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Abstract

Density peaks clustering detects modes as points with high density and large distance

to points of higher density. To cluster the observed samples, points are assigned to

the same cluster as their nearest neighbor of higher density. This efficient and intu-

itive approach has, in recent years, grown in popularity in applications. Despite its

widespread use, little work has been completed aiming at understanding the theoret-

ical properties of the density peaks method, as well as its strengths and limitations

when clustering. Here, we provide a detailed analysis of the density peaks clustering

algorithm. We demonstrate that it recovers consistent estimates of the modes of the

underlying density and correctly clusters the data with high probability. However,

deficiencies of the density peaks clustering methodology are also highlighted. Noise in

the density estimates can lead to errors when estimating modes and incoherent cluster

assignments. Two adaptations of the density peaks clustering approach are proposed

to remedy these issues. The first method seeks to detect modal sets rather than point

modes in the data. This reduces the sensitivity of the clusterings to fluctuations in

the density estimate. The second approach partitions the data into regions mutually

separated by areas of low density, before applying the density peaks clustering algo-

rithm. Doing so ensures that the result of the cluster assignment method meets the

conceptual understanding of a correct clustering. Both approaches are analyzed theo-

retically and their superior performance is demonstrated on simulated and real-world

datasets. Moreover, they are shown to be suitable for modern clustering applications

in computer vision. Model-based clustering methods, where clusters are taken to be

unimodal components in a finite mixture model, are then considered. Motivated by the
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consistent estimates of the modes provided by the density peaks clustering algorithm,

a novel model-based clustering method is proposed. This approach uses a set of high

density points as initial mean parameters, and iteratively prunes them to return a se-

quence of nested clusterings. The method outperforms popular model-based clustering

methods. To conclude, the contributions of the thesis are used to motivate suggestions

for future research.
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1 Introduction

Prominent methods for clustering, the task of partitioning data into homogeneous

groups termed clusters, while intuitive, often lack clear statistical motivations. Early

techniques recover clusters using only the distances between observations, grouping

close objects together to form groups before a notion of group similarity is used to

merge groups together. A second methodology represents clusters by a central point,

often the mean or median, and derives the grouping of the data based on the proximity

of observations to these representatives. Both approaches, while intuitive, lack a clear

notion of the clusters they seek to obtain and, thus, a measure of what constitutes a

successful clustering. An attempt to navigate the ill-posedness of the clustering prob-

lem relates the notion of clusters to the underlying probability distribution assumed to

generate the observed data. By doing so, the clustering problem is framed as a prob-

lem of statistical estimation, firstly of the underlying density and, subsequently, of

the clusters present within it. Approaches that assume this framework are henceforth

referred to as density-based clustering methods.

The two prominent methodologies for density-based clustering differ fundamentally

in their conception of the distribution assumed to generate the data. Parametric, or

model-based clustering methods conceive the density as a mixture of simple parametric

distributions, often the multivariate Gaussian distribution for continuous data and the

Poisson distribution for discrete data. The parameters of the component distributions

are estimated from the observed samples using maximum likelihood techniques. Non-

parametric methods impose fewer (if any) assumptions on the structure of the density.
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Instead, the probability distribution assumed to generate the data is estimated with

kernel density functions.

Both methodologies are united in relating the notion of a cluster to “bumps” in the

density resulting from a tight mass of data. These bumps are the local maxima of the

probability density and are termed the modes of the density. For parametric cluster-

ing, a cluster is a unimodal component within an appropriate finite mixture model.

The clustering task is thus to estimate parameters of the mixture model such that the

component distributions each possess a single mode. For non-parametric density-based

clustering methods, the link between the notion of a cluster and the modes of the den-

sity is even more immediate. Taking clusters to be regions of concentrated probability

mass separated from each other by regions of lower probability density, the clusters are

naturally associated with the modes of the probability density distribution. Each clus-

ter is typically understood as the domain of attraction of a mode. To obtain estimates

of the clusters from the observed sample, two contrasting proposals predominate in the

literature. The first extracts clusters using level sets of the density. A density-level set,

at a certain level, is the set of points whose density is at least the value of the level.

The clusters are taken to be connected subsets of these density-level sets. The aim is

to estimate the connected subsets of the level sets such that each contains exactly one

mode. A second set of estimation approaches, termed mode-seeking methods, find the

mode associated with an observation as the point of convergence of an ascent of the

density beginning at that point.

The ability to directly detect modes of the underlying probability distribution from

a finite sample is of central importance in non-parametric density-based clustering.

A rich literature exists developing estimators for the modes of a density and provid-

ing theoretical guarantees on their performance. The majority of this work concerns

methods that estimate only a single mode of the density, and often present estimators

that are challenging to implement in practice. The difficulty in implementation is the

result of seeking mode estimates over the whole support of the density, in contrast to

more direct methods that estimate the mode using statistics of the observed sample.
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Theoretical guarantees for the direct sample-based approaches have been developed

recently in the literature.

The same distinction, between methods that cluster the data using estimates of the

modes from the entire support of the density and those that use only statistics of the

observed sample, also exists in the literature for non-parametric clustering. Previous

research has focused on mode-seeking methods that determine clusters by relating

the observation to estimated modes lying in the support of the density. The gradient

ascent procedure used to relate the observations in the sample to their respective modes

thus operates over the entire support of the density. Such approaches are challenging

to implement, and their performance depends heavily on the appropriate selection of

parameters.

The density peaks clustering algorithm of Rodriguez and Laio (2014) is a non-parametric

density-based clustering method that clusters data using only statistics of the observed

sample. Estimates for the modes are selected as points with high density at a rela-

tively large distance from any points of higher density. The algorithm then uses a

sample-based analogy to the gradient ascent approach of competitor methods to re-

late observations to their respective modes: each observation is assigned to the same

cluster as its nearest neighbor of higher local density. As such, the density peaks

clustering algorithm is said to be a mode-seeking method. The density peaks method

provides users with an intuitive plot, from which the best estimators of the modes are

detected. The density peaks method is intuitive and can detect clusters of arbitrary

shape and size. For these reasons, density peaks clustering has been widely adopted in

applications. Examples of its use are found in fields as diffuse as the analysis of social

networks, the profiling of cancer risk factors, and multiple applications in the field of

computer vision. Furthermore, the density peaks clustering method has been extended

in innumerable ways, with proposals variously editing the method used to estimate the

underlying probability density, the method used to select the mode estimates, and the

method used to allocate observations to the clusters of their respective modes.
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Despite the popularity and prominence of the density peaks clustering method, there

has been, to date, no theoretical work demonstrating its ability to achieve the popu-

lation goals of non-parametric density-based clustering. This involves producing con-

sistent estimates of the modes of the generating probability distribution and correctly

assigning the instances to the clusters in accordance with the gradient of the under-

lying density. This dearth of theoretical analysis has inhibited the understanding of

the density peaks clustering method as a well-grounded non-parametric clustering al-

gorithm. Many of the adaptations of the density peaks clustering method are, thus,

poorly justified in the context of density-based clustering.

1.1 Research Aims

Building on the above discussion outlining the context of the work contained in this

thesis, we next detail the four primary aims of this research.

This first aim of this thesis is to provide a theoretical grounding for the density peaks

clustering method. This requires formalizing the density peaks clustering approach

and subsequently analyzing the properties of both the mode estimates returned by the

algorithm, and the resulting clusterings after observations have been assigned to the

clusters of their associated modes. It is in Chapter 3 that this analysis is presented.

Our work demonstrates that the density peaks clustering algorithm recovers consistent

estimates for each mode of the underlying probability distribution. To our knowledge,

these are the first such guarantees for the consistency of the mode estimates produced

by the density peaks method. Moreover, we give finite sample bounds on the quality

of the recovered modes. Subsequently, it is shown that the sample-based assignment

method of the density peaks clustering method correctly clusters the data with high

probability.

While theoretical foundations for the density peaks clustering algorithm yield useful

insights, the performance of the algorithm for datasets of the size typically seen in

applications is equally important. As will be shown in Chapter 3, the algorithm can

4



return poor quality clusterings due to failures in either the mode estimation method,

the assignment strategy, or both concurrently.

As such, the second primary aim of this thesis is to develop a strategy that improves the

mode estimation method of the density peaks clustering algorithm. It is demonstrated

that the quality of the mode estimates is significantly degraded in the presence of

noisy estimates of the density. To account for this, a robust method for modelling high

density regions in the data is required. The algorithm must be robust to noise in the

density estimate and thus detect clusters at varying density levels. Furthermore, the

algorithm must be competent at deciding the correct number of clusters, even when

the number of clusters is very high. In Chapter 4, a novel method is introduced that

directs the peak-finding technique to discover modal sets, rather than point modes

present in the data. We seek to demonstrate the superiority of this approach against

commonly used alternatives for non-parametric clustering.

As well as developing an improved method for estimating the high density regions in

the data, we seek to improve the assignment procedure of the density peaks clustering

algorithm. This forms the third primary goal of this research. The density peaks

clustering method uses a sample-based analogy to gradient ascent of the density to

assign points to the clusters of their associated modes. It is shown that this approach,

while efficient, can lead to geometrically incoherent clusterings. Furthermore, the

assignment strategy can assign instances to clusters across regions of low density in

the data. This contravenes the understanding of a cluster as a region of attraction of

a mode. To navigate these issues, in Chapter 5, a novel approach is proposed that

initially partitions the data, such that regions separated from each other by areas of

low density are kept apart. The density peaks clustering method can then be applied

to each subset present in the partition individually, thus restricting the assignment

strategy to produce clusters as contiguous regions of high density. The performance

improvements offered by these methods will be demonstrated in Chapter 6.

The final aim of this thesis is to demonstrate the applicability of the density peaks

5



clustering method for model-based clustering. The model-based and non-parametric

formulations of the clustering task have been developed independently with few insights

from one being adapted for use in the other. This is particularly unusual considering

both methodologies have a shared interest in understanding modal regions of the data-

generating density. We seek to demonstrate that the mode estimates produced by

the density peaks clustering method can be used to provide high-quality parameter

estimates for model-based clustering. In Chapter 7, such an approach is developed. A

well-justified method for selecting which mode estimates to use as mean parameters

is introduced. Taking these estimates as the mean parameters in the mixture, the

quality of the maximum likelihood estimates of the remaining model parameters, and

the resulting clusterings, are enhanced. The results demonstrate the potential for

productive integration of parametric and non-parametric clustering methods in future

research.

1.2 Methodology

We next consider the research methodologies adopted in order to achieve the research

aims introduced in the previous section.

Methods that motivate cluster analysis by relating the clusters to features of the un-

derlying density, in both parametric and non-parametric formulations, have been de-

veloped since the 1960s. To understand the literature on this topic, a review of the

existing literature was completed. The review, found in Chapter 2, first considers the

model-based formulation. The concept of a cluster of the underlying probability den-

sity is described. For model-based clustering, the population clusters are unimodal

components within an appropriate finite mixture model. Particular attention is given

to the mixture of multivariate Gaussian components, as it is the focus of later work in

this thesis. Subsequently, prominent estimation procedures are reviewed. The Expec-

tation Maximization (EM) algorithm (Dempster et al., 1977) used to derive maximum

likelihood estimates for the parameters, as well as popular model selection criteria for
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mixture modelling are introduced. The same structure is used for reviewing work on

non-parametric clustering methods. Firstly, the notion of a population cluster in the

non-parametric setting, as the attraction region of a mode of the underlying density,

is discussed. As with the parametric approaches, the popular estimation procedures

for non-parametric clustering are then reviewed. This begins with a review of promi-

nent level set methods. Mode-seeking methods are then introduced, providing context

for the development of the density peaks clustering method. The challenges associ-

ated with model selection for non-parametric clustering are also briefly discussed. The

comprehensive literature review is seen to serve two purposes: firstly, it provides the

reader with enough knowledge to follow the original research that follows, and sec-

ondly, it motivates the theoretical analysis and the development of the novel methods

herein.

In Chapter 3, we delve deeper into an analysis of the density peaks clustering method as

it is the central focus of this thesis. We provide a formal introduction of this approach,

detailing the the density estimator used, as well as the sample-based assignment pro-

cedure used to extract clusterings from the data. Next, an analysis of the theoretical

performance of the density peaks clustering approach is undertaken. Works discussed

in Chapter 2 provide a useful theoretical framework in which to analyze the density

peaks clustering algorithm. We provide consistency guarantees for the estimates of the

modes produced by the density peaks clustering algorithm, and demonstrate that the

algorithm correctly clusters the data with high probability. The behaviour of the den-

sity peaks clustering method for datasets of typical size is also of interest. Illustrative

datasets are used to assess the density peaks clustering algorithm in the presence of

features that can hinder clustering performance. This analysis provides insights into

the deficiencies of the peak-finding approach.

Three novel clustering methods are included in this thesis, two non-parametric clus-

tering methods, one in Chapter 4 and one in Chapter 5, and a parametric clustering

approach in Chapter 7. For each approach, we use broadly the same research method-

ology. Each method is motivated using a worked example, and then the details of its
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operation are provided. Having provided algorithmic details for the method, an anal-

ysis of the approach is then undertaken. The analysis has the following components:

firstly, relevant theoretical results that provide justification for and insights into the

performance of the approach are developed; for the non-parametric clustering methods

the computational complexity of the algorithms is then analysed; all methods are as-

sessed on simulated data to demonstrate their performance; experiments on real-world

datasets are used to further validate the performance results; and finally, we provide

insights regarding the effect of the hyper-parameters for each approach.

1.3 Thesis Structure

We conclude our introduction with a brief summary of the the material contained in

the chapters of this thesis.

• Chapter 2 - Literature Review: The fundamental aspects of density-based clus-

tering used throughout the thesis are formally introduced. The two notions of

density-based clustering, parametric and non-parametric are described. For each

formulation, we outline the chosen conception of clusters, the population goal

for the clustering, and review popular estimation procedures. For parametric

clustering methods, this involves formalizing the definition of a mixture den-

sity, with particular focus on a mixture of multivariate Gaussian distributions.

The method used to derive maximum likelihood estimates for the parameters is

discussed, and the EM algorithm is introduced. Finally, we discuss prominent

methods used for model selection for parametric clustering. The non-parametric

notion of population clusters is then introduced, formalizing the concept of the

domain of attraction of a density mode. The review of prominent estimation

procedures first considers non-parametric density estimation methods, before in-

troducing the two contrasting approaches to non-parametric clustering. Level set

methods are described, along with a popular generalization of density-level set

methods termed the cluster tree. The section continues with a review of mode-
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seeking methods, considering methods based on gradient ascent of the kernel

estimate and introducing sample-based approaches, notably the density peaks

clustering method. The chapter concludes with a brief discussion of the chal-

lenges associated with model selection for non-parametric clustering.

• Chapter 3 - Density Peaks Clustering: The density peaks clustering method, as

formulated in this thesis, is introduced. The density estimator, based on near-

est neighbors is formalized and the methodology of density peaks clustering is

described in detail. Subsequently, a theoretical analysis of the density peaks

clustering algorithm is provided. It is shown that the density peaks clustering

method recovers consistent estimates of the modes using observed samples of the

data. Furthermore, the density peaks clustering method correctly assigns the

remaining instances to their respective clusters with high probability. This anal-

ysis relies on the consistency properties of the density estimator as the number of

observations increases. The performance of the density peaks clustering method

for datasets of typical size is then investigated. This analysis concludes that the

mode estimates returned by density peaks clustering method are susceptible to

errors caused by noise in the density estimate, and that the allocation mechanism

used can lead to incoherent and incorrect clusterings.

• Chapter 4 - Modal Set Detection with the Peak-Finding Criterion: In this chap-

ter, a method aiming at improving the ability of the density peaks clustering

algorithm to model high density regions of the data is introduced. Following

the analysis of Chapter 3, it is seen that density peaks clustering often fails to

adequately represent clusters with areas of relatively uniform density, as noise

in the density estimate leads to the detection of erroneous mode estimates. To

improve the clustering performance, the novel algorithm directs the peak-finding

technique to discover modal sets, rather than point modes in the data. By mod-

elling high density regions in the data using modal sets, the algorithm is robust

to noise in the density estimate and thus detects clusters at varying densities,

and is competent at deciding the correct number of clusters, even when the num-
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ber of clusters is very high. A theoretical analysis of the approach is presented

and experimental results verify that the algorithm works well in practice and

executes efficiently. The chapter concludes with a demonstration of a potential

application of this method for unsupervised face recognition.

• Chapter 5 - Peak-Finding on Density-Level sets: Following from the method in-

troduced in Chapter 4 that provides reliable estimates of the high density regions

in the data, this chapter develops a novel method aiming at improving the allo-

cation mechanism of the density peaks clustering algorithm. An example is given

in which the allocation strategy returns clusterings that contradict geometrical

intuition and the notion of a cluster introduced in Chapter 2. Motivated by

this example, the novel method developed in this chapter aims to remedy the

issues with the allocation approach by combining the benefits of both density-

level set and mode-seeking methods for non-parametric density-based clustering.

The methodology for the new approach is described. An experimental analysis

on simulated and real-world data demonstrates the benefits of integrating these

two formulations. Finally, a modified version of the approach is presented, that

incorporates instance-level constraints in the clustering scheme. This modified

version of our approach is shown to achieve excellent performance for an impor-

tant problem in computer vision, multi-image matching.

• Chapter 6 - Experimental Comparison: This chapter provides an experimen-

tal evaluation of the methods introduced in Chapter 4 and Chapter 5. The

novel approaches are assessed in comparison with prominent non-parametric

density-based clustering methods. The methods are each applied to ten real-

world datasets and their performance is quantified using two popular validation

indices as well as the execution time of each algorithm. Subsequently, an anal-

ysis of the parameter space for each algorithm is provided. It is shown that

the methods developed as part of this thesis achieve excellent clusterings over a

broad range of parameter values. Guidance on hyper-parameter tuning is also

provided.
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• Chapter 7 - Density Peaks for Parametric Clustering: This chapter applies the

density peaks clustering algorithm for an important problem in parametric clus-

tering, namely providing initializations for the EM algorithm. A novel method

is introduced that applies the peak-finding approach to generate an inclusive set

of initial mean estimates from the data pool. Subsequently, an efficient pruning

strategy is described. Redundant exemplars are pruned by penalizing a convex

objective function that is well justified in the context of mixture modelling. Guar-

antees on the quality of the initialization are discussed and a method for finding

analytical solutions to the convex optimization problem is provided. An exper-

imental analysis verifies that the method executes efficiently and outperforms

prominent competitor methods in practice. The selection of hyper-parameters is

discussed.

• Chapter 8 - Conclusions: The final chapter of the thesis gives a brief summary

of the research conducted and the conclusions reached. Several suggestions for

further research are suggested. These suggestions include using mixture den-

sity estimates as inputs for the density peaks clustering algorithm, methods

to improve the performance of non-parametric clustering algorithms for high-

dimensional datasets, and the related tasks of manifold and subspace clustering.

The development of model selection criteria for non-parametric methods is also

discussed as an important issue for future research to consider. Two extensions

for the REM algorithm are proposed, the first incorporates sparse covariance

structures into the implementation of the approach, and the second extends the

REM formulation for mixtures of component distributions other than the multi-

variate Gaussian. The final proposal encourages the consideration of providing

initializations using the density peaks clustering method for mixture models with

estimation algorithms other than EM. A potential avenue of research using Rie-

mannian optimization is discussed.
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2 Literature Review

Many hundreds of clustering methods have been proposed in the literature, far too

many to exhaustively review. A taxonomy of clustering methods is available in Xu

and Tian (2015). Broadly, the most popular and prominent clustering methods are

based on some notion of distance or dissimilarity. Hierarchical algorithms aim to

recursively find nested clusters by merging or splitting groups based on some notion

of their similarity. Partitional methods, such as k-means, use iterative assignment

to minimize a distance-based objective. While such approaches are interpretable and

conceptually simple, they are based on heuristic notions of cluster structure and, thus,

they lack a precise definition of the clusters inhibiting the use of formal inferential

techniques. Furthermore, we are prevented from evaluating the clustering returned by

such approaches or comparing with alternatives.

Without a clear criterion available to prefer one clustering over another, or even guar-

antee that the given clustering algorithm is suitable for the task, the clustering problem

is inherently ill-posed (Domany, 1999). In a widely cited work, clustering was judged to

be a field “where rigorous methodology is still striving to emerge” (Meilă, 2007).

An attempt to formalize the clustering task, and navigate a path from the ill-posedness

of heuristic methods, relates clusters to the probability density function assumed to

underlie and generate the observed data set. Several reasons for such an idea being

appealing are provided in Casa (2019). Firstly, it links the clustering task to some well-

defined population goal allowing a notion of successful (and unsuccessful) clustering

to be defined. Furthermore, by relating the clusters to properties of the underlying
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density, as opposed to defining cluster notion in relation to the observed samples,

one allows for a partitioning of the entire sample space rather than just the observed

data. This allows the clustering of new data, if it is provided. Thirdly, following this

notion leads to the number of clusters detected becoming an intrinsic property of the

data generating mechanism, and thus the choice of the number of clusters to return

becomes a model selection problem, or at least a topic to be considered in the modelling

process. The concept of linking clusters to the underlying probability density function

has become increasingly accepted in recent years, with Carlsson and Mémoli declaring

that “density needs to be incorporated into . . . clustering procedures” (Carlsson and

Mémoli, 2013).

Menardi (2016) describes the two distinct directions in which this formulation of the

clustering problem has been pursued in research. The parametric, or model-based,

approach takes the underlying probability density function to be a mixture of sub-

populations, each with an assumed parametric form. The clusters are conceived to

have a one-to-one relationship with the mixture components. This approach is promi-

nent in applications and remains an active field of research. The second, less common,

density-based clustering approach is henceforth referred to as non-parametric or modal

clustering. In this formulation, a correspondence is drawn between the clusters and

the modes of the underlying density. While both approaches have similar motivation

in linking the conception of the clusters to features of the underlying density, they

exhibit different practicalities, estimation procedures, and capabilities. Furthermore,

they have, until recently, been pursued by separate communities with little interac-

tion.

The conception of clusters for parametric and non-parametric density-based clustering

methods are introduced, and the popular literature is reviewed. Furthermore, promi-

nent methods used to estimate the cluster in each formulation are described.
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2.1 Parametric Density-Based Clustering

2.1.1 Population Clusters

The first work to associate mixture models to clustering is often said to be the thesis of

Wolfe (1963) in which the definition of a cluster is “a distribution which is one of the

components of a mixture of distributions”. It was noted by McNicholas (2016a) that

a similar definition of cluster, or type, was defined earlier in Tiedeman (1955). The

definition of the clustering problem given by Tiedeman is illuminating for the discussion

of how components of a mixture distribution are conceived as clusters. Tiedeman

considers several observation matrices each of which generates a Gaussian random

variable. He asks if one “throw[s] away the type identification of each observation

set” to leave a “mixed series of unknown density form”, can one “solve the problem of

reconstructing the . . . density functions of original types?”

The review of McNicholas (2016a) proposes a refined definition of a cluster in the

context of mixture models. In this conception, “a cluster is a unimodal component

within an appropriate finite mixture model”. A discussion of this definition, including

its relation to definitions of a cluster based solely on modes of the density and how

one can judge the appropriateness of the mixture model, is provided in McNicholas

(2016b). The key commonality for each definition, however, is the relationship be-

tween components of a mixture distribution and clusters in the model-based clustering

formulation.

Let X ∈ Rn×p denote the data matrix: XT = [x1, . . . ,xn], where the superscript T

is the transpose operator. We say that X arises from a mixture distribution if, for all

x ∈ X, its density can be written as

f(x|Θ) =
m∑
j=1

πjfj(x|θj), (2.1)

where πj > 0, such that
∑m

j=1 πj = 1, are called mixing proportions, fj(x|θj) is the
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jth component density, and Θ = (π,θ1, . . . ,θm) where π = (π1, . . . , πm), is the vector

of parameters. Typically, the components densities are taken to be of the same type,

i.e., fj(x|θj) = f(x|θj) for all j = 1, . . . ,m. The mixture density f(x|Θ) is said to be

an m-component finite mixture density.

The key benefit of this approach is that it allows for the definition of the ideal clustering,

in terms of the underlying population density. Given the formulation in (2.1), the

population clustering C = {C1, . . . ,Cm}, induced by the m-component finite mixture

density f(x|Θ), has ideal clusters defined as

Cj = {x ∈ Rp : πjfj(x|θj) ≥ πkfk(x|θk),∀j ̸= k},

for j = 1, . . . ,m.

Most commonly, the component distributions f(x|θj) are multivariate Gaussian dis-

tributions. In this case, f(x|θj) is a ϕ(x|µj,Σj) density function, and θj = (µj,Σj),

consisting of the mean µj and a covariance matrix Σj ≻ 0 for the jth mixture compo-

nent. The multivariate Gaussian density has the form

ϕ(x|µj,Σj) = |2πΣj|−
1
2 exp

{
−1

2
(x− µj)

T Σ−1
j (x− µj)

}
.

Data generated by mixtures of multivariate Gaussian densities are characterized by

components centered at the means µj, with the density of data points increasing

nearer the mean. The corresponding surfaces of constant density are ellipsoidal.

Figure 2.1 shows the density contours for a two-dimensional finite Gaussian mixture

model with two mixture components. The parameters are π1 = 0.35, π2 = 0.65,

µ1 = (0, 0), µ2 = (5, 5),

Σ1 =

1.25 0.43

0.43 1.75

 , and Σ2 =

 2.93 −0.25

−0.25 2.07

 .
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Figure 2.1: Contours of the density function for a two-component finite mixture model.
The points show a sample of n = 300 points simulated from the density with the colour
denoting the mixture component from which they were generated.

