis and future directions for the research into connect-UAVs. It presents

some other challenges not investigated in this thesis that are still open for investiga-

tion.

1.6 Dissemination

In this section, we list the dissemination of the research work during the PhD project.

Here we list papers written during the PhD project and the research question to which

they are related.
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RQ1:

• Fonseca, E., Galkin, B., Kelly, M., DaSilva, L. A., and Dusparic, I. "Mobility for

Cellular-Connected UAVs: Challenges for the Network Provider," 2021 Joint Euro-

pean Conference on Networks and Communications and 6G Summit (EuCNC/6G

Summit), 2021, pp. 136-141. I was the primary researcher in this paper, the non su-

pervisor author ( Kelly, M.) helped on the analysis of the challenges, and the super-

visors helped with comments and improving of the content. This paper is presented

in Chapter 3.

• Galkin, B., Amer, R., Fonseca, E. and DaSilva, L.A. "Intelligent Base Station Asso-

ciation for UAV Cellular Users: A Supervised Learning Approach," 2020 IEEE 3rd

5G World Forum (5GWF), 2020, pp. 383. My role in this paper was to discuss the

content and write the Related work section of the paper, the non supervisor author (

Amer, R.) helped on the analysis of the results and created the antenna model used

in the simulation. The supervisors helped with comments and critiqued the content.

This paper is cited in Chapter 2 and as a base of the simulation scenario.

• Galkin, B., Fonseca, E., Amer, R., DaSilva, L.A. and Dusparic, I. "REQIBA: Regression

and Deep Q-Learning for Intelligent UAV Cellular User to Base Station Association,"

IEEE Transactions on Vehicular Technology, 2021. I was the primary researcher in

this paper, the non supervisor author ( Amer, R.) helped on the analysis of the results

and created the antenna model used in the simulation. The supervisors helped with
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comments and critiqued the content. This paper is cited in Chapter 2 and as a base

of the simulation scenario.

RQ2:

• Galkin, B, Fonseca, E., Lee, G., Duff, C., Kelly, M., Emmanuel, E., and Dusparic, I. "Ex-

perimental Evaluation of a UAV User QoS from a Two-Tier 3.6GHz Spectrum Net-

work," 2021 IEEE International Conference on Communications Workshops (ICC

Workshops), 2021, pp. 1. My role in this paper was to discuss the content and

analyse the data with the partners. I also helped describing the experiment. The

non supervisor authors ( Lee, G., Duff, C., Kelly, M., Emmanuel, E.) helped on the

analysis of the results and conducted the operator portion of the experiment. The

supervisors helped with comments and improving of the content. This paper gen-

erates the data used in Chapter 4, proving the experimental data for the analyse of

the proposed height optimisation model.

• Fonseca, E., Galkin, B., Amer, R., DaSilva, L. A., and Dusparic, I. "Adaptive Height

Optimisation for Cellular-Connected UAVs: A Deep Reinforcement Learning Ap-

proach". To be submitted to Elsevier, Computer Communications, 2022. I was the

primary researcher in this paper, the non supervisor author ( Amer, R.) helped on

the analysis of the challenges, and the supervisors helped with comments and de-

velopment of the content. This paper is presented in Chapters 4 and 5.

RQ3:
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• Fontaine, J., Fonseca, E., Shahid, A., Kist, M., DaSilva, L. A., Moerman, I., and De

Poorter, E., "Towards low-complexity wireless technology classification across mul-

tiple environments," Elsevier, Ad Hoc Networks, 2019, 91, pp. 101881. My role in

this paper was to apply the CNN solution proposed in the same paper. This paper

is presented in Chapters 2 as reference and used to compare the performance of the

proposed method for RAT analysis in Chapter 6.

• Utrilla, R., Fonseca, E., Araujo, A. and Dasilva, L.A.. "Gated recurrent unit neural

networks for automatic modulation classification with resource-constrained end-

devices," IEEE Access, 2020, 8, pp. 112783. My role in this paper was to discuss

the possible ML techniques used in the literature and help on the experiments. To-

gether with the comments and reviewing the content. This is part of Utrilla, R.’s

thesis.

• Fonseca, E., Santos, JF., Paisana, F., and DaSilva, LA.. "Radio Access Technology char-

acterisation through object detection." Elsevier, Computer Communications 168, 2021,

pp. 12. I was the primary researcher in this paper, the non supervisor authors ( San-

tos, JF., Paisana, F.) helped on implementation of the approach and also reviewing

the paper. The supervisors helped with comments and improving of the content.

This paper is presented in Chapter 6.
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Chapter 2

Background

In the previous chapter, we outlined our vision for UAVs as a UE of the mobile cellular

network. In this chapter, we will introduce state of the art in mobility management in 5G,

spectrum usage in 5G and Future Networks, and UAV movement optimisation.

Section 2.1, introduces the definition and explanation of UE mobility management

in 5G networks. Section 2.2 introduces the 5G use of unlicensed spectrum. We then,

introduce the ML techniques used in this thesis in Section 2.3. In Section 2.4, we conclude

the chapter.

2.1 Mobility Management in 5G

In order for a UE to not lose its connection with a network once it moves outside the BSs

coverage, it is necessary to establish a new connection to another BS. A BS usually has

more then one cell, where each one has a different coverage area. Handover is the process

by which a UE changes its serving cell. It is typically triggered when the UE moves out
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of the coverage area of its current serving cell. Ideally, the handover should be seamless

to the UE, such that it would not suffer any data interruption during the process. If a UE

experiences multiple handovers, a handover delay might occur, resulting in substantial

deterioration to the UE QoS [24]. To proceed with a handover, the UE needs to detect pilot

signals from neighbouring cells. The list of neighbour cells is defined on the Neighbour

Relation Table (NRT) that is stored in the connected cell. In 5G, this list is generated locally

by Automatic Neighbouring Relation (ANR) based on UE measurements of RSRP from

nearby cells. ANR was introduced in Third Generation Mobile Networks (3G) and was

shown to reduce planning and operational costs for mobile networks providers [25].

Mobility management in 5G is performed by three main entities, illustrated in Figure

2.1 and specified in [22]. These are the Access and Mobility Management Function (AMF),

next generation NB (gNB) (that is the BS equivalent as defined in 5G, which may comprise

one or more cells)1, and the UE. The AMF is at the core of the network, which is a central

part of the mobile network, and the gNB and UE are in the Radio Access Network (RAN),

which is responsible for connecting the UEs through radio links to the core of the mobile

network. AMF is responsible for managing the UE registration, initiates the authenti-

cation, and for handling connection and mobility management for UEs. The gNB is a

transceiver that provides connection to the UE; it has a connection to AMF via the NG

interface and to other gNBs via the Xn interface. The last entity is the UE itself.

In 2G and 3G networks, the NRT is deployed as part of the operations and mainte-

nance system, which is equivalent to Operations Administration and Maintenance (OAM)

1In this thesis, if we refer to the serving BS as gNB, we are considering the UAV connected to the 5G
network. When we use the generic term BS we refer to any technology BS, not necessarily 5G.

Erika G. P. da FONSECA Ph.D. Thesis



2.1. Mobility Management in 5G 23

FIGURE 2.1: Entities involved in a UE handover.
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in 5G. In 5G, the gNB has the permission to create new entries in the NRT. The ANR de-

termines which cell should be added based on UE measurements and OAM updates. The

UE can perform measurements to check for new cells, measure signal quality, determine

if it needs to make a handover, or add a new cell to the ANR [22].

The purpose of this procedure is to transfer measurement results from the UE to the

network, in order to allow the network to decide how to improve performance for the

UEs and the network itself. The UE can initiate the measurements only after successful

security activation in the network.

These measurements occur as often as determined by the gNB and vary based on

the implementation of each operator. If the measurement is made in the same frequency

band (intra-frequency), it can be done without any specific preparations to make the mea-

surements. If the measurements are in another frequency (inter-frequency), the network

needs to schedule a measurement gap where the UE stops receiving and transmitting

data, changes to the frequency where it has to make the measurements, and senses it in

order to find more suitable BSs. These gaps can affect the performance observed by the

UE, if the UE is in dedicated mode (transmitting and receiving data). In idle mode, the

UE can perform the inter-frequency measurements without impacting its QoS. The mea-

surements are sent to the serving cell, which uses them to check for events to trigger a

handover, or to add a new cell to the ANR, for example.

The information regularly decoded from a measurement by the UE includes the local

identifier of the cell, named PCI in LTE and 5G. If the PCI is not in the NRT, then the
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serving cell can send a message instructing the UE to sense the evolved cell global iden-

tifier (ECGI) of that cell, that is its global ID, in order to introduce this new cell into the

ANR. To determine the ECGI, the UE needs to decode more data from the sensed BS,

and to decode the ECGI it needs more than a single measurement gap. If the UE is in

connected mode, actively receiving and transmitting data, the UE might not have time to

perform the inter-frequency measurement and to decode the ECGI, as a result of which

the UE might be disconnected.

The mobility events, defined by the 3GPP [22], may happen after the measurements

are made and passed to the gNB. These events are described below. It is essential to

understand them so we can understand how the handover occurs in detail and how it

impacts the challenges a UAV will find when introduced to the mobile network. They are

divided into intra-RAT, denoted as events A, and inter-RAT, denoted as events B.

• Event A1: The serving cell signal becomes better than an operator-defined signal

quality threshold, i.e. the cell is providing good signal quality. This event is com-

monly used to cancel an ongoing handover procedure, to avoid a ping-pong effect

from the handover.

• Event A2: The serving cell signal becomes worse than an operator-defined signal

quality threshold, i.e. the cell is not providing a good signal quality. This event can

trigger Inter-RAT measurements, for example, as new connectivity options must be

considered for the UE.
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• Event A3: The neighbour cell signal becomes better than the serving cell signal by a

certain offset. This event can trigger the handover process to the neighbour cell.

• Event A4: The neighbour cell signal becomes better than an operator-defined signal

quality threshold. This event is commonly used to trigger a handover. In this event,

the handover is not triggered by the radio-signal conditions, but due to a network

strategy specified by the operator, such as load balancing across cells, for example.

• Event A5: The operator defines 2 thresholds, refereed to as threshold1 (with lower

value) and threshold2 (with higher value) in 3GPP. This event occurs when the serv-

ing cell signal becomes lower than threshold1 and the neighbour cell signal higher

than threshold2. This event can trigger a handover based on the absolute measured

signal strength values. This time-critical handover can be useful if the UE is leaving

the serving cell coverage area and needs to handover, even if the target cell is not

better by an offset than the serving cell to trigger an event A3.

• Event A6: The neighbour cell signal becomes higher by an offset than the serving

secondary cell signal. In the case the UE has a multi-connection to more than one

BS. It can trigger a handover from its current secondary cell to a new one.

• Event B1: An inter-RAT neighbour provides a stronger signal than an operator-

defined signal quality threshold. This event may trigger a inter-RAT handover.

• Event B2: The operator defines 2 thresholds, referred to as threshold1 (with lower

value) and threshold2 (with higher value). The signal from the serving cell becomes
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lower than threshold1, and an inter-RAT neighbour provides a signal higher than

threshold2. This event can trigger an inter-RAT handover.

Although the UE measurements are already described in the 5G standard [22], in LTE

there are two other ways in which a cell may be added to an ANR [26], which might be

adopted in 5G depending on the individual operator. The first alternative to the UE taking

measurements is the UE transmitting an uplink ID, which should be unique locally. The

cells that detect the signal above a certain threshold will add the serving cell of the source

UE into their NRT. Another possible solution is to add a cell to the table once a UE loses

connection and re-connects in a new cell. The new cell would add the last cell to which

the UE was connected into its NRT. As this method makes use of a UE disconnection, it

cannot be applied if the operator wants to provide seamless handover at all times.

This section reviews the mobility management concepts to understand the challenges

a UAV may encounter related to handovers and sensing. We defined the components

related to mobility management, their functions in the network and how the handover

process occurs. Then, we introduced what is measured by the UE and the possible events

that may trigger a handover. In the next section, we will investigate the use of the unli-

censed spectrum by LTE and 5G networks and how the UAV may be included as a UE of

this system.
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2.2 UAV in the Unlicensed Spectrum

As presented in Chapter 1, 5G will operate in the unlicensed spectrum. 3GPP Rel. 16 [27]

presents New Radio Unlicensed (NR-U) with UE operating in the license-exempt spec-

trum and therefore required to coexist with other RATs. NR-U are the new radios in the

5G that will work not just in the licensed parts of the spectrum but also unlicensed ones.

There are two possible ways of using LTE and 5G in the unlicensed spectrum, anchored

or standalone. The anchored, is the license-assisted access (LAA) method, that was first

introduced in LTE-LAA. This method, the UE has a control channel in the licensed spec-

trum, although, its data is mostly transferred through the unlicensed spectrum. In this

scenario, the sensing done is inter and intra-frequency, as it needs to sense in the unli-

censed and licensed spectrum. In the standalone method, the UE operates only on the un-

licensed spectrum. Its application is focused on neutral hosts (BSs’s equipment that could

be used by different operators depending on demand) and in the industry 4.0, where it is

possible to implement the 5G technology locally without the need of having a dedicated

bandwidth. The bandwidths envisioned to be used for the NR-U so far are in the 5 GHz,

6 GHz and 60GHz, and 3.5, 3.6, 3.7, 3.8 GHz where allowed.

To work in the unlicensed spectrum, the NR-U devices will need to coexist with the ex-

isting RATs dynamically. Spectrum characterisation could be used for better understand-

ing of the unlicensed bands. As a UAV is a UE of the 5G network, it has the capability of

using the license-exempt spectrum, and this is what has happened so far.

A challenge that comes with this coexistence is that usually the RATs used in cellular
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networks are not designed to coexist with unlicensed spectrum users, as the mobile cellu-

lar RATs were created to work in the licensed spectrum. Consequently, there is research in

how to adapt RATs that were initially designed to use license spectrum, to allow to share

the unlicensed spectrum with unlicensed UEs in a fair manner.

The unlicensed spectrum consists of multiple of radio channels that can be used by a

transmitter without previous authorisation. There, devices can select which channels to

transmit on, but before transmitting they need to determine the presence of other users on

the radio channel. RATs like WiFi and Bluetooth, for example, were created to act in the

unlicensed spectrum. Therefore, taking WiFi as an example, it has a mechanism to avoid

collision between users and adapt in a situation where the spectrum is overloaded, using

a technique called Carrier-Sense Multiple Access with Collision Avoidance (CSMA/CA).

To apply this technique, WiFi transmitters need to sense the spectrum before transmitting.

CSMA/CA, also tracks the number of re-transmissions and collisions during its transmis-

sion, to understand how overloaded is the spectrum. Being able to sense the spectrum is

a necessary step to avoid a collision when using the unlicensed bands.

For communication in cellular mobile networks, the LTE and 5G standard does not

specify any sensing before transmitting. The measurement reports are used only with

mobility management purposes. In the licensed spectrum, the network operator owns

the spectrum and manages the access through the scheduling of the spectrum resources.

The scheduling is performed by a centralised entity, meaning that sensing and collision

detection by users themselves is not necessary. Some researchers [20], [28] consider a cen-

tral entity for unlicensed spectrum too, where all the unlicensed users would connect to
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this central, which would manage the spectrum. The implementation of such spectrum

sharing solution would need the cooperation of all unlicensed UEs and also, the modifi-

cation of many of them to work in such a centralised approach, as the WiFi and Bluetooth.

An alternative to the centralised approach is the decentralised approach, where each

UE senses the spectrum in order to avoid collisions with other transmissions. A common

approach from the unlicensed UEs is to have a Cognitive Radio (CR) to allow the use

of different bands of the spectrum. The common steps a unlicensed UE or BS needs to

implement before using the network in a distributed manner are:

• Spectrum sensing: as the use of the spectrum should occur when there are no other

transmissions, it is crucial to sense if there are transmissions occurring. This is con-

sidered the most important function of the use of the unlicensed spectrum [29], [30].

• Spectrum decision: this function receives information from the spectrum sensing

function and decides which is the best channel to use. For this, the spectrum de-

cision function considers also the type of UE and its requirements, such as latency

and rate.

• Spectrum sharing: once the channel is chosen, this function decides when to trans-

mit in order to avoid interference and to have a fair use of the spectrum.

• Spectrum mobility: in case the chosen channel does not provide the requirements of

the UE anymore, this function would perform the mobility to another channel, once

it is decided by the spectrum decision function.
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In this thesis, we investigate the spectrum sensing function in order to not only sense

the spectrum, but also, characterise it. The characterisation provides more information if

the channel is in use or not. Our approach provides information about the duration of

the transmission, the bandwidth they are using, their centre frequency, and the RAT used

for them. This information can be used by the spectrum decision and spectrum sharing

functions in order to take a more informed decision. We do not investigate the other func-

tions of the cognitive approach because they are likely to be highly application oriented.

However, all applications could get advantage of the proposed spectrum characterisation.

In the works of [20], [28] it is introduced several reasons for the connected UAV to

use the unlicensed spectrum in a dynamic approach (cognitive UE). These reasons are

described bellow:

• Security: UAVs are considered critical users as it needs continuous connection to its

pilots. Conventional attacks to these users are jamming attacks, that is a high inter-

ference to a spectrum band, or the overload of that band. In this attack, a UE using

WiFi for example, increases its energy consumption due to package re-transmission.

When a cognitive UE is under this attack, it would change its channel as it would

understand that the channel is busy.

• Energy efficiency: due to packet loss of over-crowed bands, the UAV presents a

high re-transmission rate [20]. Although, the opportunistic use of licensed and un-

licensed spectrum allows the UAV to make a smarter use of the spectrum. [31]
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presents a method to maximise energy efficiency based on optimisation of the phys-

ical and Medium Access Control (MAC) layers. Authors conclude that the possi-

bility of using more channels increase the efficiency in bits/joule and bits/second

throughput.

• Opportunistic spectrum use based on UAV requirement: depending on UAVs appli-

cation, it can use the spectrum opportunistically. If a UAV is being used for a real-

time video transmitting it needs high bandwidth, but tolerate packet loss. In the

case of connectivity being required for real-time control of its path and operation, it

needs high reliability (low packet loss) and low latency. The UAV can live-stream a

video, and once finished, could move to a lower band to transmit a file, for example.

These features can improve communication performance of 5G networks [28].

In this section, we introduced 5G in the unlicensed spectrum and the challenges it may

encounter when sharing the spectrum dynamically. We present how the usual communi-

cation happens with UEs using cognitive radios and the advantages for a UAV to use the

unlicensed spectrum dynamically. In the next section, we will introduce the ML concepts

and techniques needed to understand the proposed approaches in this thesis.

2.3 ML Techniques for UAV Integration

To understand the solutions proposed in this thesis, this section introduces some ML

concepts, techniques and strategies. ML are algorithms that can improve performance

through data or experience [32]. ML algorithms enable the system to make predictions,
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decisions, or classifications without being explicitly programmed to do it in a specific

way. ML algorithm development and deployment usually consist of two stages: train-

ing, where it learns values to its internal parameters in order to provide a good enough

output; and validation, where the model is tested against a new unseen dataset and it is

evaluated how good the model can perform.

One of the earliest applications of ML techniques was Self Organising Networks (SON).

Since early studies of SON [33] in 3G networks, ML techniques are being applied to define

the NRT. The application of ML is growing with the newer generations as they are focus-

ing on automation and even more independent autonomous configuration as show the

first works focusing in 6G [34]–[37]. This subject is so important that it is being a focus in

the research community to investigate how and which methods can be applied to several

issues in mobile networks, such as Internet of Things (IoT) [38], mobility management

[39], and traffic forecast [40].

The rest of this section is divided in the concepts necessary to understand the pro-

posed solutions in this thesis. We detail two ML techniques, supervised and reinforce-

ment learning. In supervised learning, the model is trained with a dataset that should

represent the environment where the model will be used. It is usually validated with a

smaller unseen dataset that also represents the environment it will be used. The model

has access to a dataset of inputs and corresponding outputs, and the model learns a rela-

tionship between them. In RL, the model learns through experience interacting with the

environment and learning the best policy to achieve its objective. Therefore, RL does not
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rely on the availability of an existing dataset. Instead, the model learns through the inter-

action between the agent and the environment and observing the results, thereby through

trial and error to find the relationship between the given observations and the resulting

outputs.

2.3.1 Supervised Learning

A supervised learning model learns the relation between input and output based on la-

belled data. Labelled data is a group of samples divided by an associated feature with one

or more labels. Labelled data is usually applied for classification, prediction and regres-

sion, such as image classification, pattern recognition, and natural language processing

[41]. In mobile networks, supervised learning is used to investigate many mobile net-

works problems, such as Orthogonal Frequency Division Multiplexing (OFDM), channel

equalisation, cognitive radio signal classification, cognitive radio channel adaption, and

beam-forming configuration [42].

A Neural Network (NN) consists of connected mathematical functions named neu-

rons, each of them producing a sequence of real-valued activation [43]. It has an input

layer, at least one hidden layer and an output layer. A layer is a collection of neurons on

a specific depth in a neural network. The connection between neurons is called weight.

The input layer is activated by information about the environment, and the other neurons

are activated by weighted connections from the neurons in the previous layer. Learning

is finding weights that make the NN behave as desired.
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FIGURE 2.2: Graphical representation of a DNN example with 6 in-
puts, 4 hidden layers and 8 outputs.

Deep Neural Network (DNN) is a NN that has more then one hidden layer. The com-

plexity of the model grows with the number of layers in it. However, deeper models

started to accomplish good accuracy in more complicated tasks [44]. It discovers relations

between large datasets applying backpropragation to adapt the model internal parame-

ters. For classification tasks, more layers amplifies the input aspects that can be analysed,

discriminating some aspects and suppressing others. Figure 2.2 is an example of a DNN

model with 6 inputs, 4 hidden layers and 8 outputs. An example of a DNN model ap-

plication is the real-time resource allocation of optical fibres. As input, the model could

have the past years of used resources, detailing information as time of the day, weekdays,

and months and output the action of allocating what the model predicted as necessary to

attend the demand for that time.
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Fully connected networks are a DNN where each neuron is connected to all neurons in

the next layer. CNNs are a regularised version of fully connected networks. The regular-

isation happens so the model can adapt its internal parameters without overfiting to the

training data. Overfitting refers to when the model learns how to classify or predict the

training set, but struggles to do the same in the validation dataset. It happens because the

model did not learn how to analyse the data, but adjusted the weights to analyse only the

training data correctly and cannot generalise its learning. Underfitting is when the model

does not learn even how to classify or predict the correct outputs to the training data.

The activation function is the function that models the extent to which a particular

input impacts the resulting output value. If it decides a relevant impact, the neuron can be

activated or not. After each layer with weights, non-linear activation layers are used. As

these layers are not linear, it enables the CNN model to learn complex non-linear relations.

Rectified Linear Unit (ReLU) is an example of an activation function and introduces non-

linearity to the decision function. It transforms values in the activation map below 0 to

0, converting all the input values into positive numbers. As a result, it trains faster than

other NN without decreasing significantly the accuracy [45].

