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ABSTRACT
Volumetric video (VV) is a novel form of video that allows recreation of real-world scenes in 3D
with users consuming the content from any viewpoint they desire. This makes VV best suited
for augmented reality (AR) or virtual reality (VR) applications. This freedom necessitates
increased user interaction with the VV itself, which brings new challenges to its visual quality
assessment. In this chapter, various aspects of VV quality assessment using subjective user
studies and objective quality estimation methods are discussed. These aspects include the
way or representing 3D models, mode of interaction, display settings (e.g., whether AR or
VR headsets are used), rendering parameters, and how the characteristics of point clouds or
meshes are used in quality estimation. The chapter discusses the advantages and disadvantages
of different methods and provides take away messages for researchers.
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As discussed in previous chapters, immersive video technologies create visual content
for human consumption, as they “attempt to emulate a real world through a digital
or simulated recreation” [1]. The reconstructed volumetric video can be viewed
from any angle, providing 6 degrees-of-freedom (DoF) interaction capabilities and
is suitable for extended reality (XR) applications – e.g., augmented reality (AR) or
virtual reality (VR) applications (see Part V: Applications). However, the increased
level of interactivity offered to the user comes at the cost of a vast amount of data
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FIGURE 18.1

Primary elements defining the topology of two commonly used representation meth-
ods for volumetric video: point cloud and mesh. Points in 3D space for a point cloud
are shown on left, and vertices plus edges for a mesh are shown on right. See Fig. 18.2
for the rendering with color information.

that needs to be processed in a radically different way with respect to traditional
video, which in turn prompted further scientific research and active involvement of
the MPEG and JPEG standardization bodies [2,3]. Considering that human viewers
are the end-users, a thorough understanding of the Human Visual System (HVS) is
necessary to ensure high Quality of Experience (QoE), as discussed in Chapter 2.

Visual quality assessment is critical to ensure the highest QoE in media technolo-
gies. Volumetric video might undergo distortions during processing, compression,
transmission, and rendering, which negatively affect the fidelity of the original con-
tent. This creates a need for mechanisms that quantify these distortions; that is, new
methods to capture subjective quality scores and predict the perceived quality of the
content displayed to the viewer. Such mechanisms can be helpful in selection of
optimal schemes and tuning of parameters in perceptual terms to improve the QoE.
For instance, estimated quality scores are commonly employed to optimize the effi-
ciency of content delivery systems by increasing the effectiveness of compression and
transmission methods, considering the trade-off between quality and data size.

The problem of visual quality assessment has been well-studied for traditional
video. Decades of studies on how to assess the quality brought many standards and
recommendations, which detail test methodologies, experimental designs, and eval-
uation procedures for reproducible subjective quality experiments [4–6]. Similarly,
many objective quality metrics were developed for the assessment of traditional image
and video quality [7]. Despite the breadth of video quality estimation solutions for
traditional video, extending the methodologies and algorithms devised for traditional
media formats to immersive contents is not trivial. For instance, new subjective qual-
ity assessment methods are required to accommodate the higher DoF and to imitate
real-life consumption of such richer imaging modalities. Furthermore, since the vol-
umetric video is represented by data types inherently different than pixels on a regular
grid, corresponding objective quality metrics are designed differently.
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Volumetric contents are most frequently delivered in the form of 3D polygonal
meshes, or 3D point clouds [8]. For a 3D polygonal mesh, the model shape is
defined by a set of vertices accompanied by connectivity information to form polygons
(typically triangles), while the color information for the polygonal (or triangular) faces
is determined through texture maps. A 3D point cloud representation is defined by a
set of points placed on 3D space, with point coordinates determining the shape, and
associated color attributes the color of the model, as shown in Fig. 18.1. Hereafter,
we refer to them simply as meshes and point clouds. Both of them have unique
characteristics and pose different challenges for visual quality assessment.

Volumetric video is essentially a collection of 3D models which are played back
at a certain frame rate, which gives the viewer the illusion of a continuous movement.
This is the same principle still used in traditional video. As the advances and findings
in image quality assessment studies were useful for traditional video quality, the
findings for static 3Dmodels will bring insight into the quality assessment of dynamic
sequences that form volumetric video. Therefore, in this chapter, we cover subjective
and objective quality assessment methods for both static and dynamic 3D models,
represented as both point clouds and meshes. In particular, we provide:

• An overview of subjective quality assessment methodologies with respect to the
mode of inspection (i.e., non-interactive and interactive).

• A descriptive list of publicly available subjectively annotated datasets.
• A summary of user studies that compare different parameters in the design of

subjective quality experiments.
• An overview of objective quality metrics grouped per operating principle (i.e.,

model-based and image-based).
• A unified table with publicly available objective quality metrics.
• Advantages and disadvantages of different objective quality assessment approaches.

18.1 Subjective Quality Assessment
As the quality is defined as a subjective trait in the context of multimedia signal
processing [9], the golden standard to obtain quality values for the volumetric video is
to conduct subjective user studies. Nevertheless, subjective experiments are resource
and time expensive to conduct as they require careful experiment design, expertise on
the subject matter, a dedicated space to conduct the user study, and participants’ and
experimenters’ time. Although the objective quality metrics can provide estimated
quality scores much faster, subjective evaluations are crucial in quality assessment as
they provide ground truth data for further research and development.

Commonly, subjective experiments are designed according to standards rec-
ommended by standardization communities [4,5] or expert groups formed by re-
searchers [6]. The standardization efforts for immersive imaging technologies are
still underway. Recently, a new methodology has been standardized for the evaluation
of omnidirectional content [10,11]; however, this only takes into account rotational
movements in 3DoF, which are not suitable for volumetric videos. Work items cur-
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FIGURE 18.2

Illustration of di�erent aspects a�ecting the perception of volumetric content: color-
less vs colored, point size for point clouds, and lighting for meshes. Top row refers to
point cloud representation: (top-left) colorless point cloud, (top-center) colored point
cloud with point size 1, (top-right) colored point cloud with point size 3. Bottom row
refers to mesh representation: (bottom-left) colorless surface, (bottom-center) tex-
tured surface, (bottom-right) textured surface rendered with lighting.

rently under study in International TelecommunicationUnion (ITU) involve subjective
methodologies for interactive VR [12] and QoE assessment of XR tele-meetings [13].
Nevertheless, currently, there are no specific standards or recommendations for the
new volumetric video.

The existing recommendations and standards for traditional images and video do
not take 6DoF interaction into account, as viewers are essentially passive spectators. In
other words, in traditional imaging, the viewers can see the entire visual stimulus (i.e.,
images or video) whenever they are looking at the display. Once they are presented
the stimulus, they can inspect it for a fixed duration (e.g., around 10 seconds is a
common choice [4]). After this duration, they are asked to either vote on the quality
or select the preferred stimulus, depending on the adopted test methodology.

For volumetric video, seeing the whole content at once is not possible, as the
content is occluding itself at any given time due to its 3D nature. To ensure that the
collected subjective quality scores are representative for the whole volumetric video,
the experimenter needs to ensure that the volumetric video is inspected properly by



18.1 Subjective Quality Assessment 5

the subjective experiment participants. There are two main ways to facilitate this:
let viewers interact with the volumetric video themselves or present a representative
stimulus (e.g., a sequence of images from predefined viewpoints) inwhich the viewer’s
interaction is non-existent. The former methods better simulate real-life use cases of
3D media consumption, whereas the latter approaches provide the same experience
across subjects granting reproducibility, and enable utilization of well-established
practices for evaluation of traditional video.

There are many aspects that need to be taken into account while designing and
conducting subjective user studies, in addition to the user interaction aspect discussed
above. The volumetric video can be represented with different 3D formats (e.g.,
meshes and point clouds), which may contain different attributes; these models can
be colorless, colored, or textured. Moreover, there are different rendering parameters
that should be configured, which affect the appearance of the models. In Fig. 18.2,
examples are presented regarding the effect of the lighting on textures meshes and the
point size on point clouds, which, if not carefully chosen, may lead to the appearance
of holes (small point size) or patchy areas (large point size). Subjective experiments
may also use different display devices or evaluation methodologies to collect quality
scores. These experiments make use of either static or dynamic 3D models, and they
might feature various types of practical distortions; such as additive or multiplicative
noise, mesh simplification or point cloud sub-sampling, compression, transmission,
and smoothing. A summary of all these aspects can be seen in Table 18.1.

Table 18.1 Various di�erent aspects in subjective user studies for volu-
metric video.

Aspects Variables

3D Representation Mesh, Point Cloud
Temporal Variation Static, Dynamic
Attributes Colorless, Colored
Mode of Inspection Passive, Interactive
Methodology Single stimulus, Double stimulus, Multiple stimulus, Pair-

wise comparison
Distortion Types Noise, Compression, Simplification, Smoothing, Sub-

sampling, Transmission error
Rendering Parameters Lighting, Background, Point size (for point clouds)
Display Devices 2D monitors, 3D monitors, Head-mounted displays, Smart-

phones

In this section, we categorize the scientific efforts on subjective quality assessment
with respect to the mode of inspection, which dictates if and how the viewer will
interact with the visual stimulus. In each subsection, we further divide the studies
with respect to the 3D representation.
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FIGURE 18.3

One common method to create videos for subjective experiments with no user inter-
action is to create traditional videos of the volumetric video sequences with a fixed
camera trajectory, as shown above. Sample renderings of such a video are shown be-
low. – Attribution: The 3D camera model in the figure is created by Jesse Johnson and
is licensed under Creative Commons Attribution (CC BY 4.0).

18.1.1 Non-interactive user studies
One of the ways to collect subjective quality scores for volumetric video is to limit
the user interaction completely (i.e., the viewer cannot interact with the stimulus). In
this case, a certain visualization technique is used to create visual stimuli, and the
volumetric video is represented to the participants of the subjective test in the same
manner. There might be various approaches in creating the visual stimuli, which
mostly creates traditional images or a traditional video that is composed of rendered
images of the volumetric video content.

A common way to create these video sequences is to select a certain camera
trajectory (e.g., a camera rotating around the object, while staying on the horizontal
plane and looking towards the object, as shown in Fig. 18.3). Rendering images from
these camera locations and sequencing them as video frames will create a traditional
video which shows the volumetric video from many different viewpoints. Following
their creation, these video sequences are shown to the subjective test participants,
who in turn determine the quality of the volumetric video sequence. In this setup,

https://sketchfab.com/Jesse_Johnson
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the viewer does not and cannot interact with the volumetric video itself, which means
that the observer cannot change the viewpoint and can only watch the pre-rendered
video. Therefore, the user is passive in this scenario.

Although this lack of interaction is a disadvantage for the viewer, it is also an
advantage for the experimenter, since this lack of interaction also removes any inter-
viewer variation that might occur due to interactivity, i.e., they ensure that the same
stimuli will be seen by all participants. Moreover, these approaches do not require
complex rendering software or devices, since the resulting still images or videos can
be easily visualized on 2D screens using commodity software, and they minimize
external biases and conditions that can influence the final results, such as novelty
effect or cyber-sickness.

In the following subsections, we discuss how the subjective user studies are con-
ducted in the literature without user interaction, after grouping them per 3D content
representation (e.g., point clouds and meshes).