As the dimension of the data increases, mixture models struggle with heavy over-

parametrization. A p-dimensional random variable following an m-component finite

Gaussian mixture model has a total of

m− 1 +mp+
mp(p+ 1)

2

free parameters: m− 1 from the mixing proportions; mp from the means; and mp(p+

1)/2 from estimating the covariance matrices. As the number of parameters in the

covariance matrix grows super-linearly with the dimension, it is common to introduce

elements of parsimony in the mixture approach. The covariance matrices can be forced

to be spherical, i.e., Σj = λj1p, common across all clusters, i.e., Σj = Σ, or a combi-

nation, i.e., Σj = λ1p. Such restrictive constraints may sacrifice too much clustering

quality in the name of parsimony for a particular dataset. More flexible constraints

were introduced by Banfield and Raftery (1993), who consider the eigen-decomposition

17



Type Model Volume Shape Orientation Σj

Spherical EII Equal Spherical λ1
VII Variable Spherical λj1

Diagonal EEI Equal Equal Axis-Aligned λ∆
VEI Variable Equal Axis-Aligned λj∆
EVI Equal Variable Axis-Aligned λ∆j

VVI Variable Variable Axis-Aligned λj∆j

General EEE Equal Equal Equal λΓ∆ΓT

VEE Variable Equal Equal λjΓ∆ΓT

EVE Equal Variable Equal λΓ∆jΓ
T

EEV Equal Equal Variable λΓj∆ΓT
j

VVE Variable Variable Equal λjΓ∆jΓ
T

VEV Variable Equal Variable λjΓj∆ΓT
j

EVV Equal Variable Variable λΓj∆jΓ
T
j

VVV Variable Variable Variable λjΓj∆jΓ
T
j

Table 2.1: The 14 Gaussian parsimonious mixture models grouped into three cate-
gories: spherical, diagonal, and general.

of the covariance matrices, i.e.,

Σj = λjΓj∆jΓ
T
j ,

where λj = |Σj|1/p, Γj is the matrix of eigenvectors of Σj and ∆j is the diagonal

matrix of normalized eigenvalues of Σj such that |∆j| = 1. Eigenvalue decomposi-

tion of the covariance matrix allows for controlling the geometry of the component,

where λj represents the volume, ∆j controls the shape, and Γj the orientation of the

component. Celeux and Govaert (1995) introduce a family of Gaussian parsimonious

mixture models by imposing constraints on the elements of the decomposed covariance

structure. A summary of the models is available in Table 2.1.

The mixture model framework has been applied for component densities other than

multivariate Gaussian. A review of model-based clustering approaches for continuous

data that are based on finite mixture models other than the Gaussian mixture model is

provided in Bouveyron et al. (2019, Chapter 9). Such approaches are useful when the

clusters exhibit heavy tails, or non-elliptical structure which cannot be well-accounted

for with a Gaussian component. Mixtures of multivariate-t distributions, skew-normal

distributions, skew-t distributions, as well as various transformation methods are con-
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sidered.

2.1.2 Estimation Procedures

To obtain a partition of a dataset from the mixture model formulation, the param-

eter vector Θ must be estimated. The most common way to do this is through the

maximization of the likelihood. Maximization is carried out using the Expectation-

Maximization (EM) algorithm. EM offers a general approach to likelihood maximiza-

tion in a variety of incomplete data situations (Dempster et al., 1977). A detailed intro-

duction to EM for finite mixture models is available in Bouveyron et al. (2019, Chapter

2). This approach involves augmenting the interpretation of the dataset, from consist-

ing solely of instances {xi}ni=1 to a set of n multivariate observations {(xi, zi)}ni=1, in

which xi is observed as before and zi is unobserved. If the (xi, zi) are independent

and identically distributed according to a probability distribution f with parameters

Θ, then the complete-data likelihood is

LC(X,Z|Θ) =
n∏

i=1

f(xi, zi|Θ),

where X = (x1, . . . ,xn) as before, and Z = (z1, . . . ,zn). As the z are not observed,

we formulate the observed data likelihood, often referred to as just the likelihood, by

integrating the unobserved data out of the complete-data likelihood

L(X|Θ) =

∫
LC(X,Z|Θ)dZ.

This can be written for a Gaussian mixture model as

L(X|π, {µj}mj=1, {Σj}mj=1) =
n∏

i=1

m∑
j=1

πjϕ(x|µj,Σj).

In general, it is convenient to work with the likelihood function after a log transfor-

mation is applied. We henceforth refer to this as the log-likelihood. The log-likelihood
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Figure 2.2: Graphical model representing a Gaussian mixture model. The random
variables, xi and zi are shown in the circles. The observed data is shown in yellow,
with the unobserved variables shown in white. The blue box contains only the n
conditionally independent instances. The unknown model parameters π, µ, and Σ
are also shown. In this representation, an edge between two nodes is used to indicate
that the corresponding variables are conditionally independent given the intermediate
variables.

for a Gaussian mixture model is

ℓ(X|π, {µj}mj=1, {Σj}mj=1) =
n∑

i=1

m∑
j=1

πjϕ(x|µj,Σj). (2.2)

To estimate the parameters of the mixture model, the EM algorithm alternates between

two steps. The first, “E-step”, computes the conditional expectation of the complete

data log-likelihood from the observed data and the current values estimated for the

parameters. The second, “M-step”, updates the parameter values to maximize the

expected log-likelihood from the “E-step”.

To apply the EM approach for clustering with finite mixture models, we take the un-

observed data zi = (zi1, . . . , zim) to be the unobserved partition of the data, with

zij =


1 if xi is generated by component j,

0 otherwise.

The Gaussian mixture model is summarized in a graphical model in Figure 2.2. The un-

observed data zi are assumed to be independent and identically distributed, according
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to a multinomial distribution with m categories with event probabilities (π1, . . . , πm).

Taking, by assumption, that the density of an observation xi given zi is by
∏m

j=1 ϕ(xi|µj,Σj),

the resulting complete-data likelihood is

LC(π, {µj}mj=1, {Σj}mj=1, {zi}ni=1|X) =
n∏

i=1

πjϕ(xi|µj,Σj)
zij ,

and the log-likelihood maximized by the EM algorithm is

ℓC(π, {µj}mj=1, {Σj}mj=1, {zi}ni=1|X) =
n∑

i=1

m∑
j=1

zij log (πjϕ(xi|µj,Σj)) .

The E-step of the EM algorithm at any iteration updates the estimates ẑij by

ẑij =
π̂jϕ(xi|µ̂j, Σ̂j)∑m
v=1 π̂vϕ(xi|µ̂v, Σ̂v)

,

where π̂j, µ̂j, and Σ̂j are the values of πj, µj, and Σj at the current iteration respec-

tively. This estimate is the conditional expectation of zij given the current parameter

values, and the observed data X. It represents the estimated conditional probability

that observation i originates from the jth component in the mixture. It is henceforth

referred to as the responsibility.

For the M-step, the estimates of the mixture parameters have closed-form expressions

computed using the data and the responsibilities ẑij. The component probabilities and

mean parameter estimates are updated as

π̂j =

∑n
i=1 ẑij
n

; µ̂j =

∑n
i=1 ẑijxi∑n
i=1 ẑij

, for 1 ≤ j ≤ m.

The estimate of the covariance parameters {Σ̂j}mj=1 depends on the chosen parame-

terization, as outlined in Table 2.1 above. For the model with no constraints on the
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covariance matrix, the estimate is updated as

Σ̂j =

∑n
i=1 ẑij(xi − µ̂j)(xi − µ̂j)

T∑n
i=1 ẑij

, for 1 ≤ j ≤ m.

The closed-form expressions for the updates of the remaining thirteen parameteriza-

tions of the covariance parameter are given in Celeux and Govaert (1995).

The E-step and the M-step are iterated until convergence to a local maximum of the

log-likelihood function. The criteria most commonly used to assess convergence is slow

changes in the log-likelihood between iterations. Once convergence has been achieved,

the final partition of the data is determined using a maximum likelihood classification,

namely xi is assigned to component h = argmax1≤j≤m ẑij.

Despite being successfully deployed in a variety of different real data applications,

EM has shown certain limitations when used in clustering with Gaussian mixture

models (Bishop, 2006, Chapter 9). Firstly, it may converge to a singularity at which

the likelihood is infinite, leading to meaningless estimates. Furthermore, the rate

of convergence of the EM algorithm can be slow. The hill-climbing nature of the

algorithm, coupled with the multi-modal surface of the log-likelihood function, means

the resulting solution is a local optimum in the neighborhood of the initial guess. As

such, the performance of EM is sensitive to the initialization. The simplest stochastic

strategy is random initialization. Jin et al. (2016) proved that, with high probability,

the EM algorithm with random initialization will converge to bad local maxima, whose

log-likelihood could be arbitrarily worse than that of the global maximum. A prominent

deterministic method, implemented in the R package mclust (Scrucca et al., 2016),

initializes the EM algorithm with the solution of model-based Gaussian hierarchical

clustering.

The challenges in initializing the EM algorithm are compounded by the fact that,

generally, the true number clusters is unknown. A common practice is to run the EM

algorithm with an initialization method to estimate a set of models corresponding to

different numbers of mixture components, different specifications for the component
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densities, or distinct parameterizations of the component densities. Subsequently, the

optimal clustering model is selected via a model selection criterion.

Model selection is usually carried out using an information criterion, with the Bayesian

Information Criterion (BIC) (Schwarz, 1978) being the most prominent. It is defined

for a Gaussian mixture model as

BIC = 2ℓ
(
X|π̂, {µ̂j}mj=1, {Σ̂j}mj=1

)
− ζ log n,

where ℓ(·) is defined in (2.2) and ζ is the number of free parameters in the model, acting

as a proxy for the complexity of the model. As such, the BIC represents the likelihood

of the data under the estimated model, penalized by a sample-size dependent penalty

that encourages the selection of more parsimonious models. The use of the BIC is

motivated through an asymptotic approximation of the log posterior probability of the

models assessed (Kass and Raftery, 1995). While the usual regularity conditions used

by Schwarz in the development of the BIC are not generally satisfied by mixture models,

it has been shown that the BIC gives consistent estimates of the number of components

in a mixture model. Furthermore, the BIC has achieved excellent performance in

many practical studies and remains the standard model selection criterion for mixture

models.

Nevertheless, alternatives to the BIC for mixture model selection exist. The Integrated

Completed Likelihood (ICL) (Biernacki et al., 2003) further penalizes the BIC by

subtracting the estimated mean entropy.

ICL ≊ BIC + 2
n∑

i=1

m∑
j=1

1

(
j = argmax

1≤h≤m
ẑih

)
log ẑij,

where 1(·) is the identity function. The second term reflects the uncertainty in the

final partition using the entropy of the responsibilities for an instance. As such, the

ICL tends to select more parsimonious models, where the separation among clusters is

more clear.
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A third model selection criterion, the Akaike Information Criterion (AIC) Akaike

(1974) is defined as

AIC = 2ℓ
(
X|π̂, {µ̂j}mj=1, {Σ̂j}mj=1

)
− 2ζ.

The AIC aims to minimize the Kullback-Leibler divergence between the chosen model

and the true probability density function.

A detailed review of prominent model selection criteria for mixture models is available

in Celeux et al. (2019). The viability of such alternatives is not discussed herein,

and only the criteria introduced above are used for model selection for model-based

clustering.

2.2 Non-Parametric Clustering

2.2.1 Population Clusters

As with all statistical procedures, there exist parametric and non-parametric method-

ologies for density-based clustering. The non-parametric formulation of density-based

clustering, also termed modal clustering, conceives of clusters as regions of high den-

sity, separated from each other by regions of low density. Such a notion of cluster is

attractive for several reasons: (1) the clusters are free to assume any shape in contrast

to its parametric counterpart; (2) it is associated to features of the underlying prob-

ability density without requiring strong assumptions about the density itself; and (3)

the number of clusters is a feature of the the data generating mechanism and can be

determined as part of the estimation procedure.

While such a notion of density-based clustering is appealing, modal clustering research

stalled for many years due to the infeasible computation required by many methods.

Research in this area has resumed in recent years, but work remains scattered and

lacks the cohesion of parametric clustering research. A recent review by Menardi

(2015) provides a useful introduction to the field, including the conception of modal
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clusters and methods used to recover them.

An early definition of a cluster in this field was provided by Carmichael and Julius

(1968). In this work, the authors develop the maxim used regularly in non-parametric

clustering, namely that clusters are regions of continuous, relatively high-density points

in the space mutually separated by continuous regions of relatively empty space. They

formulate the concept of relatedness between instances in this light. This definition

was refined by Wishart (1969), asserting that “clusters should be distinct data modes,

independently of their shapes and variance”. Such a definition clearly separates the

non-parametric formulation of density-based clustering from the mixture model ap-

proach, as defined previously by McNicholas. Several years later, Hartigan (1975)

proposed the concept of density-contour clusters, as the maximal connected subsets

of density-level sets. These density-contour clusters are to be “regions . . . where the

densities are high surrounded by regions where the densities are low”.

While these early attempts to specify the notion of a cluster in modal clustering are

heuristic, they relate the concept of population clusters to features of the probability

density function, namely the modes (i.e., the local maxima). By linking the clusters

to features of the population density, the ill-posedness of the clustering problem is

resolved.

Hartigan (1975) makes an attempt to provide a precise link between the clusters

determined by modal clustering and the underlying population density. If the dis-

tribution has a density f , given some λ ≥ 0, the λ-level set of f is defined as

L(λ) = {x : f(x) ≥ λ}. Then the population clusters associated with the level λ

are the connected components of L(λ). This definition captures the notion of high-

density regions mutually separated by regions of low density. While this approach

clearly defines the population target, the notion of population clusters depends on the

level λ. Furthermore, there are many situations where it is not possible to observe the

entire cluster structure using one level λ. One such situation is shown in Figure 2.3.

To navigate this situation, it is often recommended to consider the cluster structure
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Figure 2.3: A univariate trimodal density for which no value of λ exists that captures
the whole cluster structure using a level set.

𝐶! 𝐶" 𝐶#

Figure 2.4: The univariate density of Figure 2.3 with the domain of attraction of each
mode highlighted.

for various values of λ.

A more rigorous attempt at definition is provided by Stuetzle (2003), defining clus-

ters in terms of the correspondence between the observed instances and the density

modes. Precisely, a cluster is understood to be the “domain of attraction” of an as-

sociated mode. It is then possible to highlight correspondence between modal regions

of the density and the clusters, with the modes being the archetypes of the clusters

themselves.

For p = 1, the solution is immediate for continuous densities, the points at which f

has a local maximum are representatives of the clusters and the cluster boundaries are

the points are which f has a local minimum. Considering Figure 2.4, the population

clusters are clear. To extend this definition for p > 1, Ray and Lindsay (2005) focus on

determining the domains of attraction by seeking the (p − 1)-dimensional manifolds,
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termed ridges, that connect neighboring peaks. They use an analogy of a mountain

range, equating the non-parametric clustering problem to the problem of describing

the surface features of a land mass, where the elevation at a point (x1, x2) is equated

with the bivariate density f(x1, x2).

The local maxima of the density are the peaks, and their location, together

with elevation, provides a first-order description of topography. But in a

richer sense, mountains are usually aggregated into mountain ranges, in

which the neighboring peaks are connected through ridges. The perceived

separation of two neighboring peaks is then determined by the elevation at

the lowest point on this ridge, the saddle point between them.

An attempt to translate these concepts to population goal of modal clustering was

provided in Chacón (2015). There, Chacón defines the ideal population goal for modal

clustering as the recovery of the unstable manifolds of the negative gradient flow cor-

responding to local maxima of f . Assume that f is a Morse function, i.e., f is smooth

enough to have non-degenerate critical points, and denote by x1, . . . ,xm the modes of

f (i.e., the local maxima). Let the path νx : R → Rp satisfy

νx(0) = x, and ν ′x(t) = ∇f(νx(t)).

For a mode xj, its attraction region Cj is the set of points x ∈ X that satisfy

lim
t→∞

νx(t) = xj.

Continuing the analogy, a modal cluster in this setting is “the region of the terrain that

would be flooded by a fountain emanating from a peak of the mountain range”. This

definition, however, requires strict assumptions about the smoothness of f and the

non-degeneracy of its critical points. Linking the definition of attraction region to the

gradient flow has also been used to define modal clusters in Wasserman et al. (2014)

and Arias-Castro et al. (2016). A bivariate bimodal example, including two modes
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Figure 2.5: Ideal modal population clusters for the two-component mixture model
example introduced in Section 2.1.1.

and a line indicating the border between the associated attraction regions is given in

Figure 2.5. It is noted by Menardi (2015) that using gradient flow methods to define

population clusters assumes that critical points are isolated and have distinct critical

values. This fails for non-standard densities, such as those with plateaux. To navigate

these issues, mild assumptions about the underlying density, and its regularity, are

often required in modal clustering methods (Kpotufe and von Luxburg, 2011; Dasgupta

and Kpotufe, 2014; Jiang, 2017b).

2.2.2 Estimation Procedures

The key requirement of all conceptions of population clusters in modal clustering is the

probability density function f . In almost all situations, the density function is unknown

during the clustering process. As such, a high quality estimate of f is required to ensure

a high quality clustering. The primary estimator used in the literature is the kernel

density estimate (KDE) (Rosenblatt, 1956; Parzen, 1962). KDEs are a foundational

element of non-parametric statistics, due to their simple computation and performance

in practical application.
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Kernel Function Equation K(u) Kernel Function Equation K(u)

Uniform 1
2

Gaussian 1√
2π
e(−

1
2
u2)

Sigmoid 2
π

1
eu+e−u Cosine π

4
cos
(
π
2
u
)

Triangular 1− |u| Epanechnikov 3
4
(1− u2)

Table 2.2: Commonly used univariate kernel functions. Note that each kernel is sup-
ported on u ∈ [−1, 1].

The definition of a KDE begins with the choice of a kernel function K : Rp → R≥0

where R≥0 denotes non-negative real numbers such that

∫
Rp

K(u)du = 1.

Typically, K(·) is taken to be a non-increasing, smooth, and symmetric function. Some

common choices for the kernel function K can be found in Table 2.2. The KDE

also requires specification of the bandwidth h > 0 in the univariate case. In the

multivariate case, the scalar bandwidth can be used to adapt the KDE to multivariate

data, i.e., H = h2I or a bandwidth matrix H may be used to generalize from the

scalar bandwidth. The bandwidth matrix H is a positive definite and symmetric p× p

matrix. The KDE is thus given by

f̂H(x) =
1

n
· |H|−p/2

n∑
i=1

K
(
H−1/2(x− xi)

)
.

It has been proved that the choice of kernel function has little impact on the quality

of the density estimate. In contrast, appropriate selection of the bandwidth matrix H

is crucial. For simplicity, we restrict the review to scalar bandwidths, i.e., H = h2I.

We thus denote KH and f̂H as Kh and f̂h respectively. To this end, a number of

methodologies for bandwidth selection have been proposed in the literature. A review

of such approaches is beyond the scope of this thesis and can be found in Scott (2015)

and Chacón and Duong (2018).

Significant research has aimed to quantify the quality of the KDE. A basic measure
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of accuracy of the estimator f̂h is the mean squared error at an arbitrary point x ∈

Rp.

MSE = MSE(x) = Ef

[
(f̂h(x)− f(x))2

]
,

where “MSE” stands for mean squared error and Ef denotes the expectation with

respect to the distribution f . Tsybakov (1997, Chapter 1) shows that if f is taken to

be α-Hölder continuous, under the optimal choice of h ≈ n1/(2α+p), then

MSE(x) = O
(
n

α
(2α+p)

)
, n→ ∞,

uniformly in x ∈ Rp. Furthermore, Jiang (2017c) provides the same rates for finite-

sample ℓ∞ bounds that hold uniformly across bandwidths with probability independent

of the bandwidths. Specifically, if f is again taken to be α-Hölder continuous, under

the optimal choice of h ≈ n1/(2α+d), then |f̂h − f |∞ ⪅ nα/(2α+d) with probability 1 −

1/n.

Given the significance of bandwidth selection for KDE, it has proved beneficial to con-

sider KDE-based procedures with adaptive bandwidths - i.e., when the bandwidths

change depending on the region of the data. Consider again the fixed kernel estima-

tor

f̂h(x) =
1

n

n∑
i=1

Kh(x− xi).

A prominent generalization of this approach was introduced in Loftsgaarden and Que-

senberry (1965). They take the bandwidth hx to be a function of the prediction instance

and the observed dataset X. Setting hx(x,X) equal to the distance rk(x) from the

prediction instance to the k-th nearest sample in the observed dataset yields

hx(x,X) = rk(x) ≈
(

k

n · vp · f(x)

)1/p

,

where vp is the volume of the unit sphere in Rp. If this adaptive bandwidth is used

with a uniform kernel with bin widths that adapt to x, the resulting density estimator
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is termed the k-th nearest neighbor (k-NN) estimator. The k-NN estimator, denoted

f̂k is given as

f̂k(x) :=
k

n · vp · rk(x)p
,

where rk(x) and vp are as before.

The k-NN estimator was shown by Loftsgaarden and Quesenberry (1965) to be a

consistent estimate when the unknown density f is continuous on Rp. While is it well-

known and widely used in application, theoretical analysis has proved more challenging

than the fixed bandwidth KDE. More general consistency results have been proved

since the work of Loftsgaarden and Quesenberry (1965). Notably Moore and Yackel

(1977), who show that for f Lipschitz in a neighborhood of a point x with f(x) > 0, and

k = k(n) satisfying k → ∞ and k/n2/(2+p) → 0, the k-NN estimator is asymptotically

normal, i.e.,
√
k(f̂k(x)− f(x))/f(x)

D→ N (0, 1). As such, under the stated conditions

on k, it can be expected that |f̂k(x)−f(x)| ⪅ f(x)/
√
k. The work of Biau et al. (2011)

demonstrate that this result can be achieved in expectation for n = n(x) sufficiently

large. In particular, the conditions on k introduced in that work allow for setting

k ≈ n4/(4+p) yielding a minimax-optimal mean square error

MSE(x) ⪅
f(x)2

k
= O

(
n− 4

(4+p)

)
.

Dasgupta and Kpotufe (2014) provide an important contribution to understanding the

conditions under which high probability bounds on |f̂k(x)− f(x)| are possible. If f is

taken to be locally α-Hölder continuous at a point x, setting k = Θ
(
n2α/(2α+p)

)
yields

a minimax-optimal rate of |f̂k(x)− f(x)| = O
(
−nα/(2α+d)

)
.

With high quality density estimates secured, we now consider the work investigating

the ability of density estimators to recover the modes of a distribution. The most com-

mon approach to understanding the consistency of estimators is to estimate a mode xj

as x̂ = argmaxx∈Rp f̂(x), where f̂ is an estimate of f such as the KDE f̂h or the k-NN

estimator f̂k. This approach is termed indirect mode estimation by Devroye (1979),

31



as the data is used to compute a density estimator, from which the estimate of mode

is then computed. Direct estimates of the modes, in the terms introduced by Devroye

(1979), use a simpler approach, estimating the mode as x̂ = argmaxx∈X f̂(x). For

KDE, Abraham et al. (2004) show that this direct estimator behaves asymptotically

as the indirect estimator. Dasgupta and Kpotufe (2014) demonstrate that the direct

estimate of the mode using the k-NN density estimator also consistently recovers the

mode of a unimodal density, and also provide conditions to ensure the estimator con-

verges at a minimax-optimal rate. Jiang (2017c) adapts this analysis for KDE, proving

that the direct estimator is a rate-optimal estimator of the mode under finite samples

with appropriate bandwidth choice. In both Dasgupta and Kpotufe (2014) and Jiang

(2017c), a simple scheme extends these results to mode recovery in multi-modal dis-

tributions. Connected components of nearest neighbor graphs at appropriate levels of

the estimated density are used to isolate modes away from each other before applying

the mode recovery analysis for unimodal distributions.

The theoretical analysis describes how connected components of nearest neighbor

graphs can be used to provide guarantees on mode recovery for KDE and k-NN esti-

mators, but these works do not give guidance on how clusters can be extracted once

the mode estimates are recovered.

Connected components of nearest neighbor graphs can be used to estimate modal clus-

ters as conceived by Hartigan (1975). As introduced in Section 2.2.1, modal clusters

are connected components of the level set L(λ). To estimate these clusters, a straight-

forward approach replaces f with a non-parametric estimate f̂ . Obtaining a partition

using this approach can be challenging for multivariate data. A solution is provided by

graph theory. Consider a graph G(X, E) consisting of the vertex set X and the edge

set E. We begin with the definition of connectedness. A path of length m from xi to

xj, denoted by {{xi,v1}, {v1,v2}, . . . , {vm−1,xj}}, is a sequence of distinct edges in

E, starting at vertex v0 = xi and ending at vertex vm = xj, such that {vr−1,vr} ∈ E

for all r = 1, . . . ,m. We say that the two data points xi and xj are connected, if there

is a path from xi to xj in the graph G(X, E). A connected component of a graph
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G(X, E), denoted by G(S, E(S)), is a subgraph of G(X, E), where any two vertices

in S are connected to each other by paths, and the edge set induced by S is a subset

of E: E(S) = {{xi,xj} ∈ E : xi ∈ S,xj ∈ S}.1 The vertex set S of the component

graph G(S, E(S)) is a subset of X and here is termed a component set of X.

The subgraph G(λ) with vertices {x ∈ X : f̂(x) ≥ λ} is constructed by removing

the vertices of G with estimated density less than λ, and all edges associated with

these vertices. The connected components of the graph G(λ) are determined by the

observations connected by an edge, or a sequence of edges, in the graph. Maier et al.

(2009) provide guidance on the number of neighbors and the method for including

edges to optimally construct nearest neighbor graphs for identifying clusters. Rinaldo

and Wasserman (2010) discuss the conditions that f must satisfy for modal clustering

to be successfully applied.

Menardi (2015), in her review, provides a summary of other methods for constructing

the graph including the Delaunay triangulation (Azzalini and Torelli, 2007) where edges

between vertices if they share a boundary in the corresponding Voronoi partition of

the space, and density-informed graphs (Stuetzle and Nugent, 2010) where edges are

added between two vertices if no significant decline in the estimated density is observed

between them.

As previously demonstrated in Figure 2.3, there may not exist a single density level λ

such that each mode of the underlying density lies in a unique connected component

of L(λ). This issue with this formulation of modal clustering was recognized at its

conception by Hartigan (1975). Rather than focusing on the components of the level

set at a single density level, one can consider the number of connected components in

the level set at the density level changes. To summarize the numbers of components

at each level, Hartigan (1975) introduced the cluster tree. The cluster tree of f are the

component sets of the level set L(λ) for λ ≥ 0. The components form a tree hierarchy

1The collision in terminology between the topological definition of connected components of a
population level set A ⊆ L(λ) and the connected component of a graph G(X, E) is avoided by
referring instead to component sets induced by the connected components of the graph.
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Figure 2.6: The cluster tree for the density introduced in Figure 2.3. The cluster tree
shows the density levels at which the level sets split into descendant components.

where for any two components, S,S′, either S ∩ S′ = ∅ or one is a descendant of

another, i.e., S ⊂ S′ or S′ ⊂ S. The cluster tree for the trimodal univariate example

density introduced previously is shown in Figure 2.6.