A CNN has different layers, and each has the purpose of analysing the data in a differ-

ent way. The first layers learn and extract high level features, and the deeper layers learn

and extract the low level features [46]. Bellow we describe the layers mostly used in this

thesis.

• Convolutional layer: it is comprehended as filters, also named kernels, with a re-

ceptive field that extends the depth of the input of this layer. Each kernel convolve
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FIGURE 2.3: Example of an CNN model.

to the input, what produces a 2-dimensional activation map for each filter. Conse-

quently, the kernels are activated only when they detect a specific type of feature

[47].

• Pooling layer: it is a layer that applies non linear down-sampling. One has to define

which function will be applied in the pooling layer. The objective is to reduce the

size of the representation of the data, decreasing the computational power to anal-

yse, without losing important information. It also avoid overfiting. It is common to

insert a pooling layer between convolutional layers.

• Fully connected: it is a feed forward neural networks. Fully Connected Layers form

the last layers in the network. They are used before the output, where all the neurons

are connected to the previous layer.

Figure 2.3 illustrates an example of a CNN with convolutional layers, pooling layers,

a fully connected layer and the output layer.
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The last layer of a CNN is always the output layer that calculates the prediction error

generated by the CNN model over the training data. The loss function calculates this

prediction error. The loss function informs the network how close the prediction is to

the actual label. This error is then optimised during the learning process. Softmax loss

function, or softmax activation function and cross-entropy loss function, is a well used

loss function that uses softmax activation in the output layer. The softmax loss function

measures the performance of a CNN when the possible output is only one class, which

means probability pi ∈ {0, 1}. pi is the probability of the output be from a specific class.

In order to train a CNN model it is necessary to have a significant amount of labelled

data, which is one of the most critical issues of implementing this technique [48], [49].

Usually, to have labelled data, one needs to have a huge number of examples and label it

manually. To decrease the amount of training data several techniques were created, such

as Transfer Learning (TL) and create synthetic data.

In our approach to perform object detection for spectrum characterisation, we need

to use TL to decrease the number of labelled data to train our model, so we describe this

technique in more detail below.

Transfer Learning

One way to save computational power and time during the training stage of a CNN is us-

ing TL. TL relies on the partial reuse of a previously trained model (trained on a different

set of tasks) for addressing a new task. This implies retraining an existing network, typi-

cally by fine tuning the weights from the hidden layers close to the output layer, to make
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the network more suitable for the new task. As such, the first layers, which are typically

good at extracting basic features such as edge detection in computer vision tasks, are also

reused for the new task. TL significantly decreases the amount of data required for the

training process and, consequently, the duration of the training.

The application of TL requires the choice of a previously trained network as a starting

point. A broad range of pre-trained networks already exists; these are suitable for different

problems, e.g., predictive text, speech recognition, and image object detection [50].

We applied TL in our object detection approach for spectrum characterisation. As our

task required object detection techniques, we discuss those in the next section.

Object Detection

Object detection is a computer vision task that detects visual objects of a specific class

in images. It provides the class of the detected object and where it is positioned [51].

Objects have different features that determine them, for example, a car has wheels, or a

table has legs and a top area. An object detection algorithm is able to detect these features

and recognise a class for the objects. Some of them provide a bounding box around the

detected object, which determines the object’s coordinates in the overall picture.

There are two main categories of object detection techniques, the ones without CNN

and the ones with CNN. In order to apply the object detection techniques without CNN

as in [52]–[54], it is necessary first to define the features to be detected2, then use a clas-

sification method. However, with the CNN approaches, one may apply only the CNN to

2In this thesis when we mention "feature detection" it is related to the features of the transmitted objects
on the spectrogram.
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FIGURE 2.4: Example of ground truth and prediction bounding
boxes.

perform the detection and classification. Another advantage is that the model may find

detective features that the human training it would not see, which can achieve excellent

performance. The downside of the CNN is that for this method to learn, it needs a signif-

icant amount of labelled dataset, and this will probably be required to be done manually.

We now specify metrics used for evaluation, as required for understanding the eval-

uation in Chapter 6. The usual ways to access the classification accuracy of an object

detection model is with the precision metric. Precision is defined in object detection as the
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percentage, among the detected objects, of correct classifications.

Precision =
Correct Object Classification

Correct Object Classification + Incorrect Object Classification
(2.1)

However, in object detection, a model can detect any number of false objects in an

image, which means there is an infinite number of possible incorrect detection. To tackle

this issue, in object detection, the metric precision is used to express how reliable are the

predictions from a model, i.e., it illustrates the percentage of the predictions’ correctness,

as shown in Equation 2.1. Furthermore, for estimating the number of misclassifications,

we can simply calculate 1− Precision.

It is considered that the object that was detected is the same object that is in the ground

truth if the intersection over union (IoU) of the bounding boxes is over 0.5. IoU is the area

of overlap divided by the area of the union of the ground truth bounding box and the

classified bounding box as described in Equation 2.2 and in Figure 2.4. In Figure 2.4, we

can see that the prediction matches with the ground truth, although it varies a bit in the

covered area, which is common with object detection models. In other words, a labelled

data point for object detection task consists of the box around each object and its class.

The IoU measure how well the model-generated boxes overlap with the labels.

IoU =
Area of overlap
Area of union

(2.2)

Recall, specified in Equation 2.3, measures how accurate is the classification of the

model. The area under the measured precision versus recall curve is smooth is the Average
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Precision (AP) value. The mean Average Precision (mAP) value is the mean of all APs.

Recall =
Correct frame classification

All frames
(2.3)

In the field of object detection, the evaluation of the efficacy for generating accurate

bounding boxes resorts to a metric named mAP. This metric was introduced during the

PASCAL VOC 2012 [55] competition and have been used to calculate the accuracy of an

object detection model. mAP is the area under the curve precision-recall.

The first step for the calculation of the mAP is the calculation of the AP for every

class of each model. The ground truth of the object position is necessary to make this

evaluation. The model predicts bounding boxes that are sorted by decreasing confidence

and are assigned to the ground truth files.

2.3.2 Reinforcement Learning

RL is a ML technique that applies a trial and error process where an agent performs ac-

tions and interact with the environment. At each moment, or in a simulation time step,

the agent has access to the state information of the environment and acts from this given

state to a new one. The specific action may have a reward or not. It learns from interaction

with the environment to achieve long term goals [56]. RL can provide an output without

a detailed description of the environment, which makes it easier to adapt to not complete

information. RL was studied in the theory of optimal control [57]. This theory mainly

investigates the existence and characterisation of optimal solutions, especially in the ab-

sence of a mathematical environment model. It can provide a solution without detailed
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data of the environment.

The main components required for a RL representation of the problem are an agent,

state space, action space, and environment reward. We define these below:

• Agent: The component that observes the state information and takes actions accord-

ingly.

• State Space S: A set of relevant observations from the environment that the agent

receives before and after taking an action.

• Action Space A: The set of all possible actions that the UAV can take.

• Reward R: the primary goal of the approach should be reflected in the reward.

Q-learning is common RL algorithm. Q-learning is an algorithm where agents learn

how to optimally act, using an incremental method for dynamic programming. Its imple-

mentation successively improves the quality of actions at specific states. It is showed in

[58] that the algorithm converges to the optimal action-values if the actions are sampled

in all states. In classical Q-learning a Q-table would be learned, which maps the Q-values

of each action for a given state. Q-value is the expected discounted reward for executing

a specific action to a particular state considering a long term reward, and following a pol-

icy. The objective of Q-learning is to estimate the optimal policy. A Q-learning algorithm

learns a policy, which tells the agent which action to take in a given situation. Q-tables are

tables with one entry for each state (state-action pair) and are called tabular methods.

This technique utilises rewards to train the algorithm to take the appropriate action

for a given state. A reward is a scalar value received after the agent takes an action and
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FIGURE 2.5: Reinforcement learning cycle.

transitions to a new state. The agent uses the reward values to determine which action

is the most appropriate for its given state. The algorithm calculates the quality of each

action on a specific state, the Q-value, in order to learn which is the best action on that

state.

The RL cycle is described in Figure 2.5. The agent takes an action a in state S and

receives environment feedback in the form of a reward R; its goal is to learn the policy,

i.e. action for each state, that maximises the long term cumulative reward. To make more

efficient use of data samples gathered in the environment, we adopt experience replay

[59], which is a technique that uses a buffer to store experiences so they can be randomly

sampled and reused during the training.

During the training, a RL algorithm needs to explore the possible actions it can take in
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order to find the optimal policy in a trial and error search for a good policy. These stages

of exploring possible actions and applying the optimal policy are defined as exploration

and exploitation, respectively. If one uses its policy to calculate the possible actions, these

actions are called greedy actions, and it is determined that you are exploiting your current

knowledge. The feedback that indicates how good is the greedy action cannot determine

if that action was the worst or the best possible. Also, if the action is always random to

explore the possibilities, one could know the optimal action to take, although it does not

mean that it would randomly select that action. In RL these two stages, exploitation and

exploration, are balanced depending on a strategy.

An ϵ-greedy policy is one of these strategies. It is a simple strategy to sometimes ex-

plore the environment, with probability ϵ. We apply decaying-ϵ-greedy, where ϵ decreases

its value at each action taken. An advantage of ϵ-greedy methods is that the likelihood

of taking a random action decreases with time, as considering an infinite amount of time,

all the actions will be sampled an endless amount of time, ensuring the algorithm conver-

gence, however, with less exploration when the policy is already trained.

In some practical cases, there are more states than could be entries in a table. Therefore,

the functions must be approximated using a more compact function representation for

these cases [56]. Deep Q-Learning (DQN) is a DNN model in the RL field. The advantage

of DQN is that it uses neural networks to approximate the function that maps a state-input

pair to a Q-value. This makes it valuable for scenarios where the state or action space is

too large to apply tabular RL.
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2.3.3 Hyperparameters

The policy training itself requires fine-tuning parameters related to the learning rate and

convergence of the model output, known as hyperparameters. Hyperparameters are pa-

rameters chosen before the training process that control the learning process. We detail

the hyperparameters used in this thesis below:

• Learning Rate: is a tuning parameter used in optimisation algorithms that deter-

mines the step size taken in each interaction while moving to a minimum loss func-

tion [60].

• Epoch: indicates the number of passes of the entire dataset the ML model completes.

If a model is trained with too many epochs, it can overfit the training data, while if a

model uses too few epochs, it might not learn the necessary features to perform the

classification.

• Mini-batch: is a part of the dataset used to update the network’s weights. The first

approaches in ML used the entire dataset to update the weights in the network;

however, the work of [61] argues that this update should use a minor part of the

dataset, called a mini-batch. Generally, minibatch values used in practice have val-

ues between 2 to 64 samples.

• Optimiser: is the function that modifies the weights of each neuron with the purpose

of minimising the loss function.

Future details on specific values of these parameters in our evaluation and design

choices that led to their selection are discussed in later chapters.
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2.4 Chapter Summary

In this chapter, we introduced the background needed to understand both our proposed

solution as well as the most closely related literature. We presented the mobility manage-

ment in 5G to understand the mobility challenges presented in Chapter 3. We discussed

the idea of the use of unlicensed spectrum by GUEs and UAVs. Then discussed the ML

concepts needed for the proposed solutions, specifically DQN, TL, object detection, and

RL.

Understanding the process of mobility management is essential to understand the

challenges a connected UAV will face. In this chapter we reviewed the main architec-

ture involved during the handover process and how it is defined for 5G networks. It is

important to notice that the UE has a crucial importance on its own mobility as it makes

the sensing and the measurement report. Based on this information, the mobility of the

UE is defined.

The use of unlicensed spectrum for licensed UEs is a considerable new perspective,

and one of the biggest challenges of this new approach is to share the spectrum fairly with

the other UEs. RATs that were created to work in such spectrum are already adapted to

share it in a fair way, although, there is the need of adaptation of the licensed spectrum

RATs to use it. How the licensed RATs as LTE and 5G will share the spectrum is still being

investigated, but as in other specifications, the operators can implement extra features to

improve its performance. We believe that with more information of the spectrum usage

these licensed UEs and BSs will be able to plan its transmissions in advance and also,

make a more efficient use of the spectrum.
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Finally, to understand the designed solutions in this thesis, we present present specific

ML techniques used in this thesis. ML has proven to be an efficient way to learn how

to make a decision for complex tasks based on analysing large amounts of data. In this

thesis, we needed two types of ML methods, the object detection techniques, which are a

subset of supervised ML, and the RL techniques. In the first, we wanted to characterise

the spectrum to answer RQ3. We realised that a human looking at a spectrogram would be

able to analyse the spectrum and understand it if it knew which are the RATs transmitted

there. Based on this, we looked for a technique that could make classification and detect

the position of each object. The ML object detection technique was the most appropriate

as it performs classification and detection in an image. As the amount of data was not

enough to the model learn by scratch, we applied TL.

The UAV movement optimisation needs interaction with the environment, because

depending on its decision, the environment characteristics will change to the agent. As

the problem itself requires interaction with the environment, the RL solution was the most

appropriate solution for RQ2. Now that we have basic concepts, we move in a more

detailed analysis of open challenges and most closely related literature.
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Chapter 3

Connected-UAV Integration to the

Network: Open Challenges

3.1 Introduction

Integrating UAVs to the mobile network represents a paradigm shift from providing con-

nection to GUE. 3GPP created several working groups in the LTE technology [22], [62]

and 5G technology in the 5G Enhancement for UAVs [63]–[66]. These working groups

investigate the capability of the network to provide connection to the UAVs, research

which requirements a UAV should have to be a UE of the network, and study the main

challenges the network and the UAV may encounter. In this chapter, we investigate chal-

lenges a network operator may encounter when dealing with UAV’s mobility and what

would be the impact of a UAV on the network, as introduced in RQ1 "Which are the main

challenges a connected UAV may encounter if deployed in a typical modern-day cellular

network?". This chapter therefore provides the contribution C1 that is the investigation
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of the challenges a network operator may encounter with the introduction of the UAV as

a UE and introduce two possible approaches to allow the increase UAV’s QoS without

change the network configuration. This investigation also has lit RQ2 and RQ3.

This chapter comprises the following sections: We present the challenges a UAV may

encounter if it starts using the actual mobile network in Section 3.2. The challenges are

divided in coverage, PCI and handover challenges. To support our challenges, we analyse

experimental data using real-wold measurements. We then propose a few directions of

solutions to be implemented on the network. In section 3.3, we present the state of the art

for our two different approaches, UAV height adaptation and spectrum characterisation.

In Section 3.4, we conclude the chapter by discussing why it is essential to address the

proposed challenges and why the proposed solutions address these challenges.

3.2 Network Challenges

UAVs were introduced as a new type of user of the cellular network in LTE and they are

expected to increase in numbers and applications in 5G networks and beyond. As the LTE

and 5G networks will work in unlicensed spectrum in addiction of the licensed spectrum,

we believe that the challenges of a connected UAV can increase compared to when it is

only connected to the licensed spectrum, as it will also need to co-exist with other UEs

using different RATs. However, in this section we will present challenges that may occur

in both bands, and are inherent to the band of operation.

One of the biggest challenges for connected UAVs is the presence of simultaneous LoS

channels with several cells which may be far away. In [23], authors demonstrated via
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simulations and experiments that a UAV can sense significantly more cells than a GUE.

They also demonstrated that UAVs are capable of detecting more distant cells, compared

to GUE. The fact that UAVs can detect a larger number of cells across a greater area means

that the network should treat the UAV UE differently from a GUE, in terms of mobility

management.

The principal mobility-related challenges that a UAV can introduce to 5G networks

operators are discussed in this section.

3.2.1 Coverage challenge

Before the cellular network starts its operation, the operators need to plan the geographic

locations of the BSs, along with configuration parameters such as their antenna azimuth

and mechanical tilt. If UAVs become a significant user of the network, they ideally should

be taken into consideration from the planning stage of network deployment.

Network coverage planning is essential to avoid interference and unnecessary han-

dovers. For the previous generations of cellular networks, the coverage was planned only

for GUEs, and the main lobe of the BS antennas was often the only one taken into ac-

count. For the next generations of cellular network, the coverage needs to be planned

to also include connected UAVs, and needs to consider what kind of network coverage

will be provided in the air, taking into account how the main lobe will perform but also

the side-lobes. A common way to plan a cellular network is by using software tools that

consider 3D maps of a given area and antenna radiation patterns. To integrate UAV users,
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the tools used to plan the network coverage need to be adapted to consider antenna side

lobes and should also project the signal propagation into the sky during its simulations.

3.2.2 PCI challenges

Another critical part of network planning that becomes harder with the introduction of

flying UEs is the PCI distribution. The flying UEs can exacerbate PCI confusion and col-

lision, which have been reported in LTE networks and persist for 5G networks. Usually,

the PCI planning is made to allocate identical PCIs to BSs that are distant from each other,

to ensure that a UE will be unlikely to detect the same PCI being transmitted by more

than one BS at a time. However, considering connected UAVs, it will be necessary to

understand the air coverage in advance to plan the PCI distribution.

In Section 2.1, we introduced the events triggered after the RSRP measurement re-

ports realised periodically by a UE. The first piece of information a UE senses about a

neighbouring BS is the PCI, that is the local cell identifier. Each cell in 5G or LTE has its

own PCI. If the PCI assignment is poorly planned, it can affect the handover process and

delay the downlink synchronisation. Another possible consequence is increased Block Er-

ror Rate (BLER) and decoding failures of physical channels. In LTE, there are 504 unique

PCIs, compared to 1008 in 5G. If there are different tiers of the network, the network needs

to divide these PCIs between each tier.

Consider a two tier network with macro-cells and small-cells, for example. The PCI

values contained in set A will be reserved to the macro-cells and those in set B for small-

cells. A and B have no intersection. This rule cannot be violated inside the same network.

Erika G. P. da FONSECA Ph.D. Thesis



3.2. Network Challenges 53

This division decreases the number of possible PCIs for each tier, which can aggravate

the issue of PCI availability. Due to the fact that the GUEs usually connect to cells that

are close to them, with good network planning it is possible to avoid most cases of PCI

collision and confusion for GUEs.

Figure 3.1 illustrates a well-planned network, where the same PCIs have a significant

distance between them, which means that PCI confusion is not likely to happen for GUEs.

The main issue occurs when a UAV flies overhead, as it senses more distant cells that can

have the same PCI as the serving cell, which results in PCI collision, or be already on the

NRT of the serving cell, which results in the PCI confusion. Both issues are detailed below.

PCI Confusion

PCI confusion happens when the detected PCI is in the NRT of the serving cell. The

serving cell assumes that the sensed cell is already in the NRT and does not request a

check of the ECGI. The situation is made worse in the scenario where the UAV tries to

handover to this concurrent cell because all the handover configuration will be carried out

with the wrong cell and the UE could have its connection broken. The opposite can also

happen: if a UAV adds a distant cell to the list and a GUE senses a closer cell with the same

PCI, the closer one would not be added to the NRT, which would result in the handover

configuration being sent to the far away cell. It may even result in the concurrent cell being

added to a block-list, as many attempts to handover to this cell would fail. A neighbour

should be block-listed if there are repeated attempts of unnecessary connections, and once

block-listed, the cell is not an option for handover anymore.
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gNB1
PCI 8

gNB2
PCI 25

gNB23
PCI 8

FIGURE 3.1: PCI confusion/collision challenge.

As an example, assume that in Figure 3.1 the UAV is connected to the gNB2. In the

gNB2 NRT, the gNB1 is a neighbour, and its PCI is saved in the table corresponding to

gNB1. Once the UAV flies and senses a strong signal from gNB23, it detects its PCI. As

the PCI of gNB23 is the same as that of gNB1, the serving gNB, gNB2, decides that the

signal sensed by the UAV is from gNB1 and does not ask the UAV to verify the ECGI.

If the UAV tries to handover to gNB23, all the configuration for handover will be sent to

gNB1, and the network might not be able to detect that there is a problem before the UAV

disconnects.
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PCI Collision

PCI collision happens when two cells that cover the same area are allocated with the same

PCI. In this situation, the UE connected to one of them will not sense for another cell with

the same PCI, which can result in the UE not being connected to the best serving cell. For

example, consider that the UAV is going in the direction of the hill and is connected to

gNB1. Even if gNB23 has a strong signal and is the only gNB available in that direction,

the UAV will not consider it as as option and will disconnect before trying to connect to

gNB23.

A possible consequence of PCI confusion and collision is that the network has to be

updated with more appropriate PCIs once these issues happen. To update the PCI of a

cell, the gNB needs to be restarted, which can take more than one hour.

To solve the PCI distribution issue, one possible solution would be for UAVs to have

two radios, one for communication and one for measurements. Radio one (R1), would

be used for communication, but its priority would be sensing. Radio two (R2), would be

used for communication only. When the UAV needs to sense and make measurements, we

propose that the UAV would always sense the ECGI directly to avoid PCI confusion/col-

lision. During the measurements, R1 should stop any communication that could be using

the radio. If used in unlicensed spectrum, R1 would be all the time sensing the spectrum

in order to make spectrum characterisation. R2 would not stop its transmission and data

reception at any time during the measurement reports. This method would ensure that

UAV does not lose connection during the measurements. The drawback of this approach

is that having two radios is more expensive and takes up additional space on the device.
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Nevertheless, the use of two radios should be considered by vendors and regulators.

3.2.3 Handover Challenges

Once the PCI confusion and collision issues are resolved, additional challenges related to

handover need to be addressed to ensure that UAV UEs do not overload the network and

do not unnecessarily disconnect. We discuss those below.

Frequency of handovers for UAVs

Authors in [67] reported that UAVs perform, on average, five times more handovers when

compared to a GUE. These values show that the mobility of a UAV tends to generate more

signalling overhead in the network and that the parameters used to trigger event A3 need

to be adjusted for UAVs.

Connection interruption time

Authors in [68] show that sometimes the handover does not start for UAV users because

the RSRP measured by the UAV from neighbouring cells does not have a minimum differ-

ence of an offset (usually 3 dB) between the serving cell and the possible handover target

cell. As a result, the UAV UE does not send event A3, which is required to trigger the han-

dover. A consequence of this is that UAVs will experience more frequent disconnection

from the network than GUEs [68]. Once the UAV moves, it moves between side lobes

and antennas nulls quickly, and there is no time to make a seamless handover, resulting

in disconnection when the UAV enters the nulls of the antenna [9].
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3.2.4 Experimental Validation

To support our claim that the connected UAV may experience a performance different

of the expected when the network was planned, we made use of the real-world dataset

SATORI DenseAir Smart Docklands, available in [69], with signal to noise power mea-

surements made by a UAV-mounted handset. Figure 3.2 illustrates the analysis. The

network is a two-tier cellular network in Dublin city centre that operates in the 3.6 GHz

band.