18.1.1.1 User studies for point clouds
The majority of non-interactive experiments in the literature focuses on assessing the
quality of static point cloud contents [14–21]. When evaluating static contents in
a non-interactive manner, the experimenter does not have to worry about possible
interaction effects between the camera movement and the sequence actions. For ex-
ample, by simply using circular camera paths, the content will be visualized by all
angles without missing information regarding the visual quality of occluded regions.
Passive inspection has also been used for dynamic contents [22–24], using prede-
fined camera paths to ensure the same user experience. Moreover, different types of
distortions have been studied in the literature: from noise in geometric and textural
information of point clouds [15,25–27], to compression artifacts [14–20,22], render-
ing approaches [19–21,27] and adaptive streaming algorithms [24]. By default, point
clouds lead to the perception of holes; hence, the size of points is typically configured
so as to enable visualization of watertight objects. In most studies, the experimenters
assign the same point size for an entire model, whereas in some experiments different
point sizes are assigned based on local densities [14,28,29]. Finally, double stimulus
variants denote the most popular evaluation methodologies.

Javaheri et al. [14] evaluate static models representing inanimate objects and
humanfigures at three quality levels, using a spiral camera pathmoving around amodel
from a full view to a closer look to capture images from different perspectives. Cubic
geometric primitives of adaptive size based on local neighborhoods were employed
for rendering purposes. Animated sequences were created and rated by subjects,
using the sequential Double Stimulus Impairment Scale (DSIS) methodology. The
color attributes of the models remained uncompressed to assess the impact of these
geometry-only degradations. Su et al. [15] employed a virtual camera orbiting around
the point cloud models at a fixed distance to capture the views, which were displayed
using the DSIS methodology with simultaneous visualization of the reference and
distorted stimuli. A wide set of colored models were distorted using different types



8 CHAPTER 18 Subjective and Objective Quality Assessment for VV

of degradations, including Gaussian noise in both topology and texture, octree down-
sampling and compression artifacts from the MPEG test models. More recently,
Lazzarotto et al. [16] conducted a crowd-sourced user study to evaluate compression
distortions from both conventional and learning-based codecs. The point clouds were
rendered using splats of adaptive size, with the camera orbiting at a fixed distance.

Conducting experiments in a single laboratory setting can make questions arise
about the generalizability of the results. Even when standardized procedures are
adopted to select and screen users, there might be human-related biases that can
influence the results. For this reason, cross-laboratory testing helps in checking the
validity and in corroborating the outcomes of the test. Cruz et al. [17] report the results
of a subjective evaluation campaign that was issued in the framework of the JPEG
Pleno [3] activities. Subjective experiments were conducted in three laboratories for
quality assessment of coloured point clouds under an octree- and a projection-based
encoding scheme, using the DSIS methodology. A different camera path was defined
per content, and a fixed point size was specified per model and degradation level.
This is reported to be the first study making use of contents consumed outer-wise
(e.g., objects, human figures) and inner-wise (e.g., scenes). Perry et al. [18] report
experiments that were performed in four independent laboratories that participated in
the relevant JPEG Exploration Study activities, evaluating the performance of V-PCC
and G-PCC using colored point clouds. The DSIS with side-by-side visualization was
employed, using fixed-size point primitives to display the models. The experimental
setup of each laboratory varied; yet, the collected subjective scores exhibited high
inter-laboratory correlation.

In some early studies, conversion to mesh was considered as an alternative for
rendering point clouds before being assessed. The degradations under test were ap-
plied on the raw point clouds; subsequently, a surface reconstruction algorithm was
applied to render the 3D models. Javaheri et al. [27] performed subjective evaluation
of de-noising algorithms against impulse noise and Gaussian noise. Video sequences
of the reference and the degraded models after reconstruction using the screened Pois-
son method [30] were sequentially shown to human subjects , before rating the visual
quality of the latter. Alexiou et al. [19] present a study where subjective experiments
were conducted in five test laboratories to assess the visual quality of colorless point
clouds, using the same reconstruction algorithm as a rendering methodology. The
point clouds were degraded using octree-pruning, and the observers evaluated the
mesh models under a simultaneous DSIS methodology. Although different 2D mon-
itors were employed, subjective scores were found to be strongly correlated among
the participated laboratories. In [20], the same dataset was evaluated under various
3D display types/technologies (i.e., passive, active, and auto-stereoscopic).

Different point-based and mesh rendering methodologies were employed for sub-
jective quality evaluation by Javaheri et al. [21]. The point clouds were distorted by
geometric compression artifacts and rendered using three approaches: colorless point
primitives of fixed size with shading; point primitives of fixed size, rendered using
the original texture information without shading; and colorless meshes obtained after
screened Poisson surface reconstruction, with shading. Each rendering approach was
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evaluated in separate sessions, using the sequential DSIS methodology.
The aforementioned studies focused on evaluating static contents under various

degradations and rendering setups. Few studies have been involved with evaluating
dynamic sequences using non-interactive approaches. Schwarz et al. [2] evaluate both
static and dynamic colored point cloud models under several encoding categories,
settings, and bit-rates, from a quality assessment campaign that was conducted in
the framework of the Call for Proposals issued by the MPEG committee [31]. The
contents were rendered using cubes as primitive elements of fixed size; animated
image sequences of the models captured from predefined viewpoints were generated
and assessed using the Absolute Category Rating (ACR) methodology. Subjective
evaluations of a volumetric video data set that was acquired and released in the context
of the studywas performed by Zerman et al. [23], under compression artifacts from the
MPEG V-PCC. The point clouds were rendered using primitive ellipsoidal elements
of fixed size, and animated sequences were generated from predefined camera paths.
The stimuli were subjectively assessed using twomethodologies; that is, a side-by-side
evaluation with DSIS and a pairwise comparison.

The previous studies focused on evaluating a single point cloud content at the
time, which, depending on the context, might not be realistic. For example, several
objects can be placed and viewed at the same time in a virtual space, or in a real-
time communication scenario, multiple people could be present in the same scene.
In [24], subjective quality assessment of dynamic, colored point clouds is conducted
in an adaptive streaming scenario hosted by the system described in [32], in which
more than one models are placed in the same scene under different arrangements, and
were visited with different navigation paths. The streamed cues were subjectively
evaluated using an ACR methodology in a desktop setting. For the purposes of the
study, volumetric video sequenceswere selected and encoded at different quality levels
using V-PCC. Among the experimental parameters, different bandwidth conditions,
bit-rate allocation schemes, and prediction strategies were examined.

18.1.1.2 User studies for meshes
Pioneering subjective quality tests involving meshes were conducted on still ren-
dered images [33,34]; those two early studies both assessed the visual impact of
simplification artifacts and concerned static and geometry-only meshes, like [35]
who evaluated the impact of geometry compression. Subsequent passive interac-
tion experiments considered meshes with color/texture attributes [36–41] or dynamic
meshes [8,42,43]. These studies are detailed below. They considered different types
of stimuli (still images or videos) and different protocols (ACR, DSIS, pairwise com-
parison), adapting existing image/video methodologies for passive inspection of 3D
models by observers: 2D still images or generated videos of animated models.

Watson et al. [33] used still rendered images to evaluate the visual impact of mesh
simplification using the DSIS methodology. Váša and Rus [35] and Doumanoglou
et al. [38] also used still rendered images in their studies, to evaluate the impairment
of geometry compression, and the visual impact of geometry and texture resolution
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on the quality of textured human body reconstructed meshes, respectively. These
both studies considered a pairwise comparison methodology. Rogowitz et al. [34]
conducted two subjective quality assessment experiments: the first involved 2D static
images of simplified 3D objects, while the second was performed on rendered videos
of these objects in rotation. The results showed that lighting conditions have a strong
influence on perceived quality and that observers perceive the quality of still images
and animations differently. The authors concluded that the quality of 3D objects
cannot be correctly assessed using static 2D projections (still images may mask the
effect of light and shading), and thus it is important that the object moves.

Based on these findings, some researchers allowed users to interact freely and in
real time with the model by rotating and zooming it, as detailed in Section 18.1.2.2.
However, others decided to control the viewpoints visualized by the user showing an
animation of the 3D object, in order to avoid cognitive overload that can alter human
judgments.

Guo et al. [37] opted for this approach to assess the influence of lighting, shape and
texture on the perception of artifacts for textured meshes. They animated each object
in the dataset with a low-speed rotation and generated videos that were displayed to
observers during the test. The subjective study was conducted using the pairwise
comparison method. The same experimental procedure was adopted by Vanhoey et
al. [44] to investigate the impact of light-material interactions on the perception of
geometric distortion of 3D models.

Pan et al. [36] conducted a subjective experiment on textured meshes to assess the
perceptual interactions between the geometry and color information. They considered
only geometry and texture sub-sampling distortions. They animated their meshes with
a slow rotation and the experiment was based on the DSIS. Nehme et al. [39] provide
the first public dataset for meshes with vertex colors produced in VR. The dataset was
obtained through a subjective study based on the DSIS methodology. The stimuli
were rendered at a fixed viewing distance from the observer in a virtual scene, under
different viewpoints and animated in real-time with either slow rotation or slow zoom-
in. The study allowed to analyze the impact of several factors such as viewpoints and
animations on both quality scores and their confidence intervals.

The above work considered quality assessment of static meshes. Váša and
Skala [42] and Torkhani et al. [43] were the first authors to propose quality assessment
experiments involving dynamic meshes (without color/texture). Distortions included
diverse types of noise and compression. The rated stimuli were videos of mesh
sequences, rendered from fixed viewpoints. Used methodologies were respectively
single stimulus rating [43] and multiple stimulus rating [42].

Zerman et al. [8] considered the ACR-HR methodology to compare dynamic tex-
tured meshes and colored point clouds in the context of a VV compression scenario
utilizing the appropriate state-of-the-art compression techniques for each 3D rep-
resentation. They built a database and collected user quality opinion scores using
rendered version of VVs, shown to the participants on a LCD display.

The previous experiments were conducted in laboratories, in controlled environ-
ments and with high-end equipment. Along with laboratory subjective experiments,
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crowd-sourcing experiments have become very popular in recent years, especially
during COVID-19 pandemic where participants could not be physically present in
the lab. However, conducting subjective quality assessment tests in a crowd-sourcing
setting imposes several challenges, notably those related to the lack of control over the
participants’ environment and the reliability of the participants since the latter are not
supervised. A recent study was conducted to investigate whether a crowd-sourcing
test can achieve the accuracy of a laboratory test for 3D graphics [45]. For this
purpose, the authors designed a crowd-sourcing experiment that replicates as much
as possible the lab experiment presented in [40] and conducted in VR. They used
the same dataset of 3D models and the same experimental methodology (i.e., DSIS).
Since in crowd-sourcing the test environment cannot be fully controlled, videos of
rotating stimuli were displayed to the participants to limit their interactions with the
3D objects. The results of this study showed that under controlled conditions and with
a proper participant screening approach, a crowd-sourcing experiment based on the
DSIS method can be as accurate as a laboratory experiment. It is worth mentioning
that crowd-sourcing is quite faster to evaluate large datasets, yet the most time inten-
sive task is building and designing the experimental tool (user-friendly tool, control
viewer environment, add screening test, etc.). Based on these findings, a large-scale
crowd-sourcing experiment was conducted to rate the perceived quality of the largest
dataset of textured meshes to this date [41]. This dataset allowed to analyze the impact
of the distortions and model characteristics (geometric and color complexity) on the
perceived quality of textured meshes.

18.1.2 Interactive user studies
A more natural way to collect subjective user quality scores is to conduct user studies
in more interactive experimental settings, which account for more realistic scenarios
of consumption for 3D content. Considering that there are no recommendations for
interactive protocols, most of the efforts make use of well-established methodologies
(e.g., ACR ot DSIS) in experimental setups ranging from desktop arrangements to
XR applications, which accommodate interactivity with varying DoF.