Many works have considered the problem of recovering the connected components

of a density-level set at one level (Tsybakov, 1997; Maier et al., 2009; Rinaldo and

Wasserman, 2010). In contrast, a smaller number of papers have aimed at estimating

simultaneously all level sets of the unknown density and recovering the cluster tree

as a whole. Hierarchical methods such as the single-linkage clustering algorithm have

been shown to be partially consistent. Hartigan (1981) shows that single-linkage is

consistent for p = 1, but consistency fails for p ≥ 2. Chaudhuri et al. (2014) present

two methods that consistently estimate the cluster tree. The first adapts single linkage

hierarchical clustering by iteratively removing instances below the density level λ. The

second approach demonstrates that a k-nearest neighbor graph can consistently recover

the cluster tree for k > 1.

Related to density-level set methods is perhaps the most prominent density-based clus-

tering algorithm, density-based spatial clustering of applications with noise (DBSCAN)

(Ester et al., 1996). DBSCAN proceeds by computing the empirical density of each

observed data point, using an estimator based on the proximity of the point to other

points in the sample. Points whose densities are above a user-specified threshold are

designated as core-points. A neighborhood graph of the core-points is constructed,
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and the remaining instances are based on the connected components of the graph.

DBSCAN has proved incredibly popular in application due to its conceptual simplicity

and excellent performance. As DBSCAN was not introduced explicitly in relation to

probability theory, until recently, little theoretical work to understand it was done.

Several analyses have conceptualized DBSCAN as a density-level set estimator, and

shown that it can consistently recover density-level sets (Sriperumbudur and Steinwart,

2012; Jiang, 2017a; Wang et al., 2017). The application of DBSCAN to contempo-

rary datasets can prove challenging. While it was claimed that DBSCAN executes in

O(n log(n)) time, it was shown by Gan and Tao (2015) that DBSCAN requires at least

Ω(n4/3) time to complete for data with more than three dimensions. There are several

implementations of DBSCAN for large datasets that aim to ameliorate it’s execution

time by partitioning the feature space and paralellizing computation (Lulli et al., 2016;

Song and Lee, 2018; Wang et al., 2020a).

DBSCAN is only able to provide a clustering for one density level. A popular gener-

alization, Hierarchical DBSCAN (HDBSCAN), generalizes DBSCAN allowing clusters

to be extracted at different levels of the density. HDBSCAN produces a version of the

cluster tree, with DBSCAN clusterings at each level. An overview of DBSCAN’s and

HDBSCAN’s many derivative methods is available in Campello et al. (2020).

A second strand of methods, termed mode-seeking methods, aim to directly locate the

modes in the density, and then associate each instance in the observed data with a

relevant mode in a manner coherent with the definition of modal clustering given in

Section 2.2.1. Such approaches begin with a density estimate f̂ (typically the KDE f̂h)

and then move each point xi towards a mode of f̂ evolving the trajectory x
(t)
i , t > 0

starting from x
(0)
i = xi and ascending the gradient ∇f̂(x(t)

i ). Termination criteria are

required to stop the evolution and a clustering rule determines how to merge trajectory

end-points.

Mean shift, introduced by Fukunaga and Hostetler (1975), and further developed by

Cheng (1995) and Comaniciu and Peter (2002), is a popular mode-seeking clustering
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algorithm. Mean shift is based on a rule for evolving the trajectories x
(t)
i when the

density estimate is a KDE and the kernel function K(u) can be written as ψ(∥u∥2) for

a convex function ψ(·). This requirement does not inhibit the use of the prominent

kernels of Table 2.2. The mean shift update rule is

x
(t+1)
i = argmax

x∈Rp

1

n

n∑
j=1

∥x− xj∥22ψ′(∥x(t)
i − xj∥22) (2.3)

=

∑n
j=1 ψ

′(∥x(t)
i − xj∥22)xj∑n

j=1 ψ
′(∥x(t)

i − xj∥22)
. (2.4)

Mean shift moves the instance xi along the path of steepest ascent of the KDE until

the convergence in the limit. The final partition of the data is obtained by grouping

the instances that converge to the same mode.

A related approach, medoid shift (Sheikh et al., 2007), modifies mean shift by con-

straining the trajectories x
(t)
i to pass through the points in X. This leads to several

benefits: (1) there is no need to iterate the trajectory updates, as once x
(0)
i is up-

dated to x
(1)
i = x

(0)
j for some j ̸= i, the remaining updates are entirely determined

by the updates of x
(0)
j ; and (2) the need to specify the stopping and merging criteria

is obviated as the conditions are met exactly. Unfortunately, maximizing (2.3) while

restricted to the dataset is computationally taxing, inhibiting practical application of

this approach.

To circumvent the costly run time of medoid shift, Vedaldi and Soatto (2008) proposed

a fast sample-based method, termed quick shift. Quick shift, rather than computing the

gradient of the density, simply moves each instance xi to its nearest neighbor of higher

empirical density f̂h. Defining b(xi) = argminxj∈X{∥xj − xi∥ : f̂h(xi) < f̂h(xj)}, the

update for xi is thus

x
(1)
i = b(xi).

It is noted by the authors that as there is no a-priori upper bound on the distances

of the shift x
(0)
i to x

(1)
i , the method will connect all points into a single tree. To

return a partition of the data, the authors introduce a segmentation parameter τ , such
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Figure 2.7: (Adapted from Figure 1 of Jiang (2017b)) Impact of the tuning parameter
τ for quick shift clustering. Left: If τ is set to ∞, the quick shift procedure returns one
cluster tree, with the sample of highest empirical density at its head. Right: Setting τ
as a smaller value removes branches of the tree with length greater than τ . This yields
the partition of the data into four groups (three clusters and one singleton point).

that the branches of the tree are removed if the length is longer than the threshold τ .

Varying the parameter τ allows for clusterings at higher and lower resolutions to be

investigated. The impact of the parameter τ is shown in Figure 2.7.

Quick shift has proved popular in the field of computer vision, with demonstrated ap-

plications in motion segmentation (Ayvaci and Soatto, 2009) and object localization

(Fulkerson et al., 2009) for example, as it provides partitions of data at resolutions

which are easily tuned by the user. Theoretical analyses of quick shift are scant in the

literature. The only prominent work is that of Jiang (2017b). There, quick shift is

shown to consistently estimate the significant modes of the underlying density, where

significance of the modes is related to the segmentation parameter τ . Jiang also pro-

vides guarantees that quick shift correctly assigns instances to their associated mode.

This ensure that quick shift returns clusterings consistent with the modal conception

of clusters introduced in Section 2.2.1.

While the parameter τ provides an intuitive way to tune the clusterings returned by

quick shift, appropriate tuning requires a knowledge of the distances between modes.

Furthermore, having only one segmentation parameter thresholding the distances be-

tween modes can lead to outlying points being selected as modes, as can be seen on

the right of Figure 2.7.

The density peaks method introduced in Rodriguez and Laio (2014) was not developed
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as a response to the deficiencies of quick shift, yet it does offer a potential remedy,

providing an intuitive method for sample-based mode detection, and a natural method

for screening outlying points. Rodriguez and Laio (2014) use a crude estimate of the

empirical density. For an instance xi, the density estimate is

f̂ρ(xi) =
n∑

j=1

1 (∥xi − xj∥ < dc) , (2.5)

where 1(·) is the identity function. This quantity counts the number of data points

within a threshold distance dc of xi. The intuition is that instances generated from

higher density regions of the underlying probability distribution should have more

instances close to them than those generated from more sparse regions of the density.

This approach is easily understood and naturally adapts to the scale of the data, but

requires O(n2) computation, limiting its use for large datasets.

The quantity b(xi) is adapted for this density estimate as b(xi) = argminxj∈X{∥xj −

xi∥ : f̂ρ(xi) < f̂ρ(xj)}. The method requires computation of the distance from each

instance to its nearest neighbor of higher empirical density, denoted here as ω(xi), i.e.,

ω(xi) = ∥xi − b(xi)∥. (2.6)

The true modes of the density are estimated using a decision plot, a scatter plot of

{(f̂ρ(xi), ω(xi)) : xi ∈ X}. Intuitively, the instances that best estimate the modes

of the underlying density will be those have that (1) have high empirical density and

(2) are at a relatively large distance from points of higher empirical density. As such,

the modes are estimated as the extreme instances on the decision plot. Once the

mode estimates have been selected from the decision plot, density peaks clustering

assigns instances to clusters using the same methodology as quick shift. Instances are

assigned to the same cluster as their nearest neighbor of higher empirical density until

a mode estimate is reached. This leads each sample point to a mode without having

to recompute the density estimator at any other points. The partition of the data is

extracted by grouping together instances that are assigned to the same mode. The
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Figure 2.8: Left: The decision plot of the density peaks clustering method for the data
introduced in Figure 2.7. Three estimated modes are clearly seen as extreme points in
the decision plot. Right: The allocation of instances to modal clusters is the same as
quick shift.

decision plot and the resulting clustering for the example data introduced in Figure

2.7 are shown in Figure 2.8.

Theoretical analysis of the density peaks method has lagged its prominence in applica-

tions. While an abundance of papers have demonstrated the ability of the peak-finding

method to provide high-quality clusterings in applications (Lu et al., 2015; Ding et al.,

2017; Li and Wong, 2018; Wang et al., 2018c; Platero-Rochart et al., 2022), there is, to

the best of our knowledge, only one previous work analyzing the density peaks method

in the terms of the probability theory considered here. Verdinelli and Wasserman

(2018) analyze the decision plot, considering first the plot if the true density f was

known. Assuming that f is continuous and three times differentiable, they provide

guarantees that the best estimators of the modes in the sample are indeed close to the

true modes of the density. Furthermore, they show that the value of ω(x) is bounded

away from zero for these points. They provide guarantees on the limiting distribution

of the quantity n · ω(x)p as n → ∞. If x is a mode, n · ω(x)p → ∞ as n → ∞. For

points that are not modes n · ω(x)p is shown to converge to an exponential random

variable with parameter related to the density f(x). Using these insights, they derive

a rule for selecting modes from the decision plot using a robust linear regression of log

of the density estimates log f̂(x) against the log of the distance values logω(x).

Adaptations of the density peaks clustering methods have proliferated in research in
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recent years. Many works focus on improving the density estimator from the crude

and computationally expensive estimate employed in Rodriguez and Laio (2014). A

popular approach estimates the local density by applying kernel functions on nearest

neighbors (see Xie et al. (2016) and Yaohui et al. (2017)), while other methods estimate

the local density using the ratio of maximal distance to average distance in the set of

nearest neighbors (Hou and Pelillo, 2016). The scale of these density estimates has a

great influence on the selection of centers from the decision plot. Recent works have

further improved the execution time of DPC by incorporating fast nearest neighbor

methods, for example, the FastDP method of Sieranoja and Fränti (2019).

A second strand of research develops methods to automate the selection of centers

from the decision plot, using criteria such as the silhouette index and the generalized

extreme value distribution (Wang and Xu, 2017; Ding et al., 2018; Wang et al., 2020b).

Previous attempts to improve the detection of low density modes involve incorporating

information about points of lower local density into the density calculation (Chen et al.,

2018) and the distance calculation (Li and Tang, 2018). Such approaches are sensitive

to small variations in the underlying density.

Model selection methods for non-parametric density-based clustering methods are sig-

nificantly less developed than for parametric model-based clustering methods. The

primary reason for this is the hard assignment produced by non-parametric methods.

For hard clustering algorithms, instances are assigned to one cluster only and no in-

formation about the uncertainty regarding the assignment is provided. By contrast,

model-based clustering methods provide an assignment vector for each instance, de-

scribing a probability distribution over the clusters. From an assignment vector, it is

possible to intuit two forms of uncertainty regarding the cluster assignment. The first

corresponds to the uncertainty caused by the density estimator f̂ compared to the un-

derlying density f . The second form of uncertainty, termed the population uncertainty

by Chen et al. (2016), captures how uncertain the relationship between an instance

and the true density modes is. For example, if an instance lies on the boundary be-

tween the attraction regions of two modes, the assignment vector should reflect this
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uncertainty. Quantifying the uncertainty of the assignment of each instance allows for

the computation of model selection criteria for the method as a whole. However, while

a model selection approach for a soft clustering adaptation of mean shift was intro-

duced in Chen et al. (2016), it is not applicable to other non-parametric clustering

methods.

Several internal validation indices have been proposed in the literature, and reviewed by

Liu et al. (2010). However, the authors conclude that no measure performs consistently

well for all datasets. The problem of developing broadly applicable validation indices

is a challenging one, and no method been widely adopted for use in the assessment of

new methods. As a result, non-parametric clustering methods are typically assessed

on datasets for which true class labels are available using external validation indices

such as the adjusted Rand index (Hubert and Arabie, 1985), the adjusted mutual

information (Vinh et al., 2010), and the normalized mutual information (Strehl and

Ghosh, 2002). The issues with this assessment regime have been well covered, yet

it remains the standard approach in this field. As such, validation through external

indices forms the basis for many of the performance assessments in this work.
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3 Density Peaks Clustering

3.1 Summary

As discussed in Section 2.2.2, there have been many variants of the peak-finding method

proposed in the literature. The formulation of the peak-finding method used herein

is now formally introduced. Furthermore, a theoretical analysis of the ability of the

peak-finding method to detect modes and clusters in the data is provided. Finally,

limitations of the peak-finding approach are demonstrated using an illustrative exper-

imental analysis.

3.2 The Method

The peak-finding method in Rodriguez and Laio (2014) requires two inputs: (1) a

density estimate at each data point, and (2) the distance from each point to its nearest

neighbor of higher density. We consider a dataset X consisting of n data points in

Rp drawn from an unknown density f with compact support X . We use a k-NN

density estimator as it is computationally fast and guarantees on its quality are well

understood. For a data point x ∈ X, let rk(x) be the distance between x and its

k-th nearest neighbor. The density estimate used is a simple functional of the distance

rk(x).

Definition 1. For every x ∈ Rp, let rk(x) denote the distance from x to its k-th
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nearest neighbor in X. The density estimate is given as

f̂k(x) :=
k

n · vp · rk(x)p
,

where vp is the volume of the unit sphere in Rp.

As well as a density estimate, the peak-finding criterion requires the distance from

each point to it’s nearest neighbor of higher density:

Definition 2. For the point x = argmaxx∈X f̂k(x), we define the quantity

ω(x) = max
x′∈X

∥x− x′∥.

For the remaining points, let b(x) = argminx′∈X

{
∥x− x′∥ : f̂k(x) < f̂k(x

′)
}
, i.e. the

nearest neighbor of x with higher density. Define the distance to the nearest neighbor

of higher local density as

ω(x) = ∥x− b(x)∥.

Also of interest is the product of the estimated density f̂k(x) and the distance quantity

ω(x). This is termed the peak-finding criterion:

Definition 3. Taking f̂k(x) and ω(x) as defined above, we define the peak-finding

criterion γ(x) as

γ(x) = f̂k(x) · ω(x).

Following Rodriguez and Laio (2014), the decision plot is the scatter plot of {(f̂k(x), ω(x)) :

x ∈ X}. A second plot, herein referred to as the peak-finding plot captures the values

of the peak-finding criterion. Assuming they are sorted in decreasing order, the peak-

finding plot is the scatter plot of {(i, γ(xi)) : i = 1, . . . , n}. To generate a set of mode

estimates M̂ = {xj}mj=1, threshold values for the density f̂k(x) and the distance ω(x)

need to be set: the modes are the data points with the two metric values both above

the thresholds, i.e. M̂ = {x ∈ X : f̂k(x) ≥ l, ω(x) ≥ τ}.
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Algorithm 1: Density Peaks Clustering

Input: Neighborhood parameter k.
Output: A set of clusters Ĉ
1: Initialisation: M̂ = ∅, G⃗(X, E⃗), a directed graph with X as vertices and no

edges, E⃗ = ∅.
2: Create the decision plot {(f̂k(x), ω(x)) : x ∈ X}.
3: Sort the x’s in decreasing order of γ(x) values.
4: Create the peak-finding plot {(i, γ(xi)) : i = 1, . . . , n}.
5: Select the estimated modes using the thresholds l and τ , i.e., {x ∈ X : f̂k(x) ≥
l, ω(x) ≥ τ}

6: Add the estimated modes {xj}mj=1 to M̂.

7: for each x in X\M̂ do
8: Add a directed edge from x to b(x).
9: end for
10: for each estimated mode x ∈ M̂ do
11: LetC be the collection of the points connected by any directed path in G⃗(X, E⃗)

that terminates at x.
12: Add C ∪ x to Ĉ.
13: end for
14: return Ĉ

The algorithm used for density peaks clustering in this formulation is described in

Algorithm 1. The algorithm takes as input the dataset X and uses the parameter k

to return the final set of clusters Ĉ. Initially, the set of estimated modes M̂ = ∅ and

the cluster assignment graph G⃗(X, E⃗) is initialized with vertices as the points of X

and no edges. Density peaks clustering produces the decision plot and, having sorted

the values for the peak-finding criterion γ(x), the peak-finding plot (Lines 2-4).

Density peaks clustering requests the user to select estimated modes using these two

plots as reference. The estimated modes {xj}mj=1 are then added to M̂ (Lines 5-6).

After the set of estimated modes has been returned, edges are added to the graph

G⃗(X, E⃗) from each non-modal point x to b(x) (Lines 7-9). The estimated mode

together with all the vertices that have paths terminating at it form a cluster that is

added to Ĉ (Lines 10-13). Proceeding in this way, each sample point will be assigned

to a unique cluster.
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3.3 Theoretical Analysis

Density peaks clustering is a simple and popular procedure that recovers modes from

intuitive plots, and provides clustering assignments to the appropriate modes. The

quality of the clusterings provided by density peaks clustering has been thoroughly

demonstrated in practice, as discussed in Section 2.2.2. Yet no previous work has

provided guarantees on the ability of density peaks clustering to recover modes consis-

tently. This dearth of research has also hindered understanding of the similarities and

differences between density peaks clustering and peer modal clustering methods. We

show that density peaks clustering can recover the modes and the associated cluster

assignments with strong consistency guarantees. This analysis is adapted from the

theoretical work in Dasgupta and Kpotufe (2014) and Jiang (2017b).

We assume that f is α-Hölder continuous and lower bounded on X .

Assumption 1 (Hölder Continuity). f is Hölder continuous on the compact support

X ⊆ Rp, i.e., ∃r, L, α > 0 such that for all x′ ∈ B(x, r), |f(x)− f(x′)| ≤ L∥x− x′∥α

∀x ∈ X . Furthermore, there exists λ0 > 0 such that infx∈X f(x) ≥ λ0.

As the density peaks clustering procedure moves instances to nearby areas of higher

density incrementally, areas of the density where there is little or no change in the

density are problematic. As such, it is assumed that the level sets of f are continuous

with respect to the density level. The ϵ-interior of a set A is denoted as A◦
ϵ = {x ∈

A : minx′∈∂A |x− x′| ≥ ϵ}, where ∂A is the boundary of A. An illustrative example is

provided in Figure 3.1.

Assumption 2 (Uniform Continuity of the Level Sets). For every ϵ > 0, there exists

δ > 0 such that for 0 < λ ≤ λ′ ≤ ∥f∥∞ with |λ− λ′| < δ, then L(λ)◦ϵ ⊆ L(λ′).

We now provide the uniform bounds on the k-NN density estimator required for

the analysis. The results follow Lemma 3 and Lemma 4 of Dasgupta and Kpotufe

(2014).
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Figure 3.1: Illustrative example of Assumption 2. The ϵ-interior of the level set set
L(λ), namely L(λ)◦ϵ , is seen to be contained within L(λ′), the level set at the nearby
density level λ′.

Lemma 1. Let ζ > 0. Suppose f satisfies Assumptions 1 and 2. Suppose also that

k = k(n) is chosen such that log2 n/k → 0 and n4/(4+p) → 0. Then there exists a

constant c = c(f), depending on f , such that the following holds if n ≥ c2ζn, with

probability at least 1− ζ.

sup
x∈X

|f̂k(x)− f(x)| ≤ c

(
cζn√
k
+

(
k

n

)α/(2α+p)
)
,

where cζn = 16 log(2/ζ)
√
p log n.

The analysis of the density peaks clustering algorithm to detect modes of the underlying

probability density function, we begin with the definition of modes of the underlying

density.

Definition 4. The modes of f is the set M = {x : ∃r > 0,∀x′ ∈ B(x, r), f(x′) < f(x)}.

It is also assumed that the modes have negative definite Hessian.

Assumption 3 (Negative Definite Hessian). We denote the gradient of f by ∇f and

the Hessian by ∇2f . ∇2f(x) is negative definite for every x ∈ M.

An implication of Assumption 3 is that for x ∈ M, f is well-approximated in a neigh-

borhood by a quadratic function. This is summarized in the following lemma.
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Figure 3.2: Density contour plot of a density that satisfies the requirements of As-
sumption 2, but not Assumption 4. Here, the ϵ-interior of the level set L(λ) can be
shown to be contained in L(λ′) for some ϵ > 0, thus satisfying Assumption 2. However,
the level set L(λ) becomes arbitrarily thin at the point x ∈ ∂L(λ), contravening the
requirements of Assumption 4.

Lemma 2 (Lemma 5 of Dasgupta and Kpotufe (2014)). Let f satisfy Assumptions 1-3.

There exists rM, ĉ, č > 0 such that the following holds for all x ∈ M simultaneously.

č · ∥x− x′∥2 ≤ f(x)− f(x′) ≤ ĉ · ∥x− x′∥2,

for all x′ ∈ Ax, where Ax is a connected component of the level set L(λ), where

λ = infx′∈B(x,rM) f(x
′) which contains the mode x but does not intersect with other

modes in M.

The next assumption is required to ensure that the level sets of f are not arbitrarily

thin as long as we are a sufficient distance from the modes.

Assumption 4 (Level Set Regularity). For each σ, r > 0, there exists η > 0 such

that the following holds for all connected components A of the level set L(λ) with

λ > 0 and A ⊈ ∪x∈MB(x, r). If x lies on the boundary of A (i.e, x ∈ ∂A), then

V ol(B(x, σ) ∩A) > η, where V ol(·) is volume with respect to the uniform measure on

Rp.
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An example contrasting the requirements imposed on the level sets by Assumption 2

and Assumption 4 is given in Figure 3.2.

We now provide the mode estimation results for the k-NN density estimator given in

Dasgupta and Kpotufe (2014). The estimator used to predict the modes is the simple

direct estimator, selecting the maximizer of f̂k out of the finite sample X.

Lemma 3 (Theorem 2 of Dasgupta and Kpotufe (2014)). Supposed the Assumptions

1-4 hold. Let r̄ > 0. There exists Nx,ζ such that the following holds for n ≥ Nx,ζ. Let

rM, ĉ, č be as in Lemma 2. Suppose k satisfies

(
24cζnf(x)

čr2M

)2

≤ k ≤
(
1

2

√
cζn
ĉ

)4p/(4+p)

f(x)(2p+4)/(4+p)
(vp · n

4

)4/(4+p)

.

Suppose x∗ ∈ M and x∗ is the unique maximizer of f on B(x∗, r̄). Then letting

x̂ = argmaxx∈B(x∗,r̄)∩X f̂k(x), we have with probability at least 1− 2ζ

∥x̂− x∗∥ ≤
√

24cζn
č

f(x∗) · 1

k1/4
.

This result guarantees, with high probability, that every true mode of the underlying

density are estimated consistently with the observed instances with the highest values

of the k-NN density estimator. The conditions on k, while opaque, allow for a wide

range of setting of k. For Hölder assumptions on f , the conditions are seen to allow

for the range

c1 · log(n) ≤ k ≤ c2 · n4/(4+p),

where c1, c2 are constants that depend on f(x), but are independent of k and n.

The choice k = Θ(log2(n)) is seen to be always admissible for n sufficiently large.

Assuming k is set in the range given in Lemma 3, the magnitude of the k1/4 term

in the denominator dominates the other terms in the bound, notably the
√
log n that

arises in the constant cζn, thus shrinking the size of the bound and guaranteeing the

quality of the mode estimate.
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Following Jiang (2017b), we now define a stronger notion of a mode that allows clearer

analysis of the peak-finding criterion.

Definition 5. A mode x∗ ∈ M is an (r, θ, ν)+-mode, if f(x∗) > f(x′) + θ for all

x′ ∈ B(x∗, r)\B(x∗, rM) and f(x∗) > ν + θ. A mode x∗ ∈ M is an (r, θ, ν)−-mode, if

f(x∗) < f(x′)− θ for some x′ ∈ B(x∗, r) and f(x∗) > ν + θ. Let M+
r,θ,ν ⊆ M denote

the set of (r, θ, ν)+-modes of f .

If x∗ is an (r, θ, ν)+-mode, the definition states that f(x∗) ≥ ν + θ. Also, x is a

maximizer of f in a larger ball of radius r by at least θ for points outside the region

of quadratic decay B(x∗, rM), as defined in Lemma 2, i.e., f(x∗) ≥ f(x′) − θ, ∀x′ ∈

B(x∗, r)\B(x∗, rM).

Recall that the density peaks clustering algorithm requires setting of thresholds for the

values of the density estimate f̂k(x) and the distance to a nearest neighbor of higher

estimated density, ω(x). Taking the thresholds as τ and l for the density and distance

values respectively, we show that M̂ contains unique and consistent estimates of the

(τ + ϵ, θ, l)+-modes of f , for θ, ϵ > 0.

Theorem 1 (Adapted from Theorem 2 of Jiang (2017b)). Let x∗ ∈ M+
τ+ϵ,θ,l be a

(τ + ϵ, θ, l)+-mode of f , where θ, ϵ > 0. Let k be chosen in agreement with Lemma 3.

Then there exists C > 0 depending on f such that the following holds for n sufficiently

large with probability at least 1 − ζ. For each x∗ ∈ M+
τ+ϵ,θ,l\M

−
τ−ϵ,θ,l, there exists a

unique x̂ ∈ M̂ such that

∥x̂− x∗∥ ≤
√

24cζn
č

f(x∗) · 1

k1/4
.