Typically, for GUEs it is a fair assumption that the UE will be connected to the clos-

est cell, a common assumption made by the research community [13], [70]. This analysis

investigates how often the UAV sensed the strongest signal as coming from the geographi-

cally closest cell during its flight. Figure 3.2a illustrates the most potent sensed cell relative

to its distance to the UAV, for four different altitudes, 30 m, 60 m, 90 m, and 120 m. At

30 m and 60 m, the UAV senses more than 50% of the time the strongest signal as coming

from closest cell. The same does not happen at higher altitudes: when the UAV is at 90 m

and 120 m, it senses the closest cell as the strongest for around 40% of the time; for almost

30% of the time, it senses the signal from the fourth closest cell as being the strongest one.

The behaviour presented in the results clearly differs from the expected behaviour from

a GUE. Figure 3.2a reinforces the idea that the coverage in the air needs to be considered

for new BSs, as the UAVs can connect to much more distant BSs. It also highlights that the

research community’s assumptions that the UE will connect to its closest BS is no longer

holds in the case of UAVs.
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(A) Percentage of time the UAV was sensing
the n-th closest cell as the strongest signal cell.

(B) Number of strongest cells changes sensed
per minute during the path per altitude.

FIGURE 3.2: Graphical analysis on real-world dataset.

Using the real-world dataset, we carry out an additional analysis of the small-cell de-

ployment, by looking at how often there is a change of the strongest cell when the UAV

is flying through the network. Figure 3.2b illustrates how often the UAV experiences a

change of strongest cell during its path. The collected values show that the strongest

cell fluctuates dramatically across different heights. This is due mainly to the planned

service area for the network being primarily at ground level. At other heights there are

no dominant cells and hence several cells are received with similar signal levels. Fur-

ther investigation is needed on how the handover performance can be optimised at these
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heights.

3.2.5 Designing the Mobile Network to Incorporate Connect UAVs

In order to accelerate the use of UAVs in the mobile network without decreasing its per-

formance, we propose solutions to minimise UAV’s impact on the network. One possible

approach to avoid lack of coverage, PCI confusion and collision, and handover challenges

is to adapt planning tools to plan the coverage on the air.

Another solution that could be implemented to minimise the coverage and handover

problems in the licensed and unlicensed spectrum is the use of a spectrum characteri-

sation tool by the network with a UAV before allowing the full use of the network by

UAVs, in order to analyse the coverage in the sky. The approach would be to analyse

the transmissions on the spectrum, BS’s coverage in licensed and unlicensed spectrum

and, depending on operator’s strategy, improve the coverage in a specific region, or rec-

ommend UAVs to not fly in the areas with poor coverage, or even, recommend UAVs in

specific regions to use priority one RAT over another (for example, use LTE but not 5G in

a specific region).

Analysis of the spectrum is such an important task to solve the coverage and PCIs

challenges that we also propose that the task should be more complete and divided by

specific heights. As the height is the main difference between the UE and UAV, and only

with increase of height that a UAV would sense PCIs from further BS due to the LoS, we

suggest that the network could implement a maximum recommended height for UAVs

in order to not deteriorate the mobile network to others UEs. So far, regulatory national
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bodies have defined the allowed height range at which that the UAV can fly, although we

propose a study where the mobile networks also could have localised maximum heights

(under the maximum height the national bodies allow). This height would be decided by

being the maximum height a UAV can fly in that city without encountering PCI confusion

and collision.

These solutions can mitigate the challenges a connected UAV could bring to the net-

work and increase UAV’s QoS, however, they would take long time to be implemented in

all the network for the different mobile generations. That is the reason in this thesis we

focus on the mitigation of these challenges through intelligent design of the UAV itself

rather than the network.

3.2.6 Section Summary

In this section we presented the mobility related challenges a connected UAV can bring

to the network. The challenges presented were the coverage planning, PCI confusion and

collision, high frequency of handovers for UAVs and higher interruption time to UAVs.

These challenges are recognised, as an issue based on other research investigations backed

up by our own UAV connectivity dataset analysis. With these works, we have shown that

the UAV can connect to further BSs, differently of GUE. It also shows that the coverage

expected for UAVs are not the same as planned for GUE, and that the UAV can experience

degraded performance.

We propose directions to these challenges to be solved on the network side, where the

network operator would need to make changes to its planning stage, such as simulation
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tools, after site implementation drive tests, PCI allocation. However, a change in all the

network side might take a long time. This is because it would need to be implemented

on all new sites, and it would be necessary to make a study on the sites that are already

working. That is the reason we investigate the solution on the UAV in the next section.

3.3 Designing Connected UAVs

Usually, UEs of the network are passive when considering its QoS and mobility manage-

ment, and do not take decisions in order to improve it. The GUEs role in the mobility

is to take measurement report and send them to the BS, and so far, the responsibility of

providing the required QoS is only of the network. We propose that instead, the UAV can

adapt its path considering the improvement of its QoS. The connected UAVs and the unli-

censed BSs can make use of a more detailed sensing of the spectrum in order to take more

informed decisions related to the UAV’s mobility management. This sensing information

could be sent to the BS and the network could take the handover decisions, or could be

used by the UAV to decide about its own mobility. These two approaches are proposed

on the UAV as the network adjustments could take long time to be implemented. Also,

as we still do not have connected UAVs available in the market, it is still a open discus-

sion of what it will be required and which function it should provide. In this section, we

investigate the state of the art for the approaches designed to increase UAV’s QoS in the

deployed mobile network.
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3.3.1 UAV Handover Optimisation

Researchers are investigating the UAV-BS association [13], [39], [71]–[73] using ML with

the goal of integrating UAV to the mobile network as a UE. One of the first studies to

improve the link UAV-BS was presented in [74], where authors propose a ML model to

adjust antenna’s tilt on the BSs with the purpose to provide the best possible link to UAVs

and GUEs. They use a model-free RL on the BS, that uses Signal-to-Interference-plus-

Noise Ratio (SINR) of both UAVs and GUEs as input to it model. Authors show that with

this adjust, the number of handovers for UAVs decreases without a great change in GUE’s

QoS.

In [72], authors propose a RL solution for selection of BS when the UAV trajectory is

known. They first define geographical areas where the UAV should analyse the need for a

handover, if it is necessary they apply the DQN model to decide which of the BS the UAV

should handover. The authors conclude that their model is effective in decreasing the

number of handovers while maintaining a relatively good RSRP. In [71], authors present a

RL approach to optimise the cell selection and the resource allocation of connected UAVs.

In the simulations, authors discovered that an increase in UAV velocity decreases the

number of handovers; however, UAV height increases the number of handovers necessary

for the UAV to maintain its QoS.

In [13], the work investigates the UAV channel estimation with a supervised learning

approach. This work assumes that the UAV is not moving and has two antennas, one

omnidirectional for sensing, and a directional antenna for UAV-BS link connection. With
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the knowledge of the BS locations and the sensed channel information from the omnidi-

rectional antenna, the model deduces which BS will provide the best channel conditions

on the directional antenna. An extension of this work [39], assumes that the UAV moves

through a city. In this case, the UAV can perform handovers, and the number of handovers

are optimised. In this scenario, this work assumes interference from other antennas and

building blockage. The proposed solution doubles the total throughput when compared

to benchmarks.

Handover optimisation for connected UAVs has been studied as a way to improve

UAV’s QoS. However, most of the solutions propose a change in all the network infras-

tructure parameters [74], or that the UAV will be able to decide about its handover in a

decentralised manner. Changing the configuration of all the antennas in the network is a

considerable change because the network was already optimised to work with these pa-

rameters. Having decentralised mobility management is a fundamental change in how

the mobile network works. It would be necessary to investigate a secure way for this to

happen. Both solutions are physically possible, although unlikely to occur due to the op-

erator’s risk to its ground coverage and its security. A less compromising way to solve

mobility management challenges would be an approach to the network mobility param-

eters. For example, studies for fast train’s handover [75] are in the direction of adapting

the parameters to trigger the events depending on the train’s velocity and sensing. This

approach is a promising investigation area for connected UAV.
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3.3.2 UAV Movement Optimisation

One of the biggest challenges for the UAVs is its 3D path optimisation. The problem can be

divided in UAV horizontal movement optimisation and vertical movement optimisation.

This optimisation can be in order to achieve different purposes, as to have the shortest

path while ensuring minimum connection quality [17], for example; or in [18], where the

authors consider the battery life of the UAV when planning the UAV path. In this section,

we first present UAV horizontal trajectory optimisation followed by vertical optimisation

in scenarios where UAVs are used as BSs.

UAV trajectory optimisation

The works on trajectory optimisation focus on 2D optimisation and rarely mention the op-

timal height. In this section, we introduce works that optimise the trajectory considering

the UAV-BS access link.

In [19], the authors propose optimising the horizontal path of a cellular-connected

UAV that flies from an initial to a final location, while maintaining reliable communication

with the underlying mobile network. This approach proposes that the UAV flies at the

fixed minimum height allowed by the regulatory entities. In this study, the authors do

not consider the interference from BSs to which the UAV is not connected and blockage

from the buildings blocking the link from UAV to BS. To accomplish the study objectives,

a graph representation of the network is proposed, with 3 solutions: first, a graph where

each node is a BS; second, a graph where the nodes are the handover points between

the BSs; and third, where the handover points are the optimal point in an intersection
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area. Dijkstra algorithm is used to find the route of the UAV and show it is close to the

optimal solution. Height optimisation was not considered, and the authors conclude that

introducing a height variable to the problem is not a trivial task and that their proposed

horizontal trajectory solution is not the most appropriate one for 3D movement. They

conclude that it would be unfeasible to represent all the possible heights a UAV could have

at all the nodes, as each of them should be a new node increasing the system’s complexity.

The work in [14] creates an optimised path with the objective of maintaining a unin-

terrupted connection to the BSs. This work only considers the uplink from the UAV to

the BS network. This work also highlights the importance of the altitude of the UAV and

calculates the upper and lower bounds for the height at which the UAV should fly to sat-

isfy the minimum rate requirements of the uplink, considering the known BSs locations.

Authors calculate a range of heights at which the UAV should fly to provide a minimum

achievable rate. In addition, building blockage on the link UAV - BS is not considered.

The solution is based on the game theory multi-agent approach, where each UAV is the

player. They propose a echo state network (ESN) [76], which is a recurrent NN where

the connectivity and weights of the hidden layers are fixed and randomly assigned. With

this approach, each UAV decides its next horizontal location. The authors conclude that

the altitude is vital to minimise the transmission delay of the UAV and that it should be a

function of the ground network density, network parameters as the transmission power,

ground network data requirements and the UAV’s action. The exact height of the UAV is

not calculated as it would increase the complexity of the algorithm exponentially.
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Height optimisation for UAV BSs

The height planning of a connected UAV is a new field, however several works have

studied the height placement of UAVs acting as BSs. The techniques used to optimise the

heights at which a UAV acting as a BS should fly can also overlap with our problem of

interest as it also consider the radio link between a UAV and a element that is located at

lower heights.

In many examples of the prior art, works on UAV wireless connectivity, either for UAV

as network end-user or UAV as BS, did not consider the effect of interference conditions.

The quality of the link between UAV and a BS can suffer from interference coming from

other BSs, from objects or buildings intercepting the directional connection between them

(shadow zone), or even the natural fading on the propagation. The work in [77] assumes

UAV as BS and provides coverage to GUEs. The authors propose a sigmoid model to

investigate the probability of LoS channel in the UAV - GUE link as a function of the

vertical angle between them. In the paper, a UAV as BS with an omnidirectional antenna

flies over an urban area. They conclude that a bigger angle decreases the probability of a

building block the link. They also add that there exists an optimal height for the UAV BS,

which increases the coverage area.

In [78] and [79], authors applied stochastic geometry to model the coverage probability

of a UAV-BS network in a fading-free and Nakagami-m fading channel. The authors

fix the number of UAVs operating in an area at a certain height above the ground and

demonstrate that with an increase in height, the coverage probability decreases. Also, in

[79] authors demonstrate that bigger values of fading parameter reduce the variance of
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the SINR for the GUE.

In [80], authors propose the approach to calculate the 3D position of UAV as a BS,

by applying the interior point optimiser of bisection search. Their main objective is to

maximise the coverage area by a UAV cell without providing to a GUE a QoS below a

threshold. They consider building blockage and Non-Line-of-Sight (NLoS) between the

UAV as BS and its users. The covered area changes depending on UAV’s height, and

for the lower density of GUEs. The coverage is larger when compared to higher density,

showing the worst coverage for urban scenarios.

In [81], authors find the optimal position for a network of UAV as BS in order to min-

imise the number of BSs required to provide the needed QoS for their users. The study

considers the blockage generated by buildings in an urban area and NLoS occurrences

between the UAV and its users. The proposed solution used an heuristic algorithm based

on the number of BS that can serve the GUE, coverage and capacity requirements. The

number of users on the network was essential to define the height and number of UAVs

serving as BSs. The authors concluded that with their solution it is possible to decrease

the amount of UAV as BS and provide the same quality on data rate.

Similarly, the work in [82] proposes a 3-step solution for horizontal and vertical opti-

misation for UAV-BSs with different ML algorithms for each step. The bounds of the UAV

height are the UAV maximum transmission power for its greatest height, and the mini-

mum required distance between the UAV and the users defined by the regulatory entities,

for the minimum height. In the first instance, the paper considers a static problem, where

the users of the network do not move. As a first step, it partitions the area into cells for
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the UAV-BSs to cover, by applying K-means (GAK-means) algorithm. Next, it uses a Q-

learning algorithm, where each UAV is an agent and has to decide its position by learning

from its mistakes. As the final step, they consider a scenario where users move between

BSs and the network have to adapt to these movements. The authors apply DNN, as it

enables each UAV to gradually learn the dynamic movements of the users. They conclude

that the proposed solution outperforms the K-means algorithm and IGK algorithm with

low complexity.

The UAV-BS scenario defers from the connected UAV problem because the connect

UAV moves through the city and do not divide it into cells, so the use of K-mean for

clustering, for example, is not applicable. However, the use of reinforcement learning to

adapt its height depending on the cellular network radio technology and the regulatory

entities definitions is valuable insight. To apply DNN into the connected UAV scenario,

one needs to investigate what is relevant to a UAV as UE, which are the information a UE

has from its connection, how the UAV can interact with the environment, and design a

model that can learn all these characteristics and be effective through different topologies.

Table 3.1 provides a summary of the state of the art in connected UAV movement

optimisation.

Paper Type of UAV Optimise Method Validation Available code
[17] Connected UAV Distance to BS Graph Simulation No
[70] Connected UAV Coverage Prediction Cauchy’s inequality Simulation No
[19] Connected UAV Horizontal Optimisation Graph Simulation No
[14] Connected UAV Horizontal Optimisation Deep RL Simulation No
[80] UAV BS 3D position Bisection search Simulation No
[81] UAV BS 3D position Particle swarm optimisation Simulation No
[82] UAV BS 3D position DQN Simulation No

This thesis Connected UAV Height Optimisation DQN Experiment/Simulation Yes

TABLE 3.1: UAV movement optimisation works.
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While some existing work has looked into optimising the height of UAV BSs, there is

a significant lack of work looking at UAVs when they are the end users. Our contribution

C2, which will be described in Chapters 4 and 5, is closely related to the presented state

of the art but optimise the height of the connected UAV.

In this thesis, we propose optimising the altitude of the UAV, separating it from the

problem of a horizontal trajectory decision, to evaluate only the height of the UAV. We

separate it from the horizontal optimisation trajectory as in some applications, such as or-

gan delivery, the horizontal path will be defined by the application, and only the altitude

will have the freedom to be adapted. As mentioned in Chapter 1, the height optimisation

is proposed in order to answer RQ2, supporting the UAV to improve its own QoS while

avoiding areas with poor signal.

The proposed solution applies RL to decide, based on environmental measurements, if

the UAV needs to move above, below, or stay at the same height in order to experience the

best QoS possible from the cellular network in the long run and avoiding areas with poor

coverage. To the best of our knowledge, this is the first time one dynamically optimise the

height of a cellular-connected UAV, focusing on improving its connectivity.

Our proposed UAV height optimisation could be used with the following purposes:

• Be used by the UAV to take informed decisions of its next height in order to improve

its QoS.

• Be used to automatically avoid areas with poor signal in the sky.
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• Be used by different UAV applications as it does not require modification of the

horizontal path.

3.3.3 Spectrum Characterisation

The communication of the UAV and its pilots is made trhough the unlicensed spectrum

for now, although it is expected to change in the future. As the use of this spectrum is

allowed to any technology that can share the spectrum, the UAV coexists with other UEs

from different technologies (WiFi, Bluetooth, and Zigbee, for example). The tendency with

5G UEs operating in the unlicensed spectrum is that the use of this spectrum will increase

with the cellular mobile network utilisation [27]. In order to propose the first step to the

UAV connection to the mobile network, we investigate the use of the unlicensed spectrum

for the cellular mobile networks. Expanding the spectrum possibilities will increase the

chances of the UAV having coverage and better QoS.

The first step in allowing an LTE or 5G BSs to share the spectrum in an efficient manner,

is to understand what is happening on the channel that the BS wants to transmit on, such

as which transmissions are happening and how busy is the spectrum. For this, several

research efforts have focused on spectrum characterisation [83]–[85]. In the case of LTE

in unlicensed spectrum (LTE-U) researchers relied on contextual information about the

spectrum usage to carry out spectrum characterisation, and enable spectrum usage of the

shared spectrum [23], [86]. With more detailed information about the spectrum behaviour,

it is possible to make more sophisticated decisions about how to use the spectrum.
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Modulation Classification

Some of the early work on spectrum monitoring has relied on techniques such as cyclosta-

tionary feature detection and energy detection [87], [88]. The focus tended to be on detect-

ing the presence of a signal in the band of interest, rather than characterising the signals

being detected. More recently, there has been renewed interest in modulation classifica-

tion, driven by spectrum sharing in military bands, and, in the commercial arena, by the

possibility of operating LTE and 5G in unlicensed bands, sharing the spectrum with other

RATs such as WiFi and radar communications. Current military and commercial spec-

trum sharing can benefit from more sophisticated awareness of what other transmissions

are present in the band, and what the characteristics of those transmissions are, than the

earlier spectrum monitoring solutions were able to provide. This has motivated a number

of ML-based solutions for modulation classification.

In [89] and [90], authors propose the use of Support Vector Machine (SVM) for mod-

ulation classification, and in [91] they propose the use of Genetic Programming with K-

Nearest Neighbours (GP-KNN) to achieve the same objective. However, both SVM and

GP-KNN techniques are susceptible to frequency and phase offsets, which can compro-

mise the signal classification accuracy under multi-path, fading, or other real-world Radio

Frequency (RF) impairments. Following works have focused on how to make ML-based

models more robust to SINR and Received Signal Strength Indicator (RSSI) variations,

capturing real-world RF impairments and generating more reliable RF signal classifiers.

For example, in [92], the authors generate their dataset through over-the-air transmissions
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using Universal Software Radio Peripherals (USRPs), evaluating the accuracy of their clas-

sification model under different SINRs. The works of [93] and [90] also consider different

SINRs when applying ML algorithms for modulation classification. In [93], the authors

investigate the classification problem using dictionary learning. In [94], authors charac-

terise the performance achieved by a CNN model when identifying distinct modulations

for different SINR levels using spectrograms.

The work of [95] applies computer vision methods to modulation transmission detec-

tion. They perform object detection on spectrograms using their own generated dataset.

Their model detects the transmitted frames, but it does not classify them. They used

20,000 spectrograms representing 3 ms to train their model, which illustrates the exten-

sive amount of samples to train a model in computer vision.

The coexistence between different RATs in shared spectrum requires more information

about the surrounding wireless devices than simply the knowledge of their modulation

schemes, e.g., QPSK or QAM. For example, different RATs may employ the same type of

modulation and yet use different medium access schemes. In [96], the authors propose a

long short term memory (LSTM) model for modulation classification in large distributed

networks of low-cost sensor nodes. As the input of their model they use two lists, one with

the time domain amplitude and another one with the time domain phase of the signal.

They made different analyses of the modulation classification per SINR and also about

the technology classification. They conclude that a modulation model classifier is not

always effective in classifying RATs, as different RATs might share the same modulation

schemes.
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The works summarised above provide solutions in the field of signal classification

with, predominantly, high accuracy in what they propose to do. However, most of them

are focused on modulation classification and not on RAT classification. These works also

do not exploit a scenario with varying degrees of interference and overlapping transmis-

sions among the classified signals, which significantly increases the difficulty in correctly

classifying these transmissions.

RAT classification

In an environment where the spectrum is shared between multiple RATs and multiple

access points belonging to the same RAT, e.g. in the Industrial, Scientific and Medical

(ISM) band, transmissions that occur in the same frequency channel can happen with

full or partial overlap. Recognising these cases and localising them can lead to better

interference and coexistence management mechanisms; for example, a BS could define its

bandwidth in order to avoid a part of the spectrum that is being heavily used.

Authors in [94] investigate RAT classification. They show that, in the context of radar

signal detection for low SINR scenarios, a model that considers both amplitude and phase

leads to better results than one just employing amplitude. In this scenario, the focus is on

distinguishing between radar, LTE, and WiFi transmissions. In [97], authors analyse dif-

ferent ML techniques for wireless technology classification with two different datasets,

and verify the ability of the model to generalise to unforeseen scenarios. These solutions

are effective in performing RAT classification but do not provide a more detailed charac-

terisation of the spectrum.
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Table 3.2 summarises the state of the art in spectrum sensing and position our work in

the literature.

Paper Classification ML Validation Different SINRs Feature extraction Available code
[90] Modulation SVM Simulation Yes No No
[92] Modulation Experimental/Simulation Yes Yes No Yes
[93] Modulation Dictionary Learning Simulation Yes No No
[94] RAT DNN Experimental No No No
[95] Detection of Spectrum events Experimental Yes No No No
[96] Modulation Recurrent NN Simulation Yes No No
[97] RAT SVM/NN/CNN Real-world data Yes No No
[98] Received Power SVM Simulation Yes No No
[99] RAT DNN Experimental No No No

This thesis RAT Object Detection Real-world data/Experimental Yes Yes Yes

TABLE 3.2: Spectrum sensing works.

Our contribution C3, which will be described in Chapter 6, is closely related to the

presented state of the art in spectrum sensing, although it does not only classify RATs but

provide extra information about the spectrum.

The proposed solution [100], applies object detection on spectrograms, which allow us

to classify and extract key features of the sensed transmissions. The advantage of using

object detection to the RAT characterisation problem is that this technique identifies the

object independently of its location in the image and if there is more than one transmission

at the time. This allows the detection and classification of transmissions with different

bandwidths, different duty cycles, different times of transmissions and centre frequency.

For this, we rely both on a dataset that we generated in the Iris Testbed [101] and on

available datasets of real-world commercial transmissions.