In all cases, the contents are placed in a virtual scene, designed by the experimenter
depending on the task at hand (i.e., background, lighting, etc.). Moreover, the users
are given the means to handle the camera position and orientation at any given
moment in order to inspect the contents under evaluation at their will. For instance, in
desktop setups the contents are displayed on flat-screenmonitorswith user interactions
typically being registered through the mouse cursor or computer keyboards. In XR
settings, the contents are visualized through a head-mounted display (HMD), with the
users controlling their viewpoint either by physical movements in the real world, or
by controllers.

By design, interactive evaluation protocols lead to individual visual experiences
across users, which ultimately affect their opinion regarding the visual quality of the
content under inspection. However, it is advocated that such methodologies are better
adjusted to the interactive nature of richer imagingmodalities, with user quality scores
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inherently containing the preferred type of interaction. To compensate this uncertainty
in user ratings, it is common for the experimenters to either recruit more participants or
to allow interactions without imposing time limitations. Finally, enabling interactive
protocols allows the experimenter to analyse the behaviour of users with 3D visual
data, and explore inter-dependencies between interactivity patterns and perception of
quality.

In the following subsections, we discuss subjective user studies using interactive
evaluation protocols reported in the literature, clustered per 3D content representation.

18.1.2.1 User studies for point clouds
The interactive user studies for point clouds generally use three different platforms:
desktop devices [25,28,29,46–49], AR [26], and VR [50–52] headsets. Many studies
focus on static point clouds [25,26,28,29,46–48,50] while only a couple of the studies
focus on dynamic point clouds [49,51]. Similarly to passive inspection experiments,
studies on both colorless [25,26,46] and colored [28,29,47–52] models have been
conducted, while different types of distortions and point size selection strategies have
been employed. Lastly, double stimulus methodologies are more frequently used.

Interactive variants of the DSIS and ACR methodologies were first proposed by
Alexiou et al. [25,46] to assess the quality of geometry-only point clouds in a desktop
setting, using the mouse cursor to change the viewpoint. In both studies, Gaussian
noise and octree-pruning were employed to simulate position errors from sensor
inaccuracies and compression artifacts, respectively. In these user studies, the models
were displayed side-by-side using points of minimum size.

The visual quality of colored point clouds was evaluated by Torlig et al. [47] in sub-
jective experiments that were performed in two separate laboratories. Orthographic
projections after real-time voxelization of both the reference and the distorted models
were shown to the subjects, using the simultaneous DSIS methodology. Point clouds
representing both inanimate objects and human figures were selected and compressed
using the CWI-PCL codec [49]. The results showed that subjects rate more severely
distortions on human models. Moreover, using this codec, marginal gains are brought
by color improvements at low geometric resolutions, indicating that the visual quality
is rather limited at high sparsity. In a following study [28], the same dataset was
assessed under the same methodology, using a different rendering scheme. The point
clouds were rendered using cubes of locally adaptive sizes, with the rating trends
being found very similar to those of Torlig et al. [47].

A comprehensive quality assessment study of the MPEG point cloud compression
test models is presented with subjective evaluation experiments conducted in two
independent laboratories [29]. Static, colored point cloudswith diverse characteristics
were employed and compressed following the MPEG common test conditions. The
encoded models were displayed using splats of adaptive size based on local sparsity,
and evaluated in an interactive platform using the simultaneous DSIS methodology.
As part of the study, subjective experiments under a pairwise comparison protocol
were performed, in order to conclude on preferable rate-allocation strategies for
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geometry, and geometry-plus-color encoding. Based on the findings, human subjects
prefer the distortions from regular down-sampling (Octree) over triangulated surface
approximations (TriSoup), at both low and high bit-rates.

In previous studies, the users were able to rotate, zoom and translate the models,
and interact without timing constraints. Yang et al. [48] conducted subjective quality
assessment on a large set of widely-employed colored models, allowing only rotation
under a fixed distance. Several degradation types affecting both the geometry and the
color information were introduced, consisting of octree-pruning, noise injection in the
coordinates and the RGB values, random down-sampling, and combinations of the
above to further augment the visual impairments. The experiments were conducted
using a single stimulus protocol.

Despite the convenience of desktop environments to perform interactive testing,
their setup is often less realistic when compared to immersive, XR environments. The
first attempt was made by Alexiou et al. [26], making use of an AR setting to evaluate
the visual quality of colorless point clouds, subject to octree-pruning and Gaussian
noise. A simultaneous DSIS methodology was employed, and a separate session
was issued per distortion type. The models were displayed using point primitives of
minimum size andwere placed as virtual assets in the real world, with users perceiving
them via an HMD and interacting with 6DoF via physical movements.

Perceptual quality of static point clouds in VRwas evaluated in a recent study [50].
The userswere able to interactwith the stimuliwith 6DoFvia both physicalmovements
and using the controllers, in a virtual scene thatwas designed to avoid distractions. The
color encoding modules of the MPEGG-PCC test model were evaluated using octree-
based geometry compression, under two double stimulus protocols. The models were
displayed using quads of adaptive size that were interpolated before rendering to
smooth the surfaces. The user behavior during evaluationwas also analysed to provide
further insights. Wu et al. [52] present a study evaluating a large set of colored, static
point cloud contents in a 6DoF VR viewing condition. Separate sessions were issued
for point clouds depicting human figures and objects. The DSIS methodology with
side-by-side inspection was used in all cases, including hidden references to compute
DMOS. The point clouds were rendered using minimum point size, while the subjects
were able to navigate in the virtual space only by physical movements.

Desktop-based approaches were also used for the dynamic point clouds. In the
work of Mekuria et al. [49], subjective experiments were conducted in the proposed
3D tele-immersive system, where the users were able to interact with naturalistic
(dynamic point cloud) and synthetic (computer generated) models in a virtual scene.
The participants were able to navigate in the virtual environment through the use of
the mouse cursor in a desktop setting. The proposed encoding solution (CWI-PCL)
that was employed to compress the naturalistic content of the scene was evaluated,
among several other aspects of quality (e.g., level of immersiveness and realism).

Visual quality assessment using dynamic point cloud contents in VR under both
3DoF and 6DoF interaction scenarios, is presented in the work of Subramanyam
et al. [51]. Human figures from real-life acquisition and artificially generated were
encoded using the V-PCC and the CWI-PCL, which denotes the anchor codec of the
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MPEG studies [49]. The models were displayed in the virtual scene using quads
of fixed size and evaluated under an ACR-HR protocol. The users were able to
navigate by physical movements in the 6DoF scenario, while remained sited in the
3DoF counterpart. Results showed the superiority of V-PCC at low bit-rates, while
statistical equivalence was foundwith theMPEG anchor at higher bit-rates, depending
on the content. Finally, the inability of the codecs to achieve transparent visual quality
was remarked. In a subsequent study [53], the subjective quality scores between these
3DoF and 6DoF VR settings were compared to pre-recorded videos visualized on
common 2D screens, to conclude on the effects of different viewing conditions.

18.1.2.2 User studies for meshes
Many authors have adopted for free interaction in their subjective tests for evaluating
the quality of 3D meshes. The majority of these works were performed on 2D
screen: Lavoué et al. [54], Corsini et al. [55] and Torkhani et al. [43] conducted
subjective experiments based on single stimulus methods (derived from ACR), while
Lavoué et al. [56] and Silva et al. [57] implemented double stimulus methods (derived
from DSIS). In these experiments, the observers were able to freely interact (free-
viewpoint interaction) with the 3D models to evaluate and rate their quality. All
those studies considered meshes without color or texture and they evaluated the
impairments introduced by various geometry distortions (e.g., noise, compression,
smoothing, watermarking).

An early attempt of a 3D tele-immersive system allowing real-time communication
between natural representations of humans and synthetic avatars, was presented by
Mekuria et al. in [58]. The natural representations in this setting were rendered as
meshes. For purposes of subjective quality evaluation, a pre-recorded natural human
moving was employed as the test stimulus. The original representation and three
degraded versions after encoding with three real-time mesh coding solutions were
subjectively evaluated from near and far distance.

Few experiments involving 3D meshes have been conducted in immersive en-
vironments. Christaki et al. [59] subjectively assessed the perceived quality of 3D
meshes (without color/texture) subjected to different compression codecs, in a VR
setting using the pairwise comparison method. The content was viewed freely as a
combination of natural navigation (i.e. physical movement in the real-world) and user
interaction. Gutiérrez et al. [60] used the dataset of textured meshes provided in [37]
to evaluate the perception of geometry and texture distortions in Mixed Reality (MR)
scenarios. They also analyzed the impact of environment lighting conditions on the
perceived quality of 3D objects in MR. The experiment was based on the ACR-HR
method and the observers were asked to freely explore the displayed 3D models.

18.1.3 Publicly available datasets
Some of the works presented above have publicly released their datasets. Table 18.2
outlines the publicly available subjective quality datasets for 3D content. For meshes,
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the available datasets concern mostly geometry-only content [19,35,42,43,54,56,57]
and are all rather small (see the first 7 rows in Table 18.2). The only public dataset
involving meshes with vertex colors is provided by Nehme et al. [39] and contains
480 distorted stimuli. For textured meshes, three datasets exist [37], [8] and [41]. The
first two datasets contain respectively 136 and 28 stimuli, while the latter contains
more than 343k stimuli, of which 3000 (a generalized and challenging subset) are
associated with Mean Opinion Scores (MOS) derived from subjective experience and
the rest with predicted quality scores (pseudo-MOS), making it the largest quality
assessment dataset of textured meshes to date.

Regarding point clouds, only two datasets concern colorless models [25,26]
and [21], with the rest considering colored models. Among the latter, the largest
available datasets are the WPC by Su et al. [15], the SJTU-PCQA by Yang et al. [48]
and the SIAT-PCQD by Wu et al. [52]. The WPC is composed of point clouds cap-
tured in a laboratory setting by the authors as part of this study, which are degraded
by different types of distortions; the SJTU-PCQA makes use of contents that have
been extensively utilized in standardization activities under various compression dis-
tortions; the SIAT-PCQD involves point clouds from the MPEG/JPEG repositories
and a publicly accessible 3D content sharing platform, which are encoded using only
V-PCC.

The majority of the reported datasets for both meshes and point clouds were
generated through experiments that were conducted on desktop settings. In particular,
only the studies presented in [26] and [39,50,52,53] were conducted in immersive
environments, with the former performed in AR and the latter in VR platforms,
respectively.

As discussed in Section 18.1, there are various aspects that differ for subjective
experiments during the data collection step. All these aspects and different parameters
are listed in the columns of Table 18.2. Most of these aspects are either self-describing
or introduced at the beginning of this chapter.

Regarding the methodology column, although subjective evaluation methodolo-
gies have specific instructions and distinctions among themselves, for the sake of
simplicity, we only consider the number of stimuli test participants see for each vote.
For singe stimulus methodologies, the participants decide on the subjective quality by
seeing only one stimulus. Similarly, for double stimulus methodologies, participants
provide a rating after seeing two stimuli, one of which is generally the reference stim-
ulus (or source model). In multiple stimulus, this number is more than two, and in
pairwise comparison, participants choose the better quality stimulus from two stimuli
presented to them.

The # of stimuli rated column includes the reference stimuli if they were rated
during the test (e.g., as hidden reference). Some datasets might have quality labels in
addition to the MOS values that are collected from participants. These quality labels
are generally estimated using a quality metric that shows very high correlation to the
MOS values. These labels are called pseudo-MOS, and they intent to increase the
amount of labels for metrics training and evaluation.