Proof. Following the same route as Jiang (2017b), suppose that x∗ ∈ M+
τ+ϵ,θ,l\M

−
τ−ϵ,θ,l.

Let x̂ = argmaxx∈B(x∗,τ)∩X f̂k(x). First, we show that x̂ ∈ M̂.

From Lemma 3, we have that

∥x∗ − x̂∥ ≤
√

24cζn
č

f(x∗) · 1

k1/4
.

50



Let r̃ =
√

24cζn
č
f(x∗) · 1

k1/4
. It remains to show that x̂ = argmaxx∈B(x̂,τ)∩X f̂k(x). We

have B(x̂, τ) ⊆ B(x∗, τ + r̃). Choose n sufficiently large such that simultaneously (i)

r̃ < ϵ; (ii) by Lemma 1 supx∈Rp |f̂k(x)− f(x)| < θ/4; and (iii) r̃2 < θ/(4ĉ). Now

sup
x∈B(x∗,τ+r̃)\B(x∗,τ)

f̂k(x) ≤ sup
x∈B(x∗,τ+r̃)\B(x∗,τ)

f(x) + θ/4 (By (ii))

≤ f(x∗)− 3θ/4 (As ∈ M+
τ+ϵ,θ,l\M

−
τ−ϵ,θ,l)

≤ f(x̂) + ĉr̃2 − 3θ/4 (Lemma 3)

< f(x̂)− θ/2 (By (iii))

< f̂k(x̂). (By (ii))

Therefore, we have x̂ = argmaxx∈B(x̂,τ)∩X f̂k(x). Furthermore, by (ii) we have that

f̂k(x) > l − θ. Hence, x̂ ∈ M̂.

Now we show that it is unique. Suppose that x̂′ ∈ M̂ such that ∥x̂′ − x∗∥ ≤ τ/2.

Then, both x̂ = argmaxx∈B(x̂,τ)∩X f̂k(x) and x̂′ = argmaxx∈B(x̂′,τ)∩X f̂k(x). However,

choosing n sufficiently large such that r̃ < τ/2 yields x̂ ∈ B(x̂′, τ), implying x̂ =

x̂′.

Theorem 1 proves that the density peaks clustering algorithm recovers the modes of an

α-Hölder continuous density f consistently. For n large enough, with high probability,

M̂ contains unique estimates for all the true modes of f . The guarantee above states

that for every true mode of the underlying density, there exists a consistent estimator

in the set of estimated modes. As such, there is an injection between the set of true

modes and the set of estimated modes. Later, in Chapter 4, a procedure will be

introduced that allows for theoretical guarantees regarding a bijective estimator of the

modes of the population probability distribution.

The procedure used to assign points to their respective modes is the same as that used

in quick shift. As such, theoretical guarantees developed for a variant of quick shift in

Jiang et al. (2018) can be applied directly to density peaks clustering. We provide the
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Figure 3.3: An illustrative example of the (r, δ)-interior of an attraction region Ax∗ ,

denoted A(r,δ)
x∗ , associated with a mode x∗.

relevant results below.

First we formalize the definition for the attraction regions of a mode. The concept

is the same as introduced for mean shift in Section 2.2.2. The attraction region of a

particular mode are all points that flow towards the mode following the direction of

the gradient of the underlying density.

Definition 6. Let path νx : R → Rp satisfy νx(0) = x and ν ′x(t) = ∇f(νx(t)). For

a mode x∗ ∈ M, its attraction region Ax∗ is the set of points x ∈ X that satisfy

limt→∞ νx(t) = x∗.

We require the additional regularity assumption that the modes lie in the interior of

the attraction regions.

Assumption 5. There exists r0 > 0 such that B(x∗, r0) ⊂ Ax∗ for every x∗ ∈ M.

It is shown that density peaks clustering can cluster sample points in the (r, δ)-interior

of an attraction region. The parameters r > 0 and δ > 0 hold simultaneously across

all modes of the density and can be chosen arbitrarily small.

Definition 7. The (r, δ)-interior of an attraction region Ax∗, denoted A(r,δ)
x∗ , is the set
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of points x1 ∈ Ax∗ such that a path P from x1 to any point x2 ∈ ∂Ax∗ satisfies

sup
x∈P

inf
x′∈B(x,r)

f(x′) ≥ sup
x′∈B(x2,r)

f(x′) + δ.

The definition captures the notion that points in the interior of an attraction region

must satisfy the property that any path leaving the attraction region must significantly

decrease in density at some point. The parameter r controls the distance about the

interior of the attraction region and the parameter δ captures the magnitude of the

density decrease. An illustrative example is given in Figure 3.3.

The main result states that, as long as the modes are sufficiently well-estimated, the

assignment method of density peaks clustering will correctly cluster the (r, δ)-interiors

of the attraction regions with high probability.

Theorem 2 (Adapted from Theorem 2 of Jiang et al. (2018)). Suppose the Assump-

tions 1-5 hold. Let 0 < r < r0, where r0 is as defined in Assumption 5, and δ, ζ > 0.

Suppose that k = k(n) is chosen such that log2 n/k → 0 and n4/(4+p)/k → 0. Suppose

that x∗ ∈ M is a mode of the underlying density and x̂ is a mode estimate returned

by Algorithm 1 such that

∥x̂− x∗∥ ≤ r

4
.

Then, for n = n(f, δ, ζ, r) sufficiently large, depending on f , δ, ζ and r, the following

holds with probability at least 1−2ζ uniformly in x ∈ A(r,δ)
x∗ ∩X: density peaks clustering

clusters x to the cluster corresponding to x∗.

Proof. To prove this theorem, we require a uniform concentration bound on balls

intersected with density-level sets of f . The following result states that if such a set

has enough probability mass, then it will contain a sample point with high probability.

Lemma 4 (Lemma 3 of Jiang et al. (2018)). Let E = {B(x, s) ∩ L(λ) : x ∈ Rp, s >
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0, λ > 0}. Then with probability at least 1− ζ uniformly for all E ∈ E

F(E) ≥ cζn

√
p log n

n
=⇒ E ∩X ̸= ∅.

Now suppose that x ∈ A(r,δ)
x∗ ∩ X. Density peaks clustering gives a directed path

x → x1 → x2 → · · · → xT , where x1, . . . ,xT−1 are not modes and xT is a mode.

Suppose also that xT ̸= x∗, the mode associated with the attraction region Ax∗ .

It is shown first that ∥xi − xi+1∥ ≤ r/2 for i = 1, . . . , T − 1. By Assumption 4, there

exists ν > 0 and η > 0 such that the following holds for i = 1, . . . T − 1:

V ol (B(xi, r/2) ∩ L(f(xi) + ν)) ≥ η.

Thus, as the density is lower bounded by λ0, we have

F (B(xi, r/2) ∩ L(f(xi) + ν)) ≥ ηλ0.

Then, using Lemma 4, for n sufficiently large such that ηλ0 > cζn
√
p logn
n

, with prob-

ability at least 1 − ζ there exists a sample point x′
i ∈ B(xi, r/2) ∩ L(f(xi) + ν) for

i = 1, . . . , T − 1.

Next, if n is chosen sufficiently large such that, by Lemma 1, we have with probability

at least 1− ζ that

sup
x∈X

|f̂k(x)− f(x)| ≤ min{ν, δ}/3.

As a result, we have

f̂k(x
′
i) ≥ f(x′

i)− ν/3

≥ f(xi) + 2ν/3

≥ f̂k(xi) + ν/3

> f̂k(xi).
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Furthermore, ∥xi − x′
i∥ ≤ r/2 and x′

i ∈ X. Thus, it follows that ∥xi − xi+1∥ ≤ r/2

for i = 1, . . . , T − 1.

Next, let π : [0, 1] → Rp be the piecewise linear path defined by π(j/L) = xj for

j = 1, . . . , L. Let t2 = min{t ∈ [0, 1] : π(t) ∈ ∂Ax∗}. Then, by the definition of

the (r, δ)-interior of the attraction region A(r,δ)
x∗ , there exists 0 ≤ t1 < t2 such that

x = π(t1) and y = π(t2) satisfies y ∈ ∂Ax∗ and

inf
x′∈B(x,r)

f(x′) ≥ sup
x′∈B(y,r)

f(x′) + δ.

As such, one can find indices l,m ∈ {1, . . . , T − 1} such that l ≤ m, ∥xl − xm∥ ≤ r

and ∥xm − y∥ ≤ r. Thus, f(xl) ≥ f(xm) + δ, but f̂k(xl) ≤ f̂k(xm). However, we have

f̂k(xl) ≥ f(xl)− ν/3

≥ f(xm) + 2ν/3

≥ f̂k(xm) + ν/3

> f̂k(xm),

which is a contradiction as required.

The results in this section are naturally adapted if a KDE is used in place of the k-NN

estimator. Taking the KDE as

f̂h(x) =
1

n · hp
n∑

i=1

K

(
x− xi

h

)
,

where K(·) is the a spherically symmetric, non-increasing function that experiences

exponential decay, such as the kernels detailed in Table 2.2. In place of Lemma 1,

the following result on the uniform KDE bound is provided from Theorem 2 of Jiang

(2017c).

Lemma 5. Suppose f satisfies Assumptions 1 and 2. Then there exists a constant
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c′ = c′(f,K), depending on f and K, such that the following holds with probability at

least 1− 1/n uniformly in h > (log n/n)1/p.

sup
x∈Rp

|f̂h(x)− f(x)| ≤ c′ ·

(
hα +

√
log n

n · hp

)
.

3.4 Illustrative Analysis

The theoretical analysis of Section 3.3 provides guarantees on the ability of the density

peaks clustering algorithm to (1) consistently recover modes of the underlying density

and (2) correctly assign instances to the cluster of their associated mode. Such results

are based on the assumption of a sample size large enough that the error of density

estimator can be bounded.

In this section, we provide an analysis of the density peaks clustering algorithm when

applied to datasets with a small sample size. We consider five illustrative datasets from

the scikit-learn clustering demonstration (Pedregosa et al., 2011). Taken together, the

datasets provide an understanding of the density peaks clustering algorithm and the

type of clusters it returns. The datasets are detailed as follows:

• Anisotropic Gaussian: This dataset consists of three well-separated Gaussian

components that are anisotropically distributed, i.e., the covariance matrices

of the components are not axis-aligned. The components have the same prior

probability and common covariance matrices.

• Unequal Variance Gaussian: This dataset consists of three isotropically dis-

tributed Gaussian components with a small amount of overlap between com-

ponents. Each component has the same prior probability, with three different

variance levels.

• Noisy Circles : This dataset consists of two clusters. The samples form concentric

circles with noise about each, but no overlap. The prior probability of both

clusters is equal, with the inner cluster having higher density resulting from the

56



smaller radius.

• Noisy Moons : This dataset consists of two clusters. The samples form two

crescents with noise about each, but no overlap. The prior probability of an

instance belonging to the top crescent is π1 = 0.6 and for the bottom crescent is

π2 = 0.4.

• No Cluster Structure: This dataset consists of points generated according to a

uniform distribution within the range [0, 1] for each axis. There is no geometri-

cally intuitive cluster structure present in the data.

For each dataset, a sample of n = 1500 instances were drawn. We provide the results

of the density peaks clustering method for both the k-NN estimator and the KDE.

We assess the performance of the k-NN estimator for k = 10 (≊ log(n)) and k = 40

(≈
√
n). The KDE uses a Gaussian kernel and the bandwidth of the KDE is set to a

certain proportion of the average sample variance of the data in each direction. This

bandwidth was chosen as it naturally adapts to the scale of the data. The proportions

assessed are 1/10 and 1/25. For the k-NN estimator, higher values of k will lead to

a smoother density estimate. For the KDE, larger bandwidths also lead to smoother

density estimates.

In Figures 3.4-3.7 we show the density estimate, the decision plot, the clustering of the

data and the attraction regions of each of the modes for each dataset. For each dataset,

presented in the left figure is the density estimator, with darker regions indicating

higher density. The center figures are the decision plots with the thresholds τ and l used

to select modes highlighted in red. The thresholds were set to return approximately

the correct number of clusters for each dataset. Instances in the top right quadrant

formed by the thresholds are taken as the mode estimates. The right figures show the

clusterings returned by the density peaks clustering method with the given density

estimate and the chosen modes. The estimated modes are highlighted in red. The

shaded regions correspond to the attraction regions of each mode estimate.

Assessing first the density estimators considered for use in Algorithm 1. For all
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datasets, bar the No Structure dataset, the quality of the density estimation appear

consisent across estimators and the various input parameters considered. The popula-

tion density used to generate the data is identifiable in each of the four cases. For the

No Structure dataset, the density estimators providing noisier estimates, namely the

k-NN estimator with k = 10 shown in Figure 3.4 and the KDE with the proportion

set to 1/25 shown in Figure 3.6, appear to erroneously detect high and low density

regions in the data. The density is seen to be significantly higher in neighborhoods of

the observed samples. This is not the case for the alternate parameterizations, where

no clear population structure is evident.

The second feature of the density peaks clustering algorithm analyzed is the decision

plot, provided to enable the estimation of the modes from the dataset. The deci-

sion plots are seen in the middle panels of each figure and the estimated modes are

highlighted in red on the right panels of each figure. The decision plots have mixed

performance. For the Anisotropic Gaussian dataset, the three modes are easily seen in

the decision plot for each density estimator used. These modes translate to reasonable

archetypes of the clusters in each case. For the Unequal Variance Gaussian dataset,

the decision plot correctly proposes modes from the high density clusters in the data.

These estimates are clear from the decision plot. Furthermore, estimates from the low

density cluster can be chosen provided the thresholds are set carefully. These estimates

are more easily seen for the k-NN density estimator, particularly when k = 40, than for

the KDE. While the situation is less clear than for the Anisotropic Gaussian dataset,

the decision plot is still said to have performed well for this dataset.

The remaining datasets each contain areas of relatively uniform density; for the Noisy

Circles dataset, the clusters are generated as circles of uniform density, about which

data is generated with Gaussian noise; for the Noisy Moons dataset, the clusters are

similarly generated as crescents of uniform density, about which data is generated

with Gaussian noise; and the population density of the No Cluster Structure dataset is

entirely uniform. This poses challenges for the density peaks clustering method. The

key issue is that, for regions of relative uniformity in the density, the small sample
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Figure 3.4: Density peaks clustering of illustrative datasets. The k-NN estimator is
used here with k = 10.
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Figure 3.5: Density peaks clustering of illustrative datasets. The k-NN density esti-
mator is used here with k = 40.
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Figure 3.6: Density peaks clustering of illustrative datasets. The KDE is used here
with the bandwidth h set to 1/25 of the average sample variance in each direction.
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Figure 3.7: Density peaks clustering of illustrative datasets. The KDE is used here
with the bandwidth h set to 1/10 of the average sample variance in each direction.
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size leads to noisy density estimates. Such noise in the density estimate f̂ leads to

instances x = argmaxx′∈B(x,r) f̂(x), some r > 0 that are locally maximal for f̂ being

selected as modes, when they are not maximizers of an r-radius ball B(x, r) for the

true density f .

For the Noisy Circles dataset, there are multiple modes are suggested from the high

density cluster for every density estimator used. While a set of points from the low

density cluster can be seen extended from the main group of points in the bottom left

quadrant of the decision graph for each density estimator, it is not possible to specify

thresholds to recover one mode from each cluster. The user must instead balance the

risk of oversegmentation of the high density cluster against the risk of not capturing

any representatives from the lower density cluster.

These issues are also manifest in the decision plot for the Noisy Moons dataset. There,

modes are proposed for each cluster, but it is not obvious from the decision plot that

two modes should be selected. Instead, there is one mode clearly visible in the decision

plots, i.e., the instance of maximal density in the high density cluster and a group of

other instances that could credibly be selected as modes by a user. This issue is present

for each density estimator assessed, indicating that the deficiency lies in the decision

plot methodology and can not be improved using alternative parameter tunings.

The same issues are again observed for the No Cluster Structure dataset. Noise in the

density estimate leads to erroneous modes being selected from the decision plot. This

issue is not ameliorated by using smoother density estimates. The issue lies in the

formulation of the density peaks clustering method and the notion of mode estimates

used therein.

The method of selecting mode estimates from the decision plot is seen to perform well

when the density of the cluster is high and concentrated near the mode and decays

as the distance from the mode increases, such as for the Gaussian components of the

Anisotropic Gaussian and Unequal Variance Gaussian datasets. The performance is

significantly degraded when the density is relatively uniform for broad regions of the
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data. This is seen clearly for the Noisy Circles and Noisy Moons datasets, where the

true number of clusters is not obvious from the decision graph, and for the No Cluster

Structure dataset, where erroneous modes are suggested by the decision plot. The

challenges faced trying to detect clusters without clear and distinct modes reflect a

limitation of the theoretical analysis presented in Section 3.3. There, in Assumption 3,

we require that the clusters contain individual modes and that the density decays ap-

proximately quadratically in a region about the mode. This assumption is not satisfied

for any of the Noisy Moons, Noisy Circles and No Cluster Structure datasets.

Finally, the assignment method of density peaks clustering is assessed. In the right

panels of each figure the allocation of observed instances to clusters is shown. The asso-

ciated attraction regions for each mode are represented using the background colours.

The assignment strategy is shown to perform well for the Anisotropic Gaussian dataset

and, accepting the issues with mode estimation, for the Unequal Variance Gaussian

and No Cluster Structure datasets also. The allocation of instances to clusters for the

Noisy Circles and Noisy Moons datasets is problematic. There, the allocation runs

contrary to geometric intuition about the clusters. In both cases the allocation assigns

instances to clusters across areas of very low density in the dataset. This is particu-

larly clear for the Noisy Moons dataset, when the k-NN density estimator with k = 10

is used. There, despite correct selection of the modes for each cluster, the allocation

mechanism incorrectly assigns nearly all of the lower density cluster to the high density

cluster. Such instances are assigned across regions of very low density, as confirmed

by inspecting the density plot in the left figure. This demonstrates that, while the

sample-based analogy to gradient ascent of the density used to allocate instances is

consistent for large sample sizes, it can be shown to fail for data of typical size.

In sum, the density peaks clustering framework is capable at detecting high quality

mode estimates and clusterings for datasets containing clusters with clear point modes

about which the density decays, such as Gaussian components. This performance is

consistent across different density estimators and parametrizations. The framework

struggles when the high density regions of the data are relatively uniform. In this
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case, both the mode selection method and assignment strategy of the density peaks

clustering algorithm are shown to be susceptible to errors caused by noise in the density

estimate.

3.5 Conclusion

In this chapter, we introduced the density peaks clustering algorithm, as formulated

for the remainder of this work. The k-NN density estimator, the peak-finding criterion

and the decision plots are formalized in Section 3.2. The algorithm used to produce

clusterings is detailed in Algorithm 1. In Section 3.3, the theoretical guarantees on the

quality of the modes estimated using the peak-finding criterion and the assignment of

instances to their respective clusters were provided. Such results, the first in the context

of density peaks clustering, show that the method of Algorithm 1 fits the conception of

non-parametric density-based clustering methods as described in Section 2.2.1. Finally,

the density peaks clustering method was implemented for five illustrative datasets. The

results demonstrate the ability of the k-NN density estimator to provide high-quality

estimates of the underlying density. Mode selection from the decision plot, while

intuitive, was shown to be a subjective where reasonable interpretations may greatly

differ. Also shown was the sensitivity of the density peaks clustering method to noise in

this estimate and issues caused by the allocation mechanism allocating instances across

regions of very low density. In the next sections, two novel methods are introduced

that retain the intuitive nature of the density peaks clustering method, while allowing

for extended theoretical guarantees, improved robustness to fluctuations in the density

estimate, and allocation mechanisms that respect the geometry of the clusters.
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4 Modal-Set Detection with the Peak-

Finding Criterion

4.1 Summary

As discussed previously, the density peaks clustering algorithm detects modes as points

with high density and large distance to points of higher density, and hence often fails to

adequately represent clusters with areas of relatively uniform density. In this chapter,

we develop an improved clustering algorithm, aiming at enhancing the applicability

of the peak-finding technique. The improvements are twofold: (1) the algorithm is

robust to noise in the density estimate and thus detects clusters at varying densities;

(2) the algorithm is competent at deciding the correct number of clusters, even when

the number of clusters is very high. Improvements in the clustering performance of

the novel algorithm relative to the density peaks clustering method are the result of

directing the peak-finding technique to discover modal sets, rather than point modes.

We present a theoretical analysis of our approach and experimental results to verify

that our algorithm works well in practice and executes efficiently. We demonstrate a

potential application of this method for unsupervised face recognition.

4.2 Introduction

A key drawback of the density peaks clustering procedure is that the points with max-

imal values of the peak-finding criterion are often poor representations of the clusters.
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This is most prevalent when the data contain both high- and low-density clusters and

is compounded when the true density is relatively uniform over large regions. Noise

in the density estimate leads to multiple points from high-density clusters being erro-

neously selected as centers, while true clusters of lower density are ignored. Previous

attempts to improve the detection of low-density modes involve incorporating infor-

mation about points of lower local density into the density (Chen et al., 2018) and the

distance (Li and Tang, 2018). However, these approaches do not remedy the harms

caused by variations in the underlying density estimate. To formulate a robust mode-

finding procedure, we direct the density peaks clustering procedure to identify locally

high density regions of the dataset.

QuickShift++ (Jiang and Kpotufe, 2017; Jiang et al., 2018) improves on both mean

shift and quick shift by modelling locally high-density regions using cluster cores. Clus-

ter cores extend the concept of point modes to sets of points of arbitrary shape, size

and density level. Cluster cores are parameterized by β ∈ (0, 1), which determines

how much the density can fluctuate within a cluster. Using cluster cores instead of

point modes reduces the risk of selecting multiple centers from a high-density cluster

as they are less sensitive to the chance variation that occurs in the empirical density

estimate. As a result, cluster cores better capture locally high-density regions of the

support X .

We introduce Density Core Finding (DCF), a novel clustering method that uses the

peak-finding criterion to estimate these cluster cores. The peak-finding criterion is

computed for each point, and the instance with maximum value is selected as a center.

The cluster core containing this center is then found, and all instances belonging to it

are removed from consideration as potential centers. The algorithm continues detecting

cluster cores until no more remain in the data. The allocation procedure is unchanged

from the density peaks clustering method of Algorithm 1, each non-center point is

allocated to the same cluster as its nearest neighbor of higher empirical density. The

benefits offered by DCF are illustrated in Figure 4.1.
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Figure 4.1: An illustration containing two clusters. The black curve represents the
underlying density and the grey histogram represents a sample from the density. Left:
Density peaks clustering incorrectly selects both centers from the first cluster, as the
noise in the density estimate causes the peak-finding method to favor the high-density
cluster. Right: Cluster cores, represented by dashed lines, better represent the cluster
centers.

In our theoretical analysis, we discuss the necessary conditions for DCF to be guaran-

teed to recover all of the true modes in the data, as well as certain difficulties imposed

by directing the search with the peak-finding criterion. We demonstrate that DCF

recovers clusters of the same quality as QuickShift++, while being faster in execution.

The improved quality of the clustering results from DCF compared to DPC and Quick-

Shift++ is illustrated using a range of real-world datasets. Finally, we demonstrate the

superiority of DCF over competitor methods in a popular application of density-based

clustering: large-scale face recognition.

4.3 Related Work

The notion of cluster cores originates in the analysis of the cluster tree, as introduced

in Section 2.2.2. Considering again the example given in Figure 2.6, the cluster tree

at the level λ1 shows two branches, representing the two connected components of

the level set L(λ1). One of these components is clearly related to the mode x∗
1 as x∗

1

is the only mode contained within it. This component is said to be the core of the

cluster associated with x∗
1. The remaining component is not yet associated with only

one mode, as it contains both x∗
2 and x∗

3. The remaining two cores are observed at

the level λ2. A core is termed by Menardi (2015) to be the largest level-set connected
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components that contain one mode only. They are detected at the density level at

which a branch of the cluster tree splits into more than one child branch.

Jiang and Kpotufe (2017) introduce an alternate notion, termed modal-sets. Modal-

sets generalize the concept of a point mode as they are subsets of X where f is locally

maximal. The procedure they introduce estimates the modal-sets by searching the

instances in descending order of estimated density. For each instance, an estimate

of the level set at the level of its estimated density is found. If the subset of this

estimated level set containing the point is disconnected from all previous modal-set

estimates, it is accepted as a modal-set. Once all points have been assessed, the points

not contained in modal-sets are assigned to the cluster of their nearest modal-set,

in terms of the Euclidean distance. The authors provide consistency guarantees on

the recovery of true modal-sets in the data. A subsequent work Jiang et al. (2018)

synthesizes the notion of modal-sets and cores to define cluster cores. The concept

of cluster cores extend modal-sets by allowing the underlying density within a cluster

core to vary, and parameterizes the amount of variation by β ∈ (0, 1). This better

accounts for fluctuations in the estimated density observed when clustering real data.

They introduce QuickShift++ which improves on the procedure of Jiang and Kpotufe

(2017) by using a hill-climbing procedure to allocate points to the same cluster as their

nearest neighbor of higher local density.

Cluster cores have obvious benefits for the density peaks clustering procedure, resolving

the issues caused by clusters of varying density, and exacerbated by noise in the density

estimate. Incorporating cluster cores into the density peaks clustering procedure also

leads to improvements over the QuickShift++ method. Firstly, the peak-finding crite-

rion provides a more efficient ordering for the search of level sets than empirical density

alone. Coupled with the termination criteria to be introduced later, we demonstrate

that the number of assessments completed is reduced on average by 98%.
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4.4 Our Method

An example of the operation of DCF is illustrated in Figure 4.2. The figure depicts

the Noisy Circles dataset containing two clusters, a high-density cluster (inner circle)

and a low-density cluster (outer circle). The density peaks clustering method, as seen

on the left of the figure, proceeds by searching for the points with maximal values of

the peak-finding criterion. This method erroneously selects the multiple centers from

the inner cluster. The allocation mechanism incorrectly assigns all points in the outer

cluster. For this example, seven points in the inner cluster have larger value of the

peak-finding criterion than the maximum value in the outer cluster.

The DCF procedure can be seen on the right of the figure. We first select the instance

of maximum density as the first peak. However, DCF proceeds to compute the cluster

core associated with this point, the highlighted green points, and remove all elements

of the core from consideration as centers. Of those remaining, the point with maximal

value of the peak-finding criterion is in the outer cluster. The associated cluster core

is visible in yellow. As no edge in the k-NN graph exists between this cluster core and

the first cluster core, it is accepted as a valid cluster core. The algorithm’s termina-

tion procedure is invoked when assessing a third center. The third center is selected

as before; however, as the cluster core associated with this point contains all of the

instances in the dataset, the algorithm terminates.