To the best of our knowledge, this investigation is the first to detect and classify dif-

ferent RATs transmissions applying a object detection technique and to evaluate its per-

formance under unfavourable noise and interference conditions. Our work is focused on

RAT classification, exploring the ambiguity of different OFDM-based RATs, namely, LTE
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and WiFi. We also believe that more information about the spectrum can guide a new user

to make better choices to operate efficiently; therefore our solution also provides feature

extraction functionality, which can be used to build efficient dynamic coexistence mech-

anisms in shared spectrum. Information as how long other transmissions are using the

spectrum, their interval of transmissions, and their bandwidth would lead to an efficient

dynamic spectrum coexistence. Table 3.2 provides a summary of the state of the art in

spectrum characterisation.

We propose that the spectrum characterisation in the UAV context could be used with

the following purposes:

• Be used by the UAV or the mobile network to take informative decisions on the UAV

mobility management, avoiding ping-pong effects and disconnection time.

• Be used in order to make an efficient use of the spectrum and analyse the best way

to attend the UE’s QoS requirements.

• Be used for coverage analyses on the sky.

• Be used by governmental authorities to detect Jamming attacks.

The use of our technique is not limited to UAVs, and spectrum characterisation can be

useful in for any unlicensed UE.
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3.3.4 Section Summary

This section presented the state of the art on UAV approaches to improve its QoS. We

start presenting works in UAV handover optimisation, in which authors propose adap-

tations to the mobility management for connected UAVs. Most works in this field apply

ML because often the resulting optimisation problems are intractable for conventional

optimisation schemes.

We also presented the UAV movement optimisation, which was investigated as an

optimisation problem constrained by different factors, such as UAV’s batteries, path min-

imisation, and connection to the mobile network. Although the optimisation considering

the UAV’s connection is newer and focused only on the horizontal path, even though

some mention the UAV height optimisation, this optimisation is not often investigated in

the literature. Therefore, in this thesis we investigate the height optimisation issue sepa-

rated from the horizontal path optimisation. As a separate solution, even if other feature

defines the horizontal path that is not related to the UAV’s connection, the height optimi-

sation can still improve UAV’s QoS and help it to avoid poor coverage areas.

Finally, we presented the spectrum sensing state of the art, dividing them into mod-

ulation and RAT classification. The firsts approaches focused on only determining if the

spectrum was occupied or not. Then, researchers started to classify the modulation clas-

sification using ML, and finally, the RAT classification using ML. These works are usually

assertive on what they propose to do. However, we envision that the next step in spec-

trum sensing is the RAT classification and more informative details about the spectrum.

This is due to the fact that mobile cellular networks will be using this spectrum with all
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the other UEs and to maintain efficient use of the spectrum, the network will need more

information.

3.4 Conclusion

In the chapter, we presented the challenges a UAV may bring to network operators, and

the state of the art in the areas where the QoS of the UAV can be improved in the mobile

network.

In this chapter we presented RQ1, that is "Which are the main challenges a connected

UAV may encounter if deployed in a typical modern-day cellular network?", providing

C1 punctuating the challenges during the chapter. The challenges presented highlight the

need for adaptations on the network or on the connected UAV side for the introduction

of connected UAVs, otherwise the network may experience QoS issues for both air as

well as GUE. We divided the challenges into coverage, PCI and handover challenges.

To support our claims regarding the challenges, we analysed a real-world dataset which

contained measurements from a UAV user connecting to a small cell network in an urban

environment. Then, we proposed directions to mitigate the effect of these challenges that

should be implemented by the mobile operator.

As the modifications on the mobile operator side might take long time to be imple-

mented, we introduce the state of the art of the possible ways a UAV can improve its QoS.

The research areas are then divided in UAV handover optimisation, UAV movement op-

timisation and spectrum characterisation. In the rest of this thesis we will provide novel
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and well-performing solutions to address the issues of UAV movement optimisation and

spectrum characterisation in order to answer RQ2 and RQ3.

First, to answer the RQ2 "How to adapt the UAV height in order to increase UAV’s

QoS?" we present the UAV dynamic height adaption in order to improve UAV’s QoS and

avoid areas with poor or no coverage. Then, we propose a spectrum characterisation

approach to answer RQ3 "How to better characterise the unlicensed spectrum in order to

enable more efficient spectrum usage?".
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Chapter 4

Adaptive Height Optimisation for

Connected UAVs - Investigation

Based on Real-World Measurements

This chapter together with the following Chapter 5 aims to answer RQ2 "How to adapt the

UAV height in order to increase UAV’s QoS?", adapting UAV’s height in order to provide

a better throughput. The proposed dynamic height optimisation is done applying RL

method that has as input to its model data that is commonly find on UEs.

The first part of our contribution, covered in this chapter, focus on developing and

evaluating the proposed RL approach for a real-world collected dataset. Then, in Chapter

5, we extend this evaluation in a simulation environment, where we can vary the density

of BSs and buildings in order to generalise the proposed solution. The data used to eval-

uate the proposed solution in this chapter was collected with a smartphone attached to a

UAV that flew in two different areas of Dublin city centre.
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This chapter comprises the following sections: we introduce the problem in Section

4.1. Then we present the problem statement in Section 4.2, explaining the scenario we

are assuming for this investigation. In Section 4.3, we explain in detail how the data was

collected in this chapter. Then, in Section 4.4, we detail the proposed approach. In Section

4.5, we presented the pre-processing we needed to do to the data in order to use it for

the height adaptation approach. Section 4.6 investigates the performance of the proposed

approach compared with some benchmarks. We then, conclude the chapter in 4.7.

4.1 Introduction

UAVs can leverage 5G connectivity to perform security surveillance, search and rescue

operations, building inspections, and more. However, providing reliable connectivity to

such UAVs is still an open problem, as they present a paradigm shift when compared

to their ground counterparts such as smartphones. According to the specifications (re-

lease 14 of 3GPP [102]), a UAV needs to maintain continuous connectivity with the mobile

network at speeds up to 300km/h.

Previous work, such as [8], [9], investigates the feasibility of using existing network

infrastructure to provide reliable wireless connectivity for UAVs. These studies conclude

that currently deployed networks would need to adapt some of their design configura-

tions, such as increasing BS heights [10] or changing the tilt of the antennas [11] so as to

enable connectivity for UAVs. Redesigning the terrestrial network infrastructure may be

unfeasible, and an adaptable solution on the UAV side may be necessary to accelerate the

UAV integration into the network.
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Due to the height at which UAVs fly, there are often no obstacles and therefore no

blockage between the UAVs and their serving BS, which is good for the UAV connection.

However, at high altitudes there is an increased probability of LoS to ground BSs in gen-

eral, not only the serving one, which results in high levels of interference at the UAVs. The

work in [10] states that the optimal height at which the UAV can fly to maintain reliable

communication depends on the BS density and UAV’s height. Similarly, the authors in

[70] show that the vertical movements of the UAV affect its coverage probability.

However, no work addresses the dynamic height optimisation of UAVs acting as end-

users of the cellular network. Motivated by the above, this chapter aims to answer the

RQ2, "How to adapt the UAV height in order to increase UAV’s QoS", by proposing an

RL approach for dynamic optimisation of the height of a UAV connected to the cellular

network once it moves in realistic city environments, consisting of buildings of various

heights, as illustrated in Figure 4.1. To the best of our knowledge, this is the first work to

optimise connectivity of a cellular-connected UAV by dynamically adapting the height at

which it is flying.

4.2 Problem Statement

We consider an urban scenario where a UAV flies while connected to the cellular network.

The UAV’s initial and final positions are denoted as (x1, y1, z1) and (xf , yf , zf ), with f rep-

resenting the total number of discrete steps in the experiment. x and y denote coordinates

on the horizontal plane, while z denotes height above ground. At each step, the UAV

moves in the x coordinate in direction to its final destination. In this work, as the focus is
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FIGURE 4.1: Side view of a UAV connected to the mobile network
adjusting its height to maximise its throughput.

on UAV height optimisation and many approaches for optimising 2D trajectories already

exist, we assume a simple horizontal path (ie. either a straight line towards the destina-

tion, or allowing minor deviations to move closer to serving BS). Note that simplification

of the path does not affect the applicability of our proposed approach, as due to its design,

it can be integrated with more complex horizontal path algorithms (which we reviewed

in Section 3.3.2 and are out of the scope of this thesis). In other words, the only coordinate

that can be optimised is z. We assume that the maximum height change at each time step

is d, so |zt − zt−1| ≤ d.

Usually, UAVs are allowed to fly in a height range defined by safety regulation, with

the minimum allowed height denoted as Zmin, and the maximum allowed height as Zmax.

We assume that the UAV starts at Zmin. Figure 4.1 illustrates the possible path of the UAV,

where d is the maximum distance the UAV can move up or down in each step. d is a
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representation of how much a UAV can move realistically up or down and horizontally

in a time-step.

Our main objective is to optimise z coordinate at each step, in order to improve the

QoS experienced by the UAV. The metric used to represent the QoS is the downlink

throughput. The problem assumes the downlink throughput as we use real-world data,

and in the data collection, this was the parameter measured. We understand that for

a range of applications, the most used link would be the uplink. Therefore, the solution

could be modified to work with the uplink throughput without modifications to the actual

proposed method. Throughput is first calculated as symbols per second, where these

symbols are defined by their modulation [103]. Depending on how many bits a symbol

can carry, throughput is converted into bits per second (bps). Thus, throughput can be

defined as T = sM , where s is the number of transmitted symbols per second, and M is

the number of bits per symbol. The modulation is chosen based on the channel conditions.

We formulate the optimisation problem as follows:

max
(z1,...,zf−1,zf )

f∑
t=1

T (t); (4.1a)

s.t. zt > Zmin ∀ t (4.1b)

zt < Zmax ∀ t (4.1c)

|zt − zt−1| ≤ d ∀ t (4.1d)
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We assume that the UAV will have access to the SINR measurements from its con-

nection, the downlink throughput it is achieving at that SINR, and its height at all steps.

SINR and throughput data is easily obtained by the UAV from its cellular connection,

while the height information is obtained via other UAV sensors located on the UAV, as

already present in UAVs as the DJI-mini 2 [3] presented in Chapter 1.

4.3 Data Collection

To evaluate the proposed height adaptation solution, in the first instance we use the real-

world measurements obtained by a UAV connected to a two-tier cellular network in two

different areas of Dublin city’s Smart Docklands, which includes massive MIMO macro

cells and MIMO small cells experiment. The dataset was gathered by DenseAir, and is

publicity available under request, and a sample of the data is available in https://github.com/galkinb/DenseAirDatasetSample.

I was not involved on the data collection directly, my role on the paper was focused on

the analyses. Bellow, we recap the details of the experiment relevant for our evaluation,

while full details of details of measurements are presented in [104].

4.3.1 Building distribution

The environment in which the radio waves interact usually impacts on their propagation.

During the data collection flights, the UAV flew above the water, which can absorb some

signals while reflecting others, causing multi-path effects and destructive interference.

The experimental cellular network testbed, in which the measurements were conducted,

is shown in Figure 4.2. It was situated around a river, with large open areas suitable for
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FIGURE 4.2: Testbed area from the top. Macro cells are labelled in
purple, and small cells are denoted with white icons—the measure-

ment area where the UAV flew is marked in green.
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Time Latitude Longitude SINR Carrier 1 (dB) Serving Cell Identity Throughput (kbps)
13:20:41.000 53.34342193604 -6.23032475884304 9.0 60 46872.35
13:20:43.000 53.34342193604 -6.23032503210378 8.6 60 46860.85
13:20:45.000 53.34342193604 -6.23032507764724 8.5 60 46870.39
13:20:47.000 53.34342193604 -6.2303251231907 8.1 60 46863.68
13:20:49.000 53.34342193604 -6.23032516873416 7.5 60 46846.63

TABLE 4.1: Example of collected data at 30 m in GCQ area.

UAV deployment. The buildings in the area have heights between 20 and 80 meters. The

testbed consists of two macro cells deployed on building rooftops and a network of small

cells deployed on lamp posts and traffic lights along the river at 6.5 meters above the

ground.

4.3.2 UAV and BSs

The macro cell labelled Trinity Enterprise Center in Figure 4.2 is the macro cell that pro-

vided connection to the UAV in this area. This macro cell is a ZTE model ZXSDRB8300

with a 64 element antenna array Massive MIMO system, positioned 29 meters above the

ground. The lamp post small cells are AirSpeed model1250 with four antenna elements

that apply 2x2 MIMO. Both the macro cell and the small cells operate on the B42 channel

of the 3.6 GHz, 5G frequency band. The maximum transmit power of the macro cells and

small cells are 49.9 dBm and 25 dBm, respectively. The two-tier network has a hierarchi-

cal cell structure [105], where the small cell tier has a higher connection priority than the

macro cell tier. It means that a UE prioritised connecting to the small cells even when it

detects a stronger signal from a macro cell. In this experiment, the handset which was

connected to the UAV had the operator DenseAir [106] SIM card.
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The measurement flight consisted of flying a handset which operated on Band 42 (3.6

GHz) attached to a UAV through the urban area where the testbed is active at different

heights above ground, while taking measurements. The UAV used was a DJI Matrice

M300 carrying a Google Pixel 3 handset. Connectivity data was collected in two environ-

ments: Grand Canal Quay (GCQ) and North Wall Quay (NWQ), as illustrated in Figure

4.2. The UAV flew downloading an adaptive video from a commercial internet-based

server, rather than seeking to saturate the wireless link.The UAV flew at a fixed height

back-and-forth in the designated areas. This flight pattern was repeated at 10 meter incre-

ments for all heights between 30 and 120 meters (the legal flight ceiling in Dublin).

Table 4.1 shows a sample of the subset of the collected data in our evaluation. The first

column represents the time the data was collected, followed by its GPS coordinates, the

SINR observed for the serving cell, the serving cell identity and the throughput at that

moment. Once the UAV connects to another cell, the cell identity value changes.

Table 4.2 summarises the main characteristics of the experimental environment for

NWQ and GCQ. The Table shows: the height of the BS antennas; the velocity the UAV

was flying; the total distance the UAV passed in each height; the quantity of measure-

ments reports in each area, denoted as steps; the size of each step in meters; the variation

of heights; the building height variation; and the distance d in each scenario. The mea-

surements were reported every 2 seconds most of the time. We also observe that the flight

in NWQ resulted in fewer measurements despite being the one where the UAV flies for

a longer distance. While a UE is performing handover, it does not sense the spectrum;

consequently, it does not report any measurement. In the small cell area, the UAV was
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Variable NWQ Value GCQ Value
BS height 6.5m 29m

Speed 4.2 m/s 2.6 m/s

UAV travel distance 1160 m 890 m

Steps 161 171
Horizontal step size 7.2m 5.2

Allowed UAV height range [30− 120]m [20− 120]m

Building height variation [20− 80]m [20− 80]m

d 10m 10m

TABLE 4.2: Collection environments.

performing handovers, which resulted in fewer measurement reports when compared to

the macro cell area, where the UAV did not perform measurement reports.

4.4 Proposed Solution

To solve the height optimisation problem for a specific position of the UAV given a par-

ticular topology of the BSs and buildings, one could apply stochastic geometry as in [12].

The main issue with this approach is that to represent this problem via stochastic geome-

try, one has to know the statistical distribution of the features of the environment for each

position that the UAV assumes during flight. This can be computationally expensive to

run and the environmental statistics may not be accurate to what the UAV would find

once it is flying in the real world.

To tackle this issue our solution is based on RL. In particular, we apply DQN as it does

not require a predefined model of the environment, since it learns by interacting with the

environment in an online manner. In our implementation, we evaluated the proposed
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at

FIGURE 4.3: Graphical representation of the designed DNN.
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model using a commercial off-the-shelf computer with Intel Core i7-6820 HK processor

and GeForce GTX 1070 Mobile. The agent of our model is the UAV, as it is the one taking

the action of changing the height. Bellow we define the other main components of our

model:

State Space S

S is all the possible values of the state, and s is the individual single value of the state. We

just considered in the state space values a normal UE would have from the network and

measurements of sensors that a UAV should have to have a safe fly. Follow the compo-

nents of S:

• Height z: which is obtained by UAV sensors and it is relevant for UAV’s decision-

making process, as in order to know whether to move next and stay within the hard

limits.

• Received SINR: which is obtained by UE sensors to perform the measurement re-

ports. This value impacts the UE QoS that is what we intent to maximise.

• 4 last z, SINR, a, r: which will be stored from the previous steps. In order to achieve

better optimisation, we extended the state with the four previous z, SINR, action a

and reward r, following the lines of the original DQN implementation [56], as well

its implementation in UAV connectivity [39].

The agent has as input at each time step st, where t represents the time step the follow

state. s = {SINRt, zt, SINRt−1, zt−1, at−1, rt−1, SINRt−2, zt−2, at−2, rt−2, SINRt−3, zt−3, at−3,

rt−3, SINRt−4, zt−4, at−4, rt−4}.
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Action Space A

The action is the adjustment of the UAV height. An action a ∈ {−d, 0,+d} will be taken

at the end of each time-step, where:

a = −d⇒ zt+1 = zt − d

a = 0⇒ zt+1 = zt

a = d⇒ zt+1 = zt + d.

Reward R

As the primary goal of our approach is to improve the UAV throughput during flight,

our reward at each time step rt is defined as the throughput achieved after the action at

point xt+1 at height zt+1.

Our model has three hidden layers, with 200 neurons in each. Figure 4.3 illustrates the

graphical representation of the proposed DNN.

In our solution, we use epsilon greedy approach, this is an strategy to balance explo-

ration and exploitation. We selected the initial ϵ = 1, where we select an action at random,

and we decrease it at every step of the training process until it reaches 0.05, which in our

experiment took 30 steps to reach.

4.4.1 RL algorithm for UAV height optimisation

The pseudo-code of the RL algorithm to optimise zt is shown in Algorithm 1. Some pa-

rameters must be chosen and passed as input to the code to run the algorithm. They are

the Zmin and Zmax, the minimum and maximum allowed height that the UAV could fly.
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X and Y are the vectors with the horizontal coordinates the UAV should acquire during

its movement. Where X = x1, x2, .., xf and Y = y1, y2, .., yf , as the horizontal path is

predefined. ϵ, ϵDecay and ϵmin are needed to apply the ϵ-greedy approach. The input ϵ is

the starting value for ϵ, and ϵDecay is a value that will multiply ϵ and reduce its value at

each interaction until ϵmin.

β and βmin are, respectively, the batch array and the minimum size of the batch needed

to apply memory replay. While using memory replay, the number of epochs to train the

model and the Discount factor to calculate the new Q value (newQ) is required. Finally,

var is an integer that indicates how often the target model should be updated. The ex-

pected output of this algorithm is the UAV next height in the next step.

The first step of the proposed RL-based algorithm for UAV height optimisation is to

initiate the DQN model and the target DQN model, lines 1 and 2, respectively. Then

we initialise the UAV coordinates in line 3 and initialise variable t, which refers to the

timestep the UAV is during the each step. The while statement in line 5 is the overall

while loop that represents the full flight path of the UAV, and has as many steps as that

set of X and Y .

Inside the step loop, it is needed to update t and collect the current value of SINR.

Then, we update the state value in st. After that, we randomly select a number, randomNum,

and compare its value to ϵ in line 9. This step is necessary to evaluate the comparison of

the ϵ-greedy approach. In line 9, we also check t value to be at least 4, as we need the

state information values from the last 4 states for the input of the model. If the condition
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is satisfied, which means randomNum > ϵ and t > 4, we use the DQN model to pre-

dict the best action at. If the condition is not satisfied, we randomly choose the action at.

Once the action at is defined, we execute it in line 15, ie modify the UAV height, moving

the UAV up or down if it does not go above the permitted flight boundaries (Zmin and

Zmax). Then, the UAV also moves based on the sets X and Y its horizontal coordinates

to the next position in line 16. We obtain the reward which represents the quality of our

selected action, and is later used to update the learning process. The reward rt is equal

to the measure throughout after executing the action, as shown in line 17. The ϵ decrease

value is then performed in lines 18 to 20. The ϵ decrease is needed to decrease the amount

of of random actions we perform once the model is being trained.

After decreasing the value of ϵ, we then save the new state st+1 with the action at,

reward rt and the state st, in order to apply the replay memory later. Therefore, we need

to discard the most old values from the previous 4, that refer to the 4t timestep, so st+1 has

only its last 4 timesteps. Once we have the values of at, rt, st and st+1, we can save them

in the batch β, which will record the last values in order to train the model later using

them.

To apply replay memory, the batch β needs to have a minimum size that is determined

before the algorithm starts by βmin. In line 23, we check if this condition is satisfied. If

it is not satisfied, we cannot yet apply replay memory. If it is satisfied, a batch sample

of size βmin is taken from β and saved in the variable tempBatch, as illustrated in line

24. For each value in tempBatch in the loop that starts in line 25, we keep in the variable

CurrentQV alue the update of the Q value made by the actual DQN model in line 26.
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Algorithm 1 RL-based algorithm for UAV height optimisation
Input: β; βmin; {//Batch parameters}
ϵ; ϵDecay;ϵmin; {//ϵ-greedy parameters}
d; Zmin; Zmax;x;y;{//Coordinates parameters}
epochs;var;Discount;{//Replay memory parameters}

1: DQNModel← InitialiseDQLModel(modelparameters)
2: targetDQNModel← InitialiseDQLModel(modelparameters)
3: (xt, yt, zt)← (x1, y1, Zmin)
4: t← 0
5: while (xt, yt) ̸= (xf , yf ) do
6: t← t+ 1
7: SINRt ← uav.GetCurrentSINR(xt, yt, zt)
8: st ← SINRt, zt, st
9: randomNum← RandomNumber(0− 1)

10: if randomNum > ϵ and t > 4 then {//The model needs 4 last steps in the input}
11: at ← DQNModel.predictMaxValue(st)
12: else
13: at ← Random(+d, 0,−d)
14: end if

{//Changing height according to action}
15: uav.takeSelectedHeightAction(d,a, Zmin, Zmax)
16: (xt, yt)← (xt+1, yt+1)
17: rt ← uav.GetThroughput(xt, yt, zt)
18: if ϵ > ϵmin then
19: ϵ← ϵ ∗ ϵDecay

20: end if
21: st+1 ← at, rt, st.removeState(s−4t)
22: β ← StoreTransition(β, st, at, rt, st+1)

{//Applying replay memory}
23: if length(β) > βmin then
24: tempBatch← BatchSample(β)
25: for i in 1 : length(βmin) do
26: CurrentQV alue← DQNModel.predict(tempBatch.state)
27: FutureQV alue← targetDQNModel.predict(tempBatch.nextState)
28: maxFutureQ← FutureQValue.maxValue(i)
29: newQ(i)← tempBatch.reward +Discount ∗maxFutureQ
30: newQTable← CurrentQV alue(tempBatch.a(i))
31: newQTable← DQNModel.update(tempBatch.state)
32: end for
33: DQNModel.train(tempBatch.state, newQtable, epochs)
34: end if
35: if t%var then {//Updating target model}
36: targetDQNModel← setWeights(DQNModel.getWeights())
37: end if
38: end while
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Then, update the Q value for the tempBatch next state with the target model and save in

the variable FutureQV alue in line 27. In line 28, for each value in tempBatch, we store

the maximum Q value calculated by the target model in maxFutureQ. In order to update

the new Q value in line 29, newQ, for each value in tempBatch, we weight the formula

by Discount the actual reward of the saved values with the calculated maxFutureQ. In

possession of the newQ value and the states from tempBatch, we calculate the new Q

table in lines 30 and 31, newQTable, with the values of the chosen actions updated. Then

we train the model with the tempBatch, the newQTable a number of epochs defined in the

input. We then update, or do not update, the target model in line 35 to 37, and come back

to the beginning of the loop. The target DQN model increases stability during the replay

memory implementation, as the target network only updates its weights at each var step.