The # of ratings per stimulus column indicate the number of unique observations
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Table 18.2 Publicly available subjectively annotated datasets for meshes
& point clouds.

Dataset 3D Repre-
sentation

Temporal
Variation

Attributes Mode of
Inspection

Methodology Distortion
Types

# Stimuli
rated

# Ratings
per Stimulus

Raw
Scores

LIRIS / EPFL [54] Mesh Static Colorless Interactive Single
stimulus

Noise addition
Smoothing

84 12 X

LIRIS Masking [56] Mesh Static Colorless Interactive Double
stimulus

Noise addition 24 11 X

IEETA
Simplification [57]

Mesh Static Colorless Interactive Double
stimulus

Simplification 30 65 X

UWB #1 [35] Mesh Static Colorless Passive Pairwise
comparison

Compression 63 69 X

RG-PCD [19] Mesh Static Colorless Passive Double
stimulus

Octree-pruning 30 126 X

UWB #2 [42] Mesh Dynamic Colorless Passive Multiple
stimulus

Compression
Noise addition

36 37∼49 X
MOS&CI

3D Mesh Animation
Quality [43]

Mesh Dynamic Colorless • Passive
• Interactive

Single
stimulus

Noise addition
Compression

Transmission error
286 • 16

• 25 X

LIRIS Textured
Mesh [37]

Mesh Static Texture
maps

Passive
(Generated

videos)

Pairwise
comparison

- On geometry:
Compression
Simplification

Smoothing
- On texture:
Compression
Sub-sampling

• 100×2 renderings
• 36×2 renderings

• 11∼15 (Exp.1)
• 10∼11 (Exp.2)

X
preference
matrices

Nehme et al. [41] Mesh Static Texture
maps

Passive
(Generated

videos)

Double
stimulus

Compression
Simplification

• 3000
(MOS)
• 340750

(Pseudo-MOS)

45 X

3D Meshes with Vertex
Colors [39]

Mesh Static Vertex
colors

Passive in VR
(Slow

animations)

Double
stimulus

Compression
Simplification

480 24 X
MOS&CI

G-PCD [25,26] Point cloud Static Colorless

• Interactive

• Interactive
in 6DoF AR

• Single
& Double
stimulus
• Double
stimulus

Noise addition
Octree-pruning

50

• 2×20

• 21

X

M-PCCD [29] Point cloud Static Colored Interactive

• Double
stimulus
• 2×Pairwise
comparison

Compression
• 240

• 40 & 30

• 40

• 2×25
X

IRPC [21] Point cloud Static
• 2×Colorless

• Colored

Passive
(Generated

videos)

Double
stimulus

Compression
• 54

• 54

• 2×20

• 20

X
MOS

WPC [15] Point cloud Static Colored
Passive

(Generated
videos)

Double
stimulus

Compression
Noise addition
Octree-pruning

740 30 X
MOS

VsenseVVDB [23] Point cloud Dynamic Colored
Passive

(Generated
videos)

Double
stimulus

& Pairwise
comparison

Compression 32 19 X

VsenseVVDB2 [8]
• Point cloud

• Mesh
Dynamic

• Colored

• Texture
maps

Passive
(Generated

videos)

Single
stimulus

Compression

• 136

• 28

23 X

ICIP2020 [18] Point cloud Static Colored
Passive

(Generated
videos)

Double
stimulus Compression 96 15∼27 X

MOS&CI

PointXR [50] Point cloud Static Colored Interactive
in 6DoF VR

2×Double
stimulus Compression 40 2×20 X

SJTU-PCQA [48] Point cloud Static Colored Interactive Single
stimulus

Compression
Noise addition

Scaling
378 16 X

MOS

SIAT-PCQD [52] Point cloud Static Colored Interactive
in 6DoF VR

Double
stimulus

Compression 340 38 X
DMOS

LB-PCCD [16] Point cloud Static Colored Passive Double
stimulus

Compression 105 48 X

2DTV-VR-QoE [53] Point cloud Dynamic Colored

• Interactive
in 6DoF VR
• Interactive
in 3DoF VR
• Passive

(Generated
videos)

Single
stimulus

Compression 72
• 26
• 26
• 25

X
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made during the experiment, or the number of unique votes that was collected for
every stimulus.

Another important parameter for multimedia content quality datasets (images,
videos, audios, 3D graphics, etc.) is whether the individual quality scores of each
participant (i.e., raw scores) were shared and made publicly available. Although all
the quality datasets shareMOS or preference scores, these values might not be enough
to characterize the statistical attributes and distributions of the individual votes [61].
Providing individual votes can allow for further statistical analysis and research into
the weaknesses of certain stimuli, use cases or objective quality metrics [62,63].
Therefore, in Table 18.2, we identify whether the indicated datasets share individual
votes from participants.

18.1.4 Comparative studies
There are several studies focused on addressing the impact of different aspects (Ta-
ble 18.1), in subjective quality evaluation of volumetric content. The usage of different
types of 3D representation, the mode of inspection, the display devices, the rendering
parameters and the evaluation methodologies, are among the most relevant and popu-
lar in the literature. Although some knowledge may be transferred from 2D imaging
which has been well-studied, the effect of different variables for quality assessment of
volumetric video can only be quantified through scientific research and experimenta-
tion using such contents. Hence, these studies are particularly important as they can
help us better understand and identify interactions between influencing factors.

The first user study aiming at comparing point cloud against mesh representations
for compression of volumetric video, is presented by Zerman et al. in [8]. The
Google Draco and JPEG encoding engines were employed for geometry and texture
of mesh, respectively, while V-PCC and G-PCC were recruited to encode geometry
and color of point cloud versions. As part of the study, the efficiency of the latter
MPEG point cloud codecs was also analysed. All models were evaluated in a passive
protocol using the ACR-HR from both content representations, while point clouds
were displayed using fixed-size point primitives. Results show that the point cloud
encoding-plus-rendering pipeline leads to better performance at low bit-rates, whereas
higher quality levels are achieved by the mesh-based counterpart. However, the latter
is attained for bit-rates that well-exceed the point cloud ones. Finally, among the
MPEG alternatives, the superiority of the V-PCC was confirmed.

Similarly, a subjective evaluation of volumetric videos using both point cloud
and mesh technologies is detailed in the work of Cao et al. [64]. Several additional
factors were considered in the experimental design, among which the target bit-rate,
the content resolution, and the viewing distance. To decrease the parameter space,
for every target bit-rate, a manual identification of the optimal combination for model
resolution and compression parameters per viewing distance was performed in a
perceptual sense. The selected stimuli were evaluated following passive inspection
in two experiments that were carried out. In the first, the subjects rated the visual
quality of models that were displayed using both types of content representations
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under an ACR methodology. In the second, a pairwise comparison between the same
models represented as point clouds and meshes was issued. Based on the results,
subjects favored the point cloud alternative at lower bit-rates. Moreover, the viewing
distance was found to be an important factor, and mesh modeling was preferred at
closer distances. At higher bit-rates and distant inspection, human opinions expressed
equal preference.

In the study of Javaheri et al. [21], particular combinations of representations,
attributes and rendering methodologies were examined for quality evaluation of static
point clouds, subject to compression distortions. In particular, the experiments were
conducted using (a) colorless point clouds, (b) colored point clouds, and (c) colorless
meshes, to evaluate the same point cloud distortions. Results show that different
scoring behaviors might be observed for the same compression impairments, under a
different selection. Moreover, the scoring deviations might vary per codec. Finally, it
was suggested that texture information might mask underlying geometric distortions.

Regarding the effect of adopting different modes of inspection for subjective qual-
ity assessment, very few comparisons have been performed. Torkhani et al. [43]
performed both passive and interactive experiments for the same dataset of dynamic
meshes, using a single stimulus protocol. They concluded that under most kinds
of distortions user interaction can affect the perceived quality; however this impact
depends on the nature of the distortion (e.g., global vs local) and is hard to predict.
Viola et al. [53] conducted subjective experiments in 3DoF and 6DoF VR as well as
with pre-recorded videos in conventional monitors. Two sets of point clouds were
employed, subject to compression distortions. For one of the two sets, the viewing
condition was deemed to have a significant effect on the distribution of the scores,
indicating differences between interactive and non-interactive inspection. For the
other set, however, the inspection method had no effect on the scores. The study sug-
gests that conclusions derived from either a non-interactive or interactive study can be
roughly generalized, since the effect of the inspection method on the collected score
was, if existent, marginal. In particular, the interaction between codec and inspection
method was not significant, meaning that you would draw the same conclusions about
the relative performance of one codec with respect to the other in either interactive or
non-interactive scenarios. However, this study highlights that other factors, besides
visual quality, might be important for the selection of inspection method; for example,
the level of presence or immersion, or the discomfort caused by cyber sickness.

Regarding the influence of different display devices, the collected user ratings
from an AR setting and an interactive desktop setup were compared in [65]. In both
experiments, colorless point clouds of minimum size were employed. The results
revealed similar rating trends in the presence of Gaussian noise, and differences under
octree-pruning. In particular, the authors claim that the former type of degradation
leads to clearly perceived artifacts independently of the type of devices, hence leading
to high correlation. Differences were also observed with respect to the shape of the
models. Finally, higher confidence intervals associated with subjective scores from
the AR setting, suggest a larger number of users to be involved in such experimental
setups. Results froma collaborative effort in the framework of the JPEGPleno onPoint
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Clouds were reported in [20], where reconstructed mesh models from compressed,
colorless point clouds were assessed using various 3D display types/technologies
(i.e., passive, active, and auto-stereoscopic) in different laboratories. Inter-laboratory
correlations and comparisons with quality scores for the same dataset evaluated in
2D monitors, show very high correlation, suggesting that human judgments are not
significantly affected by the display equipment.

Themajority of current comparative studies is focused on understanding the impact
of employing a different evaluation methodology on the obtained quality scores and
their accuracy. Specifically, Alexiou et al. [25] compared the results of an ACR and
a DSIS test, in which subjects were able to interact with the point clouds viewed on
screen. They found that, the DSISmethod is more consistent in identifying the level of
impairments. The sequential DSIS and a newly proposed variant, namely alternating
DSIS, were employed to evaluate point cloud contents subject to color compression
distortions, in [50]. In the former protocol, the reference model is presented to the
user followed by the distorted, whereas in the latter, the user is allowed to toggle
between the reference and the distorted at will. The experiments were conducted in
VR with users interacting with 6DoF. The results indicated that the alternating DSIS
protocol leads to lower uncertainty for the perceived quality, it is faster, and generally
preferred by the participants. Recently, a comprehensive study [40] compared the
performance of three of the most prominent subjective methodologies, with and
without explicit references (ACR-HR, DSIS and SAMVIQ), in order to determine the
best one for evaluating the perceived quality of 3D graphics, especially in VR. The
studywas conducted in a VR environment using a dataset of meshes with vertex colors
animated with slow rotation. Results assert that the presence of an explicit reference
is necessary to improve the accuracy and the stability of the method. DSIS tends to
be the most suitable method, in terms of accuracy and time-efficiency, to assess the
quality of 3D graphics. Authors recommended the use of at least 24 observers for
DSIS tests.

18.2 Objective Quality Assessment
Although subjective quality assessment provides ground truth quality scores for visual
stimuli, it is not feasible to carry out user studies for each scenario, especially when
there is a need to determine the quality for a large number of volumteric contents
or for real-time applications. Objective quality assessment methods/metrics enable
algorithmic quality estimation using mathematical calculations and signal processing
approaches.