4.4.1 Notation and Definitions

The formal definitions and notations for the peak-finding part of this approach are

the same as those introduced in Section 3.2. Similarly, Assumptions 1-5 introduced in

Section 3.4 are taken as before. Following Jiang et al. (2018), we define the cluster core

with respect to a fixed fluctuation parameter β. In what follows, a closed connected set

refers to a set which cannot be divided into two disjoint non-empty closed sets.

Definition 8. Let 0 < β < 1. A closed and connected set M ⊂ X is a cluster core if
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Figure 4.2: The Noisy Circles dataset example containing two clusters, one high-density
cluster (the inner circle) and one low-density cluster (the outer circle). Left: DPC
incorrectly selects multiple centers from the high-density cluster. Right: DCF uses the
darkened points as the respective cluster cores, resolving the error in clustering.

M is a maximal connected subset of {x ∈ X : f(x) ≥ (1− β) ·maxx′∈M f(x′)}.

Varying the fluctuation parameter β determines the magnitude of the cluster cores. It

is also shown in Jiang et al. (2018) that if M1, M2 are distinct cluster cores of f then

M1 ∩M2 = ∅, namely cluster cores do not overlap.

To estimate the cluster cores, we use the level sets of the mutual k-NN graph.

Definition 9. For every x ∈ Rp, let rk(x) denote the distance from x to its k-th

nearest neighbor in X. The mutual k-NN graph G(X, E) consists of the vertex set

X and the edge set E. There is an edge between two vertices xi and xj, denoted by

{xi,xj} ∈ E, if and only if ∥xi − xj∥ ≤ min(rk(xi), rk(xj)). That is, an edge exists

between the vertices xi and xj, only if they are a k-nearest neighbor of each other.

The level sets of G, namely G(λ), are defined as before. It has been shown in Chaudhuri

et al. (2014) that the λ-level connected components of f are well approximated by the

component sets of G(λ). As the value of λ decreases, the component sets of G(λ) are

hierarchically nested.
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Algorithm 2: DCF Algorithm

Input: Neighborhood parameter k, fluctuation parameter β.
Output: A set of clusters Ĉ
1: Initialisation: M̂ = ∅, Assessed = ∅, G⃗(X, E⃗), a directed graph with X as

vertices and no edges, E⃗ = ∅.
2: Sort the x’s in decreasing order of γ values.
3: Find x = argmaxx∈X γ(x).

4: Define λ := f̂k(x).
5: Let Sβ(x) be the connected component of G(λ− βλ) containing x.

6: Add Sβ(x) to M̂ and to Assessed.
7: repeat
8: Find x = argmaxx∈X {γ(x) : x /∈ Assessed}.
9: Define λ := f̂k(x).
10: Let Sβ(x) be the connected component of G(λ− βλ) containing x.
11: Add Sβ(x) to Assessed.

12: if Sβ(x) is disjoint from all cluster cores in M̂ then

13: Add Sβ(x) to M̂.
14: end if
15: until X ⊆ Assessed.
16: for each x in X\M̂ do
17: Add a directed edge from x to b(x).
18: end for
19: for each estimated cluster core M̂ ∈ M̂ do
20: LetC be the collection of the points connected by any directed path in G⃗(X, E⃗)

that terminates in M̂ .
21: Add C ∪ M̂ to Ĉ.
22: end for
23: return Ĉ
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4.4.2 The DCF Algorithm

The DCF algorithm takes as input the dataset X and uses parameters k and β to

return the final set of clusters Ĉ. Initially, the set of estimated cluster cores M̂ = ∅

and the cluster assignment graph G⃗(X, E⃗) is initialised with vertices as the points of

X and no edges. DCF computes the peak-finding criterion for each point and selects

the instance x with maximal value (Lines 1-2). The density level is set to λ − βλ

where λ = f̂k(x). The level set graph G(λ − βλ) is found, and the component set

Sβ(x) containing x is the first cluster core and is added to M̂. All points from Sβ(x)

are added to Assessed and thus excluded from further consideration (Lines 3-5).

Next, the instance x with maximal value of the peak-finding criterion yet to be assessed

is selected. The density level is set to λ− βλ where λ = f̂k(x) (Lines 7-8). The level

set graph G(λ − βλ) is updated and the component set of G(λ − βλ) containing

x, namely Sβ(x), is found. Firstly, all points in Sβ(x) are added the set Assessed

and hence excluded from future consideration as cluster cores (Lines 9-10). Then, if

Sβ(x) is disjoint from all sets in M̂, then Sβ(x) is added to M̂ (Lines 11-13). The

algorithm proceeds adding will be treated as a cluster core and cluster cores to M̂

until the termination criteria is met, i.e., all points have been added to Assessed (Line

14).

After the set of estimated cluster cores has been returned, edges are added to the graph

G⃗(X, E⃗) from each non-core point x to b(x) (Lines 15-17). The points in a cluster

core M̂ together with all the vertices that have paths terminating in M̂ form a cluster

that is added to Ĉ (Lines 18-22). Proceeding in this way, each sample point will be

assigned to a unique cluster.

4.5 Analysis of DCF

DCF selects the first point in the ordered sequence (of remaining points) to identify

the cluster core and then removes all the points in the cluster core from the ordered
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sequence. As DCF assesses only a small fraction (≈ 2%) of the data points, and the

scale of the distance ω(x) is problem specific, it is not guaranteed that DCF will detect

all the cluster cores.

4.5.1 Theoretical Analysis

In this section, we provide theoretical insights into DCF in two forms: firstly giv-

ing guarantees about the performance of DCF for samples of any size; secondly, we

provide an analysis showing that DCF extends the theoretical guarantees available to

the density peaks clustering method in Section 3.3. We demonstrate that DCF can,

with high probability, estimate each cluster core of the underlying probability density

bijectively.

Operational Guarantees

Here, we provide guarantees on the detection of disconnected clusters with DCF. We

describe a problematic case in which DCF will fail to detect the true clusters in the data,

and subsequently demonstrate why such a case is unlikely to occur in real datasets.

Finally, we provide guarantees related to the termination criterion used in DCF.

Proposition 1. Any cluster that corresponds to a component set in the mutual k-NN

graph will be recovered by DCF.

Proof. If the cluster corresponds to a component set in the mutual k-NN graph G, the

related cluster core is a subgraph of the component set and hence is disconnected with

other component sets in the graph. The if statement in Line 11 of Algorithm 4.4.2 will

always be satisfied. According to the definition of a mutual k-NN graph, the points

of the cluster that are not in the cluster core will always be linked to a point in the

cluster core by a directed path.

It is immediately clear from Prop. 1 that

Corollary 1. If all clusters are mutually disconnected in the graph G, then DCF will
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recover the exact clustering.

We here describe a scenario in which DCF fails to detect the true clusters in the data.

Consider the mode estimate xT at which the procedure will terminate, with density

f̂k(xT ) = λT , and distance to its nearest neighbor of higher local density ω(xT ). The

peak-finding criterion value at xT is γ(xT ). When λT − βλT is less than the minimum

density level in the data. The level set graph G(λT −βλT ) contains all the points in X,

and hence the algorithm terminates. Consider the illustrative example in Figure 4.3.

Here we see a component set Sβ(xT ) containing xT . As the density level of all points

in Sβ(xT ) is at least λT − βλT , once xT is assessed the algorithm will terminate. The

point x∗ with density f̂k(x
∗) = λ∗, will only be assessed by DCF if γ(x∗) > γ(xT ).

As λ∗ > λT , we require

ω(x∗) >
λT
λ∗
ω(xT ), (4.1)

for x∗ to be assessed. As the quantity ω(xT ) is not bounded in general, we cannot

guarantee that all modes will be assessed in the DCF procedure.

It should be noted that the scenario described above is unusual in the peak-finding

context. Previous work has highlighted the inability of the peak-finding criterion to

 

 

&!

' &!

&∗
'(&∗)

λ! − βλ!

λ∗ − βλ∗

Figure 4.3: An illustration of the difficulties posed by the peak-finding criterion. Note
that the termination point xT has potentially unbounded ω(xT ), inhibiting detection
of the cluster core containing x∗.
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detect low-density clusters. To understand why this scenario is unlikely in practice,

we adapt results from studies of mutual k-NN graphs to show that the probability of

there being a path in the connected graph between xT and any other cluster decreases

as the distance ω(xT ) increases (Maier et al., 2009).

The distance between sets A,B ⊆ Rp is d(A,B) = inf{∥x− y∥ : x ∈ A,y ∈ B}. We

denote the closest connected component to Sβ(xT ) as S
′
β(xT ). We assume that there

exists β̃ > 0 such that d(Sβ̃(xT ),S
′
β̃
(xT )) ≥ uT > 0 for some uT representing the lower

bound between the components. Note that uT ≤ ω(xT ) as ω(xT ) is the distance from

xT ∈ Sβ̃(xT ) to a point in the component S′
β̃
(xT ). We require a lower bound on the

probability mass of balls of radius uT around points in Sβ̃(xT )

ρT ≤ inf
x∈Sβ̃(xT )

µ (B(x, uT )) ,

where µ(·) is the Lebesgue measure on Rp. As the distance from Sβ̃(xT ) to all other

clusters increases, the value of ρT increases. We denote by rk(A) = maxx∈A rk(x) the

maximal k-NN radius of the points in A. Finally, it is required to denote by Dβ the

event in which ∥f̂k(x)− f(x)∥ ≤ β̃λT for all sample points in Sβ̃(xT )∪S′
β̃
(xT ).

Proposition 2 (Prop. 6 of Maier et al. (2009)). Let Iβ denote the event that the

subgraph of samples in Sβ̃(xT ) is isolated in G(λT − βλT ). Then, given β < β̃, k <

ρTn
2

− 2 log(µ(Sβ̃(xT ))n) we obtain

Pr ((Iβ)
c) ≤ Pr

(
rk(Sβ̃(xT )) ≥ uT

)
+ Pr (Dβ)

≤ exp

(
−n− 1

2

(
ρT
2

− k − 1

n− 1

))
+ Pr (Dβ) .

From this result, we see that the probability of the set being connected in the graph

decreases as the quantity ρT , and thus uT , increases. To interpret this result in the

context of DCF, consider fixing the pairwise distances of points within Sβ(xT ), and
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increasing ω(xT ). We see that as the magnitude of ω(xT ) increases, the magnitude of

uT increases accordingly, and the probability of xT being connected to the remainder

of the graph decreases.

There are several statements regarding the termination level that can be guaran-

teed.

Proposition 3. If DCF terminates at xT with termination density level λT − βλT ,

λT − βλT is at least as low as the lowest dip in density between clusters in X.

Proof. Following the discussion above, if xT is the termination point, then λT − βλT

is at most the minimum local density of the points in the data. The result follows.

While obvious, this statement ensures that the termination density level is low when

there is a reasonable degree of separation between clusters in the data.

Proposition 4. If DCF assesses a point x with f̂k(x) = λ < λT and x lies in the same

connected component of G as xT , the connected component of G(λ− βλ) containing x

will not be accepted as a cluster core.

Proof. Taking the set of points in the connected component of G containing x and xT

to be X ′ and the connected component of G(λ − βλ) to be Sβ(x). For Sβ(x) to be

accepted as an estimated cluster core, we require Aβ(x) to be disjoint from all cluster

cores in M̂. But λ < λT , hence G(λT − βλT ) ⊆ G(λ− βλ). As xT is the termination

point, G(λT − βλT ) is connected and X ′ ⊆ G(λT − βλT ). Hence, Sβ(x) is not disjoint

from any cluster core in M̂.

This guarantees that no modes are missed even if the termination density level is

high.

Consistency Guarantees

The notion of cluster cores can be understood, from a different perspective, as a method

for pruning spurious estimates from the set of estimated modes. The cluster cores func-
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tion in a similar way to the pruning method of Chaudhuri et al. (2014). There, the

authors consider the problem of estimating the cluster tree using nearest neighbor

graphs. Suppose S, S′ ⊂ X are not connected in G(λ) at some level λ. They demon-

strate that a procedure which reconnects S and S′ if they are connected in G(λ′) where

λ′ < λ is a nearby lower level of the density correctly prunes spurious separations in

the cluster tree.

Dasgupta and Kpotufe (2014) translates this framework for mode detection. As the

component sets of the cluster tree will, if correctly estimated, each contain one mode

of the underlying density, the pruning method allows for bijective estimation of the

true modes above a certain density level λ using nearest neighbor graphs. Further,

since λ → 0 as n → ∞, they demonstrate that their procedure consistently prunes

false modes. The analogy to cluster cores is easily drawn. The DCF procedure will

only retain an estimated mode, say x∗, with f̂k(x
∗) = λ∗ if is is contained in a separate

component set of the graph G(λ∗ − βλ∗). The process of determining a cluster core is

thus equivalent to the pruning procedure undertaken in Dasgupta and Kpotufe (2014).

The correspondence allows for the following result, given in previous work on cluster

cores in Jiang et al. (2018), stating that the cluster core estimates returned by DCF

estimate the cluster cores of f bijectively and consistently. Before proceeding, the

definition of the Hausdorff distance between two sets is required.

Definition 10. For M ⊂ X , x ∈ X , let d(x,M) := infx′∈M ∥x−x′∥. The Hausdorff

distance between A,B ⊂ X is defined as d(A,B) := max{supx∈A d(x,B), supx′∈B d(x
′,A)}.

Theorem 3 (Adapted from Theorem 1 of Jiang et al. (2018)). Suppose Assumptions 1-

4 hold. Further assume the event in Proposition 2, namely that no cluster core has been

ignored by early termination of the algorithm. Let 0 < β < 1 and ϵ, ζ > 0 and suppose

that k = k(n) is chosen such that log2 n/k → 0 and n4/(4+p)/k → 0. Let M1, . . . ,Mm

be the cluster cores of f . Then for n sufficiently large depending on f, ζ, ϵ and β, with

probability at least 1− ζ, DCF returns m cluster core estimates M̂1, . . . ,M̂m such that

Mi ∩X ⊆ M̂i ⊆ Mi +B(0, ϵ) for i = 1, . . . ,m.
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Proof. To prove this theorem, we require (1) guarantees on the rate at which a cluster

core M is approximated by some estimate in M̂ and (2) guarantees that any estimated

cluster core in M̂ at a sufficiently high level, corresponds to a true cluster core of f at

a nearby level.

The first result required is Theorem 3 of Jiang and Kpotufe (2017). In that work,

the theorem is proved for all densities f . We present the theorem adapted for the

assumption that the density is Hölder continuous, in Assumption 1.

Theorem 4 (Theorem 3 of Jiang and Kpotufe (2017)). Let ζ > 0 and M be a cluster

core. Select k = k(n) such that log2(n)/k → 0 and n4/(4+p)/k → 0 as n → ∞. Then

with probability at least 1− ζ, there exists M̂ ∈ M̂ such that

d(M ,M̂ ) ≤
√

8cζn
č

· λ · 1

k1/4
,

where λ = maxx∈M f(x).

Thus for all cluster cores M of f , M̂ contains at estimate of it at the given rate. For

instance, the choice k = O(n4/(4+p)) optimizes the rate to O(n−1/(4+p)). The second

result adapts Theorem 4 of Jiang and Kpotufe (2017), again presented for Hölder

continuous densities.

Theorem 5 (Theorem 4 of Jiang and Kpotufe (2017)). Let 0 < ζ < 1 and let k

be chosen such that log2(n)/k → 0 and n4/(4+p)/k → 0 as n → ∞. There exists

λ0 = λ0(n, k) such that the following holds with probability at least 1 − ζ. All cluster

core estimates in M̂ chosen with maximum density λ at level λ ≥ λ0 can be injectively

mapped to cluster cores
{
M : λM ≥ minx∈X:fk(x)≥λ−βλ f(x)

}
. Furthermore, λ0 → 0

as n→ ∞.

Thus under the assumption that f is Hölder continuous, any estimate above the level

λ0 corresponds to a true cluster core of f . Taken together, these results immediately

imply the statement in the theorem. The second result guarantees that for n sufficiently
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large, any cluster core Mi will have an estimate M̂i ∈ M̂. The first result shows that

the estimate M̂i → Mi in Hausdorff distance, yielding both Mi ∩ X ⊆ M̂i and

M̂i ⊆ Mi +B(0, ϵ) for i = 1, . . . ,m.

This result shows that DCF recovers estimates of the population cluster cores bijec-

tively. Further, the result in Theorem 2 shows that the assignment strategy of DCF

allows for the correct clustering the the attraction regions associated with the cluster

cores.

4.5.2 Complexity Analysis

The most computation-intensive task is creating the mutual k-NN graph which requires

O(nk log(n)) operations on average. Another major computational burden is finding,

for each point, its nearest neighbor of higher density. For the points which do not have

a point of higher density in their neighbors, this requires O(n) operations. In practice,

the proportion of instances without a point of higher density in their neighbors is

typically less than 1%, as long as k is not too small. As such, for the vast majority

of instances, this requires O(k) operations. Assessing each cluster core requires O(nk)

operations. The assignment mechanism requires O(n) operations. As such, we see that

the complexity of DCF is near linear in n and k.

4.5.3 Simulated Experiments

In order to demonstrate that DCF does not, in practice, ignore modes due to extreme

values of ω(xT ) at termination, we compare DCF and QuickShift++ on a range of

simulated datasets.

The analysis in the previous section indicates that the performance of DCF depends on

the degree of separation of clusters. To assess the impact of separation on our method,

we generate data as proposed in Dasgupta (1999) and Verbeek et al. (2003). Gaussian
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Figure 4.4: Three of the generated datasets used in Section 4.5.3, with separation
values c = 0.2, 1.5 and 4.2 respectively.

components are sampled so that their means satisfy the following inequality:

∀i ̸=j : ∥µi − µj∥ ≥ cmax
i,j

{tr(Σi), tr(Σj)},

where c controls the degree of separation of the clusters. For each mixture compo-

nent, we fix the eccentricity (the ratio of the largest to the smallest eigenvalue of the

covariance matrix) as one. We generate mixtures of five components with data sizes

ranging from n = 1000 to n = 2000 in increments of 20, data of dimension p = {2, 5},

and degrees of separation ranging from c = 0 (low) to c = 5 (high) in increments of

0.05. For each configuration we repeat 10 times. Three of the generated datasets are

show in Figure 4.4. For both DCF and QuickShift++, we assess k = {40, 50} and

β = {0.3, 0.5, 0.7}.

In Figure 4.5, the similarities in performance of DCF and QuickShift++ are shown.

In the left plot, we compare the number of cores recovered from the data as the

separation parameter c increases. The number of cores returned by DCF tracks the

number returned by QuickShift++. In fact, the number of cores returned by DCF

is fractionally higher than that of QuickShift++ for a large range of values of the

parameter c. This is a direct result of the different approaches to the ordering of data

points. This result demonstrates the ability of DCF to recover modes in the data. The

quality of the clusterings returned by both methods, measured by the Adjusted Rand

Index (ARI), were within 1% for each value of c and, as a result, are not shown.

On the right of Figure 4.5, we include an analysis of the fraction of points assessed
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Figure 4.5: Left: The number of cluster cores (#Cores) recovered from each dataset as
a function of the separation parameter c for both methods. These results are averaged
over the different data sizes, dimensions, repetitions, and parameter values. Right:
Plotted is the proportion of instances assessed as potential modes (Prop. Assessed) in
DCF for values of β = {0.3, 0.5, 0.7} as a function of the separation parameter c.

by DCF for three values of β = {0.3, 0.5, 0.7}. Recall that QuickShift++ assesses

every instance in X. For each of the three values, we see that the proportion of

instances assessed by DCF is less than 2%, an impressive result given the quality of

the clusterings returned. This highlights the ability of the peak-finding criterion to

determine modes in the data efficiently.

4.5.4 Real-World Experiments

In this section, we compare the performance of DCF with the two method most similar

to it in the literature, namely QuickShift++ and the density peaks clustering algorithm

of Chapter 3. DCF is motivated in two ways (1) that algorithms which estimate cluster

cores are more robust than those that seek point modes in the data, and (2) that the

peak-finding criterion provides a more efficient method for searching for cluster cores in

the data, than does the search in descending order of the density used in QuickShift++.

To quantify the clustering performance and algorithmic efficiency improvements, we

here evaluate all three methods on a selection of real-world datasets. All experiments

have been conducted on a PC running Debian 10 (Buster), consisting of 24 cores and

24GB of RAM. Our method is implemented in Python; its source code, and code to

reproduce the below experiments is available online.1

1https://github.com/tobinjo96/Thesis-Experiments/
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Experimental Set-Up

DCF is assessed on five real-world datasets collected from the UCI Machine Learning

Repository (Dua and Graff, 2019) and the Phonemes dataset (Hastie et al., 2009).

Details of the datasets can be found in Table 4.1. Instances with missing values are

removed. To assess the performance of DCF on these datasets, we apply the den-

sity peaks clustering method (DPC) with the k-NN density estimator implemented

in Python and QuickShift++ (QSP) (Jiang et al., 2018) implemented in Python and

C++.

To evaluate the clusterings produced by DCF, CPF, and the competitor methods,

we adopt two widely used external indices: Adjusted Rand Index (ARI) (Hubert and

Arabie, 1985) and Adjusted Mutual Information (AMI) (Vinh et al., 2010), each com-

paring clusterings to ground truth labels available from the data. For both metrics, a

larger value indicates a higher-quality clustering.

Results

The results of the clustering are presented in Table 4.2 and Table 4.3. DCF achieves

the best clustering, for at least one of the metrics for every data set analyzed. The

performance of QuickShift++ is comparable to that of DCF, reflecting the similarities

in the methodologies. The density peaks clustering method performs well for the

Dermatology and Phonemes datasets. The performance is not consistent however, with

poor clustering returned for the Ecoli and Letter Recognition datasets, in particular.

It can be concluded that cluster cores effectively model high density regions in the

data, and prove more robust to the noise present in real world samples compared to

point estimates of the modes.

The average run time, in seconds, for the three methods is presented in Table 4.3.

For the small datasets used in the analysis, namely the Dermatology, Ecoli and Glass

datasets, QuickShift++ executes the fastest, with DPC and DCF marginally slower.

It is likely that the implementation of QuickShift++ in C++ is better optimized than
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Source Name n p m

Dua and Graff (2019) Dermatology 358 34 6

Dua and Graff (2019) Ecoli 336 7 8

Dua and Graff (2019) Glass 214 9 6

Dua and Graff (2019) Letter Recognition 20000 16 26

Dua and Graff (2019) Page Blocks 5743 10 5

Hastie et al. (2009) Phonemes 4509 256 5

Table 4.1: Characteristics of the real-world datasets.

the implementations of DCF and DPC used in the analysis. We see that for larger

datasets, the methods that use the peak-finding criterion have the fastest run time.

The difference is most pronounced for the Letter Recognition dataset, the dataset with

the most points in our experiments. DCF achieves a roughly 40% speed up compared

to QuickShift++ for this dataset, as the search is restricted to points with large values

of the peak-finding criterion. To support the run time analysis, the proportion of

instances visited by DCF is presented in Figure 4.6. This proportion is almost always

less than 1% for Letter Recognition, Page Blocks and Phonemes, the three larger

datasets in our analysis.

Further experimental analysis, as well as a thorough analysis of the parameter space

for DCF is provided in Chapter 6.

4.6 Application

Face recognition has become a central problem in deep learning in recent years (Wang

et al., 2018a). However, the majority of work relies on large labelled datasets for use

in training. As the number and volume of datasets increases, effective unsupervised

face recognition methods will be required. DCF is applied to two large image datasets

to demonstrate its ability to perform unsupervised face recognition. We use a sample

of the MS-Celeb-1M data (Guo et al., 2016) consisting of 17,146 identities, each with

roughly 100 images. The YouTube Face dataset (YTB-Faces) (Wolf et al., 2011) is

another benchmark image dataset. We use the sample of this dataset in Yang et al.
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Dataset Metric DCF QSP DPC

Dermatology ARI 0.73 0.70 0.72

AMI 0.78 0.78 0.84

Ecoli ARI 0.73 0.73 0.47

AMI 0.68 0.68 0.57

Glass ARI 0.31 0.31 0.24

AMI 0.41 0.41 0.31

Letter Recognition ARI 0.20 0.20 0.05

AMI 0.59 0.59 0.25

Page Blocks ARI 0.48 0.48 0.22

AMI 0.32 0.32 0.21

Phonemes ARI 0.76 0.76 0.75

AMI 0.83 0.81 0.81

Table 4.2: Quality of clusterings for the real-world datasets.

Dataset DCF QSP DPC

Derm. 0.10 0.03 0.10

Ecoli 0.09 0.02 0.08

Glass 0.08 0.05 0.07

Letter R. 11.13 19.21 10.43

Page B. 0.73 1.61 0.66

Phonemes 8.34 8.79 9.18

Table 4.3: Average run time of the assessed clustering methods for the real-world
datasets.

(2019) of 155,282 frames with 1,595 identities. For both datasets, we apply DCF to

numerical features extracted using a trained CNN.2 Sample images from the datasets

are presented in Figure 4.7 and details of the datasets can be found in Table 4.4.

To assess the performance of DCF on these datasets, we compare it directly with Quick-

Shift++ as is scalable to large datasets and does not require the number of clusters

to be provided as an input. As the number of clusters is not likely to be provided for

such an application, scalable adaptations of density peaks clustering (e.g. the method

introduced in Sieranoja and Fränti (2019)) are not suitable for comparison.

2https://github.com/yl-1993/learn-to-cluster (GitHub Repository)
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Figure 4.6: The proportion of instances assessed as modes by DCF for each of the six
datasets and for all assessed parameter values. Note the log scaling of the y-axis.

Source Name n p m

Guo et al. (2016) MS-Celeb-1M 1,160,507 256 17,146

Wolf et al. (2011) YTB-Faces 155,282 256 1,595

Table 4.4: Characteristics of the face recognition datasets.

Dataset Metric DCF QSP

MS-Celeb-1M ARI 0.90 0.83

AMI 0.96 0.92

YTB-Faces ARI 0.69 0.52

AMI 0.91 0.88

Table 4.5: Quality of clusterings for the face recognition datasets.