The code where we apply Algorithm 1 is available to the community in our public

GitHub1.

4.5 Experiment Design

The objective of our proposed algorithm is to maximise QoS to the UAV at all times, and

to evaluate it. We use the data collected in the experimental flights described in 4.3, but in

order to use the described data we needed to do some cleaning and pre-processing. The

evaluation of our proposed height adaptation DNN model is done with a synthesis of the

collected data. In this pre-processing, we do not interfere with any collected values for

height, throughput or SINR.

1https://github.com/Erikagpf/DQN-for-UAV-height-adaptation.
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For the synthesis, we have data in the NWQ area from ten different heights, and in the

GCQ area nine different heights, each of them separated by 10 meters. As it is separated

by 10 m, our increment d is 10. We merge this in a single dataset that simulates that the

data was collected at the same horizontal coordinates at the same time. This enables us

to know if the UAV can improve its throughput by changing its height. The goal of our

experiment is to use part of this dataset to learn how to select the next movement by

predicting which height the UAV needs to go to in order to achieve a higher SINR, then

test in the unseen part.

The data was collected one after another on the same day for each location; however,

the time of each flight is slightly different. As the data is collected at different times,

meteorological conditions could impact the measured data. To be able to use the data, we

ignore which time the data was collected. This assumption is needed because we let the

UAV change its height in each time step (steps are 2 seconds); however, on the collected

data, there is a considerable difference in time between them.

The horizontal coordinates of each height are also not exactly the same, the UAV was

programmed to do the same path, but some factors, such as wind, made it move slightly

from height to height. As we assume that the horizontal path only moves straight, we

needed to make an approximation from the coordinates at each height. Moreover, mea-

surements at certain time steps are missing due to the UAV not being able to measure as

it was performing a handover, jumping 2 seconds on the table.

For a given flight path, segmented into parts with distinct heights, each segment can

vary in the distance travelled. We only consider data points for a given segment where
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they intersect with the segment with the shortest distance travelled. Otherwise we would

not have a complete dataset. We call the flight segment with shortest distance the co-

ordinates base, which for both areas was at 60 m. The coordinate base is the horizontal

position we assume the UAV followed during our analysis at every step. We assumed

that the measurements on the other heights were on the coordinate bases precisely coor-

dinates. This means we assume that even if the horizontal coordinates changed slightly

for different heights, such as half-meter far from the one at 60 m, we would consider it

is the same as in the 60 m. We calculate the distance between the coordinate base and

all the coordinates for each height. The smaller calculated distance is considered to be

at the same point as the coordinate base. With this procedure, the UAV has the closest

coordinates for all heights, and we can assume its path is approximately a straight line.

Each set of measurements at given coordinates corresponds to a single discrete step

in our evaluation. The starting position z1 is fixed, and afterwards, it is controlled by

the action selection process of our proposed DQN algorithm described in Section 4.4 or

by the baseline solution algorithm. Table 4.3 illustrates an sample of the data after the

pre-processing. The data now does not have information of the time. The coordinates are

aligned, the step is defined for each line, and it is defined that height of each measurement.

The hyper-parameters that provided the best results are illustrated in Table 4.4. How-

ever, we needed to perform a deep investigation to choose the hyper-parameters and

design the model. We changed several of the hyper-parameters and inputs of the model

until finding the proposed one. These parameters were experimentally selected among a

number of model variations in which the number of layers, number of neurons per layer,
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Step Height Latitude Longitude SINR Carrier 1 (dB) Serving Cell Identity Throughput (kbps)
1 20 53.34342193604 -6.23032475884304 10.3 60 46761.22
1 30 53.34342193604 -6.23032475884304 20.2 60 76651.78
1 40 53.34342193604 -6.23032475884304 11.1 60 46797.87
1 50 53.34342193604 -6.23032475884304 6.4 61 35082.27
1 60 53.34342193604 -6.23032475884304 3.4 61 29024.27
1 70 53.34342193604 -6.23032475884304 9.9 60 46738.80

TABLE 4.3: Sample of data from GCQ area after pre-processing to be
used in the evaluation.

activation function, number of epochs, regularisation, and the inputs were varied. As

we apply experience replay, the epochs are how many times the model is trained with

the mini-batch at each time-step. Depending on the complexity of the DQN network (for

example number of input features, number and size of layers), the training can be per-

formed in a few steps, or require thousands or larger number of steps. However, for the

UAV height adaptation scenario it is imperative to have as few training steps as possible,

so that the model can learn to optimise height quickly in any new city environment is

applied in. The value of epsilon decay in our evaluation is small compared to other DQN

applications, which makes it learn quickly. In order to have a fast adaptation in a new

environment, the model needs to adapt its weights quickly to not interfere with the UAV

performance at the end of the path. For this evaluation, the value of ϵ and ϵ-decay are 1

and 0.9 respectively, effectively meaning that the proposed model trains in 30 steps. We

apply replay memory as an strategy to accelerate the learning process, where at each step

the model trains with the mini batch for the number of epochs.
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Parameters Value
Epoch 200

Epsilon 1
Epsilon_decay 0.9

Neurons per hidden layer 200
Number of hidden layers 3

Regularisation after hidden layers RELU
Output layer Softplus

Optimisation function Adam

TABLE 4.4: Values of hyper-parameters for the proposed DQN
model used in evaluation.

4.5.1 Baselines

We choose five different height selection strategies to which we compare performance of

our proposed RL algorithm. For the first one, we use the baseline proposed by Zhang [19],

which suggests that the UAV maintain the minimum allowed height during its flight. One

of the most common approaches to UAV height selection is to maintain a constant height

[8], [10], [11], [107], but there is no consensus on which height value to choose. To make

a fair comparison, we also benchmark our approach against two constant height values.

These heights will be the maximum possible height (120 m), and half of the maximum

(60 m). When following these fixed height strategies, the UAV will begin at the mini-

mum height at timestep 1, before increasing its height in each timestep until it reaches the

required height, after which it will make no further adjustments.

To confirm that our solution is actually learning based on observed environment infor-

mation and not acting randomly, we also compare it to a bounded Random walk height
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selection strategy, in which the UAV in each timestep randomly selects one of three ac-

tions: increase the height, decrease the height, or keep the current height. It is bounded

as all the solutions and cannot fly outside the allowed flight range.

In order to compare our solution to a more complex baseline, we implement an ap-

proach that we call One-step-ahead solution. In the One-step-ahead approach, the UAV

knows whether the maximum SINR in the next time step will be found above or below its

current height, and will move up or down (in a fixed increment of d = 10 m) depending

on this knowledge. To be able to apply the One-step-ahead solution, the UAV needs pre-

vious information about the environment; this is not feasible in a real-world application,

but we include this to assess whether and by how much such information would improve

performance when compared to our RL approach.

We also compare our RL solution with one based on optimal height at each time step

as obtained from the real-world dataset. In this approach, it is assumed that the UAV is

able to move to any height in the next timestep, without restrictions of d. This represents

the ideal-case performance which would not be possible in a real-world UAV application.

Bellow are benchmark approaches:

• Zhang [19]: this benchmark proposes that the UAV should maintain the minimal

allowed height at all times.

• Constant at 60 m: this benchmark starts at the minimal height, like all others, and

then moves up at every step until it achieves 60 m height. After achieving 60 m, the

UAV should not move up or down.
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• Constant at 120 m: this benchmark starts at the minimal height, like all others, and

then moves up at every step until it achieves 120 m height. After achieving 120 m,

the UAV should not move up or down.

• Random walk: this benchmark chooses its action randomly at each step.

• Optimal height: this is a reference benchmark of the maximum possible QoS values.

In this approach, the UAV does not have any limitations on the maximum height

change from step to step and also know which height has the maximum QoS.

• One-step-ahead: this benchmark follows the optimal height next position to decide

its next action. If in the next step the optimal height is above the actual height of the

UAV, the chosen action will be to move up. If in the next step the optimal height

is bellow the actual height of the UAV, the chosen action will be to move down. In

case the optimal height in the next step is the same as the actual height, the UAV

should not move.

4.6 Evaluation Results and Analysis

We next evaluate how our RL approach can adapt the UAV heights with the objective to

optimise the total throughput. We run the same algorithm 100 times over the data for

this evaluation but always start the model from scratch, so it does not use the trained

weights from the last run. Nevertheless, we do it so we do not overfit the model to the

data and have a fair evaluation of the learning over an unseen scenario. We evaluate

performance of our approach in two different sets of experimental data, NWQ with small
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Approach Throughput (Mbps)
Zhang [19] 35

Constant at 60 m 30
Constant at 120 m 30

Random walk 32 +- 2
One-step-ahead 35
Optimal height 43

RL 37 +- 1

TABLE 4.5: Mean throughput (Mbps) over 100 trials. Based on flight
data obtained in the NWQ area.

cell connectivity, Section 4.6.1, and GCQ with macro cell connectivity, Section 4.6.2. We

start the evaluation with the throughput analysis, followed by the analysis of the height

adaptation through the path. We evaluated the model after the training phase in this

section. The results shown are related to the last 100 UAV steps.

4.6.1 NWQ analysis

Table 4.5 presents the average throughput of the investigated approaches; for non-deterministic

solutions, which means the ones that might change at each run, we present a mean over

100 trials. We inspect the throughput as it is our parameter that we wish to optimise. By

construction, the Optimal height at each step leads to the highest throughput. Therefore,

we consider the Optimal height at each timestep to be the one with the highest through-

out at that timestep. Our proposed approach achieves 37 Mbps with a variance of 1 Mbps,

which is the highest throughput. One-step-ahead achieves 35 Mbps, that is the second

highest. The approach proposed by Zhang [19] performs similarly to the One-step-ahead

solution with 35 Mbps, with the added benefit of not needing a priory knowledge of
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(A) Mean throughput in (Mbps) in NWQ area.
(B) Height adaptations for a UAV flight over the

last 100 steps in NWQ area.

FIGURE 4.4: Performance of the benchmarks and the proposed RL
approach in the NWQ area.

the environment. Nonetheless, our proposed RL approach provides the best throughput

and outperforms Zhang [19] and the One-step-ahead benchmarks by 6%, also resulting

in lower variation in UAV heights when compared to the One-step-ahead approach. It is

worth noting that the solutions that maintained large heights, as Constant at 60 and 120

m, do not perform well when compared to those that maintained lower heights. One pos-

sible explanation for this is that at greater heights a UAV might have been experiencing

increased interference from cells it was not connected. Another possibility is antenna mis-

alignment: as the small cells are designed for ground users, their antennas are directed

towards the ground, which means that the aerial UAV receives signals primarily from

antenna side-lobes.
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Figure 4.4 evaluates an example run, different than Table 4.5 that evaluates the ap-

proaches performance after 100 trials. To generate Table 4.5 we needed to calculate the

mean over the throughput mean of each run, losing information of the throughput varia-

tion through the path. With the analyses of one single run, we can verify how the through-

put and height vary through the path. Figure 4.4a presents box plots for the throughput

in Mbps for all approaches obtained across the last 100 steps of one example run. Our

RL approach shows a stable value for the obtained throughput, with its first and third

quartile being 36 to 41 Mbps (the box denotes that 50 % of the data is in this range), re-

spectively, and with median 40 Mbps. On the other hand, one can observe a considerable

interquartile range from 18 to 34 Mbps in the throughput for the Random walk approach,

as well as for the approaches that maintain the height Constant at 60 m and 120 m. This

more significant variance is likely due to the randomness of the Random walk approach

and to the fact that at greater heights of the constant strategies, the coverage from several

cells is more unpredictable, as the UAV may be connecting to the side lobes of different

antennas. Approaches as One-step-ahead and Zhang[19] have a bigger interquartile when

compared to the proposed RL approach, with Zhang [19] being between 32 to 40 Mbps,

One-step-ahead between 31 to 41 Mbps, and the RL approach between 36.5 Mbps to 41

Mbps. Although in the One-step-ahead, Zhang [19] and RL happens outliers (in the figure

represented as the dots outside the box) that means that at some points of the path, the

measured throughput was much lower than most of the path. Interestingly, the Optimal

height median throughput is only 6% better than our RL-based approach, despite it unre-

alistically assuming instant jump from any height to any other height is possible, showing
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that the proposed method is close to optimal.

Figure 4.4b shows how the different adaptive strategies adjusting the UAV height at

different steps in a single sample run for the last 100 steps. We inspect the individual

height adaptation to understand how each of the approaches behave in a real path and

have an idea of how many adaptation were needed to achieve their respective throughput.

We do not illustrate Zhang [19], Constant at 60 m and Constant at 120 m because their

values are constant. We can observe that our proposed RL-based solution maintains the

UAV height low all the path, with only 3 changes in the UAV height on the last 100 steps.

On the other hand, we can see that the Optimal height at each step changes substantially,

indicating that even if one knew in advance at which height the optimal connectivity was

obtained, the UAV would not be capable of reaching these heights in every timestep, as

the height change from one step to another could be in the order of 90 m. The One-step-

ahead approach follows the Optimal height, and also moves constantly trying to achieve

the Optimal height approach. In this example, the Random walk approach started the last

100 steps at higher heights and it moved randomly through the steps in a up and down

movement, and sometimes, did not move, as expected.

4.6.2 GCQ analysis

Table 4.6 shows the average throughput for the GCQ area over 100 trials. Same as in

NWQ, we aim to analyse the throughput as it is the variable that we intent to optimise.

The Random walk approach provided a throughput of 50 Mbps, better then the constant

approach at 60 with and 120 m that achieve. The constant approaches that lead to the UAV
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Approach Throughput
Zhang [19] 68

Constant at 60 m 41
Constant at 120 m 41

Random walk 50 +- 4
One-step-ahead 68
Optimal height 83

RL 70 +-2

TABLE 4.6: Mean throughput (Mbps) over 100 trials. Based on flight
data obtained in the GCQ area.

flying at larger heights result in lower throughput compared to all other approaches, ob-

taining 41 Mbps, which is only 59% of the throughput achieved by our RL approach. In

this scenario, our RL solution also performed better than all benchmarks achieving 70

Mbps in average, while the Zhang [19] approach and One-step-ahead being in second,

achieving 68 Mbps. The results of the One-step-ahead approach show that having a priori

knowledge of the environment is sometimes not enough to provide the best through-

put. As a reference, the Optimal height achieved around 19% better throughput than the

proposed RL approach, which showed to be considerate more than in NWQ area. One

explanation of the difference in the distance between the Optimal height and the other

methods is due to the fact that the optimal approach changed more drastically its height

through the path, making it impossible for any other approach to achieve closer to the

same throughput as they were limited by "d".

As in the NWQ area, Figure 4.5 evaluates an example run, different than Table 4.6

that evaluates the approaches performance after 100 trials. In Figure 4.5a, we investigate

the stability of each of the approaches, with the box plot representing throughput across
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last 100 steps. Both, RL and Zhang [19] approaches, achieve median throughput of 74

Mbps, as well as exhibiting low variance. Both achieve the lower quartile at 65 Mbps, but

at the third quartile, the RL proposed approach provides 2 Mbps more than Zhang [19],

meaning that it provided better throughput for some time in the path. This behaviour is

similar to the one in the NWQ area, although the throughput results for the other baseline

approaches are significantly different. In particular, the approaches that keep the UAV

height Constant at 60 and 120 m show lower variance than for the data set obtained in

the NWQ area. Possibly this difference is because the UAV connects to only one macro

BS in NWQ area, which leads to greater stability in the throughput. On other hand, One-

step-ahead provides high variance through its path, with its median being close the the

proposed RL approach, in 70 Mbps, and its first and third quartile been between 47 Mbps

and 78 Mbps. The Random walk approach shows a small variance on its quartile, al-

though it also shows many outliers. As the behaviour is random, the outliers showed a

significant variation of the throughput. However, on average, it manages to maintain a

throughput near its median of 46 Mbps.

Figure 4.5b illustrates how the different strategies adjusted the UAV heights when

flying in the GCQ area. As in the NWQ area, we inspect the individual height adaptation

to understand how each of the approaches behave in a real path and have an idea of how

many adaptation were needed to achieve their respective throughput for the GCQ area.

Here, we observe that our proposed solution maintains a low height when flying near a

macro cell deployment maintaining its height at 20 m or 30 m at all times. Also, we note

that the Optimal height at each step requires significant changes in the UAV height from
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(A) Mean throughput in (Mbps) in GCQ area.
(B) Height adaptations for a UAV flight over the

last 100 steps in GCQ area.

FIGURE 4.5: Performance of the benchmarks and the proposed RL
approach in the GCQ area.

step to step for example. The One-step-ahead approach follows the Optimal height and

moves up and down 50 times for these 100 steps. In this example run, the Random walk

approach starts at a higher height and keeps moving randomly until move to the lower

heights.

4.7 Conclusion

In this chapter, we presented contribution C2 of our thesis, that is a RL-based approach to

optimise throughput by adapting height at which a mobile cellular connected UAV should

fly in order to improve its QoS. Our primary objective was to increase the UAV’s average

throughput in order to answer RQ2 "How to adapt the UAV height in order to increase
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UAV’s QoS?". The environment is complex, with the received channel quality affected by

distance attenuation of the signal, building blockage, interference, and the antenna gain

of both the BS and the UAV antennas. Changing the height will change all of these factors,

some will improve, and some will deteriorate. Because of this complexity, it is not evident

if one constant approach will always provide better throughput; the height needs to be

adjusted for each individual environment.

We evaluated our approach using real data obtained from a UAV carrying a smart-

phone measurements in two locations of Dublin city centre [104]. Our proposed solution

was shown to be successful in both test environments, providing an improvement of 5%

compared to other approaches, including the ones that had access to additional a priori

information about the environment.

However, there is a threshold to be considered when using the proposed solution. For

example, if the UAV need to inform the local authorities its exact location prior to the

flight, a good approach would be the one proposed by Zhang [19], where it maintains

the lowest possible height through the flight. However, if the QoS of the connection is

mission-critical UAV priority and the UAV can adapt its location during the flight, the

UAV could use the proposed RL solution. The code used in this chapter, the one for

aligning the real-world dataset and the proposed approach are public available to the

community in our GitHub2.

2https://github.com/Erikagpf/DQN-for-UAV-height-adaptation
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Chapter 5

Adaptive Height Optimisation for

Connected UAVs - A Simulation

Investigation

In this chapter we will investigate the height adaptation DQN model in a simulated envi-

ronment, where we can change the building and BS densities. Here we expand the inves-

tigation done with real-world data in Chapter 4 in order to generalise the proposed C2. In

this chapter we apply RL to dynamically adapt the UAV altitude in order to improve its

QoS, across different environments with different building and base station densities.

In Section 5.1, we introduce the changes in the solution needed to investigate the pro-

posed approach to C2 in the simulation environment, and in Section 5.2 we introduce the

system model of the simulated environment. In Section 5.3, we introduce the minor mod-

ifications of the proposed solution for the simulation environment. The adaptation was

needed because of the difference of the data we could access from the real-world collected
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data and the environment. In Section 5.4, we explain the experiment design used to eval-

uate our proposed solution in the simulation environment. In Section 5.5, we provide a

detailed investigation performance of the proposed model, and Section 5.6, concludes the

chapter.

5.1 Problem Statement

We consider an urban scenario where a UAV flies while connected to the cellular net-

work, as in Chapter 4. The UAV’s initial position (x1, y1, z1) and final position (xf , yf , zf ),

where x refers to the coordinate of the UAV on the horizontal X axis, and z refers to

its height, are known at the beginning of each topology (denoted as different distribu-

tion of BS and building). The BS distribution follows a Poisson Point Process (PPP) with

Φ = {(x1, y1), (x2, y2), ...} of intensity BSdens, at a height zb above ground.

As in Chapter 4, we consider the height range defined by safety regulation, with the

minimum allowed height denoted as Zmin and the maximum allowed height as Zmax. We

assume that the UAV starts at Zmin in order to avoid any unnecessary movement as in the

last chapter. Figure 5.1 shows UAVs horizontal and vertical movements in this simulation.

Figure 5.1a illustrates the possible path of the UAV, where d is the maximum distance the

UAV can move up or down in each step. It is an representation of a limitation of how

much a UAV can move realistic up or down and horizontally in a time-step.

Our main objective is to optimise the z coordinate in order to improve the QoS experi-

enced by the UAV, same as in Chapter 4. The metric used to represent the QoS during the

simulation is spectrum efficiency on the downlink. We followed the downlink direction
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to follow the same approach we had for the experimental evaluation, but in both cases,

the proposed solution could use the representation of the uplink spectrum efficiency. We

use spectrum efficiency instead of throughput because of the limitations of the simulator.

We use a simulator based on [108], and used in [13], [39], [109], that simulates the physical

layer and the UAV flight. In order to simulate the throughput, we would need to imple-

ment other layers of the mobile network, as the allocation of the resource blocks, that are

not in the scope of this work. As this implementation is not the main objective of our

investigation for the validity of our approach, we use the spectrum efficiency, as in other

works in the literature [12], [13], [39], [109].

5.2 System Model

In this section, we introduce how we model the height optimisation problem in the simu-

lator environment.

5.2.1 UAV and BS Antennas

The UAV is equipped with one omnidirectional antenna to connect to a serving BS and

receive data. The antenna has an omnidirectional radiation pattern, and it has an antenna

gain equal to 1. We express the coordinates of the BS which the UAV is associated with as

bs = {xs, ys} ∈ Φ and its horizontal distance to the UAV as rs.

The BS has a directional antenna with a horizontal and vertical beam-width ω along

with a rectangular radiation pattern; The antenna gain is defined as η(ω) = 0 outside of

the main lobe; and 16π/(ω2) inside of the main lobe.
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Spectrum efficiency is the maximum bit rate that can be transmitted per unit of band-

width and is a measure of the quality of service that can be served by that part of the

network. The Shannon–Hartley theorem bounds the maximum achievable rate a user can

reach once it establishes a wireless link. As we want to improve user’s experience pro-

viding reliable connectivity to UAVs, our purpose is to increase spectrum efficiency. We

calculate the spectrum efficiency value for the calculated SINR based on Shannon–Hartley

theorem. The SINR is a function of the antenna gain and channel model and given as:

SINR =
pη(ω)c(x2s +∆γ2)−αts/2

IL + IN + σ2
(5.1)

where p is the BS transmit power, αts is the pathloss exponent, ts ∈ {L,N} indicates

whether the UAV has LoS or NLoS to its serving BS xs, c is the near-field pathloss, σ2

is the noise power, and IL and IN are the aggregate interference from LoS and NLoS,

respectively.