Simple geometric or color distances/errors between 3D models are weakly cor-
related with human perception, since they ignore perceptual characteristics of the
HVS [23,54,66], analogously to the Mean Square Error (MSE) and Peak Signal-to-
Noise Ratio (PSNR) measurements in 2D imaging. Therefore, current efforts are
concentrated on perceptually-driven visual quality metrics, which can be primarily
distinguished in top-down and bottom-up approaches. The former treat the HVS as a
black box and capture modifications in content features that are induced by distortions,
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in order to estimate perceived quality. The latter rely on computational models that
describe properties of the HVS, mainly to determine the visibility of errors caused by
distortions. With the rise of machine learning, a third category has recently emerged,
consisting of metrics that rely on purely data-driven approaches, which do not demand
any explicit model.

Independently of the design, objective quality metrics can be categorized based
on their requirement for the original content (i.e., reference) at execution time as Full-
Reference (FR), Reduced-Reference (RR), and No-Reference (NR). For FR metrics,
the distorted model is compared to its reference. For RR metrics, some reference
data are required as inputs, while for NR, no reference information is necessary.
FR metrics are generally employed to drive lossy processing operations, such as
compression, transmission, simplification and watermarking. However, they have
higher computational overhead and are not always applicable, as the original content
is not always available. RR metrics make use of lightweight, descriptive features
that are extracted from both the reference and the distorted contents for comparison
purposes. They are typically employed when it is inefficient, or impractical to provide
the entire original content, such as in a video streaming scenario. NR metrics are the
most practical in terms of usage, yet they are often rather limited in terms of scope,
i.e., tuned for a particular type of distortion with limited generalization capabilities.

Finally, considering their operating principle, 3D quality metrics can be classified
asmodel-based and image-based (also known as rendering-based or projection-based)
metrics. The model-based metrics operate on the 3D model itself (either mesh or
point cloud) and its attributes, such as texture maps or color values. The image-based
metrics function on the image domain and in particular on projected views of 3D
models on 2D planar arrangements. They often apply Image Quality Metrics (IQMs)
on 2D snapshots of the rendered 3D model. The rest of this section is structured
according to this classification: In Section 18.2.1, model-based methods for point
clouds and meshes are described, whereas in Section 18.2.2, image-based metrics are
reported for both types of content representations.

18.2.1 Model-based quality metrics
The majority of model-based quality metrics are based on top-down FR approaches.
In FR quality metrics, a correspondence function is essential to enable comparisons
between the original (or reference) and the distorted contents. In conventional 2D
imaging, this is easily achieved by matching the pixel grids of the reference and the
distorted contents. However, this is not the case for 3D data, whose topology is
altered by geometric distortions that typically introduce dislocation and/or removal
of 3D points. Given the different 3D point (or vertex) populations and coordinates,
the point matching (i.e., correspondence) step between the reference and the distorted
models becomes an ill-posed problem. After establishing a correspondence, errors
between attributes or features associated to the matched points are computed.

Often, 3D data quality metrics identify point matches using the nearest neighbor
algorithm for simplicity reasons. In particular, following the most common conven-
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tions, the original model is selected as the reference R and the distorted model is set
under evaluation T . Considering point clouds (or meshes), for every point (or vertex)
t ∈ T , the nearest reference point (or vertex) rt ∈ R is identified, and a local error
4(qt, qrt ) is computed between corresponding features qt and qrt . A global quality
score @T→R is obtained by pooling the local errors, as given in Equation 18.1

@T→R =
1
|T |

(∑
t∈T

4(qt, qrt )<
)1/=

(18.1)

where |T | is the number of points (or vertices) of T and <, = ≥ 1. Using = = 1, and
< = 1 or < = 2, the average or the MSE are obtained, respectively.

Note that @T→R is an asymmetric measurement, as @T→R ≠ @R→T . That is,
by selecting the distorted model as the reference, different sets of matched points
(vertices) are obtained, resulting in different global quality scores. In order to obtain
quality predictions that are independent of the reference selection, it is common to
use both models as reference and apply a symmetric operation 5 (·) on the exported
quality scores, such as the average or the maximum, as shown in Equation 18.2.

@ = 5 ( @T→R , @R→T ) (18.2)

Another approach that has been widely used to quantify geometric deformations
between two 3D models is the Hausdorff distance. It is defined as the greatest out of
all the distances between the points (or vertices) of T and the nearest/corresponding
points (or vertices) of R. It can be derived by using max pooling (instead of the
aggregation in Equation 18.1) of local errors that measure the Euclidean distance
between a point (or vertex) t and its nearest rt. The Hausdorff distance of the point
cloud under evaluation T from the reference R is computed as follows:

@T→R = max
t∈T
{min

r∈R
{ 3 (t, r) } } = max

t∈T
{ 3 (t, rt) } (18.3)

with 3 (·) the Euclidean distance.
Finally, it is rather frequent for both point cloud and mesh model-based metrics

to take into consider local neighborhoods around a queried point (vertex), in order to
compute an attribute or a feature q. For point clouds, the most common algorithms
are the :-nearest neighbor and the range search with radius A , denoted :-nn and A-
search respectively and shown on the left side of Figure 18.4. The former identifies
the nearest : points to a queried point p, while the latter returns all points enclosed
in a sphere with center p and radius A . For meshes, the 1-ring neighborhood and the
A-search, illustrated on the right side of Figure 18.4, are employed. The first refers to
the set of all vertices connected with the queried vertex v by an edge. The second,
is defined as the connected set of vertices belonging to the sphere with center v and
radius A . In this case, the intersections between this sphere and the edges of the
mesh are also added to the neighborhood. Note that the :-nn (for point clouds) and
1-ring (for meshes) approaches lead to neighborhoods of arbitrary extent depending
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FIGURE 18.4

Local neighborhood computation around a point p in a point cloud (left) and a vertex v
in a mesh (right). For the point cloud, the :-nearest neighbors with : = 24 and the range
search with radius A (A-search) approaches are depicted. The 1-ring neighborhood as
well as the A-search are illustrated for the mesh.

on the vertex sampling or point density of the model. The :-nn approach has a fixed
population (equal to :), and the 1-ring is straightforward to compute. Concurrently,
the A-search approach identifies same volumes that may enclose varying number of
samples.

In what follows, we first discuss the model-based metrics for point clouds and then
those for meshes.

18.2.1.1 For point clouds
The development of point cloud objective quality metrics has been an active research
field the last five years. This interest was fueled by the MPEG and JPEG standardiza-
tion activities on point cloud compression [2,3], which required reliable solutions for
quality assessment of point cloud compression distortions.

Early developments ofmodel-based predictors employed simple distances between
attributes of matched points to measure local errors, as shown in Fig. 18.5. The point-
to-point metric denotes the earliest attempt, with the geometric variant computing the
Euclidean distance between point coordinates to measure the geometric displacement
of distorted samples from their reference positions [67]. Setting = = 1 and < = 2
in Equation 18.1, the point-to-point metric with MSE is computed, also known as
D1 [68]:

D1 =
1
|T |

∑
t∈T

3 (t, rt)2 (18.4)

with 3 (·) the Euclidean distance. Analogously, the point-to-point variant for color
distortions, measures the error between RGB color values or YUV intensities of
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FIGURE 18.5

Error quantification between a distorted point t and a reference point rt from simple
point-wise distances. Setting ®D = t− rt and \ the angle between corresponding normal
vectors, the local error for point-to-point is 3 (t, rt) = | | ®D | |2, for point-to-plane is | ®D · ®=rt |,
and for plane-to-plane is 1 − 2 min{\, c − \}/c.

matched points, effectively simulating the MSE that has been widely used for 2D
images [69].

The point-to-point metrics have low complexity; however, they do not account for
perceptual characteristics of the HVS. An early alternative, simultaneously proposed
by the same authors to capture geometric distortions based on distances that are
more perceptually-relevant, is the point-to-plane metric [67]. This method relies on
the projected error of distorted points across reference normal vectors. Thus, local
errors measure the deviation of distorted points from linearly approximated reference
surfaces. A global degradation score is typically obtained using the MSE, which is
also referred to as D2 [68]:

D2 =
1
|T |

∑
t∈T
| ®D · ®=rt |2 (18.5)

Both point-to-point and point-to-plane metrics use both the original and distorted
point clouds as references, and then use the max operation on the resulting quality
scores (Equation 18.2) to deliver a final symmetric prediction. Moreover, the geomet-
ric PSNRwas proposed for bothmetrics to account for differently scaled contents [70],
using either the voxel grid’s diagonal or the maximum nearest-neighbor distance of
the original content as the peak value.

The above metrics were recruited in the MPEG standardization activities since the
beginning. As a consequence, they were widely used and tested by the research com-
munity, attracting interest and inspiring submissions to improve their performance.
For instance, the generalized Hausdorff distance was proposed to mitigate the sensi-
tivity of the Hausdorff distance in outlying points, by excluding a percentage of the
largest individual errors [71]. A revised geometric PSNR calculation was proposed
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in [72], setting as peak value the average over distances between neighbors in 3D
space or after projection onto local planes, to represent the intrinsic resolution or
rendering resolution of the content, respectively.

Another early-developedmethod evaluating geometry-only distortions is the plane-
to-plane metric [73]. This metric estimates the difference in orientation between local
surface approximations of the original and the distorted point clouds. This is achieved
by computing the angular similarity between unoriented normal vectors from locally
fitted surfaces. In particular, the angle between the two normal vectors is computed
as follows:

\ = arccos
( ®=rt · ®=t

| | ®=rt | | | | ®=t | |

)
(18.6)

with the angular similarity given as:

Angular similarity = 1 − 2 min{\, c − \}
c

(18.7)

The plane-to-plane metric relies on the computation of normal vectors and its perfor-
mance is affected by how they approximate the underlying surfaces. An insightful
analysis for the calibration of this metric is provided in [74].

In the same list of geometry-only model-based quality metrics lies the point-
to-distribution, which computes the Mahalanobis distance between a point and a
reference neighborhood [75]. In this case, the geometric deviation is measured with
respect to the distribution of reference samples, thus, accounting for the local reference
topology. This metric was lately extended to capture color degradations by applying
the same formula to luminance attributes [76]. The two quality scores obtained for
geometry and color were simply averaged to provide a final predicted quality score.

More recent proposals rely not only on surface properties extracted from point
samples, but also on the utilization of statistics to capture relations between points that
lay in the same local neighborhood. For that purpose, a correspondence is established
between points in the point cloud under evaluation T , and the relative reference point
cloud R. Then, statistics are computed based on the neighborhood surrounding the
points, as seen in Figure 18.6. An initial metric towards this direction is PC-MSDM,
which is based on the relative difference between local curvature statistics (mean,
standard deviation and covariance of curvature) [77]. The PC-MSDM was later
extended to colored point clouds, by incorporating local statistical measurements of
luminance, chrominance and hue components to evaluate textural impairments. A
proposed weighting function regularizes the contributions of each feature in the final
quality prediction. The new metric is called PCQM [78]. Both PC-MSDM and
PCQM, instead of using nearest neighbors, employ the reference points and their
projections/correspondences onto the quadric surfaces fitted to the distorted model.