Dataset DCF QSP

MS-Celeb-1M 835.14 2787.77

YTB-Faces 1419.02 1593.89

Table 4.6: Average run time for the DCF and QuickShift++ methods for the two
image datasets.

4.6.1 Results

The results of the experiments for both datasets are given in Table 4.6. DCF achieves

exceptional results for both datasets. MS-Celeb-1M and YTB-Faces are challenging
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(a) MS-Celeb-1M

(b) YTB-Faces

Figure 4.7: Three samples from two clusters present in each of the face recognition
datasets.

datasets due to the large size and extremely large number of clusters. DCF achieves

the highest quality clustering for both ARI and AMI. The impressive results of both

DCF and QuickShift++ indicate that cluster cores are well suited to the problem of

face detection. DCF shows slightly better performance. As clusters in face recognition

data tend to be relatively well separated, the peak-finding criterion quickly traverses

disconnected components in the mutual k-NN graph.

We report the average run time, in seconds, for each of the methods in Table 4.6.

The peak-finding criterion leads to dramatically reduced run time for DCF compared

to QuickShift++. For MS-Celeb-1M, DCF executes in less than 1/3 of the time of

QuickShift++ and also executes faster for YTB-Faces.
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Figure 4.8: Analysis of effects of DCF parameters k and β for face detection datasets.
The ARI is shown in purple and the AMI in green.

We provide an analysis of the parameter space for the face recognition datasets in

Figure 4.8. Again we see that DCF is robust for a large range of values for k and

β. As the size of the dataset increases, we observe that the optimal value for k is

approximately log(n). Choosing k ≈ log n instead of
√
n, has the added benefit of

reducing the computation required to construct the k-NN graph.

4.7 Conclusion

This article introduced DCF, an improved algorithm for clustering using modal sets and

density peaks. We showed that modelling high-density regions of the data using cluster

cores achieves better results than using modes, and that the peak-finding criterion

effectively locates cluster cores in the data. Theoretical guarantees on the performance

of DCF were provided, supported by results from simulation studies. Experimental

results further demonstrated that DCF has excellent performance. It achieves superior

results over a range of benchmark datasets and indices when compared to the density
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peaks clustering method, and achieves results similar to those of QuickShift++ with

less computation. Finally, we showed the ability of DCF to perform unsupervised face

recognition, a challenging contemporary clustering problem. DCF is both efficient and

robust, gracefully scaling to big datasets and achieving exceptional performance over

a broad range of parameter values.
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5 Peak-Finding on Density-Level Sets

5.1 Summary

The density peaks clustering algorithm introduced in Chapter 3 and the density core

finding method of Chapter 4 provide reliable estimates of the high density regions in

the data. Moreover, as demonstrated previously the allocation method, which assigns

instances to the same cluster as their nearest neighbor of higher estimated density is

provably consistent as the sample size increases. However, for datasets of typical size,

allocating instances using a sample-based analogy to gradient ascent of the density can

fail. In this case, the clusterings returned by the density peaks clustering method, and

its derivative methods, often contradict geometrical intuition about the structure of

the clusters. Furthermore, as the method does not consider the changes in the density

between instances, the allocation method can assign instances across regions of very

low density. Aiming to remedy the issues with the allocation approach while retaining

the excellent mode detection performance of the density peaks clustering method, we

here develop a new scalable and automatic clustering algorithm combining the benefits

of both level set and mode-seeking approaches to non-parametric clustering. The im-

provements are threefold: (1) the assignment methodology is improved by applying the

density peaks methodology within level sets of the estimated density; (2) the algorithm

is not affected by spurious maxima of the density and hence, is competent at automat-

ically deciding the correct number of clusters; (3) the computational complexity of the

algorithm is near linear in the number of data points. We present extensive experi-

mental results to verify that our algorithm works well in practice. Finally, a modified
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version of our approach is presented, by integrating instance-level constraints on the

clustering. We show that this modified version of our approach achieves excellent per-

formance for an important problem in computer vision, multi-image matching.

5.2 Introduction

As discussed previously, non-parametric clustering methods conceptualise clusters as

sets of objects spread over contiguous regions in the data space with consistently high

density, separated from each other by contiguous regions of low density. These regions

can be of arbitrary shape and size, and found deterministically for a given dataset using

density-based approaches. Two contrasting methodologies dominate the literature in

this area: level set approaches and mode-seeking methods.

Density-level set methods estimate clusters as the sets of points resulting from a cut

through the probability density function at a certain density level. Such cuts induce

connected regions in the feature space where the density is greater than the cut thresh-

old. The points in each region form the clusters. As discussed in Section 2.2.2, the

most prominent level set approach is DBSCAN (Ester et al., 1996). Furthermore, there

exists an extensive literature describing how nearest neighbor (k-NN) graphs estimate

density-level sets (Maier et al., 2009; Kpotufe and von Luxburg, 2011; Steinwart, 2011).

Density-level sets quickly and reliably detect points of extremely low density and re-

move them as outliers. Moreover, they determine the number of clusters automatically.

Such methods, however, are not well suited to data containing clusters of varying den-

sities, where selecting the appropriate cut level can prove impossible. If no appropriate

cut level recovers the true clusters, the clusters returned by level set methods are likely

to under-segment the data.

Mode-seeking approaches, by contrast, take the approach of first aiming to estimate

the regions of maximal density, i.e, the modes of the underlying probability distribution

and subsequently exploit the shape of the density to assign instances to clusters based

on the gradient of the density. The density peaks clustering algorithm, as shown in
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Chapter 3 applies this methodology in a sample-based framework. The estimates of

the modes are found using solely statistics of the observed sample, and the assignment

method uses the observed data and the estimated density of each point to approximate

the ascent of the density. The sample-based framework, while efficient and, as shown

previously, provably consistent as the number of observations increases, is susceptible

to errors resulting from estimating the density for the sample.

We introduce Component-wise Peak-Finding (CPF), a scalable and flexible density-

based clustering method that combines the benefits of both density-level set and mode-

seeking methods, first using connected components of a mutual k-NN graph to detect

areas of the data separated by regions of very low density and remove outlying points.

To each component set, we apply the density peaks clustering method to propose

potential cluster centers. True centers and the resulting clusters are automatically

extracted from the data using a criterion based on density-level sets. The complexity

of our algorithm is of the order O(nk log(n)), near linear in k and n. The benefits

offered by combining density-level set and mode-seeking formulations include the abil-

ity to detect outliers, clusters of varying density and overlapping clusters, as well as

robustness against spurious maxima of the density. These benefits are illustrated in

Figure 5.1.

To demonstrate the adaptability of the CPF framework, we present a modified version

of the method, CPF-Match, for multi-image matching. Multi-image matching meth-

ods aim to find correspondences between points in two or more images. The general

framework can be applied to the task of matching object instances, shape matching or

understanding the 3-D structure of an object from two-dimensional image sequences

(Tron et al., 2017; Bernard et al., 2019; Wang et al., 2018b; Yan et al., 2015). A

key feature of the multi-image matching problem is that no point can be matched in

the clustering with points from the same image. CPF-Match modifies the assignment

procedure of CPF to incorporate these constraints.

In Section 5.3 we provide existing guarantees on level set estimation methods; in Section
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Figure 5.1: An illustration containing three clusters, two of high density and one of
lower density. Clustering results are represented by colored solid lines. Top: Level set
methods under-segment the data, as there is no level of the density at which a cut,
represented by the dashed black line, will recover the true clusters. Middle: Mode-
seeking approaches are susceptible to spurious local maxima in the data, leading to
incorrect allocation, particularly of lower density clusters. Bottom: Combining the
benefits of both approaches leads to successful clusterings.
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5.4 we describe CPF in detail; in Section 5.5 we provide a brief analysis, demonstrating

that CPF achieves the same theoretical guarantees on mode recovery as DCF and

perform an ablation study analyzing the constituent methods of the CPF algorithm

experimentally; in Section 5.6 we present and validate the CPF-Match method.

5.3 Related Work

The approach developed in this chapter adapts density-level set approaches to enhance

the density peaks clustering algorithm.

Level set methods detect clusters as connected components of the level sets {x : f(x) ≥

λ} where f is the density and λ is the cutting threshold. The density f is unknown,

and hence the level sets are required to be estimated from the data. Neighbor graphs

have been widely used for this purpose (Jiang, 2017a; Chaudhuri and Dasgupta, 2010;

Kpotufe and von Luxburg, 2011; Maier et al., 2009). Taking the instances to be the

vertices of a graph, the process of defining edges to be added to the graph is regularly

formulated in two different, but related, ways: ϵ-neighborhood graphs add an edge

between two vertices if the distances between them is below a threshold value ϵ; k-NN

graphs add edges between vertices according to the distance from a vertex to its k-th

nearest neighbor. Symmetric k-NN graphs add an edge between vertices x and x′

if x is in the k nearest neighbors of x′ or vice versa. Mutual k-NN graphs add an

edge between x and x′ if both x and x′ are within the k nearest neighbors of each

other.

It has been shown that any density-level set of a given dataset can be approximated

by the connected components of the mutual k-NN graph (Maier et al., 2009; Kpotufe

and von Luxburg, 2011) and further work has aimed to develop an understanding of

the optimal choice of k (Maier et al., 2009; Chaudhuri and Dasgupta, 2010; Steinwart,

2011). Procedures to improve the quality of the clusters recovered at a certain density

level involve assessing whether the same clusters would be recovered at a slightly lower

density level (Kpotufe and von Luxburg, 2011; Chaudhuri et al., 2014). As introduced
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in Chapter 4, this process, termed pruning, reconnects clusters separated at high-

density levels.

It has similarly been shown that ϵ-neighborhood graphs can recover density-level sets.

A general method is developed in Chaudhuri and Dasgupta (2010). There, the con-

nected components of the graph are tracked as ϵ increases from 0 to ∞. When vertices

with few edges are removed at each level of ϵ, the process is shown to consistently

estimate density-level sets at any density level. Furthermore, ϵ-neighborhood graphs

provide the foundation of DBSCAN (Ester et al., 1996). In DBSCAN, edges are added

between vertices if they lie within a threshold distance of each other. Vertices are

removed from the graph if they have fewer edges than a threshold. For fixed values

of its parameters, DBSCAN is shown to estimate the level sets at a given level of the

density (Jiang, 2017a).

We initially partition the data into contiguous regions separated from each other by

regions of very low density by building a mutual k-NN graph from the data. Kpotufe

and von Luxburg (2011) show that level sets are higher density levels are estimated

by removing edges from the graph in decreasing order of their length. To estimate the

partition at a low level of the density, we retain all edges of the graph. As such, com-

ponents that are separated in the mutual k-NN graph approximate regions separated

by very low density in the sample space. Constraining the allocation mechanism of the

density peaks clustering method to assign instances only to neighbors within the same

region retains the speed and intuition of the sample-based allocation approach while

significantly reducing the chances of low quality cluster assignments.

The existing literature developing methods to enhance the assignment strategy of den-

sity peaks clustering is scattered and poorly grounded in theoretical work. Xie et al.

(2016) develop a strategy that assigns the k nearest neighbors of each mode estimate

to a cluster, and subsequently assigns the remaining instances if they are within a

threshold distance of the previously assigned points. The approach of Liu et al. (2018)

is based on an inconsistent density estimate and convoluted computation in place of
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Figure 5.2: Comparison of CPF with (a) density peaks clustering and (b) density
core finding clustering algorithms on the noisy moons dataset. Clusters and attraction
regions are indicated by different colors. The mode and modal set estimates are the
highlighted points in each plot. For the CPF method, the edges of the mutual k-NN
graph are also shown.

the distance to nearest neighbor of higher estimated density. The work of Jiang et al.

(2019) and Yu et al. (2019) also use inconsistent estimators in place of the density

and develop assignment strategies based on distance thresholds that are challenging to

implement in practice.

The approach taken here is simple and effective. Density-level sets have clear benefits

for the density peaks clustering method, increasing the robustness of the allocation

mechanism while being well-justified theoretically. Furthermore, combining the density

peaks clustering method with k-NN graph level set estimators leads to a demonstrable

improvement in performance, with no extra parameter tuning required.

5.4 Our Method

5.4.1 Motivation

The motivation for combining density-level set and mode-seeking formulations is il-

lustrated in Figure 5.2. The figure depicts the noisy moons dataset, introduced in

Section 3.4. The results of our method, CPF, are presented along with the results

of density peaks clustering method as introduced in Chapter 3 and the density core

finding method of Chapter 4.
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As previously discussed, the density peaks clustering method is prone to selecting

multiple centers from high density clusters due to noise in the density estimate. The

negative impact of this is again clear from the example in the left panel of Figure 5.2.

Two mode estimates are selected from the top cluster and none from the bottom cluster.

This leads to all of the points in the bottom cluster being incorrectly assigned.

The density core finding method introduced in the previous chapter aims to remedy

the issues with mode estimation by instead searching for high density regions in the

dataset. The impact of directing the peak-finding criterion to detect cluster cores is

seen in the middle panel of Figure 5.2. Here, the density core finding method first

selects a cluster core from the top cluster. However, in contrast to the density peaks

clustering method, the points assigned to the cluster core include many of the high

density points in the first cluster. As a result, the second cluster core is correctly

detected in the bottom cluster. The sample-based assignment method, common to

both algorithms, is seen to fail in this instance. Instead of correctly recovering both

clusters, the density core finding method incorrectly assigns many of the bottom cluster

points to the higher density cluster. The assignment path for the incorrectly assigned

instances must cross through regions of very low density in the data. This contravenes

the understanding of a population cluster in the non-parametric formulation and is the

issue we seek to remedy with the CPF approach.

The CPF procedure can be seen in the right panel of Figure 5.2. Initially partitioning

the data into disjoint sets, termed component sets, using a mutual k-NN graph detects

well-separated components with high density regions mutually separated from each

other by low density regions. Subsequent application of a peak-finding based method

detects only one cluster in each component, thus correctly recovering the clusters from

the data. The clustering method applied to each component is similar to that of

density core finding, allowing appropriate representation of high density regions in each

component. Furthermore, it allows the procedure to operate automatically, without

users being forced to select modes manually.
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It is clear from the analysis of the datasets that both DCF and CPF offer improvements

over the density peaks clustering method, while the CPF approach further offers a more

robust allocation mechanism.

5.4.2 Notation and Definitions

In this section, we explain the component set notation and the peak-finding criterion.

As before, we denote the mutual k-NN graph G(X, E).

From the definition of component, we know that the connected components of G(X, E)

reveal certain underlying patterns of the data. In particular, the data X can be

partitioned into disjoint component sets. Here, we denote the set of component sets

S = {S1, . . . ,SnS}, where nS = |S| is the number of component sets, and S1 ∪ · · · ∪

SnS = X. Intuitively, two data points belonging to two different component sets are

highly likely to belong to different clusters.

We now explain the mode selection mechanism. The definitions for the peak-finding

technique used are the same as those given in Section 3.2. We next specify the mode

estimation procedure used in CPF. The definitions below are given in terms of one

S ∈ S, and are equivalent for each.

Data points in S are placed in descending order of the peak-finding criterion, and the

first instance with maximal value of the peak-finding criterion is automatically selected

as a true cluster center. To decide whether or not to select the subsequent instances

as candidate cluster centres, we here utilize an idea similar to that of cluster cores

introduced in Chapter 4. A candidate cluster center x∗ is accepted only when it is well

separated from the others.

Definition 11. Let 0 < ρ < 1. For an instance x∗ ∈ S, define a graph G(Vx∗ , Ex∗)

with

Vx∗ =
{
x ∈ S : rk(x) < ρ−

1
p rk(x

∗)
}
,
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and

Ex∗ = {{xi,xj} ∈ E(S) : xi ∈ Vx∗ ,xj ∈ Vx∗ , ∥xi − xj∥ ≤ rk(x
∗)}.

We accept x∗ as a cluster center if the connected component of the graph G(Vx∗ , Ex∗)

containing the vertex x∗ does not contain any previously selected cluster centers.

Note that the k-th nearest neighbour of x∗ in the distance rk(x
∗) is a point from the

component set S, not from the original dataset X. For the edge set E(S), only edges

with length less than rk(x
∗) are retained in the subgraph G(Vx∗ , Ex∗). The component

sets obtained from the graph G(Vx∗ , Ex∗) are assessed, and if the component set con-

taining x∗ does not contain previously selected candidate centers, then x∗ is accepted.

The point of difference between the CPF and DCF center selection methods is that

the edges of the graph are only by CPF if their distance is below the threshold value,

rk(x
∗). This approach allows the graph to better reflect the scale of the data contained

in the the component set. This edge removal is similar to methods used to recover level

sets using k-NN graphs (Chaudhuri and Dasgupta, 2010; Chaudhuri et al., 2014).

Varying the parameter ρ determines the number of clusters for each component set

S. For low values of ρ, fewer vertices will be removed. As a result, it is less likely

that a proposed center will be disconnected from existing centers. For larger values of

ρ, more vertices and their edges will be removed from the graph. The probability of

the proposed center being disconnected from previously detected cluster centers will

increase. It is not required to have different ρ values for different component sets,

because the two cutting thresholds, ρ−
1
p rk(x

∗) for vertex and rk(x
∗) for edge, adapt

naturally to the density level of the component set being assessed.

5.4.3 The CPF Algorithm

The CPF Algorithm takes as input the dataset X and uses parameters k and

ρ to return the final set of clusters Ĉ. Initially, the set of estimated clusters is

Ĉ = ∅. The undirected mutual k-nearest neighbor graph G(X, E) is constructed.

Vertices that have no edges are marked as outliers and removed. The remaining data
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Algorithm 3: The Component-wise Peak-Finding Algorithm

Input: Neighborhood parameter k, fluctuation parameter ρ. Initialisation: S = ∅.
Output: A set of clusters Ĉ.
1: Compute G(X, E), the mutual k-nearest neighbor graph.
2: Extract S, the set of component sets from G(X, E).
3: for each S ∈ S do
4: Sort the x’s according to their γ values.
5: Let x∗ = argmaxx∈S γ(x).

6: Initialise M̂ = {x∗}, the set of true centers in S.
7: loop
8: Let x∗ = argmaxx∈S{γ(x) : x /∈ M̂}.
9: Let Vx∗ = {x ∈ S : rk(x) <

rk(x
∗)

ρ1/p
}.

10: Let Ex∗ = {{xi,xj} ∈ E(S) : ∥xi − xj∥ ≤ rk(x
∗)}.

11: Let Sρ(x
∗) ⊆ S be the component set of the graph G(Vx∗ , Ex∗) containing

x∗.
12: if Sρ(x

∗) ∩ M̂ = ∅ then

13: Add x∗ to M̂.
14: end if
15: end loop
16: Initialise G⃗(S, E⃗), a directed graph with S as vertices and no edges, E⃗ = ∅.

17: for each x in S\M̂ do
18: Add a directed edge from x to b(x).
19: end for
20: for each cluster center x ∈ M̂ do
21: Let C be the collection of the points connected by any directed path in

G⃗(S, E⃗) that terminates at x.

22: Add C ∪ x to Ĉ.
23: end for
24: end for
25: return Ĉ
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1. Construct the Mutual k−NN Graph.

 

 

2. Compute the Peak−Finding Criterion for Each Instance.

 

 

3. Assess Potential Centers with Density−Level Sets.

 

 

4. Assign Remaining Instances.

Figure 5.3: Illustration of the proposed Component-wise Peak-Finding algorithm. 1.
The mutual k-NN graph is constructed, from which we extract two component sets.
2. Densities are computed as the inverse of the distance from an instance to its k-
th nearest neighbor (darker color represents higher density). The distance from each
instance to its nearest neighbor of higher density is found (larger point represents larger
distance to point of higher density). The peak-finding criterion is the product of these
two quantities. 3. For each connected component, density-level sets are used to assess
potential cluster centers, shown in yellow. 4. Non-center instances are assigned to the
same cluster as their nearest neighbor of higher local density. A sample assignment
path is shown in gold for the purple cluster.

is partitioned into disjoint component sets according to the graph G(X, E) yielding

S = {S1, . . . ,SnS} (Lines 1-3).

For each component set S ∈ S, CPF computes the peak-finding criterion for each

point and selects the instance x∗ with maximal value. The point x∗ is automatically

accepted as a cluster center, and the set of true centers for the component set S is

initialised as M̂ = {x∗} (Lines 5-7).

Next, the instance with maximal value of the peak-finding criterion yet to be assessed

is selected and denoted by x∗. The subgraph G(Vx∗ , Ex∗) is extracted, and the com-
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ponent set of G(Vx∗ , Ex∗) containing x∗ is denoted by Sρ(x
∗) (Lines 9-12). If Sρ(x

∗)

is disjoint from all selected cluster centers in M̂, then x∗ is added to M̂ (Lines 13-

15).

Once the center-selection loop is complete, non-center points are allocated to their

clusters. For each non-center point x, a directed edge is added from x to b(x), its

nearest neighbor of higher density (Lines 19-22). All vertices that have paths termi-

nating at the same cluster center are assigned to the same cluster, and the cluster is

subsequently added to Ĉ (Lines 23-26). The process is repeated for each component

set to return the final set of clusters Ĉ. The method is further explained in Figure

5.3.

5.5 Analysis of CPF

The CPF algorithm combines density-level set estimation with k-NN graphs, and a den-

sity peaks-based clustering algorithm which assesses estimated modes using a pruning

procedure similar to that of DCF. As such, the theoretical results relevant to CPF

have been covered previously in this thesis and, thus, are not repeated. For results

demonstrating the consistency of the density-level set estimates recovered by k-NN

graph, consider those given in Maier et al. (2009) and Kpotufe and von Luxburg (2011)

and further work aimed at understanding of the optimal choice of k, particularly the

analysis of Maier et al. (2009) and Steinwart (2011). The results regarding the mode

selection procedure are equivalent to those given in Section 4.5, applied instead to each

component set with the scaling parameter ρ = 1−β. The result proving the quality of

the cluster assignment of Section 3.3 can also be applied to each component set, with

suitable adjustments made to the number of observations in each component.

5.5.1 Complexity Analysis

The most computation-intensive task is creating the mutual k-NN graph which requires

O(nk log(n)) operations on average. The connected components are extracted with
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Figure 5.4: Analysis of the proportion of instances that do not have a point of higher
density in their k nearest neighbors. Data are generated from Gaussian components
according to the process in Section 4.5. The points in black are (|S|, p) for a given
component with the green line showing the function 2.2 log(|S|)/|S|.

O(n) operations. Another major computational burden is finding, for each point,

its nearest neighbor of higher density in a component set. For the points which do

not have a point of higher density in their neighbors, this requires O(|S|) operations,

where |S| is the number of instances in a component set. Experimental results for

the proportion of instances without a point of higher density in their neighbors are

presented in Figure 5.4. The line in the figure is 2.2 log(|S|)/|S|. As the proportion

of such instances present in S appears of order O(log(|S|)/|S|), nearest neighbors of

higher density are found in O(|S| log(|S|) time. Assessing each cluster center requires

O(|S|k) operations. The assignment mechanism requires O(|S|) operations. As such,

we see that the complexity of CPF is O(nk log(n)), near linear in n and k.

5.5.2 Simulated Experiments

Considering again the example of Figure 5.2, while CPF correctly recovers the two

clusters in the data, the same result could be obtained using only the mutual k-NN

graph. The peak-finding element of the CPF algorithm does not contribute to the

clustering results. In this section, we provide a brief simulated analysis to demonstrate
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that the performance of CPF is enhanced by both the mutual k-NN graph and the

peak-finding method. To do this, we assess the clustering performance in a brief

ablation study via simulated data.

As in Section 4.5, we generate multiple synthetic datasets with different levels of separa-

tion and density to assess their impact on the clustering results. Gaussian components

are sampled so that their means satisfy the following inequality:

∀i ̸=j : ∥µi − µj∥ ≥ c tr(I),

where c characterizes the degree of separation of the clusters, and I is the identity

matrix. For the purposes of this analysis, all component covariances are set to the

identity matrix, Σ = I.

We generate mixtures of five components with size n = 3000 and dimension p = 2. To

assess the impact of separation, eight degrees of separation are assessed, ranging from

c = 0 (low) to c = 4.0 (high) in increments of 0.5. As the covariances of the Gaussian

components are identical, to generate clusters of varying density, three prior distribu-

tions are used: (1) common prior π = {0.2, 0.2, 0.2, 0.2, 0.2}; (2) medium prior varia-

tion π = {0.4, 0.2, 0.2, 0.1, 0.1}; and (3) high prior variation π = {0.6, 0.1, 0.1, 0.1, 0.1}.

For each configuration, we generate 10 datasets.

We here assess the clustering performance offered by the constituent parts of the CPF

method: (1) level set clustering using mutual k-NN graphs; and (2) mode-seeking clus-

tering, using the peak-finding criterion and the CPF center selection method outlined

above. We compare the performance of the level set and mode-seeking steps with the

performance of CPF. The first comparison method, henceforth referred to as mutual

k-NN clustering, consists of Lines 1-3 of Algorithm 3. Clusters are taken to be the

component sets extracted from the graph G(X, E). The second comparison method

applies the method developed in Lines 4-28 of Algorithm 3, however rather than ap-

plying the method to a component set S, the method is applied to the entire dataset

X.
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Figure 5.5: ARI values of the clustering results returned by CPF and constituent
methods on synthetic datasets. Top: Datasets with prior π = {0.2, 0.2, 0.2, 0.2, 0.2}.
Middle: Datasets with prior π = {0.4, 0.2, 0.2, 0.1, 0.1}. Bottom: Datasets with prior
π = {0.6, 0.1, 0.1, 0.1, 0.1}.
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In Figure 5.5, the results of CPF and the constituent methods are shown. We assess

the clustering performance using the ARI and the AMI introduced previously. The

three figures correspond to the three levels of density variation. The box plots are

grouped by the value of the separation parameter c. It is clear that CPF consistently

outperforms both of its constituent methods. This effect is enhanced as the clusters

become further separated and is observed across different formulations of the density

variation. Mutual k-NN clustering performs poorly when clusters are not well separated

and outperforms the peak-finding clustering as the separation increases, particularly

for the highly separated data and data with varying densities. This analysis indicates

that level set and mode-seeking non-parametric clustering methods can be mutually

complementary. The performance of CPF is amplified through effective deployment of

each formulation at different stages of the clustering procedure.