5.2.2 Horizontal route adaptation

The UAV horizontal route is extended in the simulation and it is defined by an indepen-

dent approach that focuses on bringing the UAV closer to the BS it is connected. The UAV

flies in direction to its final destination but approximates its Y trajectory to get closer to the

BS that it is connected by d. At every time step, the UAV connects to the BS with stronger

SINR and get closer in the Y coordinates to this BS by d, being maximum of d distant to

the straight line between (x1, y1) and (xf , yf ) as illustrated in Figure 5.1b. The focus of our

approach is to investigate if the approach is able to adapt the height of the UAV and can
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adapt to any underlying routes decision that a UAV might take during its path, showing

its independence from the horizontal path decisions.

5.2.3 Building distribution

The buildings distributed in the area might affect the UAV LoS, as they can block the

channel between the UAV and the BSs. In order to check if a signal is in LoS or not, we

verify if there is a tall enough building between the UAV and BS. If the signal is blocked

by a building, NLoS, it causes the signal to be attenuated, which is reflected in the SINR

expression in Equation 5.1. We needed to defined this expressions as LoS and NLoS af-

fect the calculation of the SINR. But in real-world implementations there is no need for

this information, as the SINR is measured. We use a commonly-adopted model for the

urban environment which models the buildings as a square grid with the locations of

building centerpoints (xbl, ybl), that was presented in [110] and used in works as [80], [81],

[111]. The area occupied by each building, Bla, is constant, and the density of buildings,

Builddens, is denominated by the number of building per square kilometre. The individ-

ual building height, hbl is randomly distributed according to a Poisson distribution, with

scale parameter a.

5.2.4 UAV-BS Link

The UAV connects to the BS with the best SINR at all times. Therefore, as the UAV moves

through the environment some BSs become stronger and others weaker. When it reaches

the point where its serving BS is no longer the BS with strongest signal, it will reconnect to
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the new LoS with the strongest signal. We assume that this handover occurs seamlessly,

and there is no disconnect or loss of signal quality when it happens.

We assume that the UAV will have access to the SINR measurements from the BS it is

connected to and from the 5 neighbours BS with strongest signals, the spectrum efficiency

it is achieving with the serving BSs, and its height at all steps. SINR and throughput data

is easily obtained by the UAV from its cellular connection, while the height information

is obtained via other UAV sensors located on the UAV, as already present in UAVs as the

DJI-mini 2 [3].

5.3 Proposed Solution

The algorithm proposed to solve the height optimisation in the simulation environment

is similar to the one presented in Section 4.4. The main adaptation we made from the

proposed solution presented in Section 4.4 is that we use as input for the model the SINR

of neighbours BSs - SINRn. We included this information to the model as a normal UE

has access to it when doing the measurement report. With this, we expected to have more

information of the environment. In Chapter 4, we did not use the neighbours’ data as

input because we did not have access to this information from the experiment.

In summary, the state space S assumed in this chapter is:

• Height z: which is obtained by UAV sensors and it is relevant for UAV’s decision-

making process, as in order to know whether to move next and stay within the hard

limits.
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• Received SINR: which is obtained by UE sensors to perform the measurement re-

ports. This value impacts the UE QoS that is what we intent to maximise.

• Received Neighbours SINRn,R ∈ [1, 2, 3, 4, 5]: which is the SINR of the BSs with

the strongest signals. It is obtained by UE sensors while performing the measure-

ment reports. These values impacts the UE QoS that is what we intent to maximise.

• 4 last z, SINR, SINRn, a, r: which will be stored from the previous steps. In

order to achieve better optimisation, we extended the state with the four previous

z, SINR, SINRn, action a and reward r, following the lines of the original DQN

implementation [56], as well its implementation in UAV connectivity [39].

As it is showed in Algorithm 2, the algorithm and most of the parameters of the de-

signed RL solution is the same as in Algorithm 1. The main changes are the lines 8 and 9

that is the collection of the neighbours SINR data and its use as part of the state informa-

tion. And the reward function in line 24, that on the simulation is the spectrum efficiency.

All other steps are the same as in Algorithm 1. Our objective was to change the lest pos-

sible the solution proposed in Chapter 4 and also use values that are easily available to a

UE and to a UAV.

5.4 Experiment Design

To evaluate our proposed approach and analyse how the city topology influences the

connected UAV, we utilise the simulator developed in R [12]. In this experiment we want

to vary the building and BS densities in order to evaluate the generalisation of our model.
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Algorithm 2 RL-based algorithm for UAV height optimisation
Input: β; βmin; {//Batch parameters}
ϵ; ϵDecay;ϵmin; {//ϵ-greedy parameters}
d; Zmin; Zmax;x;y;{//Coordinates parameters}
epochs;var;Discount;{//Replay memory parameters}

1: DQNModel← InitialiseDQLModel(modelparameters)
2: targetDQNModel← InitialiseDQLModel(modelparameters)
3: (xt, yt, zt)← (x1, y1, Zmin)
4: t← 0
5: while (xt, yt) ̸= (xf , yf ) do
6: t← t+ 1
7: SINRt ← uav.GetCurrentSINR(xt, yt, zt)
8: SINRnt ← Get.SINR.Neighbours(xt, yt, zt)
9: st ← SINRt, zt, SINRnt, st

10: randomNum← RandomNumber(0− 1)
11: if randomNum > ϵ and t > 4 then {//The model needs 4 last steps in the input}
12: at ← DQNModel.predictMaxValue(st)
13: else
14: at ← Random(+d, 0,−d)
15: end if

{//Changing height according to action}
16: uav.takeSelectedHeightAction(d,a, Zmin, Zmax)
17: (xt, yt)← (xt+1, yt+1)
18: rt ← uav.GetSpectrumEfficiency(xt, yt, zt)
19: if ϵ > ϵmin then
20: ϵ← ϵ ∗ ϵDecay

21: end if
22: st+1 ← at, rt, st.removeState(s−4t)
23: β ← StoreTransition(β, st, at, rt, st+1)

{//Applying replay memory}
24: if length(β) > βmin then
25: tempBatch← BatchSample(β)
26: for i in 1 : length(βmin) do
27: CurrentQV alue← DQNModel.predict(tempBatch.state)
28: FutureQV alue← targetDQNModel.predict(tempBatch.nextState)
29: maxFutureQ← FutureQValue.maxValue(i)
30: newQ(i)← tempBatch.reward +Discount ∗maxFutureQ
31: newQTable← CurrentQV alue(tempBatch.a(i))
32: newQTable← DQNModel.update(tempBatch.state)
33: end for
34: DQNModel.train(tempBatch.state, newQtable, epochs)
35: end if
36: if t%var then {//Updating target model}
37: targetDQNModel← setWeights(DQNModel.getWeights())
38: end if
39: end while
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Variable Value
Zmin 40 m

Zmax 240 m

BSdens [1, 2.5, 5]/km2

Bs height zb 30m

BS downtilt ϕ 30
Builddens [1, 2, 3] ∗ 100/km2

Building area Bla 40 m2

Building height parameter a 20 m

Simulated area 3 km2

Horizontal Speed 10 m/s

Timestep 1 s

Distance between xi and xf 1000 m

Step 100
d 10 m

Mctrials 100

TABLE 5.1: Simulation parameters.

A Mctrial, or Monte Carlo simulation, is a model used to predict the probability of

different outcomes once the simulation environment changes its characteristics randomly.

In Chapter 4, we had the equivalent of 2 Mctrial simulations, and we tested the model on

that environment 100 times, starting the model from scratch at each time, so it would not

overfit. In order to evaluate the model in different environments, for each MCtrial, we

randomly generate the BS and buildings distribution, so the UAV always observes a "new

environment" at every 100 steps. During the simulation, we do not vary the BS and the

building densities at the same time, always letting one of the variables to remain fixed so

we can evaluate the impact of each. The chosen value to be the fixed is the mean of the

list values, and shown in Table 5.1 with other simulation parameters. A step (or timestep)
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is a single movement (action taken) of the UAV in a specific BS and building topology.

We assumed the minimum allowed height Zmin as 40 m, because of simplification for the

simulation, as with the UAV achieving the minimum of 40 m it would above the buildings.

We wanted to investigate if a increase of the maximum height Zmax allowed for the UAV

to fly could be beneficial to its QoS, then we increased from 120 m in Chapter 4 to 240 m in

the simulation. The BS density BSdens, BS height zb, building area Bla, building density

Builddens and building height are based on the ITU specification [112].

In the beginning of a simulation z1 is fixed for all approaches, and afterwards it is

controlled by the RL algorithm action selection process or the baseline solution algorithm.

We choose five different height-selection strategies to benchmark the performance of our

approach. These baselines are the ones presented in Section 4.5.1, named: Zhang [19],

One-step-ahead, Random walk, Optimal height, Constant at 120 m and Constant at 240

m. The constant height was changed from Chapter 4 as we assume a higher maximum

allowed height in the simulation. In Chapter 4, we considered 120 m as the maximum

height the UAV could fly, as it was the maximum allowed to fly in that region. However, in

a simulation environment, we increase it to investigate if the regulations should consider

a higher approach for some BS and building densities.

5.5 Evaluation Results and Analysis

We next evaluate how our RL approach can adapt the UAV heights with the objective

to optimise the total spectrum efficiency. We run the same algorithm in 100 different

Mctrials, simulating 100 different cities for each BS and building density. The evaluation
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always start the model from scratch, so it does not use the trained weights from the last

run. Nevertheless, we do it so we do not overfit the model to the data and have a fair

evaluation of the learning over an unseen scenario.

The main points that we want to evaluate are how the BS density and building den-

sities influence the optimal height of a connected UAV. In order to assess each of these

factors separately, we divide this section in two sections. First, we analyse the spectrum

efficiency by BS density and building density. Then, we inspect height changes within

each approach.

5.5.1 Spectrum efficiency

In this section we analyse the mean of spectrum efficiency per unit of bandwidth, that

is a mean of the spectrum efficiency over an entire episode, for varying BS densities and

building densities. We inspect the spectrum efficiency as this is the parameter that we

wish to optimise.

Varying BS densities

To demonstrate how the RL solution can have its performance affected by different BS

densities. We study in detail three different BS densities (1, 2.5, 5)/km2, denoted as low,

medium and high, as illustrated in Figure 5.2.

Figure 5.2a shows the mean spectrum efficiency per approach. As expected, the opti-

mal height provides much better spectrum efficiency, achieving median of 23 bits/s/Hz.

This happens because it does not have any movement restriction, being able to move any
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distance from step to step. For low BS density, One-step-ahead, Zhang [19] and the pro-

posed RL approach perform similarly, with all archiving median of 20 bits/s/Hz. The

constant height at 240 m is the approach with the worse spectrum efficiency, with 15 bit-

s/s/Hz, showing that high heights for low BS density do not perform as good as other

approaches do. Constant at 120 m performed slightly worse than the Random walk ap-

proach, with median of 18.5 bits/s/Hz and Random walk approach with 19 bits/s/Hz. It

is interesting to note that the approaches do not vary much its mean spectrum efficiency,

and all have a relatively small first and third quartile of around 2 bits/s/Hz, with excep-

tion of Constant at 240 m with 4 bits/s/Hz.

Figure 5.2b shows that our RL approach performs better, 4%, then Zhang [19] for

medium BS density, and 26% better than Constant at 120 m, Constant at 240 m and

Random walk. It indicates that maintaining higher heights at all times provides worse

spectrum efficiency for the medium BS and building densities when compared to the

proposed RL approach that adapts the height dynamically to the environment. One-

step-ahead showed the best performance compared to the approaches that could only

move "d", achieving 14.5 bits/s/Hz, showing that for medium BS density having previ-

ous knowledge of the radio characteristics of the environment can improve the UAV QoS.

When investigating the high BS density in Figure 5.2c, Constant at 120 m and Random

walk are the worst solutions achieving 3.5 bits/s/Hz, with the Zhang [19] being slightly

better than them, showing that maintaining the lowest altitude for all topologies is not

the best approach. The proposed RL approach shows performance comparable to Con-

stant at 240 m, with 4% better performance. Therefore, its third quartile is higher, which
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means that the RL performed better in more simulations. The One-step-ahead approach

showed the best performance with its median achieving 9 bits/s/Hz, showing the previ-

ous knowledge of the environment can improve UAVs QoS. However, it is unrealistic to

expect to have this knowledge for each set of coordinates in the environment.

We have used Figure 5.2 to analyse how each approach compares to each other, now

Figure 5.3 shows the data in a different format to easier show how the BS density im-

pacts all the approaches performance. The figure shows that the general mean spectrum

efficiency for low BS density is much better than for medium and high BS density, with

solutions archiving near 20 bits/s/Hz. We can also analyse that One-step-ahead and the

proposed RL solution are always the best approaches for all densities, showing that an

intelligent and adaptable decision can provide a good QoS for all densities. Moreover,

the proposed RL solution can adapt its response to the environment on the fly without

previous knowledge.

Varying building densities

Figure 5.4 illustrates the spectrum efficiency for low and high building density. In Figure

5.4a, the One-step-ahead provides the best approach achieving median of 15 bits/s/Hz,

and the proposed RL approach is the second best with 12.5 bits/s/Hz. We can observe

that Zhang [19] approach achieves 11.7 bits/s/Hz, that is 6% worse than the proposed

RL solution. The Constant at 240 m performs as well as the Constant at 120 m, and both

are worse than all other solutions, which show a deterioration for those heights, implying

that the UAV would be most of the time in a poor coverage area. Random walk approach
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performed slightly better then the higher constant approaches, showing that the Random

walk movement of the UAV is comparable to maintaining high constant values.

Figure 5.4b illustrates the mean spectrum efficiency for high building density. It shows

a similar pattern when compared to the low building density, with One-step-ahead being

the best approach and the proposed RL solution being slightly better, 2%, than Zhang [19].

We can conclude that since it has no impact, it is providing an indication that building

density is not a factor that needs to be taken account when determining UAV’s height. It

shows that that same approach should work in density urban areas and rural ones.

Figure 5.5 is a macro view of the performance of the solutions over the building den-

sities in order to show how the building density impacts all the approaches performance.

The medium density is the same as in Figure 5.3, but we leave it in Figure 5.5 as it makes

it easier to analyse the overall performance. As an overall performance, we discovered

that the difference in the building density when the UAV is flying above the buildings did

not influence the mean spectrum efficiency as the approaches performed similar in all the

distributions.

5.5.2 Height variation

While in the previous section we focus our analyses on the spectrum efficiency of each ap-

proach, in this section we inspect in more detail underlying height variations that achieve

the discussed performance. Results average from 100 Mctrials, although to illustrate the

height changes in a single path, we randomly selected two single paths from those 100,
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and illustrate them in Figure 5.6. We inspect the individual height adaptation to under-

stand how each of the approaches behave in a real path and have an idea of how many

adaptation are required to achieve their respective spectrum efficiency. Example one in

Figure 5.6a shows how the RL approach makes adaptations in order to increase its QoS

maintaining lower heights. In Figure 5.6b, the RL approach tends to go to a higher alti-

tude, maintaining it for most of the path, changing more to the end where it comperes

to the same height as the optimal approach. Figure 5.6 illustrates how much the optimal

height changes substantially UAV’s altitude, as in Chapter 4, showing that even if one

knows the optimal height at each step, it would not be possible to reach it. It is possible

to see that the One-step-ahead approach changes often UAV’s height. As expected, the

Random walk approach moves randomly maintaining a higher height in 5.6a and a lower

in 5.6b. The constant approaches take the first few steps to move in d increments from its

starting height Zmin to the height specified in constant approach, ie 120 or 240 m.

To make a more detailed investigation over the 100 Mctrials, Figure 5.7 illustrates the

mean of the heights for different BS and building densities. The constant approaches have

no variance on the height after they achieve their constant heights. In Figure 5.7a, the aver-

age height of the optimal height approach varies with the BS density, being lower for low

BS density, and higher for high BS density. As we can notice, the intelligent approaches,

One-step-ahead and the proposed RL solution, adapt their altitude to the one that better

serves the BS distribution, also increasing its heights when the BS density increases. The

Random walk approach, as it does not consider any information of the environment, it

also maintains, in average, the same height in all cases.
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When we analyse in Figure 5.7b the height adaptation by the building density, the

optimal height is not related with the density. The approaches does not change its mean

height considerably during the different building densities. The RL approach varies from

68 m in medium building densities, to 83 m in high building densities.

Observing behaviours for both BS and building densities, we conclude that RL is a

competent approach to solve UAV height optimisation. As we can see in Figure 5.7, the

RL solution demonstrated to be learning the best height, resulting in a spectral efficiency

improvement. We can also conclude that the RL approach does not make changes on its

height at all steps, making intelligent changes when needed and avoiding spending extra

energy to move its height at all steps.

5.6 Conclusion

In this chapter, we generalised the proposed RL approach to solve UAV height optimi-

sation given different BS and building densities for a moving UAV which is acting as a

user of the cellular network. Our main focus was to to analyse performance of the pro-

posed approach while varying BS and building densities by allowing the UAV to vary its

height inside a range. We answer RQ2 "How to adapt the UAV height in order to increase

UAV’s QoS?", and evaluate C2 in various scenarios. We extended the approach presented

in Chapter 4 considering multiple BS and building densities, in the UAV horizontal move-

ment, and on the available data the UAV has access to.

In our analysis we concluded that the low densities of BS can provide spectrum effi-

ciency, in general, better then in any other configuration. This happens as there is lower
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interference from neighbour BSs. We could also notice that the approach proposed in

Zhang [19] is a simple approach and usually provides good spectrum efficiency, showing

to not be adequate mostly for high BS density. The proposed RL model showed to learn

how to adapt its height to improve the UAV spectrum efficiency for all densities.

Therefore, this chapter confirms our conclusion from Chapter 4, that the RL model

for height adaptation can provide consistent good QoS in all the situations, learning

which is the best behaviour. The results showed that with the proposed RL approach,

the UAV could achieve its best throughput without previous information of the environ-

ment, showing that the RL is an adaptable solution.

The proposed approach for simulated data discussed in this chapter is public available

to the community in our GitHub1.

1https://github.com/Erikagpf/DQN-for-UAV-height-adaptation
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(A) Side view of a UAV connected to the mobile network adjusting its height to maximise its
spectrum efficiency.

(B) Top view of a UAV connected to the mobile network when it moves closer to the connected
BS through the path in an urban area from position (x1, y1) to the final position ((xf , yf )). In red

shows which BS the UAV is connected at each point of the trajectory.

FIGURE 5.1: UAV vertical and horizontal movement assumed in the
simulation.
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(A) Spectrum efficiency per unit of bandwidth
(bits/s/Hz) for low BS density.

(B) Spectrum efficiency per unit of bandwidth
(bits/s/Hz) for medium BS density.

(C) Spectrum efficiency per unit of bandwidth
(bits/s/Hz) for high BS density.

FIGURE 5.2: Spectrum efficiency per unit of bandwidth (bits/s/Hz)
for 3 different BS densities and medium building density.
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Investigation

FIGURE 5.3: Average Spectrum efficiency per unit of bandwidth (bit-
s/s/Hz) per BS density (low, medium, and high), and medium build-

ing density.
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(A) Spectrum efficiency per unit of bandwidth
(bits/s/Hz) for low building density

(B) Spectrum efficiency per unit of bandwidth
(bits/s/Hz) for high building density.

FIGURE 5.4: Spectrum efficiency per unit of bandwidth (bits/s/Hz)
for different building densities with medium BS density.
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Investigation

FIGURE 5.5: Spectrum efficiency per unit of bandwidth (bits/Hz) per
building density ( low, medium, and high), and medium BS density.
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(A) Simulation example one. (B) Simulation example two.

FIGURE 5.6: Height adaptations for each approach during two sam-
ple runs with medium BS and building densities.
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Investigation

(A) Mean height per BS density. (B) Height per building density.

FIGURE 5.7: Height analyses for varying BS and building densities.
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Chapter 6

Radio Access Technology

Characterisation Through Object

Detection

Nowadays UAVs implement different RATs for their communication and utilise different

bandwidths. Therefore, it can use WiFi or Lora, for example, for its connectivity [2]. With

its inclusion as a UE of the mobile network, UAVs will also be able to use LTE and 5G

RATs in both licensed and unlicensed spectrum. The utilisation of the unlicensed spec-

trum for cellular mobile technologies is a new field and needs further investigation [28].

The connected UAV will have this extra challenge to consider in order to improve it’s QoS,

as the possibility of using more channels increase the efficiency in bits/joule and bits/sec-

ond throughput [31]. Studies have proven that the network can make a more efficient

use of the spectrum when it has access to spectrum characterisation. [113] showed the

importance of this awareness for the higher layers stacks.
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In this chapter, we propose C3, as an answer to RQ3 "How to better characterise the

unlicensed spectrum in order to enable more efficient spectrum usage?". Our proposed

approach is an image-based ML technique applied to the scenario of RAT classification

in shared spectrum. Our solution employs DNN, performing object detection directly on

spectrograms, for the characterisation of different RATs in shared spectrum. We not only

classify different RATs but also localise the signals in the frequency and time domains,

as well as extract features, including centre frequency, bandwidth, frame and inter-frame

duration. Our model works well under different levels of received signal strength, and in

the presence of overlapping transmissions by multiple radios. We evaluate the proposed

method under real-world collected data and through a synthetic transmitted data over

the air.

The remainder of this chapter is structured as follows. In section 6.1 we specify the

problem statement. In Section 6.2, we introduce our approach for the characterisation of

RATs, composed of a RAT classifier and feature extraction components. In Section 6.3, we

present the dataset generator used in the evaluation. In Section 6.4, we evaluate the per-

formance of our classifier and feature extraction under different channel and interference

conditions. Finally, in Section 6.5, we present our concluding remarks of this chapter.

6.1 Problem Statement

Spectrum monitoring is necessary for efficient coexistence of UEs in the shared spectrum

as presented in Chapter 3. It is also needed for regulators to be able to enforce spectrum

policy and identify possible violations [83]. 5G brings additional challenges in monitoring
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the spectrum, such as the need to support mission-critical UAV, IoT applications, Industry

4.0, and autonomous vehicles. These different types of UEs have different needs and

different requirements from their communications. To support them all, an entity that is

monitoring the spectrum can take advantage of not only determine the presence of a UE

in a spectrum band, but the type of UE it is, and how they use the spectrum.

Most of the existing works on spectrum monitoring employ the RSSI or energy detection-

based methods for detecting the presence of a signal in the channel of interest [83], [114]

[84]. However, these approaches may not be effective when multiple RATs coexist in the

same band [85]. In such scenarios, the UEs must be capable of discriminating among

different UEs and RATs, which can only be achieved through more advanced signal clas-

sification algorithms. We extensively investigated state of the art on the literature review

in Section 3.3.3, and with Table 3.2, we conclude that still there is a gap whether to provide

both, the classification of the transmitted RATs with its transmission characteristics. In or-

der to operate efficiently, i.e., in an interference-aware manner, wireless devices operating

in shared spectrum must identify other radios and RATs present in the same band before

communicating.