The PointSSIM relies on a similar logic, capturing perceptual degradations based
on the relative difference of statistical dispersion estimators applied on local pop-
ulations of location, normal, curvature and luminance data [79]. An optional pre-
processing step of voxelization is proposed to enable different scaling effects and
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FIGURE 18.6

Computation of statistics considering a neighborhood around every point. Points that
belong to the point cloud under evaluation T are matched with points from the refer-
ence R, and corresponding statistics are compared to obtain local errors. Normally, a
global quality score is computed by pooling, per Eq. 18.1.

reduce intrinsic geometric resolution differences across contents. The Visual Qual-
ity Assessment of Color Point Clouds (VQA-CPC) metric depends on statistics of
geometric and color quantities [80]. These quantities are obtained by computing the
Euclidean distance between every sample from the arithmetic mean of the point cloud,
considering geometric coordinates and color values, respectively. The Color Point
Cloud metric based on Geometric Segmentation and Color Transformation (CPC-
GSCT) denotes an extension, involving a partition stage of the point cloud, before
the extraction of features per region [81]. The geometric features consist of statisti-
cal moments applied on Euclidean distances, angular distortions and local densities,
which are weighted according to the roughness of a region. The textural features rely
on the same statistics, after conversion to the HSV color space.

More recently, the PointPCAmetric was presented, making use of statistics applied
on a series of Principal Component Analysis-based (PCA-based) geometric descrip-
tors [82]. The latter are extracted from measurements obtained after performing PCA
in support regions defined around point samples. The proposed descriptors capture
the dispersion of points distribution, the dimensionality, variation and roughness of
the underlying surface, as well as the parallelity with respect to the coordinate system
axes. Then, simple statistics are employed and compared using the relative difference.
These individual predictions are weighted averaged to provide a final quality score.

TheGraphSIMdenotes a graph signal processing-based approach, which evaluates
statistical moments of color gradients computed over graphs [83]. The graphs are
constructed around keypoints of the reference content, and are identified after high-
pass filtering on its topology. A more recent, multi-scale version of this metric,
namely MS-GraphSIM, is presented by Zhang et al. [84]. The proposed multi-scale
point cloud representation is achieved by low-pass filtering on color, point down-
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sampling and region shrinking. Zhang et al. [85] extract geometry features from
graphs constructed per partition after geometry segmentation, with the graph signal
considering normal vectors. Moreover, a color segmentation step is employed and a
colorfulness index is computed to weight the obtained segments accordingly. Color
histograms and the relative difference of several moments of chrominance components
are employed to estimate color distortions per segment.

Xu et al. [86] present a point cloud quality metric based on potential energy. In
this method, a number of points are selected, called origins, after applying a high-pass
filtering operation in the topology of a point cloud. Local neighborhoods are formed
around these origins, and the potential elastic energy needed to move the enclosed
points from the origin to their current state (considering both geometry and color) is
computed. A global score is obtained by aggregating the individual elastic potential
energies across origins. Additionally, a local score is obtained as the cosine similarity
between the direction of forces needed to transfer a reference and a corresponding
distorted point from their origin to their current positions. Global and local features
are pooled together to provide a final quality score.

In the work of Diniz et al. [87], local binary patterns on the luminance channel
are applied in local neighborhoods. This work is later extended [88] to additionally
take under consideration the point-to-plane distance between point clouds, and the
point-to-point distance between corresponding feature maps in the quality prediction.
A variant descriptor, namely, local luminance patterns is proposed in [89]. This work
also introduces a voxelization stage in the metric’s pipeline in order to alleviate its
sensitivity to different voxelization parameters. In [90], a texture descriptor to compare
neighboring color values using the CIEDE2000 distance is proposed. The color
differences are coded as bit-based labels, which denote frequency values of pre-defined
difference intervals. An extension is presented in [91], namely, BitDance, which
incorporates a geometric descriptor that relies on the comparison of neighbouring
normal vectors, resulting in bit-based labels similarly to the texture counterpart.

A set of texture-only metrics has been proposed by Viola et al. [92], which relies
on histograms or correlograms, of luminance and chrominance components in order
to characterize the color distributions of distorted and reference point cloud data. A
global quality score is obtained by weighted combination of the proposed color-based
predictor and the point-to-plane metric.

Regarding RR approaches, the first attempt was reported in [93]. The algorithm
is based on global features extracted from the location, luminance and normal data,
with a weighted average used to combine the distortions into a single quality score.
More recently, an RR metric for point clouds encoded with V-PCC was presented by
Liu et al. [94]. The prediction is a linear model of geometry and color quantization
parameters, with parameters determined by a local and a global color fluctuation
feature that accounts for the different impact of compression artifacts on contents.

An NR method was recently proposed by Hua et al. in [95], namely, BQE-CVP.
Thismethod relies on geometric features based on point distances, normals, curvatures
and point density, which are estimated after segmentation and weighted according to
local roughness, similarly to their previous work in [81]. Texture degradations are
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computed as statistical moments of distortion maps obtained after applying the Just
Noticeable Distortion [96] on point cloud projections. Moreover, features based on
gray-texture variations, color entropy, and color contrast, are extracted. Finally, a
joint feature based on a geometric-color co-occurrence matrix is proposed.

The performance of well-established, pre-trained Convolutional Neural Network
(CNN) architectures for classification, was investigated to assess the quality of the
point clouds, after necessary adjustments [97]. Geometric distance, mean curvature,
and luminance values are employed and form patches. A patch quality index is
computed using a CNN model, and a global quality index is obtained after pooling.
Quach et al. [98] extend the use of perceptual loss from 2D images to point clouds,
which are represented as voxel grids with binary occupancy or truncated distance
fields. The perceptual loss is applied on the latent space, after passing through a
simple auto-encoding architecture that is composed of convolution layers.

18.2.1.2 For meshes
Many Mesh Visual Quality metrics have been proposed in the literature in the past 15
years [99,100]. Existing metrics are mostly FR. Most of them also follow the classi-
cal approach (top-down) used in image quality assessment: local feature differences
between the reference and distorted meshes are computed at vertex level, and then
pooled over the entire 3D model to obtain a global quality score. While pioneering
techniques were limited to evaluating geometry distortions only, most recent ones in-
corporate color/texture information. Moreover, machine learning and, more recently,
deep learning approaches are gaining in popularity. This allows, among other bene-
fits, the emergence of NR methods. The following paragraphs detail existing mesh
quality metrics.

As mentioned earlier, pioneering metrics evaluate only geometric distortions, i.e.
they rely on geometric characteristics of the mesh without considering its appearance
attributes. Primary works used simple geometric measures, such as Hausdorff dis-
tance [101], MSE, RootMean Squared (RMS) error [102] and PSNR. These measures
quickly demonstrated a poor correlation with the human vision since they ignore per-
ceptual information [103]. Hence, many perceptually driven visual quality metrics
have been proposed. One of the first proposed metrics combined the RMS geometric
distance between corresponding vertices with the RMS distance of their Laplacian
coordinates which reflect the degree of surface smoothness [104]. A Strain Energy
Field-based measure (SEF) was also developed by Bian et al. in [105]. This metric
is based on the energy introduced by a specific mesh distortion; that is, the more the
mesh is deformed, the greater the probability of perceiving the difference between
the reference and distorted meshes. Some authors were inspired by IQMs. For in-
stance, Lavoué et al. [54,66] proposed two metrics, called Mesh Structural Distortion
Measure (MSDM) and MSDM2, inspired by the well-known SSIM [106]. In partic-
ular, the authors extended the SSIM to 3D meshes by using the mesh curvature as
an alternative for the pixel intensities. MSDM2 is adapted for meshes with different
connectivities. Torkhani et al. [107] also proposed a metric based on local differences
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in curvature statistics. They included a visual masking model to their metric. Other
works considered the dihedral angle differences between the compared meshes to
devise their metric, such as the Dihedral Angle Mesh Error (DAME) metric [35]. The
above metrics consider local variations at the vertices or edges. Corsini et al. [55]
proceeded differently. They computed one global roughness value per 3D model con-
sidering dihedral angles and variance of the geometric Laplacian and then derive a
simple global roughness difference. In a similar approach, Wang et al. [108] proposed
a metric called Fast Mesh Perceptual Distance (FMPD) based on global roughness
computed using the Gaussian curvature. A survey [99] detailed these works and
showed that MSDM2 [66], DAME [35] and FMPD [108] are excellent predictors of
visual quality.

Besides these works on global visual quality assessment (top-down approaches
adapted for supra-threshold distortions), few works based on bottom-up approaches
were proposed. Nader et al. [109] introduced a bottom-up visibility threshold predictor
for 3D meshes. Guo et al. [110] also studied the local visibility of geometric artifacts
and showed that curvature could be a good predictor of distortion visibility.

Several works used machine learning techniques in assessing the quality of 3D
meshes, with multi-linear regression adopted to optimize the weights of several mesh
descriptors [111], or Support Vector Regression (SVR) used to fuse selected features
to obtain a quality metric [112]. Recently, a machine learning-based approach for
evaluating the quality of 3D meshes was proposed, in which crowd-sourced data is
used while learning the parameters of a distance metric [113].

Moving to 3D dynamic meshes, Váša et al. [42] proposed a metric, called STED,
based on the comparison of mesh edge lengths and vertex displacements between
two animations. Torkhani et al. [43] devised a quality metric for 3D dynamic meshes
which is a combination of spatial and temporal features. Inmore recent work, Yildiz et
al. [114] developed a bottom-up approach incorporating both the spatial and temporal
sensitivity of the HVS to predict the visibility of local distortions on the mesh surface.

For some use cases, the reference is not available. Therefore, NR quality as-
sessment metrics are needed. Unlike FR metrics, few NR quality metrics for 3D
meshes have been proposed in the literature. These metrics are based on data-driven
approaches (machine learning). Abouelaziz et al. [115] proposed an NR metrics that
relies on the mean curvature features and the General Regression Neural Network
(GRNN) for quality prediction. The Blind Mesh Quality Assessment Index (BMQI),
proposed in [116], is based on the visual saliency and SVR, while that proposed
in [117] is based on dihedral angles and SVR. Abouelaziz et al. [118] also used CNNs
to assess the quality of 3D meshes. The CNN was fed with perceptual hand-crafted
features (dihedral angles) extracted from the 3D mesh and presented as 2D patches.

All the works presented above consider only the geometry of the mesh, and there-
fore only evaluate geometric distortions. Regarding 3D content with color or material
information, little work has been published. For meshes with diffuse texture, Pan
et al. [36] derived from the results of a subjective experiment a quantitative metric
that approximates perceptual quality based on texture and geometry (wireframe) res-
olution. Tian et al. [119] and Guo et al. [37] proposed metrics based on a weighted
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FIGURE 18.7

A common camera arrangement to capture views of a 3D model is illustrated on the
left. The camera positions (i.e., black points) are typically selected to be uniformly
distributed across a surrounding sphere. Snapshots of the 3D model are presented on
the right, as captured from the front, right, back and left cameras.

combination of a global distance on the geometry and a global distance on the tex-
ture image. Tian et al. [119] combined the MSE computed on the mesh vertices
with that computed on the texture pixels, while Guo et al. [37] linearly combined
MSDM2 [66] (for mesh quality) and SSIM [106] (for texture quality) metrics. These
metrics combine errors computed on different domains (3D mesh and texture im-
age). Very recently, Nehmé et al. [39] introduced the Color Mesh Distortion Measure
(CMDM), which to this date, is the only model-based quality metric for 3D meshes
with colors attributes that works entirely on the mesh domain. This metric incorpo-
rates perceptually-relevant geometry and color features and is based on a data-driven
approach. It can be viewed as the mesh version of the point cloud metric PCQM [78].