5.5.3 Real-World Experiments

In this section, we extend the comparison of CPF with its constituent methods to

the real-world datasets introduced in Section 4.5. CPF is motivated by the potential

improvements to clustering performance to be gained from combining density-level set

and mode-seeking methods. By applying the peak-finding method within each level

set of the density, CPF aims to reinforce the assignment mechanism of the density

peaks clustering algorithm. To quantify the clustering performance and algorithmic

efficiency of CPF, it is evaluated against the Mutual k-NN method and the peak-

finding method detailed above. As before, all experiments have been conducted on

a PC running Debian 10 (Buster), consisting of 24 cores and 24GB of RAM. Our

method is implemented in Python; its source code, and code to reproduce the below

experiments is available online.1

1https://github.com/tobinjo96/Thesis-Experiments/
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Dataset Metric CPF MKN PKF

Dermatology ARI 0.80 0.66 0.77

AMI 0.83 0.76 0.83

Ecoli ARI 0.70 0.12 0.70

AMI 0.66 0.34 0.66

Glass ARI 0.29 0.29 0.18

AMI 0.41 0.41 0.27

Letter Recognition ARI 0.19 0.00 0.16

AMI 0.56 0.18 0.49

Page Blocks ARI 0.48 0.00 0.48

AMI 0.32 0.00 0.32

Phonemes ARI 0.75 0.00 0.67

AMI 0.81 0.00 0.79

Table 5.1: Quality of clusterings for the real-world datasets.

Dataset CPF MKN PKF

Derm. 0.19 0.02 0.16

Ecoli 0.16 0.01 0.09

Glass 0.08 0.01 0.05

Letter R. 24.00 9.85 24.58

Page B. 1.44 0.91 1.48

Phonemes 21.13 19.01 31.86

Table 5.2: Average run time of the assessed clustering methods for the real-world
datasets.

Experimental Set-Up

CPF is assessed on the same datasets used in the analysis of DCF in the previous

chapter. Details of these datasets can be found in Table 4.1. Instances with missing

values are removed. To assess the performance of CPF on these datasets, we apply

the mutual k-NN clustering method (MKN) and the peak-finding clustering methods

(PKF), both implemented in Python.
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Results

The results of the clustering are presented in Table 5.1. As in the simulated analysis,

CPF clearly outperforms the two constituent methods in terms of both metrics. CPF

achieves the highest score for both metrics for every dataset analyzed. The benefits

in performance offered by the CPF method are clear. Interpreting the results of the

constituent methods allows a deeper understanding of the quality of the results of

CPF. For the Glass dataset, the clustering returned by the CPF method is equal to

that returned by Mutual k-NN. The center selection method of CPF does not detect

multiple cluster centers in any component, and hence returns the level set clustering.

In this case, it significantly outperforms the clustering of the peak-finding method.

For the Page Blocks and Phonemes datasets, the level set method locates only one

connected component of the density. This leads to the clusterings for the CPF and

peak-finding methods being similar, with CPF outperforming the peak-finding method

for the Phonemes dataset due to the removal of a small number of outlying points.

For the Dermatology and Letter Recognition datasets, the combination of the level

set and peak-finding approaches leads to clustering results that outperform either con-

stituent method, reaffirming the benefits available through combination of these two

methodologies.

The average run time, in seconds, for the three methods in Table 5.2. CPF is slow

than the competitor approaches for the small datasets, understandable as it involves

the execution of both alternate approaches. The difference in execution time is unlikely

to be a major impediment to the use of CPF in applications, however. For the larger

datasets, CPF executes faster than the peak-finding method. This is the result of the

broad search, discussed in the complexity analysis in Section 5.5.1, taking place over

a component set, rather than the entire dataset as for the peak-finding method. This

indicates that CPF will scale well for large scale applications.

Further experimental analysis, as well as a thorough analysis of the parameter space

for CPF is provided in Chapter 6.
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5.6 Application

In this section, we introduce an adapted version of CPF for multi-image matching,

demonstrating its adaptability and performance for non-standard clustering problems.

Multi-image matching is an important application in modern computer vision, notably

in the reconstruction of 3-D scenes form 2-D images. We can consider the multi-image

matching problem as a special case of constrained clustering. Constrained clustering

extends clustering from an unsupervised method to a semi-supervised method. For a

set of instances, the clustering algorithm is supervised by a set of pairwise constraints

indicating pairs of instances which must or cannot be clustered together. For multi-

image matching, the only supervision information provided is the images from which

each point is created. No two instances from the same image can be grouped together

in the final clustering.

Quick shift forms the basis of the first successful application of density-based clustering

to the problem of multi-image matching. QuickMatch (Tron et al., 2017) modifies quick

shift by moving a point to its nearest neighbor with higher empirical density, only if the

neighbor does not belong to an image already contained in the cluster. QuickMatch

achieves exceptional speed for the multi-image matching problem. Other clustering ap-

proaches have been applied to this problem, including a novel context-specific iterative

algorithm (Yan et al., 2016); however, high execution time has inhibited their appli-

cation. Methods that do not formulate multi-image matching as a clustering problem

are outside the scope of this work, and a review can be found in Ma et al. (2021).

We adapt the CPF method introduced in Algorithm 3 to accommodate this supervision

information. Denote the image label of an instance x by I(x) ∈ {1, . . . , nI}, where

nI is the number of images assessed. As such, we present CPF-Match by updating

the allocation phase of Algorithm 3, substituting lines 19-22 with Algorithm 4. CPF-

Match modifies the allocation procedure of CPF, while component sets and cluster

centers are selected in the same way.
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Algorithm 4: CPF-Match

16: Initialise G⃗(S, E⃗), a directed graph

with S as vertices and no edges, E⃗ = ∅.
17: Sort the vertices x ∈ S\Centers in ascending order of the distance from x to b(x).
18: for each x do
19: if I(x) ̸= I(b(x)) then
20: Add a directed edge from x to b(x).
21: end if
22: end for

Again, a directed graph G⃗(S, E⃗) is initialized as before (Line 19). Next, CPF-Match

sorts the non-center points of S according to the distance ∥x− b(x)∥, from smallest to

largest (Line 20). Processing the non-center points in turn, a directed edge from x to

b(x) is added if x and b(x) are not from the same image, i.e., I(x) ̸= I(b(x)) (Lines

21-25).

To demonstrate the ability of CPF-Match to perform multi-image matching, we apply

it to the Graffiti dataset.2 The dataset contains six image groups (bark, bikes, boat,

graffiti, Leuven, and UBC), each containing six different images of the same scene.

Features are extracted from each image using SIFT, roughly 500 for each image (Lowe,

1999). To each set of features, we apply the CPF-Match algorithm. The results of CPF-

Match for a pair of images from each of the six image groups are presented in Figure

5.6.

For evaluation, we apply the same approach as in Tron et al. (2017). For a test point

in an image, we calculate the distance between its estimated correspondence and the

true correspondence in another image. If the distance is smaller than a threshold, we

consider the match to be correct. We then plot the percentage of testing points with

correct matches versus the threshold values to obtain a curve which can be interpreted

in a manner similar to a precision-recall curve. As homography matrices are provided

relating the first image with the remaining images in each image group, we use all

detected feature points in the first image as test points and evaluate the matches from

the first image to the other five images. The performance curves for CPF-Match and

2https://cvssp.org/featurespace/web/related papers/graffiti.html
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Figure 5.6: One pair of images from each of the six image groups (bark, bikes, boat,
graffiti, Leuven, and UBC). Lines between each pair of images indicate a match de-
tected by CPF-Match.
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QuickMatch for each of the six datasets are presented in Figure 5.7.

The ability of CPF-Match to detect common points between multiple images is demon-

strated clearly. CPF-Match achieves superior results compared with QuickMatch for

each of the datasets. The improvements are notable for the Bikes, Boat and Leuven

image sets. CPF-Match is a viable and effective method for the multi-image matching

problem. Furthermore, it is clear that CPF is an adaptable clustering framework.

5.7 Conclusion and Future Work

This chapter introduced CPF, a clustering algorithm that combines the benefits of both

density-level set and mode-seeking density-based clustering methods. We showed, in

a simulated analysis, that both formulations are complementary when combined cor-

rectly, and better handle key features of contemporary datasets than either approach

alone. These results were reinforced in an experimental analysis of real-world datasets.

Finally, we introduced CPF-Match, an adaptation of CPF for an important semi-

supervised computer vision application. In future, we envisage the extension of CPF

and CPF-Match to incorporate other forms of supervision, including geometric infor-

mation for the multi-image matching problem, using node-attributed mutual k-NN

graphs.
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Figure 5.7: The performance curves for the CPF-Match (black) and QuickMatch (blue)
multi-image matching methods on the Graffiti datasets. The y-axis shows the percent-
age of correct matches and the x-axis shows the distance threshold divided by the
image width (in pixels). For all datasets, k = 10, ρ = 0.5 and the threshold parameter
of QuickMatch is set to 4.
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6 Experimental Comparison

6.1 Summary

In this chapter, an extensive experimental evaluation of the DCF and CPF methods

is completed. The two novel approaches are compared to a broad range of promi-

nent density-based clustering methods. DCF, CPF, and the competitor methods are

assessed on ten real-world clustering datasets. The quality of the clusterings is re-

ported, measured using two widely used validation indices, as well as the execution

time of each method. As well as comparing the optimal clustering results for each

method, an analysis of the effect of hyper-parameter selection on the clustering results

is undertaken.

6.2 Introduction

In the previous two sections, novel methods aimed at improving and extending the

density peaks clustering algorithm have been proposed. The DCF method of Chap-

ter 4 models high density regions of the data using cluster cores rather than point

modes, thus reducing the likelihood of incorrectly detecting point modes in the data

due to noise in the density estimate. DCF was shown experimentally to outperform

the density peaks clustering algorithm with the k-NN density estimator in terms of

clustering performance, and achieve similar results to a related method, QuickShift++,

with more efficient computation. In Chapter 5, the CPF algorithm was introduced.

CPF combines density-level set approaches with the a peak-finding cluster algorithm
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with the aim of removing the situations where the sample-based allocation mechanism

of density peaks methods incorrectly assigns instances across regions of very low den-

sity in the data. This approach was shown to be superior to clustering using with

density-level set or peak-finding clustering alone.

While the analyses in the previous two chapters indicate that the methods developed

achieve the goal of improving the density peaks clustering algorithm, their superiority

over a broad range of non-parametric density-based clustering methods remains to be

proved. As such, in this section, we provide a detailed experimental analysis using well-

known competitor methods over a broad range of real-world datasets. Furthermore, the

parameters used by each algorithm are introduced and the sensitivity of the clustering

results to the choice of parameters is assessed. It is demonstrated that both DCF and

CPF, as well as achieving superb results for the best clusterings, return high quality

outputs over a broad range of parameters.

All experiments have been conducted on a PC running Debian 10 (Buster), consisting

of 24 cores and 24GB of RAM.

6.3 Experimental Set-Up

We assess DCF and CPF on an expanded pool of ten real-world datasets. Details of

the datasets can be found in Table 6.1. As before, instances with missing values are

removed.

To evaluate the clusterings produced we again use the ARI and the AMI. For both

metrics, a larger value indicates a higher-quality clustering.

To assess the performance of the methods proposed in this thesis on the ten real-world

datasets, we apply the following competitor non-parametric density-based clustering

algorithms:

• Density Peaks Clustering (DPC) method with k-NN density estimator introduced

in Chapter 3 and implemented in Python. This method takes the true number
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of clusters, m as an input. The instances with the top m values of the peak-

finding criterion are selected. This approach has one parameter, k, the number

of neighbors used in the density estimate.

• The original Density Peaks Clustering (ODP) method of Rodriguez and Laio

(2014) implemented in R in the densityClust library. This method takes the true

number of clusters, m as an input. The instances with the top m values of the

peak-finding criterion are selected. This approach has one parameter, dc, the

threshold distance used in the density estimate.

• Adaptive Density Peaks Clustering (ADP) (Wang and Xu, 2017) implemented in

R in the ADPclust library. This method take the true number of clusters as an

input, and uses quantiles of the density estimates and distance to a neighbor of

higher density to determine the cluster centers. The approach has one parameter,

h, used to tune a KDE.

• Comparative Density Peaks Clustering (CDP) (Li and Tang, 2018) implemented

in Matlab.1 This method take the true number of clusters as an input, and uses

a modified version of the peak-finding criterion that accounts for low density

points to determine the cluster centers. The approach has one parameter, dc, the

threshold distance used in the density estimate.

• DBSCAN (DBS) (Ester et al., 1996) implemented in Python and C++ in the

SciKit library (Pedregosa et al., 2011). This approach determines the number of

clusters automatically. DBSCAN has two parameters, (1) a primary parameter,

eps, capturing the radius used to construct the neighborhood graph and (2) a

secondary parameter, minPts, that controls the minimum size of a cluster.

• HDBSCAN (HDB) (Campello et al., 2013) implemented in Python and C++ in

the hdbscan library. This approach determines the number of clusters automat-

ically. HDBSCAN has one parameter, minPts, that controls the minimum size

of a cluster.

1https://github.com/ZejianLi/ComparativeDensityPeaks
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Source Name n p m

Dua and Graff (2019) Dermatology 358 34 6

Dua and Graff (2019) Ecoli 336 7 8

Dua and Graff (2019) Glass 214 9 6

Dua and Graff (2019) Letter Recognition 20000 16 26

Dua and Graff (2019) Optdigits 5620 64 10

Dua and Graff (2019) Page Blocks 5743 10 5

Dua and Graff (2019) Pendigits 10992 16 10

Hastie et al. (2009) Phonemes 4509 256 5

Dua and Graff (2019) Seeds 210 7 3

Dua and Graff (2019) Vertebral 310 6 3

Table 6.1: Characteristics of the real-world datasets.

• Mean Shift (MNS) (Cheng, 1995; Comaniciu and Peter, 2002) implemented in

Python and C++ in the SciKit library (Pedregosa et al., 2011). Mean shift

returns the number of clusters automatically. Mean shift has one parameter, h,

the bandwidth of the KDE.

• Quick Shift (QKS) (Vedaldi and Soatto, 2008) implemented in Python.2 Quick

shift determines the number of clusters automatically. There is one parameter,

τ , the threshold distance used to estimate modes.

Of these algorithms, DPC, OPD, ADP, and CDP require the number of clusters to be

specified in advance. For all experiments, the true number of clusters is provided as

an input to these algorithms.

6.3.1 Results

Results for clustering ten real-world datasets are presented in Table 6.2. For each

method we present the clustering with the highest average value of ARI and AMI.

DCF achieves the best clustering, in terms of the ARI, for five of the datasets assessed,

and the best clustering, in terms of the AMI, for six of the datasets assessed. CPF

achieves the best clustering, in terms of the ARI, for three of the datasets assessed,

2https://github.com/Nick-Ol/MedoidShift-and-QuickShift
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and the best clustering, in terms of the AMI, for four of the datasets assessed. Both

methods significantly outperform all of the competitor methods, with only the original

density peaks clustering method achieving an optimal score for either metric on more

than two datasets. Also presented in Table 6.2 are the mean rankings for the quality

of the clusterings returned by each of the methods for both metrics. Here, DCF is

seen to have the best performance overall, with a mean ranking for both metrics. CPF

achieves similar ranking scores, indicating that the clustering results are both generally

of high quality. The clusterings returned by the DCF algorithm are one of the top three

as measured with the ARI for nine of the ten datasets, and for all ten of the datasets

when the AMI is used to assess their quality. For CPF, the clusterings returned are one

of the top three for each of the datasets when the ARI is used for assessment, and for

nine of the ten datasets, when the AMI is used to assess the clustering quality.

In terms of the ARI, the methods with the joint next highest rank is the original density

peaks clustering algorithm and the comparative density peaks clustering method. In

terms of the AMI, the density peaks clustering algorithm, as formulated in Section

3.2 is the best performing approach. Taken together, this makes a strong case for the

ability of the peak-finding criterion to detect meaningful clusters in the data. It should

be noted that the performance of the density peaks based methods is achieved with

the true number of clusters specified as an input, a feature that is unlikely to be the

case in many applications.

Considering the competitor approaches that determine the number of clusters auto-

matically, the performance is significantly worse than DCF and CPF. The level set

methods DBSCAN and HDBSCAN perform poorly. The poor performance in both

metrics indicates that these methods fail to capture the classes present in the data.

Mean shift achieves the optimal clustering for two datasets, Ecoli and Page Blocks,

but does not consistently return high quality clusterings. The results for the Vertebral

dataset is the worst of all methods assessed. Quick shift also does not return high

quality clusterings, particularly as assessed using ARI. As ARI significantly penalizes

false positive clusters, it can again be concluded that quick shift is not adequately de-
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Figure 6.1: Boxplots of the observed (a) ARI and (b) AMI for each of the methods
assessed. The results of a Friedman test to detect differences across multiple clustering
attempts are presented at the top of each table.
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DCF CPF DPC ODP ADP CDP DBS HDB MNS QKS
DCF 1.000 - - - - - - - - -
CPF 0.975 1.000 - - - - - - - -
DPC 0.128 0.085 1.000 - - - - - - -
ODP 0.162 0.145 0.825 1.000 - - - - - -
ADP 0.011∗ 0.011∗ 0.521 0.548 1.000 - - - - -
CDP 0.046∗ 0.044∗ 1.000 0.548 0.555 1.000 - - - -
DBS 0.011∗ 0.011∗ 0.169 0.110 0.527 0.110 1.000 - - -
HDB 0.011∗ 0.011∗ 0.113 0.825 0.413 0.045∗ 0.241 1.000 - -
MNS 0.045∗ 0.053 0.617 0.714 0.615 0.714 0.072 0.072 1.000 -
QKS 0.011∗ 0.011∗ 0.126 0.082 0.548 0.020∗ 0.981 0.763 0.145 1.000

Table 6.3: P-values for Wilcoxon signed-rank tests, comparing the ARI values for each
of the methods assessed on each dataset. The values are adjusted using the Benjamini-
Hochberg adjustment for multiple comparisons. Significance at the α = 10% level is
denoted in bold and significance at the α = 5% level is denoted with an asterisk.

DCF CPF DPC ODP ADP CDP DBS HDB MNS QKS
DCF 1.000 - - - - - - - - -
CPF 0.562 1.000 - - - - - - - -
DPC 0.141 0.140 1.000 - - - - - - -
ODP 0.132 0.175 0.965 1.000 - - - - - -
ADP 0.037∗ 0.037∗ 0.498 0.677 1.000 - - - - -
CDP 0.037∗ 0.037∗ 0.866 0.981 0.809 1.000 - - - -
DBS 0.037∗ 0.022∗ 0.158 0.158 0.498 0.022∗ 1.000 - - -
HDB 0.037∗ 0.022∗ 0.158 0.210 0.677 0.037∗ 0.331 1.000 - -
MNS 0.053 0.053 0.866 0.929 0.677 1.000 0.096 0.037∗ 1.000 -
QKS 0.022∗ 0.022∗ 0.210 0.246 0.651 0.158 0.965 0.651 0.084 1.000

Table 6.4: P-values for Wilcoxon signed-rank tests, comparing the AMI values for each
of the methods assessed on each dataset. The values are adjusted using the Benjamini-
Hochberg adjustment for multiple comparisons. Significance at the α = 10% level is
denoted in bold and significance at the α = 5% level is denoted with an asterisk.
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tecting the true number of clusters in the data. Considering the significant similarities

between the methodology of quick shift and that of the density peaks clustering meth-

ods, the poor results are likely the result of difficulty in finding the optimal value of

the parameter h. The impact of hyper-parameter selection for all methods is analyzed

in greater detail in subsequent sections.

Following the guidance given in Demšar (2006) and Garcia and Herrera (2008), the

results are also subjected to a statistical analysis using non-parametric tests. Firstly, a

Friedman test is applied (Friedman, 1937). A Friedman test is non-parametric equiv-

alent of a repeated-measures ANOVA, testing the null hypothesis that the methods

assessed are equivalent. The results for the Friedman tests for (a) the ARI values and

(b) the AMI values are shown in Figure 6.1. For both tests the p-value is less than 1%

indicating a high level of significance. Secondly, we apply the Wilcoxon signed-rank

test for pairwise comparisons, using the Benjamini-Hochberg correction to control the

false-discovery rate (Wilcoxon, 1945; Benjamini and Hochberg, 1995). The p-values for

the associated comparison are show for the ARI values in Table 6.3 and for the AMI

values in Table 6.4. The results indicate a strong level of statistical significance for

the improved clustering quality for the DCF and CPF method. The novel approaches

introduced in this work significantly outperform all bar one of the methods assessed

and are not outperformed by any of the competitor approaches.

The average run time, in seconds, for each method is presented in Table 6.5. The meth-

ods can be categorised into three groups; (1) methods that have consistently high run

time, namely the original density peaks clustering method, and the adaptive density

peaks method; (2) methods that achieve fast run time for small datasets but whose run

time increases super-linearly with the number of data points, namely the comparative

density peaks method and mean shift, and (3) methods that achieve consistently fast

run times, namely DBSCAN, HDBSCAN, quick shift, and the methods introduced in

this thesis namely the density peaks method using a k-NN density estimator, DCF

and CPF. The slow approaches both use density estimators with quadratic complex-

ity. This impedes their application to larger datasets. For small datasets, DBSCAN
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and HDBSCAN achieve the fastest run time, however the magnitude of difference with

DCF and CPF is unlikely to hinder their use in applications. For larger datasets, DCF

and CPF remain competitive with the fastest methods and achieve near the fastest run

time for Letter Recognition, the dataset with the largest number of instances assessed.

It is concluded that DCF and CPF, as well as achieving high quality clustering without

specification of the true number of clusters, do so efficiently, with computation that

gracefully scales to larger datasets.

6.3.2 Analysis of the Parameter Space

DCF and CPF achieve superb results across the datasets when optimal values for the

parameters are applied. The consistency of the performance of the two approaches is

now demonstrated for a wide range of parameter values. DCF has two parameters: (1)

k, the number of neighbors computer for each point when computing the k-NN density

estimator and (2) β, the amount of variation in the density used to determine cluster

cores. CPF also has two parameters: (1) k, the number of neighbors computed for

each point when constructing the k-NN graph and computing the the k-NN density

estimator and (2) ρ, the amount of variation in the density used to assess potential

cluster centers. The parameters of the competitor methods are detailed in Section

6.3. In Figure 6.2 we present the clustering quality in terms of the ARI and the AMI

over a broad range of parameter values, for each dataset. In each subfigure, the first

row shows how the ARI and the AMI varies with changes in k and β, and k and ρ

respectively. The remaining rows show changes in the ARI and AMI with respect to

changes in the primary parameter of each competitor method according to guidance

provided by the authors.

It is clear that the performance of DCF and CPF is robust to the choice of the hyper-

parameters. We see immediately that the performance of DCF is robust to choices

of k and β. The results remain consistent as k is increased. For all datasets except

Letter Recognition, choosing k ≈
√
n returns high quality results. The quality of the

clusterings remain also remarkably consistent as the variation permitted within the

125



cluster core increases from β = 0.1 to β = 0.9. In applications, setting β = 0.4 initially

is advised, as it is observed to achieve near optimal results for all datasets bar Page

Blocks.

Similarly, CPF is relatively robust to the choice of k and ρ for all the datasets apart

from the Vertebral dataset, for which the choice of k appears important to the clustering

quality. The quality of the clusterings remains consistent as the variation parameter

used to assess potential cluster centers varies from ρ = 0.1 to ρ = 0.9. For general

application, it is recommended to first assess ρ = 0.6 as competitive results are achieved

for all datasets, except Page Blocks. Users can intuitively tune the parameter ρ for

alternate clusterings, increasing ρ if more clusters are desired and decreasing ρ if fewer

clusters are desired.

Considering the competitor methods, it is noted that ADP, CDP and quick shift also

achieve consistent results as the values of their respective parameters increase. Each

of these methods, as well as DCF and CPF, allocate instances to the same cluster as

their nearest neighbor of higher local density.

An additional benefit of DCF and CPF over all competitor methods except HDBSCAN

is that the parameters do not depend on the scale of the data. This is illustrated in

the large range of k, relative to the size of the datasets, for which CPF achieves

excellent results. By contrast, methods such as DBSCAN and MeanShift require an

understanding of the average distances between instances in the dataset.

6.4 Conclusion

In this chapter, the performance of the methods introduced in this thesis were compared

against a broad range of prominent non-parametric density-based clustering methods.

Using ten real-world datasets, it was shown that DCF and CPF consistently outperform

the competitor methods. They achieve superior clusterings over almost all the datasets

assessed measured using two prominent metrics, the ARI and the AMI. In the few

cases where DCF and CPF do not return the best clustering, the performance never
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drops significantly. Furthermore, these results are achieved without requiring the true

number of clusters as an input. As a result, both DCF and CPF can be recommended

for use in the exploratory analysis of a broad range of datasets. The stability of the

results was also proven, by showing the clustering results as the hyper-parameters input

to each method is varied. DCF and CPF have interpretable parameters, allowing users

to make high-quality selections for their values using only knowledge of the number of

instances in the data.
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Figure 6.2: For each dataset and clustering algorithm, we show the clustering quality
as a function of the input parameters. The ARI is shown in purple, and the AMI in
green. Note that for DCF, we present the clustering quality as a function of both k
and β and for CPF, we present the clustering quality as a function of both k and ρ.
For the DCF plots assessing the k parameter, β is set to the optimal value for each
dataset (in the order of appearance, β = {0.7, 0.4, 0.1, 0.4, 0.1, 0.8, 0.4, 0.4, 0.4, 0.1}).
For the DCF plots assessing the β parameter, k is set to the optimal value for each
dataset (in the order of appearance, k = {10, 14, 12, 18, 55, 74, 50, 80, 12, 8}). For the
CPF plots assessing the k parameter, ρ is set to the optimal value for each dataset (in
the order of appearance, ρ = {0.3, 0.6, 0.9, 0.6, 0.9, 0.2, 0.6, 0.6, 0.6, 0.9}). For the DCF
plots assessing the ρ parameter, k is set to the optimal value for each dataset (in the
order of appearance, k = {10, 14, 12, 28, 55, 80, 50, 110, 12, 8}).
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7 Density Peaks for Parametric Clus-

tering

7.1 Summary

Methods that employ the EM algorithm for parameter estimation typically face the

notorious yet unsolved problem that the initialization input significantly impacts the

algorithm output. We here develop a Reinforced Expectation Maximization (REM)

algorithm for cluster analysis using Gaussian mixture models. The competence of

REM is achieved by introducing two innovative strategies into the EM framework: (1)

a mode-finding strategy for initialization that detects non-trivial modes in the data

using the peak-finding technique, and (2) a mode-pruning strategy for detecting true

modes/mixture components of the population. The pruning strategy is well-justified

in the context of mixture modelling, and we present theoretical guarantees on the

quality of the initialization. Extensive experimental studies on both synthetic and real

datasets show that our approach achieves better performance compared to state-of-

the-art methods.