The coexistence between different RATs is one of the challenges in this scenario, as

each RAT has its own particularities and may not be suitable for coexistence in the same

channel. This problem becomes more challenging when considering the broad range of

services and applications envisioned in futures networks [115]. LTE-U must rely on con-

textual information about the spectrum usage to operate in shared spectrum [86], [116].

These solutions require an effective sensing mechanism, for providing detailed spectrum
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usage information in real-time. With more information of the spectrum, it is possible to

characterise it and open the possibility of detecting not only the presence of other radios

in its surroundings, but also other features.

In this chapter, we propose a solution to detect the presence of other RATs in the

band of interest, classify them, and extract features of the transmission, such as centre

frequency, bandwidth, frame interval, and frame duration. Our main objective is to clas-

sify the RAT transmissions (R) in the spectrum, and to detect features as centre frequency,

bandwidth, duty cycle, and frame duration. Examples of possible RATs r1, r2, ..rn could

be LTE, Lora, Zigbee, DVB-T, and WiFi. Given a set of measurements M , and a set of RATs

R, our objective is to classify each transmissions in the correct category rc on each m. In

addition, for each transmission, we want to provide detailed and accurate information of

each feature, specifically: as centre frequency fc, bandwidth bw, frame interval FI , and

frame duration FD. We use F as a set of features fc, bw, F I, FD, then the equation is in

f, where f ∈ F . For each of these features, we need to minimise the distance between the

estimated features Fe and its true values Ft. We formulate the problem as follows:

∞∑
t=1

min Ft(mt)− Fe(mt);

where F ∈ fc, bw, F I, FD

(6.1)

We assume that the UE needs to have a radio capable of doing spectrum sensing in

the band it is interested to operate (as described in Section 2.1 normal UEs should be able

to do the sensing). The algorithm can run either in the BS or on the UE. In case the UE

is restricted on its processing, the proposed approach should run in the BS. The UE can
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FIGURE 6.1: Overview of the proposed approach for characterising
RATs through object detection.

send the sensing measurements to the BS and the BS makes the analyse. The entity that

runs the algorithm needs to be capable of generate spectograms and run the algorithm.

6.2 RAT Characterisation

In this section, we describe our solution for RAT characterisation using object detection.

The proposed solution is made available to the community in a public GitHub repository1.

Our approach consists of two main components, an image-based RAT classifier, and post-

processing feature extraction, as shown in Figure 6.1 in the real-time monitoring phase.

In the following subsections, we describe each of these.

1https://github.com/Erikagpf/gr-specmonitor/tree/next

Ph.D. Thesis Erika G. P. da FONSECA



140 Chapter 6. Radio Access Technology Characterisation Through Object Detection

6.2.1 Image-based RAT Classifier

We proposed the desing of a CNN-based classifier for recognising different RATs coex-

isting in shared spectrum. Our classifier can identify multiple RATs by directly applying

OD to spectrograms. To reduce this training time and the need for a big training dataset,

we use TL. We use a pre-trained model and re-train its last layer. To meet the require-

ment to perform classification in real-time, we train the model previously to its use. Even

though the training is not in real-time, using a smaller training dataset is advantageous as

the labelling is made manually.

We also require a solution that can provide not just the classification of the object, but

also its localisation in the image as we use spectograms (as discussed later, we rely on this

localisation information for feature extraction). A spectogram is a image that represents

the spectrum in frequency (horizontally) and time (vertically).

We employ the well-known OD model You Only Look Once (YOLO) [117] as the start-

ing point for our RAT classifier. YOLO is one of the most efficient solutions in the literature

for real-time implementation of OD. This model outputs both the class of the detected ob-

jects, as well as their position in the input image. Using weights and architecture from

YOLO pre-trained on ImageNet [50], we modify the output layer, which corresponds to

the last layer before the output of the model as illustrated in 6.2. During the training pro-

cess, the output layer is explicitly optimised for the classification of LTE and WiFi wave-

forms. The architecture we adopted is presented in [118] and it has 19 convolution layers

and 5 max-pooling layers. Moreover, our model can easily be extended for supporting

more RATs, by retraining it with datasets that include new waveforms.
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FIGURE 6.2: Proposed approach of RATs classification and detection,
applying TL in YOLO2 trained model.

Our model produces the identification of the RAT (i.e., the result of the classification)

and the coordinates of each frame detected in the spectrogram image. Figure 6.3 shows

examples of LTE and WiFi frames detected, surrounded by bounding boxes: blue for LTE,

white for WiFi. The four coordinates of each of these bounding boxes are used by the

feature extraction component, discussed next.

The use of a CNN provides real-time capabilities for RAT classification. Usually, the

training and testing phases are computationally expensive and take hours or days to be

finished, as a vast number of input samples are needed to train and test a model. Fortu-

nately, most of the computational power is required to train the model, but not to use it.

For the spectrum sharing scenario, where it is necessary to dynamically assess how the

spectrum is being occupied, we need a model that can provide acceptable classification ac-

curacy in real-time. Once our model is trained and validated, it can provide results on the

fly, making it suitable for real time applications. Our classifier analyses frames in batches

of three frames each, providing three outputs at the same time; this allows us to parallelise

the classification task and use multiple cores simultaneously. The batch approach allows
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(A) LTE detection. (B) WiFi detection.

FIGURE 6.3: Spectrogram with the bounding boxes created by our
ML-based signal classifier. The positions of the bounding boxes rep-
resent the detection of the frame, and the colour represents the clas-

sification, blue for LTE and white for WiFi.

the use of multiple cores in parallel.

A trade-off that is important to consider is the implication of this design choice on

real-time detection and RAT classification: the number of images analysed simultane-

ously cannot be too large, as otherwise, the model will not operate in real-time. In our

implementation, we evaluated the classification speed using an computer with Intel Core

i7-6820 HK processor and GeForce GTX 1070 Mobile. With this commercial off-the-shelf

Graphics Processing Unit (GPU), we are able to analyse three images in around 0.1 ms

with 2 classes and trained with a commercial transmission dataset. We used the library

Caffe2 and the code was developed in C++.

2caffe.berkeleyvision.org/
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6.2.2 Post-processing Feature Extraction

In this subsection, we detail the post-processing algorithm that we apply on spectrograms

for extracting features of different RATs. Once the classification of the RAT is completed, it

allows us to obtain additional information about the RATs present in a given channel. We

consider a scenario where multiple RATs coexist in the same band. The UAV or other UE

senses the channel and generates the spectrograms that represent the inputs to our model.

Then, we perform the RAT classification and return the types and locations of the objects,

i.e., the different RATs, present in spectrogram images. For the location of the objects on

the spectograms to have a meaning, we translate these to time and frequency domains.

This requires a mapping between the image parameters and time and frequency values.

First, we extract the knowledge that the monitoring radio possesses about the centre fre-

quency (FC) and bandwidth (BW ) that it is monitoring. The spectrogram corresponds to

a band of frequencies [f1, f2], collected during a time interval [t1, t2]. Let BW represent

the bandwidth of the channel being monitored. Then, we calculate the granularity that

each pixel in the image represents in the time and frequency domains, as an increment

value in time (IT ) and frequency (IF ), respectively. This mapping depends on the size of

the spectrogram ([Xmin, Xmax], [Ymin, Ymax])3.

The trained model provides the corners of a rectangle that encloses a transmission

frame, denoted by coordinates xmin, xmax, ymin, ymax. Given the coordinates of this rect-

angle, i.e., the bounding box, as well as the values of each time and frequency increment,

3Note that uppercase X and Y refer to the spectrogram, and lowercase x and y refer to the bounding box
around a frame.
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TABLE 6.1: The mapping between the image position and the param-
eters of interest in time and frequency domains.

Parameters Time/Frequency Position Mapping
It (t2 − t1)/(Ymax − Ymin)

If (f2 − f1)/(Xmax −Xmin)

bw (xmax − xmin) ∗ If
fc f1 + (If ∗ xmin) + (bw/2)

FD (ymax − ymin) ∗ It
CWT (t2 − t1)− (frame_rate ∗ fav)
FI CWT/frame_rate

we can localise the signals in the spectrum and in time. In order to calculate the band-

width of the signal (bw) and its centre frequency (fc), we use the horizontal coordinates

of the corners of the bounding box, translating them into their respective value in fre-

quency. The frame duration FD of the signal is calculated in a similar manner, but now

using the vertical coordinates of the corners of the bounding box. To calculate the average

frame interval FI , we must first calculate the average time the channel stays without a

transmission (CWT), which is the total time represented in a spectrogram subtracted by

the time that is occupied by frame transmissions. Then, the frame interval FI is given

by CWT divided by the number of transmissions on the spectrogram. We summarise the

formulas we use for extracting the features of different RATs in Table 6.1, and illustrate

the representation of the relevant values on a spectrogram in Figure 6.4.

After the feature extraction, the complete output for the RAT characterisation are the

classes of the identified RATs, as well as their features, as Figure 6.4 illustrates.
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FIGURE 6.4: Parameters representation in a spectrogram.

6.3 Dataset

In order to evaluate the proposed spectrum characterisation approach, we use two differ-

ent datasets. One was collected in Belgium from real-world operators transmissions, and

one was generated and captured by us through over-the-air transmissions.

We need the real-world dataset in order to assess if our model can be used with real-

world applications and transmissions. We needed to generate the synthetic dataset to

know the exact label of each object and evaluate how good the feature extraction performs.

With the synthetic data, we could also perform overlapping transmissions evaluations

that would not happen in licensed spectrum transmissions and not overloaded unlicensed

bands.
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6.3.1 Real-world Dataset

The real-world dataset is available to the community in a GitHub repository4 and is com-

pound of RSSI measurement of WiFi and LTE collected at various locations of Ghent,

Belgium. All the measurements are conducted in an office building of 12x80m. The mea-

surements were collected on different days and different locations inside the building in

order to increase the diversity of SINR. Ten traces were collected by each RAT. Specifi-

cally, the WiFi signals were collected in an office environment with two access points at

5540 MHz and with an average of 20 associated UEs. The LTE signal was collected from a

near BS that operates in Frequency Division Duplexing (FDD) mode at 806 MHz, around

the Ghent area of Belgium. A spectrum analyser of model Anritsu MS 2690A is used dur-

ing the collection of the RSSI. The samples are collected at a 10 MHz of rate for 1 second.

The RSSI is calculate as in equation 6.2 for N=200.

RSSI = 10 ∗ log10(
1

N

N∑
k=1

(I2k +Q2
k)) (6.2)

where N is the number of IQ samples per RSSI, and IQ the index of IQ samples.

6.3.2 Synthetic Dataset

For the testing and validation of our proposed solution, we have relied on datasets of

LTE and WiFi transmissions collected over different locations in Belgium [119]. However,

such datasets of commercial transmissions are not sufficient for the complete evaluation

of our feature extraction component. To evaluate that component it is necessary to have
4https://github.com/ewine-project/Technology-classification-dataset
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the ground truth for the parameters of the transmissions (the label of each spectogram),

as this evaluation is related to the position of the signal in the spectrum and in time. In

the case of commercial transmissions captured over the air, it is not possible to determine

precisely the ground truth, and also it is not possible to vary the Signal-to-Noise Ratio

(SNR) of the transmission, its centre frequency or its bandwidth, for example. To tackle

this issue, in this thesis and the associated publication [100] we use the dataset generator

developed with our collaborator Francisco Paisana that is available to the community in

a public GitHub repository5 [120]. The framework creates labelled RF datasets, based on

waveform that mimic the transmissions of LTE and WiFi radios.

As one is transmitting and receiving the signals, they have full control and knowledge

about parameters a priori so that they can generate the ground truth label of the transmis-

sions. This allows the evaluation of the feature extraction that is essential for validating

our solution. The generator relied on SRS LTE [121] for the generation of LTE signals and

on a GNURadio implementation [122] for the generation of WiFi signals.

To create a dataset that reflects real-world transmissions, the dataset must be collected

over-the-air to produce samples that undergo RF impairments such as phase/frequency

offsets, phase noise and amplifier nonlinearities. The dataset generator uses a Software-

defined Radio (SDR) to generate waveforms of different signal strength and bandwidth. It

automates the collection and labelling of over-the-air samples of the waveforms of differ-

ent RATs. Figure 6.5 depicts the process of generating, collecting and labelling RF wave-

forms using the dataset generator. These RF waveform datasets can be used for training

and testing of deep CNNs for signal classification and spectrum monitoring.
5github.com/frankist/gr-specmonitor
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FIGURE 6.5: Generating, collecting, and labelling RAT transmissions
using our dataset generator. The experimenter specifies the wave-
forms and their parameters. Then, our RF dataset generator cre-
ates signal traces with all the permutations of parameters, as well

as transmitting, collecting, and labelling the signal traces.

It uses a pipeline-based approach for generating traces of RF waveforms with different

characteristics. The process is implemented as a graph of individual tasks, e.g., producing

a waveform, setting the frame duration, and setting the transmission gain. Each task

can be configured and run independently. Each of the task’s parameters can be a list of

different values, and the task generates respective output files for all the input values. The

subsequent task receives a set of different input files from the previous task and performs

its operation on all of them. An example of the file used in the pipe-line described is in

Appendix 8.1. Such a pipeline-based approach facilitates the extension and inclusion of

new tasks, the parallelism of tasks, and resuming from intermediate points.
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6.4 Performance Evaluation

In this section, we evaluate our proposed solution for RAT characterisation through OD.

In order to evaluate the model accuracy with different SINRs of transmission, the feature

extraction, and interference conditions, we need to use the synthetic generated dataset as

we have control of the characteristics and have the ground truth of each transmission. We

use the real-world dataset to test and confirm that the model is capable of working on

real-world transmissions, even when the environment is not controlled.

In the evaluations, we first evaluate the detection and classification performance of

our model for different RF waveform under different channel conditions with the syn-

thetic dataset. Next, we assess the feature extraction component of our solution also with

the synthetic dataset. Then, we estimate the accuracy of the RAT classifier component

using real-world dataset and compare the proposed approach with different classification

benchmarks. Finally, we evaluate the mAP of our solution under both datasets.

6.4.1 Detection and Classification Performance

In this section, we evaluate the detection performance and classification accuracy of our

model, and demonstrate its robustness in detecting and classifying RF waveforms under

different SNR conditions and interference levels. We used the dataset generator described

in the previous section to compose a dataset of images, i.e., spectrograms and labels, of

two radio access technology classes, LTE and WiFi. This scenario resembles the real-world

use cases of coexistence in unlicensed spectrum [123].
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FIGURE 6.6: Experimental setup with three Ettus USRP B210s.

To generate the dataset, we emulate a new device accessing the environment, where

LTE and WiFi coexist in shared spectrum, as illustrated in Figure 6.6. The setup consists

of one USRP monitoring the spectrum, while a second USRP plays the role of an LTE

transmitter in that band and a third USRP acts as a WiFi transmitter. Moreover, our model

can be extended, for instance, by increasing the diversity of the RATs included in the

training dataset. Extending the training dataset might be useful in a scenario where a

technology operating in the unlicensed spectrum might share it with Bluetooth or Zigbee,

for example.

Performance of the Classifier Under Different SNRs

In this analysis, we evaluate the classification performance of our model under different

SNR conditions. For this evaluation, we generated a dataset with different levels of trans-

mission power, measuring the SNR at the receiver side. We used 400 images to train the

model. The dataset generator has a minimum SNR threshold value for synchronisation of
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FIGURE 6.7: Percentage of detected objects as a function of SNR.

the preamble over-the-air. The measurements start with an SNR value of -13 dB and go

up to 35 dB (these were the values possible to use on the dataset generator).

First, we are interested in assessing the ability of our model to detect the transmit-

ted frames correctly. Figure 6.7 shows the percentage of correctly detected frames, as a

function of SNR. The curve marked correct detection does not achieve 100% because there

are a number of objects that were detected by the ML model but do not correspond to a

transmission. The difference in the behaviour in correct detection between the -13 dB SNR

and other SNR values is due to our model requiring a minimum signal power in the spec-

trogram. For example, with SNRs lower than -3 dB the edges of the transmitted frames
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(A) WiFi detection under -
13dB.

(B) WiFi detection under
12dB.

(C) WiFi detection under
35dB.

FIGURE 6.8: Illustration of WiFi signals under different SNRs.

are not as sharp as in the transmissions produced with higher SNRs, as illustrated in Fig-

ure 6.8. Once the frame transmissions have a minimum clarity in the edges, our model

achieves 98% of correct detection, with a small percent of incorrect detection (between 2

and 4%).

Next, we are interested in assessing our model’s ability to classify the detected frames,

using recall as a metric. As introduced in Chapter 2, the recall metric illustrates the per-

centage of detection that was actually a transmission. The recall of our model for the

detected signals is shown in Figure 6.7. The recall varies from 86% for - 13 dB of SNR in

the reception, to 98% between -3 to 32 dB. For the highest SNRs, 34 and 35 dBs, we ob-

tained an recall of 96%. It is worth mentioning that when the SNR is very high the leakage

of the transmission also increases, which in our evaluation compromised 2% of detection

and classification accuracy.
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Interfering Transmissions with Varying Degrees of Overlap

In this analysis, we evaluate the ability of our model to detect and classify objects un-

der the effect of cross-technology interference. As we could not find in the literature any

work that evaluated their classification approach under interference, we could we do not

compare in this evaluation with any benchmark. We consider two signals with the same

bandwidth: the desired signal with an SNR of 34 dB, and an interfering signal with an

SNR of 29 dB. At this evaluation, the desired signal is an LTE transmission, and the in-

terfering signal is a WiFi transmission, characterising a cross-technology interference. We

start this experiment by transmitting the desired and interfering signals adjacent in fre-

quency to each other, then gradually increase the amount of overlap between the two.

The model used to test the detection and classification performance of our solution under

interfering transmissions with varying degrees of overlap was the one trained with the

different SNRs, used in the previous section.

Figure 6.9 shows the results of our experiment, which indicate, as expected, that the

detection performance suffers as the percentage of overlap between the two signals in-

creases. In the absence of overlapping interference, i.e., when the transmissions are ad-

jacent, our model achieves 98% of correct detection and 2% of incorrect detection. In the

case of 100% of overlap, i.e., both signals are on the same channel, our model’s perfor-

mance drops to 92% of correct detection, while the incorrect detection increases to 7%.
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FIGURE 6.9: Correct and incorrect OD as a function of the amount of
overlap between two signals in the same band.

6.4.2 Feature Extraction

To evaluate the capabilities of our feature extraction component, we generated several

datasets using different combinations of: transmission bandwidths, frame duration, inter-

frame duration, and centre frequency. The average SNR of the transmissions in this eval-

uation is 29 dB. Figure 6.10 illustrates the deviation of the features for different values of

transmission characteristics. In our experiments, the value of the If is 192.307 KHz, which

means that each pixel in the spectrograms accounts for a variation of 192.307 KHz in the

frequency domain. For example, if the calculated centre frequency is off by a single pixel,
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the computed value will deviate 192.307 KHz from the correct centre frequency. The same

applies in the time domain, where each pixel accounts for a variation of It = 28.8µs.

Figure 6.10a illustrates how the calculated bandwidths vary from the ground truth

regarding the image size (in percentage). The median (shown by the horizontal line in

the middle of the box-plot) varies at most by 2% of the image size. In the evaluation of

centre frequency, the median deviation varies at most by 1% of the image size, as shown

in Figure 6.10b.

In the time domain, the median values of the frame duration deviate maximum of

four percent in the worst case. Figure 6.10c illustrates that when the frame duration to

be detected is smaller, the solution tends to have an average error higher than when the

frame has a longer duration. It happens because it is harder to identify the precise size

of smaller objects. This means that the estimated frame transmission time deviates only

144 µs compared to the ground truth. As depicted in Figure 6.10d, the outcome is that

in average the median of the interframe measurements are similar to the frame duration.

This is due to the fact that if our model has a high detection percentage of the transmitted

frames. In case of the model fail to detect frames, it would understand that the spectrum

is empty for that period, increasing the overall inter-frame duration. However, even in

the occurrence of misclassifications, our model achieves a median deviation less than 2

percent in all the cases.

Considering the results discussed in this subsection, we can conclude that our model

is capable of detecting the signals with high precision. Moreover, if necessary for specific

applications, a higher precision can be achieved by using higher-resolution spectrograms,
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i.e., smaller If and It values.

6.4.3 Performance Comparison Using Real-world Dataset

In this section, we evaluate our model using a publicly available dataset of real-world

LTE and WiFi transmissions collected in Belgium. This evaluation is crucial because it

shows that our model can work with commercial data, and can be used in real-world

applications.

First, we investigate the accuracy of our model per number of spectrograms in the

training dataset. Then, to demonstrate the ability of our OD model to classify commercial

transmissions accurately, we compare our solution to the ones proposed in [97], which

used the same publicly available dataset.

Training Dataset Size versus Accuracy

In this subsection, we analyse how the number of the samples (spectrogram images) af-

fects the performance of the proposed model. The number of training data can limit the

ML application because usually it needs a considerable amount of data to learn. For ex-

ample, the work of [97] used more than 12 thousand images for training the CNN solution

based on spectrograms. In this section, we assess the difference in the performance of our

model, considering the number of training data in the training process.

We repeated the training in an identical setup while only adjusting the number of

spectrograms used, i.e. 2, 10, 20, 30, 40, 50, 100, 200, and 400. The training samples

equally represent the LTE and WiFi classes. Figure 6.11 illustrates how accuracy varies
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by increasing the number of spectrograms. By observing Figure 6.11, we can estimate the

number of labelled spectrograms required in training to achieve a certain accuracy. The

best accuracy achieved was 96% with 400 spectrograms. Hence, we limited the size of our

training dataset to 400 images, as it was enough for our model to achieve a comparable

accuracy to the CNN image-based presented in [97], while using a considerably lower

number of training images (only 3.23% of the dataset size used in [97]).

Comparison with Other ML Techniques

The public dataset is not labelled for OD, and consequently, we needed manually create

bounding boxes using a tool [124] for using this data to train our model. We labelled 600

images, out of which 300 were from LTE transmissions, and were 300 from WiFi trans-

missions, the images from both RATs were randomly chosen from the complete dataset.

From the total of 600 images, 200 were randomly chosen to be used for the test dataset,

and the others 400 to train our model.

We compare the OD-based classification solution presented in this chapter against

other RAT classification solutions in [97]. These solutions include fully connected neural

network (FNN), Random Forest (RForest) [125], a CNN solution based on RSSI, a CNN

solution based on IQ samples, and a CNN solution based on spectrograms. The results

of this comparison are shown in Figure 6.12. The CNN-based solutions, including the

solution presented in this paper, correctly identify the RAT with the accuracy above 95%.