As can be seen, most existing model-based quality metrics ignore the visual
saliency information, yet finding salient regions (regions that attract the attention
of observers) has become a useful tool for many applications such as mesh sim-
plification [120] and segmentation [121], and quality control of VR videos (360
videos) [122,123]. A recent work has investigated how incorporating saliency infor-
mation into a model-based metric can improve the predicted quality [124]. Authors
devised an extension of the CMDMmetric [39] by combining its geometry and color
features with the Visual Attention Complexity (VAC) feature based on visual saliency
dispersion proposed in [125]. Integrating the VAC was found to improve the over-
all performance of CMDM, especially when assessing the quality of geometrically
quantized stimuli.

18.2.2 Image-based approaches
To evaluate the quality of 3D content, several authors considered IQMs computed
on rendered snapshots, as depicted in Fig. 18.7. These approaches can be efficient
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since the field of image quality assessment is highly developed and many successful
IQMs have been introduced, such as the Sarnoff VDM [126], SSIM [106] (and its
derivatives), VIF [127], FSIM [128], HDR-VDP2 [129], iCID [130], BLIINDS [131],
GMSD [132], DeepSIM [133], LPIPS [134], WaDIQaM [135], NIMA [136], and
PieAPP [137], among others.

The image-based approach was first used to drive perceptually-based tasks, such
as mesh simplification [138,139]. So far, mainly FR approaches have been proposed
for quality evaluation of 3D data both meshes and point clouds. That is, views of the
original and the distorted contents are captured under identical camera parameters,
and a quality prediction is obtained as an average, or a weighted average of individual
objective scores.

Image-based metrics allow holistic capture of both topology and color distortions
as reflected by the corresponding rendering application. However, several factors
affect the image-based metrics’ computations. In particular, the rendering scheme
that is employed to display the 3D data together with the environmental and lighting
conditions, the number of cameras (or viewpoints), the configuration of each camera’s
parameters for the acquisition of model views, and the pooling of quality scores
obtained for different views into a single global quality score. Hence, image-based
metrics are considered to be rendering-dependent and view-dependent solutions [29,
54], which is opposed to the rendering-agnostic, model-based methods. The impact
of such factors is further discussed in subsection 18.2.3.

In the following, we first present the image-based metrics for point clouds, then
those for meshes.

18.2.2.1 For point clouds
Image-based approaches were first used for point cloud imaging in the work of
de Queiroz et al. [140]. Their prediction accuracy on point cloud contents was
initially examined by Torlig et al. [47]. Concretely, the PSNR, SSIM [106], MS-
SSIM [141], and VIF [127] (applied on the pixel domain) were executed on images
after orthographic projection of the reference and distorted point clouds on the faces
of a surrounding cube. The results showed that the MS-SSIM was the best candidate,
achieving better performance than the model-based alternatives available at the time.
The same conclusions regarding the effectiveness of MS-SSIMwere drawn in another
study using the same point cloud dataset, which was subjectively evaluated under a
different rendering technique; that is, the point clouds were displayed using cubic
primitives of locally adaptive size [28].

The first image-based metric tailored for point cloud contents was proposed by
Yang et al. [48], relying on a weighted combination of global and local features
extracted from texture and depth images. Specifically, the Jensen-Shannon divergence
on the luminance channel serves as the global feature, whereas a depth edge map that
reflects discontinuities, a texture similarity applied on color components, and an
estimated content complexity factor account for the local features. Another approach,
proposed by He et al. [142], was to project color and curvature values on planar
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surfaces. In this case, color impairments are evaluated using probabilities of local
intensity differences, together with statistics of their residual intensities, and similarity
values between chromatic components. The geometric distortions are evaluated based
on statistics of curvature residuals.

A hybrid method, that uses both image- and model-based algorithms, is presented
by Chen et al. [143]. In particular, the point clouds are divided into non-overlapping
partitions, called layers. A planarization process takes place at each layer, before
applying the IW-SSIM [144] to assess geometric distortions. Color impairments are
evaluated using RGB-based variants of similarity measurements defined in [78]. A
linear model is employed to assign optimal weights on the defined features.

A deep neural network architecture, namely PQA-Net, was proposed by Liu et
al. [145] for NR quality assessment of point clouds. In this method, features are
extracted from multiple views after a series of CNN blocks and, after fusion, they are
shared between a distortion identifier and a quality predictor to obtain a final quality
score.

Wu et al. [52] apply popular IQMs on patches from geometry and texture images.
The patches are obtained after segmenting the reference point cloud into point clusters
based on normal vectors. To ensure pixel matching between the reference and the
distorted patch, for every reference point, its nearest distorted point is identified, and
both are projected on the same pixel locations. Results show substantial improvements
with respect to the application of the same IQMs on the six sides of models’ bounding
boxes. The IW-SSIM was found to achieve best performance.

A learning-based approach based on patches from projected maps of geometry
and texture, as implemented in V-PCC, is presented by Tao et al. [146]. The proposed
network makes use of a joint color-geometric feature extractor, two-stage multi-
scale feature fusion, and spatial pooling. The extractor is composed of sequential
CNNs to extract multi-scale features from geometry and color patches separately,
with corresponding features maps subsequently fused. The spatial pooling module
consists of two fully-connected layer branches that perform (a) quality prediction and
(b) weight allocation, per patch. The final score is obtained as a weighted average
across all patches.

18.2.2.2 For meshes
IQMs, notably VDP [147] and SSIM [106], were used to study the relationship
between the viewing distance and the perceptibility of model details to optimize the
Level-of-Detail (LoD) design of complex 3D building facades [148]. SSIM [106]
was also used to optimize textured mesh transmission [149]. Considering a view-
independent approach, the RMS error was computed on snapshots taken from different
viewpoints (different camera positions regularly sampled on a bounding sphere) to
evaluate the impact of simplification on 3D models [150].

Recently, several authors have started to exploit CNNs to assess the quality of
3D meshes using an image-based approach. Most of the existing works considered
geometry-only meshes (without color attributes). In [151], the CNN was fed with 2D
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Table 18.3 Overview of the advantages, disadvantages and use cases of
the image-based and model-based approaches.

Model-based approaches Image-based approaches

Advantages

• Independent of the final rendering
& the displayed viewpoint
• Practical for driving processing
operations

Natural ability to handle:
• multimodal nature of data
• complex rendering pipeline

Disadvantages
Sophisticated algorithms to handle:
• multimodal nature of data
• complex rendering pipeline

• Prior knowledge of the final rende-
ring & the displayed viewpoint
• The choice of 2D views, their
number & the appropriate pooling

Use cases
• Evaluating di�erent distortions
applied to di�erent 3D models
• Driving perceptually-based tasks

• Evaluating the quality of di�erent
versions of the same object under a
single type of distortion

rendered images of the 3D mesh generated by rotating the object. Another quality
metric for 3D meshes was devised by extracting feature vectors from 3 different CNN
models and combining them using an extension of the Compact Bi-linear Pooling
(CMP) [152]. The authors used a patch-selection strategy based on mesh saliency
to give more importance to perceptual relevant (attractive) regions. In fact, not all
regions of the 3D model image receive the same level of attention from observers.

A more recent metric called Graphics-LPIPS was proposed for assessing the
quality of rendered 3D graphics [41]. The metric is an extension of the LPIPS metric
(originally designed for images and perceptual similarity tasks) [134], which has been
adapted to 3D graphics and quality assessment tasks based on DSIS. Graphics-LPIPS
is computed on patches of snapshots of the rendered 3D models and employs a CNN
(the AlexNet architecture more precisely) with learning linear weights on top. The
overall quality of the 3D model is derived by averaging local patch qualities.

18.2.3 Comparison between model-based and image-based
approaches

Several works compared the performance of image-based metrics and model-based
approaches for quality assessment of 3Dmodels [16–18,28,29,39,47,52,103]. Results
indicate that both approaches are having their merits, with model-based generally
showing higher generalization capabilities across contents and distortions. Table 18.3
summarizes advantages and disadvantages, as well as use cases of each approach.

The main advantage of using image-based metrics to evaluate the visual quality
of 3D objects is their natural handling of complex interactions between different
data properties involved in the appearance (geometry, color or texture information
and normals), which avoids the problem of how to combine and weight them [150].
For instance, using IQMs on projected views of 3D models simultaneously captures
geometric and chromatic degradation as reflected in the renderer, in addition to the
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natural incorporation of the complex rendering pipeline (computation of light material
interactions and rasterization), thus, capturing 3D content as experienced/perceived
by users.

On the other hand, these methods require prior knowledge of the final rendering
of the stimuli, i.e., the lighting conditions and the viewpoint, since they operate on 2D
rendered snapshots. Additionally, they depend on the choice of 2D views employed
to estimate a quality score. In particular, the selection of camera positions, camera
parameters, number of viewpoints, and pooling applied across different views, will
lead to different quality characterizations for the same 3D model.

In these frameworks, the number of views and the camera parameters are set to
cover the maximum surface of a model under evaluation. However, using a large
number of views/cameras leads to redundancies and extra computational costs, with-
out guaranteeing performance improvements, as indicated in [28]. When applying
IQMs on projected views of a 3D model, excluding pixels that don’t belong to the
effective part of the displayed model (i.e., background filtering), was found to improve
the accuracy of the predicted quality [28]. Moreover, non-uniform weightings that in-
crease the impact of quality scores from views that are more relevant may improve the
prediction performance. Alexiou et al. [28] showed that estimating the global quality
score by incorporating importance weights based on user inspection time is beneficial
in terms of prediction accuracy (i.e., better performance than uniform weighting)
and computational costs (i.e., less views are required to be captured, especially in
dense camera arrangements). Wu et al. [52] incorporated a weighting function based
on the ratio of projected area of that model view with respect to the total amount,
observing performance improvements. Weighted views have been also considered
in [103] for objective quality evaluation of meshes, with importance weights obtained
based on a surface visibility algorithm [153], typically used for viewpoint preference
selection [154].

Overall, image-based metrics are not practical for driving processing operations
(e.g. mesh simplification). Model-based metrics are better suited instead, since they
operate on the same representation space with the corresponding processing algo-
rithms; thus, it is possible to control processing operations both globally (on the
entire model) and locally (on the vertex/point level). At the same time, they typi-
cally require complex processes in order to effectively capture perceptually-relevant
features. Moreover, it is not straightforward how to fuse information extracted from
different attributes (e.g., geometry, texture), in order to obtain a total quality score.

Last but not least, the performance of image-based metrics greatly depends on
distortions and contents. They are less accurate in differentiating and ranking different
distortions, or distortions applied to different 3D models, which is not the case for
model-based metrics [39,103].

18.2.4 Objective quality assessment in volumetric video
As video is a collection of still frames, volumetric video is also a collection of
3D models aggregated together, which are played back at a certain frame rate to
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Table 18.4 Definitions and selected parameters for pooling methods.
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create the motion perception. Temporal sub-sampling rate (i.e., frame rate) can be
defined as the frequency of the consecutive point clouds in the temporal axis of the
volumetric video sequence. Utilizing all available frames in the volumetric video
sequence is the common approach for objective quality evaluation. After predicting
quality of each frame in the sequence, a temporal pooling method (e.g. arithmetic
mean) is necessary to merge individual frame scores into a final quality score [23,24].
This is also commonly done in traditional video quality assessment while extending
the quality metrics that are developed for images to video [155]. However, one
of the challenges for objective quality assessment of volumetric video is that the
sizes of volumetric video sequences are big, and estimating objective quality can be
time-consuming and computationally heavy. Reducing temporal sub-sampling rate
and choosing appropriate pooling strategy may reduce the computational complexity
without sacrificing from the prediction accuracy.