The CNNs IQ and image-based solutions marginally achieve better accuracy compared to
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the proposed solution. However, our solution provides additional information regarding

spectrum usage. This information can enhance the efficient use of the spectrum.

6.4.4 Evaluation of the Bonding Boxes: Real-world and Synthetic Datasets

In this section, we evaluate how precise our bounding boxes are using the mAP metrics.

We evaluate the model’s mAP performance when trained with the real-world dataset, and

when trained with the synthetic dataset.

Figure 6.13a shows the values of APs for both classes, LTE and WiFi, calculated by

the model trained with the generated dataset. Figure 6.14a illustrates the values of APs

calculated by the model trained with the dataset collected in Belgium. The model created

with data collected in Belgium shows worse performance than 6.13. The model used

with commercial data cannot find more than 75% of all the transmitted LTE frames and

no more than 92% for WiFi frames. However, it maintains the precision of the detected

objects above 90% for LTE and near to 99% for WiFi. In the AP graph from the dataset

generator model, Figure 6.13, our model detects more than 97% of the LTE frames and

94% of the WiFi frames with high accuracy, achieving approximately 99% detection of the

objects.

The model trained with the data generated by us has better performance due to the

automatic labelling, being more precise than manual label approaches. There is also the

fact that the spectrograms generated by the public dataset were collected by different BSs

and under different circumstances, which may have influenced the results as the same

did not apply to the generated data in a controlled environment. The mAP of our model
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trained with the public dataset is 83.04%, and the mAP of the same model trained with

the generated data is 96.17%. To the best of our knowledge, this is the first work that

evaluates the mAP of an OD model for RATs classification. It is worth mentioning that

when the YOLOv2 is used on the VOC 2007 dataset [118], it achieves 78.6 mAP for images

with a resolution of 544x544.

6.5 Conclusion

UAVs already make use of the unlicensed spectrum, although as an individual transmitter

with WiFi, Lora, and more, as RATs. As UAVs will be a UE of the mobile network, they

will need to provide more detailed measurements to assist the LTE and 5G BSs that work

in the unlicensed spectrum. These technologies were not created to share the spectrum

and need to be adapted to access the unlicensed bands. The mobile network makes more

efficient use of the spectrum when it has access to spectrum characterisation [113].

In this chapter, we presented a ML-based classifier for RAT characterisation using OD

as our C3, in order to answer RQ3 "How to better characterise the unlicensed spectrum

in order to enable more efficient spectrum usage?". This is the first work that evaluates

the classification of an OD model in the field of technology classification. Our proposed

approach combines the application of OD on spectrograms for classifying different RATs

and a feature extraction component for characterising the RATs. Based on spectrogram

images, we can extract specific features from the RAT, e.g., inter-frame duration, frame

duration, centre frequency, and signal bandwidth. In order to evaluate the classification

of our model in real-world applications, we trained and classified spectrograms based on
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the public dataset [119] that was collected in different locations of Belgium. To evaluate

the feature extraction component of our approach, we developed a prototype implemen-

tation of the RAT classifier using OD. We trained our classifier with LTE and WiFi wave-

forms and showed its efficiency in detecting and classifying different RATs through the

application of OD on spectrograms. Furthermore, we evaluated the resilience of our fea-

ture extraction component through transmissions over-the-air with different bandwidths

and centre frequencies under distinct SNRs and with overlapping transmissions.

Our RAT classifier using OD combined with a feature extraction algorithm can be use-

ful in spectrum monitoring applications as connected UAVs in the unlicensed spectrum,

for facilitating the characterisation of different RATs in a shared spectrum. However, there

still need improvements to be done in the generation of the labelled data from commercial

transmissions. For instance, the process of manually labelling data is time consuming and

error-prone. Also, there is the need for further evaluation of models with different image

sizes to check if independent of the size; the model always lose just 1 or 2 pixels when it

creates the bounding boxes. Another further investigation can be done in the power of

the interference and the transmitted signal once the transmissions are overlapping.

We have made available to the community in a public GitHub repository the labelled

dataset from commercial transmissions6. Our implementation is based on widely used

frameworks, such as GNU Radio, for digital signal processing, and YOLO, for real-time

OD. This facilitates the use of our proposed approach by the community and enables

further potential applications related to spectrum sensing.

6https://github.com/Erikagpf/WiFi-LTE-commercial-data–labelled-for-OD
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(A) Bandwidth deviation. (B) Centre frequency deviation.

(C) Frame duration deviation. (D) Inter-frame duration deviation.

FIGURE 6.10: Feature extraction deviation evaluation in time and
frequency domain.
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FIGURE 6.11: Number of spectrogram in the training phase versus
accuracy of the model.
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FIGURE 6.12: Classification accuracy of different ML solutions.

(A) LTE AP from our model trained with the
generated dataset.

(B) WiFi AP from our model trained with the
generated data.

FIGURE 6.13: AP of the ML-based signal classifier trained with the
generated dataset.
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(A) LTE AP from our model trained with the
dataset collected in Belgium.

(B) WiFi AP from our model trained with the
dataset collected in Belgium.

FIGURE 6.14: AP of the ML-based signal classifier trained with the
generated dataset.
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Chapter 7

Conclusions and Open Challenges

This thesis has investigated improving connected UAV’s QoS in mobile cellular networks.

This chapter summarises the contributions, discusses the tradeoffs, and introduces future

works in the investigated area. Section 7.1 provides the summary of the contributions of

this thesis, with a deeper discussion on tradeoffs and limitations of its applications. In

Section 7.2, we present how the work could be extended to surpass its limitations. In

Section 7.3, we present the future trends in the connected UAV research area.

7.1 Thesis Summary

In this thesis, we presented different ways a connected UAV can improve its QoS. Chapter

1 introduced the connected UAV, how its connectivity occurs, and its requirements. This

chapter also presented the scenario of interest, which we assume in our experiment. We

presented the research questions we address in this thesis, our contributions designed
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to provide an answer to the research questions raised, the outline of the thesis and the

publications related to the thesis.

We then introduced background concepts on UAV connectivity, 5G mobility manage-

ment, UAV in the unlicensed spectrum, and machine learning concepts in Chapter 2.

These concepts are introduced so the reader can follow the challenges the thesis intends

to solve, the proposed solutions and state of the art in the investigated areas. First, in

Section 2.1, we introduced the architecture involved in the UE mobility, responsibilities,

and the events that may occur depending on the sensing of the spectrum. It was needed

to understand the presented challenges in Chapter 3, and the dynamics of spectrum sens-

ing. Then, in Section 2.2, we introduced how UAV communications arise nowadays and

how the research community is looking at UAVs as being a potentially demanding UE for

future networks. In this section, we also introduced the concept of cognitive radios and

the steps that should be done by these radios before using the unlicensed spectrum—one

of them being spectrum sensing, which develops to be our Chapter 6. We then introduced

the ML techniques for UAV integration, where we present the concepts of supervised and

reinforcement learning.

In Chapter 3, we addressed RQ1 "Which are the main challenges a connected UAV

may encounter if deployed in a typical modern-day cellular network?". Our contribution

to answer the question is presented in this Chapter, divided by air coverage, PCI chal-

lenges and handover challenges. To derive these challenges, we analysed 3GPP technical

reports, state of the art on UAV communications, and even gNBs specifications to under-

stand what could change in the case a connected UAV flies as a UE of the mobile network
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that is not prepared for it. We then investigated challenges related to the air coverage,

which included PCI challenge and handover challenges. They happen mainly because of

high altitude, as the UAV can sense a significant number of BSs, as explained in the sce-

nario of interest in Chapter 1. To support our claims, we used the data collected in Dublin

city centre by a UAV that was carrying a mobile phone. We could observe in Section 3.2.4,

that as the UAV increased its height, it started sensing further cells as the strongest one,

and the most potent cell change varied over the heights, showing a behaviour different

than expected for GUEs. We then inspected possible solutions on the network infras-

tructure that could ease the proposed challenges. However, in this thesis, we decided to

investigate what the UAV could do to help with its integration into the network. We de-

cided to go in this direction, as any change to the network could take years or not even be

implemented by all the operators. In addition, UAVs are a flexible technology which are

capable of leveraging their mobility and on-board intelligence to address these problems

in a more efficient manner. Then, we presented the state of the art in areas where a UAV

could facilitate its integration on the network. We start with UAV handover optimisation,

where the UAV can support the handover decisions depending on environmental condi-

tions. We then presented the state of the art in UAV movement optimisation in Section

3.3.2, focusing on two works that considered UAV connectivity to decide its trajectory.

These works did not dynamically optimise the height of the UAV; they assumed a con-

stant height for its experiments and focused on the horizontal path adaptation. One of the

presented works [19] is used later in Chapter 4 and 5 as a benchmark to compare our pro-

posed approach. In Section 3.3.3, we review state of the art in spectrum characterisation,
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examining modulation classification and RAT classification. This area was investigated

for works using different strategies. A few would calculate based on the signal charac-

teristics of the RAT or the modulation, and the most recent ones would apply various

techniques of ML. In order to use ML, most works needed an extensive amount of la-

belled data, however, they could achieve a reliable performance above 93%. A common

factor between the approaches is that they only provided the classification and no other

characteristics of the transmissions.

Chapter 4 and Chapter 5 proposed the answer to RQ2 "How to adapt the UAV height

in order to increase UAV’s QoS?". These chapters answer this question by presenting and

evaluating a reinforcement learning-based solution to UAV height optimisation. The pro-

posed solution adapts the UAV’s height based on an RL model that optimises the height

of the UAV dynamically. The main objective of the solution is to increase the QoS in the

long term. We proposed a height adaptation approach independent of the horizontal ap-

proach because we considered that depending on UAV applications, it would not be able

to adapt its horizontal path, for example: organ delivery or even security surveillance

needs the horizontal path to be defined for its application. The independent approach is

also interesting if the UAV adapts its horizontal path following other optimisations, such

as the shortest path. To evaluate our proposed approach, we evaluated it in an experi-

mental environment in Chapter 4, with data from two different locations of Dublin city

centre. In one location the UAV is connected to macro-cells and in other location the UAV

is connected to small cells. We defined the action as the possibilities of move up, move

down, and do not move. The reward is the throughput, and the model’s state space is the
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actual SINR, height and the same for the last four steps, with their respective achieved re-

ward. In order to generalise the results encountered, we also evaluated our approach in a

simulation environment in Chapter 5. We varied the density of BSs and buildings for 100

Mctrials to each density and evaluate how these changes impact the solution performance.

In Chapter 5, we had access to information that would be used for handover events by a

standard UE, like its neighbours SINRs. As this information express’ more details about

the environment characteristics, we add this information to represent the environment on

the state space. The other change we did on the model used in the simulation was the use

of spectrum efficiency as a reward and not the direct throughput; it happened because of

a limitation of underlying simulator, however it does not affect validity of results as spec-

trum efficiency is direct related to throughout. Either in the experimental investigation or

the simulation, the RL proposed approach provides better throughput when compared to

the feasible solutions. Although, we perceived that in both cases, the improvement did

not pass more than 6% when compared to the benchmarks. It proves that it is possible

to dynamically improve UAV’s QoS adapting its height, although that improvement de-

pends on the UAV freedom of movement and how critical is its connectivity. Maintaining

the lower altitude, as proposed by Zhang [19], might be a interesting approach if the UAV

has to inform its height previous to the flight.

The last contribution chapter is Chapter 6, that addressed research question RQ3,

"How to better characterise the unlicensed spectrum in order to support UAV and net-

work decisions?". We answered this question with a spectrum characterisation model,

that provided detailed information of the spectrum. As a UE of the mobile network,
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UAVs can keep using the unlicensed spectrum for their communications with RATs as

LTE and 5G. As UAVs encounter a non-planned air coverage, it is likely to find poor cov-

erage areas and sense further transmissions due to its LoS. Usually, UEs sense the licensed

spectrum in order to find a BS that provides good QoS. Although, the sensed information

is used only to perform handovers, not to decide when to transmit. RATs need to have

some mechanism to share it fairly in the unlicensed spectrum, which did not happen for

mobile cellular networks before. To make efficient use of the spectrum, we proposed in a

RAT characterisation through OD. We proposed to apply OD on spectrograms in order to

classify different RAT transmissions on a bandwidth. We base our proposed solution on

a pre-trained YOLO model, which we transfer to our problem using TL techniques and

fine-tune the softmax layer so it could learn the RAT classes. The use of TL was effective

to train our model; we needed only 400 spectrograms when using real-world transmis-

sions. The model itself outputs the class of the detected object and its location. Based on

this information, we calculate the bandwidth of each transmission, its centre frequency,

the duration of each frame, and an average interval of its transmissions, which provided

a good characterisation of the spectrum. Our results showed that the classification model

provided high accuracy, 96%, but not above all the CNN approaches, that goes between

95.3% and 97.8%. However, as we evaluated three frames in a row for real-time transmis-

sions, the chance a transmission is detected if it appears in more than one frame is even

higher. We also evaluate the overlapping transmissions, where two transmissions are

happening at the same bandwidth. In this analysis, our model still managed to classify
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the transmissions with 93% accuracy, even with 100% overlap. While evaluating the fea-

tures of the transmissions, as the bandwidth, centre frequency, frame duration and frame

interval, we concluded that the output of our solution would vary around 2 pixels from

the exact location, making the feature extraction component depending on the size of the

spectrogram.

7.2 Directions for Improvement

This section introduces possible future directions in the work presented in this thesis. We

divide this section in the future trends to the proposed RL approach for dynamic height

optimisation and a section for the proposed OD model for spectrum characterisation.

7.2.1 Proposed RL Approach Improvements for Dynamic Height Optimisa-

tion

There are a number of directions in which the work presented in this thesis can be fur-

ther extended and evaluated. In the height optimisation RL approach, the model did not

explicitly address the impact of height changes on energy usage, however it could be ex-

tended to consider the energy the UAV has available and how critical it is to improve its

connection before taking a height adaptation decision. Energy-saving factor can improve

our solution and help it be available to real-world applications, where energy saving is a

concern to UAVs [17], [18].
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As mentioned in Chapter 1, one of the advantages of having a height optimisation

model separated from the horizontal optimisation is the possibility of using it with dif-

ferent horizontal path approaches. It would be an interesting direction to implement the

proposed RL height adaptation with other concerns adapting its horizontal path. In Chap-

ters 4 and 5, we adapted the height while the UAV was moving straight in the horizontal

direction and when it was slightly adapting its horizontal route to be closer to the serving

BS. It could be interesting to investigate this approach with other ways to optimise the

path. For example, in [18], authors are concerned about UAVs energy re-charging to de-

cide its horizontal path and do not consider the UAV connectivity in its implementation.

Therefore, our RL model could be used with [18] proposed approach to achieve the best

of both optimisations, maintaining the UAV charged and with a reliable connection.

The height adaptation approach should also be investigated in a longer experimental

data-set, where the UAV fly over a long path and observes how it behaves. We also con-

sider that using simulations to import real-world 3D maps could be an excellent strategy

to test before using it in the real world.

When we investigated the UAV height adaptation, we only considered the UAV a

unique UE of the network as we had no access to other flying UAVs or any data of GUEs

that were connected to the network during the real-world data collection. In the simula-

tion environment, we tried to replicate the same conditions as in the experiment, which

limited the simulation to also excluding the GUEs and UAVs. There should be an inves-

tigation of the performance of the proposed RL approach when co-existing with other

UAVs and GUEs.
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During our investigation we optimised the sum of the total throughput through the

path. There might be applications that the average throughput, in every step, should be

optimised. These application would need an average throughput being the maximum

possible. Even though these metrics are strongly related, it could influence the behaviour

of our model. To prove if it influences or not, it is necessary for further investigation.

The change in Equation 4.1 would be to instead of calculating the max, we calculate the

average in the sum.

7.2.2 Proposed OD Approach for Spectrum Characterisation

The spectrum characterisation proposed approach needs to be investigated in a more com-

plex scenario, with more RATs on the spectrum. One could also evaluate the proposed

approach varying the strength of the interference signal. The main issue with the pro-

posed method is that it requires labelled data to train the model. Even though it proved

to learn with relatively small training data (400 spectrograms, 200 for each class), it is still

necessary to create these 200 labelled data by hand.

An extension of the proposed spectrum characterisation could be to detect which ap-

plications or UEs are using the spectrum. Then, based on the applications or UEs types,

know their transmission characteristics. For example, it would be valuable to know that

the UE sharing the spectrum with the sensing UE is a sensor that transmits every 5 sec-

onds. This next step on the characterisation could even help the sensing UE predict its

future transmission success.
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We have only investigated the spectrum characterisation, not how it is used in the

decision making. The full integration with the decision making should be investigated

for different types of UEs. For example, the type of UE that is transmitting will influence

the decision of when to transmit, besides the type of transmissions that are already on the

spectrum.

7.3 Future Trends in the Connected UAV Field

As presented in Chapter 3, there are open challenges for the network operators that should

be investigated. Solving these issues might take a while, as it has to be implemented in

all networks. However, in the long term, the operators should be able to deal with all the

possible issues its UEs might bring and do not depend only on the UE’s abilities to avoid

it.

A presented challenge in Chapter 3 was the coverage planning on the air. It is neces-

sary to update the tools used in planning new sites to include air coverage. How these

tools deal with different heights is a big challenge that needs to be investigated. It is also

essential to aerial flight tests to confirm that the new and old sites can provide reliable

communication to UAVs as it is done for GUEs.

Considering the issues that unplanned coverage brings, PCI collision and confusion

are some of the most dangerous problems for the network itself, as it needs to reconfigure

the BSs in order to solve it, which makes the BS turning off for a while and interfering

with all the BS operations. Therefore, it is crucial to find out how to avoid these issues in

the sky, even when the UAV senses further BSs. It might be that detailed planning of the
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values, considering not only the GUEs but also the UAVs is enough to solve this issue.

However, it needs investigation in different scenarios for macro and small cells.

Another challenge that should be investigated is how to avoid ANR possible issues,

as block-listing and white-listing for sites that are only sensed by the UAV. Maintaining

a separated NR for UAVs would prevent these issues on the network, although there is a

need for a more detailed investigation on how this implementation needs to be done and

if it is worth doing.

Finally, the network usually decides mobility management for all its UEs, and the

threshold used for GUEs is proven not to be optimised for UAVs due to UAVs having

more frequent disconnection time and unnecessary handovers, as presented in Chapter

3. Therefore, for future networks, the threshold to start a handover event will need to be

optimised for UE’s type and application.

7.4 Real-world Application in Future Networks

This thesis investigated how to improve connected UAV’s QoS in order to accelerate its

introduction as a UE of the future mobile networks. UAV’s are intended to be actual users

of the network from 5G advance implementations, as presented in Release-18 package

approved at the December 2021 RAN plenary meeting [126]. The 3GPP research groups

are about to define and design the UAV requirements to be UEs of the network. The

content presented in this thesis could be of use while defining these requirements.

The regulators should further investigate the presented challenges presented in Chap-

ter 3 as some of them can impact all the network and generate interference. It is important
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that these challenges are addressed to avoid a decrease on the network performance when

the UAV is added as a UE.

The presented height adaptation should not be regulated by 3GPP, but actually be

seen as a possible implementation for an operator or a UAV manufacture as an approach

to improve the UAVs QOS. Before being available on the connected UAV, it needs further

investigation on the energy spent for the dynamic height adaptation.

The unlicensed spectrum will be investigated by the regulators for V2X communica-

tion. They have expressed the intention to research the use of the spectrum in devices

onboard aerial vehicles, including UAVs. The proposed approach for spectrum charac-

terisation can be used as an operator approach to better use the unlicensed spectrum. It

should not be regulated by 3GPP. The main adaptation needed to the proposed work to

be used in real-world scenarios at the time of the 5G advance, is to train the model with

a greater number of RATs in order to cover all the RATs encountered on the future unli-

censed scenario. It is also important to use data collected by a UAV during training, so

the model will be trained to the exact same scenario the UAV will encounter.
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Chapter 8

Appendix

Appendix A

LISTING 8.1: Parameters passed to Dataset Generator

# ! / usr / b in / env python

import numpy as np

from specmonitor . labeling_framework import random_generator

num_sections = 1

s e c t i o n _ s i z e = 3000000

t o f f s e t _ r a n g e = [ 5 0 ]

f r e q u e n c y _ o f f s e t = 0

skip_samps = 0

wf_gen_samps = s e c t i o n _ s i z e * num_sections + t o f f s e t _ r a n g e [ −1] + skip_samps + 50

n_repeats = 10

sample_rate = 23 .04 e6
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c h 1 _ i n t e r v a l = ( 3 00 00 ,5 00 0 0 ) # 1 .5 −2 .5 ms

c h 2 _ i n t e r v a l = (1000000 ,1500000) # 50−100ms

N_fft_avg = 150

tags = [ ’ w i f i ’ , ’ l t e ’ ]

spectrogram_representat ion = {

’ format_type ’ : ’ spectrogram ’ ,

’ boxlabe l ’ : ’ waveform ’ ,

’ f f t s i z e ’ : 2 5 6 ,

’ cancel_DC_offset ’ : True ,

’dB ’ : True

}

Tx_params = {

’ f r e q u e n c y _ o f f s e t ’ : f requency_of f se t ,

’ t i m e _ o f f s e t ’ : t o f f s e t _ r a n g e ,

’ s e c t i o n _ s i z e ’ : s e c t i o n _ s i z e ,

’ num_sections ’ : num_sections ,

’ s o f t _ g a i n ’ : 1 . 0 ,

’ no ise_vol tage ’ : 0

}

stage_params = {

’ w i f i ’ :

{

’ waveform ’ :

{
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’ waveform ’ : ’ w i f i ’ ,

’ number_samples ’ : wf_gen_samps ,

’ sample_rate ’ : sample_rate ,

’ encoding ’ : 0 ,

’ pdu_length ’ : 1500 ,

’ pad_interva l ’ : [ ( ’ uniform ’ , c h 1 _ i n t e r v a l ) ] ,

’ s i g n a l _ r e p r e s e n t a t i o n ’ : [ spectrogram_representat ion ] ,

’ frame_mag2 ’ : 0 . 9 9 ,

’ runs ’ : range ( n_repeats )

} ,

’ Tx ’ : Tx_params

} ,

’ l t e ’ :

{

’ waveform ’ :

{

’ waveform ’ : ’ l t e _ d l ’ ,

’ n_samples ’ : wf_gen_samps ,

’ sample_rate ’ : sample_rate ,

’ n_prbs ’ : 100 ,

’ pad_interva l ’ : random_generator ( ’ randint ’ , c h 2 _ i n t e r v a l ) ,

’ s i g n a l _ r e p r e s e n t a t i o n ’ : [ spectrogram_representat ion ] ,

’ n_of fse t_samples ’ : [ ( ’ uniform ’ , ( 0 , 5 0 0 0 0 0 ) ) ] ,

’ runs ’ : range ( n_repeats )

} ,

’ Tx ’ : Tx_params

}
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