In a recent study, Ak et al. [156], investigated the performance of 30 quality
metrics for 7 different temporal sampling methodologies over 8 different temporal
sub-sampling rates. The study was conducted on the VsenseVVDB2 dataset [8], only
on the point cloud sequences. The VsenseVVDB2 dataset contains 8 point cloud
volumetric video sequences of 10 seconds length with 30 frames per second (fps).
Utilized pooling methods are summarized in Table 18.4. Each pooling method was
used with following 8 different frame rates: {1, 2, 3, 5, 6, 10, 15, 30}. Frame rates
were selected to ensure a uniform sampling.

Results are presented in Figure 18.8 where SROCC is used to measure the perfor-
mance of objective quality metrics. 11 rendering-based, 19 point-based metrics were
evaluated on 56 combination of 7 sub-sampling methods and 8 sub-sampling fre-
quencies. Lighter colors indicate higher correlation with subjective opinions. Each
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row corresponds to a different quality metric indicated by the row number. Each
column shows a different combination of temporal sub-sampling frequency and tem-
poral sub-sampling method. Columns are divided into 7 groups by the sub-sampling
method indicated at the bottom of the figure. For each sub-sampling method, frame
rate increases from left to right.

Results indicate, for any given temporal sampling method, using a lower frame-
rate does not result in a lower performance. Even by sub-sampling by 1 fps, metrics
performances do not show a significant difference compared to the full frame rate
available (i.e., 30 fps). This observation indicates that compression artifacts affect the
perceived quality of the volumetric video uniformly in time. For similar distortions,
with no significant loss in the accuracy of objective quality metrics, calculations can
be sped up to 30 times for stimuli.

Each considered pooling method has a different priority for the temporal dimen-
sion. Results in Figure 18.8 shows non-significant changes in metric performances
with various pooling methods. Similar to the sub-sampling rate analysis, this occurs
due to uniform presence of the compression distortions on the point clouds in the
volumetric video sequences. Considering the non-significant performance difference
of the quality metrics for various temporal sampling methods, arithmetic mean is the
most efficient alternative due to computational simplicity.

It is worth noting that only point clouds of human bodies are used in this study,
and early trials show that these findings might be valid for meshes and other types
of 3D graphics, as well. Although this needs further experimentation and validation
by peer-review processes, using a reduced number of 3D models without sacrificing
the metric accuracy can be very beneficial for wide deployment of volumetric video
streaming.

18.2.5 Publicly available software implementations
As described in previous subsections, there are many different approaches in estimat-
ing the visual quality of volumetric video. In most cases, during the development of
new objective quality metrics, a comparison is needed to validate the newly devel-
oped metric’s performance. To help future scientists and developers in their goals to
propose more accurate quality metrics, publicly available implementations of exist-
ing methods are listed in Table 18.5. As can be seen, objective quality metrics for
volumetric video can be grouped in different categories, with respect to 3D represen-
tation (i.e., mesh or point cloud); whether they demand color attributes or not; metric
class in terms of reference data requirement; and domain of operation (i.e., model or
image). Furthermore, a brief description of the features that each metric relies upon
are indicated, along with a link to the open-source code.

18.3 Conclusion
Volumetric video is a novel form of visual representation that enables us to view
at reconstructed 3D models from any viewpoint, which brings different challenges
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FIGURE 18.8

Metric performances in terms of SROCC for a number of sampling methodologies and
sub-sampling rates. 1) MP-PSNR-FR, 2) MP-PSNR-RR, 3) MW-PSNR-FR, 4) MW-PSNR-RR,
5) PSNR, 6) SSIM, 7) NIQSV, 8) NIQSV+, 9) APT, 10) EM-IQM, 11) SI-IQM, 12) Color-Y, 13) Color-
Y-PSNR, 14) Color-U, 15) Color-U-PSNR, 16) Color-V, 17) Color-V-PSNR, 18) p2point-Haus,
19) p2point-Haus-PSNR, 20) p2point-RMS, 21) p2point-RMS-PSNR, 22) p2plane-Haus, 23)
p2plane-Haus-PSNR, 24) p2plane-RMS, 25) p2plane-RMS-PSNR, 26) pl2plane-MSE, 27)
pl2plane-RMS, 28) pl2plane-Mean, 29) pl2plane-Median, 30) pl2plane-Min

and limitations for visual quality assessment. The most important challenges are in
understanding and estimating user interaction, selecting the correct 3D representation,
and setting various conditions in applications such as rendering parameters and display
devices. This chapter provides a wide overview of quality assessment and estimation
methodologies through subjective user studies and objective quality estimators for
volumetric content.

With the increased degrees of freedom, users need to interact with the media
itself. This makes user interaction a crucial part of subjective quality assessment.
Nevertheless, there is no recommendations or standards for conducting user studies for
volumetric video in 6DoF. Therefore, experimenters adapted various methodologies
for subjective user studies that were developed for traditional image and video quality
assessment with different parameters for various aspects. These involve the 3D
representation, temporal variation, attributes, mode of inspection, subjective test
methodology, distortion types, rendering parameters, and display devices, among
others. Ground truth subjective quality scores were collected as part of these studies,
with publicly released datasets reported in this chapter. Comparative studies show
that there are certain cases that selecting one approach is more efficient than others.
When compressed with state-of-the-art codecs, point clouds seem to be better at low-
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Table 18.5 Publicly available objective quality metric implementations for
meshes & point clouds.

Metric 3D Represen-
tation

Attributes Class Domain Features Open-source code

Metro (1998) [102] Mesh Colorless FR Model-
based

Mean error https://sourceforge.net/projects/vcg/

Mesh (2002) [101] Mesh Colorless FR Model-
based

Hausdorff distance https://github.com/arnaudgelas/mesh

MSDM2 (2011) [54,66] Mesh Colorless FR Model-
based

Local differences in curvature statistics https://github.com/MEPP-team/MEPP2

TPDM (2014) [107] Mesh Colorless FR Model-
based

Local differences in curvature tensor http://www.gipsa-lab.fr/~fakhri.
torkhani/software/TPDM.rar

DAME (2012) [35] Mesh Colorless FR Model-
based

local differences in dihedral angles http://meshcompression.org/
software-tools

FMPD (2012) [108] Mesh Colorless FR Model-
based

Global roughness using Gaussian curvature http://www.gipsa-lab.grenoble-inp.fr/
~kai.wang/publications_en.html

JND (2016)[109] Mesh Colorless FR Model-
based

(bottom-up) visibility threshold predictor based on
local contrast and spatial frequency https://github.com/MEPP-team/MEPP2

Yildiz et al. (2020) [113] Mesh Colorless FR Model-
based

Learning geometric parameters of a distance met-
ric using crowdsourced data

https://www.dropbox.com/s/
m3bnb93vun91763/Learning.VQA.zip?dl=0.

STED (2011) [42] Dynamic
mesh Colorless FR Model-

based

Local differences in edge length
(spatial and temporal parts) http://meshcompression.org/

software-tools

CMDM (2021) [39] Mesh Colored FR Model-
based

Local differences in curvature and color statistics https://github.com/MEPP-team/MEPP2

Graphics-LPIPS (2022) [41] Mesh Colored FR Image-
based

CNN with linear weights on top https://github.com/YanaNEHME/
Graphics-LPIPS

Plane-to-plane (2018) [73] Point cloud Colorless FR Model-
based

Angular similarity between normal vectors https://github.com/mmspg/
point-cloud-angular-similarity-metric

PC-MSDM (2019) [77] Point cloud Colorless FR Model-
based

Curvature statistics https://github.com/MEPP-team/PC-MSDM

PCQM (2020) [78] Point cloud Colored FR Model-
based

Curvature and color statistics https://github.com/MEPP-team/PCQM

Hist_Y (2020) [92] Point cloud Colored FR Model-
based

Luminance histogram https://github.com/cwi-dis/
point-cloud-color-metric

PointSSIM (2020) [79] Point cloud Colored FR Model-
based

Location, angular similarity, curvature, or lumi-
nance statistics

https://github.com/mmspg/pointssim

Point-to-distribution (2020) [75] Point cloud Colored FR Model-
based

Mahalanobis distance of point coordinates and lu-
minance

https://github.com/AlirezaJav/Point_to_
distribution_metric

PCM_RR (2020) [93] Point cloud Colored RR Model-
based

Location, angular similarity and luminance his-
tograms

https://github.com/cwi-dis/PCM_RR

GraphSIM (2020) [83] Point cloud Colored FR Model-
based

Color gradient statistics around keypoints using
graphs

https://github.com/NJUVISION/GraphSIM

Perceptual loss (2021) [98] Point cloud Colorless FR Model-
based

Differences in latent space after auto-encoding
voxel grids with binary or truncated distance fields

https://github.com/mauriceqch/2021_pc_
perceptual_loss

BitDance (2021) [91] Point cloud Colored FR Model-
based

Bit-based differences of colors using CIEDE2000
and normal vectors

https://github.com/rafael2k/
bitdance-pc_metric

MS-GraphSIM (2021) [84] Point cloud Colored FR Model-
based

Color gradient statistics on multi-scale representa-
tions around keypoints using graphs

https://github.com/zyj1318053/MS_
GraphSIM

PointPCA (2021) [82] Point cloud Colored FR Model-
based

Statistics on PCA-based geometric descriptors and
luminance

https://github.com/cwi-dis/pointpca

PQA-Net (2021) [145] Point cloud Colored NR Image-
based

Multi-view CNN-based features fed to a distortion
identifier and a quality predictor

https://github.com/qdushl/PQA-Net

bandwidth conditions while meshes are better at high-bandwidth conditions or storage
cases. Interactive and non-interactive experiments generally do not have statistically
significant differences. Nevertheless, interactive visualization approaches might be
more suitable, as they better simulate targeted use-cases, with human judgments
implicitly incorporating effects of display devices, rendering parameters, higher DoF,
and immersion, to name a few. Among the commonly used subjective methodologies,
the DSIS seems to be more accurate by yielding lower uncertainty regarding the level
of impairment perceived in a stimulus.

Automatic estimation of volumetric video quality via objective quality metrics
is still under development. Model-based approaches rely on the primary 3D data
structure. The unique nature of volumetric video enables its representation with
meshes and point clouds. Since point clouds do not have connectivity information, the
majority of corresponding metrics focus on capturing underlying 3D surfaces. Early
attempts for both point clouds and meshes are based on simple error measurements,
while more recent efforts combine various features from geometry and/or texture

https://sourceforge.net/projects/vcg/
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https://github.com/MEPP-team/MEPP2
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domain. Image-based approaches, on the other hand, focus on projecting the 3Dmodel
onto planar arrangements and making use of 2D quality metrics. Comparative studies
show both approaches have different advantages and disadvantages. Although image-
based approaches require rendering and camera parameters to be set beforehand, they
take all the rendering effects into account while estimating the quality. Model-based
approaches generate scores that are independent of the viewpoint; however, they need
to be rather complex to take human visual perception into account, which usually
results in high computational demands. The selection of either approach depends
on the application, as they both have strengths and weaknesses. Recent studies also
show that to estimate volumetric video quality for compression scenarios, we do not
need to compute the metric results for all of the frames (i.e., consecutive 3D models
in a volumetric video). Since most compression methods generate distortions that do
not change by time, selecting fewer frames yields as accurate quality estimations as
computing it over all frames.

With the popularization of XR technologies and applications on the Internet, social
media, and metaverse, the volumetric video will become more popular. Volumetric
video will be used in different mixed XR applications alongside with other types of
3D graphics, and there will be a need for new methodologies to capture the human
perception and predict humans opinions about visual quality within these mixed-
media environments. This makes the field of visual quality assessment very relevant,
and open to the new challenges the upcoming advances will bring.
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