7.2 Introduction

Model-based clustering methods utilize mixture models to partition a collection of

objects (Fraley and Raftery, 2002; Baudry et al., 2010a). As defined by McNicholas

(2016b), a cluster in the parametric formulation should be a “unimodal component
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within an appropriate finite mixture model”. The clustering is done by assigning each

object to the mixture component (i.e., cluster) to which it is most likely to belong a pos-

teriori. The most widely used mixture model is the Gaussian mixture model (GMM),

and the Expectation-Maximization (EM) algorithm is the most popular algorithm for

parameter estimation. As discussed in Chapter 2, the EM algorithm for GMMs has

several drawbacks (Bishop, 2006, Chapter 9): it may converge to a singularity at which

the likelihood is infinite, leading to meaningless estimates; it is sensitive to initializa-

tion, because the log-likelihood function is not unimodal, and the resulting solution

is a local optimum in the neighborhood of the initial guess. Melnykov and Maitra

(Melnykov and Maitra, 2010) partitioned existing initialization methods for the EM

algorithm into the stochastic category and the deterministic category. The simplest

stochastic strategy is random initialization. As discussed previously, Jin et al. (2016)

proved that, with high probability, the EM algorithm with random initialization will

converge to bad local maxima, whose log-likelihood could be arbitrarily worse than

that of the global maximum. A prominent deterministic method, implemented in the

R package mclust (Scrucca et al., 2016), initializes the EM algorithm with the solution

of model-based Gaussian hierarchical clustering.

The challenges initializing the EM algorithm are compounded by the fact that, gen-

erally, the true number clusters is unknown. A common practice is to run the EM

algorithm with an initialization method for different cluster numbers, and decide the

optimal cluster number via a model selection criterion such as those introduced in

Chapter 2 namely the AIC, the BIC, and the ICL. Stochastic initialization meth-

ods struggle to provide consistent initializations for multiple runs with different clus-

ter numbers, making model selection more difficult. The deterministic initialization

method in mclust also provides inconsistent results when the true number of clusters

is not specified.

This leads to the key driving force of the present work: to tackle the initialization

problem of the EM algorithm for GMMs, utilizing the notion of exemplars/medoids.

Following the notion of a model-based cluster given by McNicholas, the modes of a

132



Gaussian mixture density are seen to be symptomatic of the underlying population

structure and can guide the initialization procedure. In particular, if the Gaussian

components in a GMM are well separated, then the modes exactly match the Gaussian

means; if the components overlap a bit, then the modes would include but not be

limited to the Gaussian means (Améndola et al., 2020). This motivates us to use

a KDE with the Gaussian kernel to approximately locate the modes of the mixture

density, within which to pinpoint the Gaussian means. As demonstrated in this thesis,

exemplars from the data can provide a fast and intuitive way to recover high-quality

estimates of the density modes, henceforth referred to as exemplars. Therefore, we

apply the peak-finding technique to detect the exemplars in the data. By restricting

the initial values for the Gaussian means to the set of exemplars, the initialization is

robust to outliers and adjusts to the location of the centers.

From an inclusive pool of initial exemplars, we produce a hierarchy of clusterings by

iteratively pruning superfluous clusters through the optimization of a convex objective

function regularized by an adaptive cardinality penalty. We prune exemplars one at a

time, automatically generating a nested sequence of clustering results from which the

preferred clustering can be selected.

The initialization-pruning framework is called the reinforced EM (REM) algorithm. By

selecting the initial Gaussian means from the exemplar set only, the REM algorithm

never allows components collapse into one point at which the likelihood is infinite.

Furthermore, the objective function for exemplar pruning is well-justified in the context

of mixture modelling; it is solved analytically, leading to efficient run time for large

datasets. A comparison of the REM method to mclust on a synthetic dataset is

presented in Figure 7.1.

The remainder of the chapter is organized as follows: in Section 7.3, we provide a

summary of the EM algorithm for GMMs and overview of existing approaches; in

Section 7.4, we introduce the peak-finding method used by REM for mean initialization;

in Section 7.5, the REM algorithm is described; Section 7.6 presents an experimental
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(a) mclust (b) REM

Figure 7.1: Comparison between mclust and REM, on a synthetic dataset containing
20 clusters. Optimal clusterings were selected using BIC Schwarz (1978).

evaluation, and Section 7.7 concludes.

7.3 Background

A GMM density has the form f(x) =
∑m

j=1 πjϕ(x;µj,Σj), with mixing proportions

πj (πj > 0 and
∑m

j=1 πj = 1), and each Gaussian density ϕ(·;µj,Σj) has a mean

µj and a covariance matrix Σj ≻ 0. Let π denote the vector of mixing proportions:

π = (π1, . . . , πm)
T . The log-likelihood function is

ℓ(π, {µj}mj=1, {Σj}mj=1;X) =
n∑

i=1

log(
m∑
j=1

πjϕ(xi;µj,Σj)).

The classical method for computing maximum-likelihood estimates for GMM param-

eters is the EM algorithm. The EM algorithm consists of the following steps:

1. Initialize the parameters: {π1, . . . , πm}, {µ1, . . . ,µm} and {Σ1, . . . ,Σm}.

2. Compute the responsibilities:

rij =
πjϕ(xi;µj,Σj)∑m
v=1 πvϕ(xi;µv,Σv)

,
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for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

3. Update the estimates:

πj =

∑n
i=1 rij
n

, µj =

∑n
i=1 rijxi∑n
i=1 rij

, and Σj =

∑n
i=1 rij(xi − µj)(xi − µj)

T∑n
i=1 rij

,

for 1 ≤ j ≤ m.

4. Iterate steps 2 and 3 until convergence.

The hill-climbing nature of the EM algorithm, coupled with the multi-modal surface of

the log-likelihood function, lends crucial importance to the quality of the initialization.

The simplest initialization strategy draws initial values at random from the parameter

space or from the data pool. Jin et al. (2016) proved that, with high probability, the

EM algorithm with random initialization will converge to bad local maxima, whose

log-likelihood could be arbitrarily worse than that of the global maximum. Another

intuitive idea is to run EM with multiple random starts for each value ofm. The emEM

algorithm (Biernacki et al., 2003) consists of several short runs of EM, initialized with

random starts, until a loose convergence criterion is satisfied. The solution with the

highest log-likelihood is used to initialize a long run of EM with strict converge crite-

ria. A related approach, called Rnd-EM (Maitra, 2009), computes the log-likelihood

of several random starts without running any EM iterations. The best is used as the

initializer for the long EM stage. The k-means algorithm is also frequently used to

provide an initial partition of the data, from which initial parameter estimates can be

computed. However, the k-means algorithm itself requires a good initialization, typi-

cally achieved with the k-means++ method (Vassilvitskii and Arthur, 2006). None of

these methods make efforts to ensure the similarity of initializations for different clus-

ter numbers. This leads to unstable clusterings and hinders comparison of clusterings

using model selection criteria.

The popular mclust package in R provides hard partitions of the data using an ag-

glommerative model-based clustering technique. Initializations for different numbers
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of clusters are found from partitions extracted using dendrogram derived from the hi-

erarchical clustering. This approach provides a hard partition of the data, leading to

improper splitting of true components when the estimated cluster number is greater

than the true number of components.

7.4 Exemplar Selection

We initialize the mean vectors for the EM algorithm using the exemplars (i.e., medoids)

in the data. The peak-finding method in Section 3.2 requires two inputs: (1) a density

estimate at each data point, and (2) the distance from each point to its nearest neighbor

of higher density. We apply the Gaussian kernel with bandwidth h > 0 for density

estimation:

f̂h(x) =
1

n · hp
n∑

i=1

K

(
x− xi

h

)
,

where K(·) is the Gaussian kernel. Note that our density estimate is different from

the k-NN density estimator primarily used in this thesis. We here use a KDE with

Gaussian kernel as (1) it is itself a form of mixture based estimator, centering a spherical

Gaussian component at each observation, and (2) as demonstrated in Section 3.3, the

same theoretical guarantees regarding the consistency of the estimator are available.

For the distance input, as before we define

b(x) = argmin
x′∈X

{
∥x− x′∥ : f̂h(x) < f̂h(x

′)
}
,

i.e. the nearest neighbor of x with a higher density. Then the distance from x to

its nearest neighbor of higher density is simply ω(x) = ∥x − b(x)∥. For the point

with the highest density estimate x = argmaxx′∈X f̂h(x
′), the distance is defined as

ω(x) = maxx′∈X ∥x− x′∥.

Intuitively, ω(x) will be large if x has a locally or globally maximal density, or if x is an

outlier. Therefore, a data point x will be selected as an exemplar by the peak-finding

method, only if both f̂h(x) and ω(x) are large. To generate an initial set of exemplars
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M̂0 = {x∗
1, . . . ,x

∗
κ}, threshold values for the density f̂h(x) and the distance ω(x) need

to be set: the exemplars are the data points with the two metric values both above the

thresholds, i.e. M̂0 = {x ∈ X : f̂h(x) ≥ l, ω(x) ≥ τ}. As in the method of Section

3.2, we provide users with a decision plot, a scatter plot of {(f̂h(x), ω(x)) : x ∈ X},

to provide intuition regarding the threshold values. An example of the decision graph

and the selected exemplars is provided in Figure 7.2.

fh(x)

(x
)

Figure 7.2: An example with five components. The left plot shows the estimated
density of the data, with darker regions having higher density. Also shown are the
locations of the exemplars, with colour and marker type corresponding to the instances
in the right plot. The right plot is the decision plot, where the red lines indicate the
threshold values. The peak-finding method selects six initial exemplars, with each true
component well represented.

Following the theoretical guarantees provided in Chapter 3, it is claimed that the

set of exemplars obtained by the peak-finding method contains unique and consistent

estimates of all modes in the data. Specification of the threshold values l and τ allows

for modes recovered at different densities and resolutions. Figure 7.2 gives an example,

showing that the peak-finding method can select multiple exemplars close to the true

center of each cluster.

For high-dimensional data, we recommend to project the data into a space of lower

dimension, using the scaled SVD transformation, to compute more robust density

estimates. Once exemplars are selected, the REM algorithm can be run on the original

data.
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Figure 7.3: The iterative pruning procedure. Given any exemplar set {x∗
j}, we estimate

the parameters {πj,Σj} by an EM-type algorithm. At convergence, we obtain a GMM∑
j πjϕ(x;x

∗
j ,Σj). Then we optimize a regularized objective function to force certain

πj’s to be 0. The relevant exemplars are removed from the exemplar set.

7.5 The Iterative Pruning Procedure

The REM algorithm has two blocks: the EM block and the pruning block; see Figure

7.3. Given the initial exemplar set M̂0 = {x∗
1, . . . ,x

∗
κ}, our iterative procedure will

produce a sequence of nested clustering results, respectively with κ − 1, κ − 2, . . . , 2

mixture components. The final optimal clustering is determined by a model selection

criterion of the user’s choice. In the following, if a data point is in the exemplar set,

it is excluded from the data pool, and once a data point is pruned from the exemplar

set, it will go back to the data pool. In other words, if x∗
j is pruned in the pruning

block, then we update M̂ = M̂/{x∗
j}, X = X ∪ {x∗

j} and n = n+ 1, before running

the EM block.

7.5.1 EM Block

Given the updated data pool (the original data without the retained exemplars), the

EM block operates as follows.

1. Input: The retained exemplars {x∗
1, . . . ,x

∗
m} and the responsibilities {rij : i =
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Figure 7.4: A worked example with five clusters. The colors represent the clusters; the
contours represent the covariance matrices, with red contours indicating the component
to be pruned in the next iteration.

1, . . . , n, j = 1, . . . ,m}.

2. Update the estimates: for j = 1, . . . ,m,

πj =

∑n
i=1 rij
n

,Σj =

∑n
i=1 rij(xi − x∗

j)(xi − x∗
j)

T∑n
i=1 rij

.

3. Compute the responsibilities: for i = 1, . . . , n and j = 1, . . . ,m,

rij =
πjϕ(xi;x

∗
j ,Σj)∑m

v=1 πvϕ(xi;x∗
v,Σv)

.

4. Iterate steps 2 and 3 until convergence.

It is immediately clear that, in the EM block, the Gaussian means are fixed at the given

exemplars, and only the mixing proportions and covariance matrices are estimated.

Since the exemplar set is disjoint from the dataset, the mean vectors will always differ

from the data point, and therefore the iteration will never converge to a degenerate

solution with a zero covariance matrix. The GMM density at convergence is

f(x) =
m∑
j=1

πjϕ(x;x
∗
j ,Σj).
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7.5.2 Pruning Block

While the original exemplar set contains consistent estimates of all the density peaks

of the mixture model, the number of density peaks can be significantly larger than

the number of mixture components (Améndola et al., 2020). Hence, the exemplars

{x∗
1, . . . ,x

∗
κ} need to be further filtered to obtain the true mean vectors. In the pruning

block, we prune exemplars by inducing sparsity in the mixing proportion vector π

such that, if πj = 0, then the exemplar x∗
j will be removed from the exemplar set and

returned to the data pool. Let 1n denote the vector of 1’s of dimension n; let ∆ denote

the probabilistic simplex of the appropriate dimension: if π ∈ ∆, then π ≥ 0 and

∥π∥1 = 1. Given the exemplar set M̂0 and covariance-matrix estimates {Σj}κj=1, let

D = [dij]n×κ denote the distance matrix, where d2ij = (xi − x∗
j)

TΣ−1
j (xi − x∗

j).

The Objective Function

Given the exemplars, the log-likelihood function is
∑n

i=1 log
(∑κ

j=1 πjϕ(xi;x
∗
j ,Σj)

)
.

We have by Jensen’s inequality that

− log

(
κ∑

j=1

πjϕ(xi;x
∗
j ,Σj)

)
=

(
κ∑

j=1

rij

)
log

( ∑κ
j=1 rij∑κ

j=1 πjϕ(xi;x∗
j ,Σj)

)

≤
κ∑

j=1

rij log

(
rij

πjϕ(xi;x∗
j ,Σj)

)
,

where the upper bound is achievable when rij ∈ {0, 1}. Then the negative log-likelihood

can be formulated as an optimization problem:

−
n∑

i=1

log

(
κ∑

j=1

πjϕ(xi;x
∗
j ,Σj)

)
= min

{Ri·∈∆}ni=1

n∑
i=1

κ∑
j=1

rij log

(
rij

πjϕ(xi;x∗
j ,Σj)

)
,

where R = [rij]n×κ and i· indicates the ith row. Then maximizing the log-likelihood

is equivalent to

min
{x∗

j∈Rp,Σj≻0}κj=1

min
{Ri·∈∆}ni=1

n∑
i=1

κ∑
j=1

rij log

(
rij

πjϕ(xi;x∗
j ,Σj)

)
.
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In the pruning block, the x∗
j ’s and Σj’s are fixed, and hence the optimization variables

are the responsibilities only:

min
{Ri·∈∆}ni=1

n∑
i=1

κ∑
j=1

rij log

(
rij

πjϕ(xi;x∗
j ,Σj)

)
.

The detailed formulation of the objective function is

n∑
i=1

κ∑
j=1

rij log

(
rij

πjϕ(xi;x∗
j ,Σj)

)
=

n∑
i=1

κ∑
j=1

rij ×
[
log

(
rij
πj

)
+

1

2
log (|Σj|) +

1

2
(xi − x∗

j)
TΣ−1

j (xi − x∗
j)

]
.

To shrink the proportion vector π, we take out the first term in the brackets; otherwise,

numerical algorithms will behave erratically when πj → 0. Further discussion of the

motivation for and impact of removing this term is given in Section 7.5.2

This yields the optimization problem

min
{Ri·∈∆}ni=1

1

2

n∑
i=1

κ∑
j=1

rij(xi − x∗
j)

TΣ−1
j (xi − x∗

j) +
1

2

n∑
i=1

κ∑
j=1

rij log (|Σj|) .

In matrix-vector notation, the optimization problem is

min
{Ri·∈∆}ni=1

1

2

n∑
i=1

RT
i· (Di· + ξ), (7.1)

where ξ = (log(|Σ1|), . . . , log(|Σκ|))T .

The Penalty

Problem (7.1) is not amenable to the classical ℓ1-norm penalty on π, since ∥ · ∥1 = 1

is constant on a simplex. This motivates us to develop a penalty in the form of

∥δ ◦ π∥1 = δTπ, where ◦ is the element-wise multiplication operator. The weight

vector δ = (δ1, . . . , δκ)
T should be data-driven and has the desirable property that

gives more penalty to closer exemplars. Therefore, we define δi as the probability
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that an instance from the ith mixture component is misclassified into the jth mixture

component:

δi = max
j=1,...,κ

Pr
(
πiϕ(x;x

∗
i ,Σi) < πjϕ(x;x

∗
j ,Σj)|x ∼ N(x∗

i ,Σi)
)
.

This definition was introduced by Maitra and Melnykov (2010) to measure the degree

of overlap between two Gaussian distributions. The weight δi reflects the likelihood

of the exemplar x∗
i belonging to the group of another exemplar. Exemplars favoured

by this penalty are in keeping with the peak-finding conception of cluster centers as

instances with high density, and relatively large distance to other points of higher

density.

For Gaussian distributions with homogeneous covariance matrices, the computation of

the probability is straightforward and related to the Mahalanobis distance between the

exemplars. For general covariance matrices, the computation involves evaluating the

cumulative distribution function of linear combinations of independent non-central chi-

squared and normal random variables. A method using the algorithm AS 155 of Davies

(1980) has been implemented in C as part of theMixSim package in R (Melnykov et al.,

2012). Example values of the δi’s for four typical scenarios of two-component mixtures

are provided in Figure 7.5.

Objective Minimization

Our penalized objective function is

min
{Ri·∈∆}ni=1

1

2

n∑
i=1

RT
i· (Di· + ξ) + θδTRT1n, (7.2)

where the regularization term will force certain columns of R to be exactly zero.

The objective function (7.2) is linear and hence can be simplified to be

min
{Ri·∈∆}ni=1

n∑
i=1

RT
i·bi =

n∑
i=1

min
Ri·∈∆

RT
i·bi,
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Figure 7.5: The overlap penalty for typical scenarios with two components: (1) equal
weights and homogeneous spherical covariance matrices, (2) equal weights and het-
erogeneous covariance matrices, (3) equal weights, common mean and heterogeneous
covariance matrices, (4) unequal weights and homogeneous covariance matrices.

where bi =
1
2
Di· +

1
2
ξ + θδ.

The parameter θ controls the amount of shrinkage on π(= 1
n
RT1n). In fact, the

solution path is piecewise linear in θ, and the whole trajectory of π, as a function of

θ, can be easily computed by piecewise-linear homotopy methods. We now provide

details on how the trajectory of π, as a function of θ, is computed. The objective

function (7.2) is equivalent to

min
{Ri·∈∆}ni=1

n∑
i=1

RT
i· [Di· + ξ + θδ] =

n∑
i=1

min
Ri·∈∆

RT
i·bi,

where bi = Di· + ξ + θδ, and we have incorporated the factor 1
2
into the parameter θ.

The solution to each individual problem is:

r∗ij =

 1, if j = argmin1≤v≤κ{bv};

0, otherwise.
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If the first exemplar x∗
1 were to be pruned, we would require a θ value such that:

b11 ≥ min {b12, b13, . . . , b1κ}

b21 ≥ min {b22, b23, . . . , b2κ}
...

bn1 ≥ min {bn2, bn3, . . . , bnκ}

Therefore, the θ value should satisfy that

d11 + ξ1 + θδ1 ≥ min {d12 + ξ2 + θδ2, d13 + ξ3 + θδ3, . . .}

d21 + ξ1 + θδ1 ≥ min {d22 + ξ2 + θδ2, d23 + ξ3 + θδ3, . . .}
...

dn1 + ξ1 + θδ1 ≥ min {dn2 + ξ2 + θδ2, dn3 + ξ3 + θδ3, . . .}

To simplify notation, define p1ij = (dij + ξj) − (di1 + ξ1), for j = 2, . . . , κ. We assume

w.l.o.g. that δ1 < δ2 and δ1 > δj for j ≥ 3. Then we can find the possible range of

solutions for θ by considering the following set of intervals:

θ ∈
n⋂

i=1

[(
−∞,

pi2
δ1 − δ2

]⋃(
κ⋃

j=3

[
pij

δ1 − δj
,∞
))]

(7.3)

If the interval solutions overlap, then the θ value that prunes the first exemplar is

the lower bound of the overlapping interval. If the interval solutions do not overlap,

resulting in θ ∈ ∅, then the first exemplar will not be pruned.

By analogy, we can obtain the critical θ value for each exemplar, denoted by {θ1, . . . , θm}.

Then with θ in (7.2) gradually increasing from 0, all the proportions in π also change.

When θ reaches to min{θ1, . . . , θm}, the exemplar with the minimal critical θ value will

be pruned first, and its proportion value reduces to 0.

Given the solution R∗ to problem (7.2) with one zero-column, the refined exemplar

set is M̂1 = {x∗
j ∈ M̂0 : π∗

j ̸= 0}. Figure 7.6 gives an example, where we prune four
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Figure 7.6: A toy example shows the piecewise-linear trajectory of π. Top Left: The
data and the four selected exemplars, labelled in decreasing order of f̂h(x) × ω(x).
Top Right: The final clustering obtained by REM. Bottom: The whole trajectory of
π, as a function of θ, in each REM iteration. After the first iteration, exemplar x∗

3

is pruned; after the second iteration, exemplar x∗
4 is pruned. The bottom right panel

shows that θ needs to be very large to merge two true cluster centers.

exemplars into two and plot the trajectory of π in each iteration.

Before continuing, we provide a motivation for the removal of the first term from the

objective discussed in Section 7.5.2. Consider again the original objective function

before removing the first term

min
{Ri·∈∆}ni=1

n∑
i=1

κ∑
j=1

rij

[
log

(
rij
πj

)
+ bij

]
, (7.4)

where bij =
1
2
dij+

1
2
ξj+

1
κ
θδj is thus a constant determined by the data and the penalty.

Further expansion yields

min
{Ri·∈∆}ni=1

[ n∑
i=1

κ∑
j=1

rij log

(
rij
πj

)
+

n∑
i=1

κ∑
j=1

rijbij

]
.
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Now, we have that the first term

n∑
i=1

κ∑
j=1

rij log

(
rij
πj

)
,

is a bounded function over the product of the n simplex spaces ∆ × ∆ × . . . × ∆.

Moreover,

lim
rij→0

rij log

(
rij
πj

)
= 0

lim
πj→0

n∑
i=1

rij log

(
rij
πj

)
= 0.

Therefore, the optimal solution, for the term
∑n

i=1

∑κ
j=1 rij log

(
rij
πj

)
, must lie in a

region where no πj = 0 (in fact in a region where no rij = 0). As the arguments of the

function are completely exchangeable and have equal importance, were say π1 = 0, then

it must be the case that π2 = 0. The solution would thus reduce to π1 = . . . = πκ−1 = 0

and πκ = 1.

The second term can be decomposed into n independent optimization problems. More-

over, the solution to each individual problem R∗
i· = minRi·∈∆ RT

i·bi is trivial:

r∗ij =

 1, if j = argmin1≤v≤κ{bv};

0, otherwise.

In summary, the solutions do not cohere and to obtain a sparse solution to the opti-

mization problem of (7.4) will require a value of θ large enough such that the second

term completely dominates the first. The term is removed from the objective to remove

the need for extensive computation.

7.5.3 Model Selection

Model selection for clustering with Gaussian mixture models usually involves the use

of an information criterion, such as the AIC, BIC or the ICL as discussed in Section
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2.1.2. The AIC and the BIC offer approximations to the log integrated likelihood using

maximum likelihood estimates of the parameters. These criteria may overestimate the

number of clusters in the data, however, if the clusters are cohesive and well separated,

but without their distribution being Gaussian. If the clusters are better approximated

by a mixture of Gaussian components, the number of components selected by the

AIC and the BIC may be larger than the number of clusters (Fruhwirth-Schnatter

et al., 2019). The ICL of Biernacki et al. (2003) aims to estimate the number of

clusters directly by a BIC-like approximation to the integrated complete likelihood. By

contrast, the ICL can lead to an underestimation of the number of clusters in the data,

particularly if the data is arising from a mixture of poorly separated components.

Applying information criteria to select the number of components for the optimal

clustering produced by REM is further complicated by fixing the mean parameters in

the mixture at the exemplars. While the exemplars are consistent estimates of the high

density regions of the data, and allow REM to avoid converging to solutions at which

the likelihood is infinite, the theoretical guarantees surrounding the application of the

AIC, BIC and ICL are not satisfied as the mean parameters are no longer maximum

likelihood estimates.

REM provides one suggested clustering for each value of κ from which the user can

choose based on substantive grounds. For a more automated procedure, several possi-

bilities are available. A potential approach involves running a supplementary clustering

procedure, taking the parameter values produced by REM at each iteration as the ini-

tial parameters for a run of the full EM algorithm, allowing the mean vectors to vary.

Proceeding for the values of κ required, the solution selected among the clusterings

produced by REM would be the clustering with the same number of components as

the clustering chosen from the supplementary run using the AIC, BIC or ICL criteria.

An alternative approach is to use an elbow rule on the plot displaying the value of

the overlap for the pruned clusters at each iteration of the REM method against the

number of clusters. This approach is similar to the method introduced in Baudry et al.

(2010b), where an elbow rule is used to detect changes in the value of the penalty used
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to merge cluster components. A third approach applies the information criteria to the

clusterings produced by REM without adaptation. While lacking theoretical rigour,

this strategy is shown below to perform well experimentally.

7.6 Evaluation

The performance of the REM algorithm is demonstrated on a range of synthetic and

real-world classification datasets. We compare REM with popular and state-of-the-art

initialization methods for mixture modeling with EM. The following methods are used

for comparison:

Random Initialization (riEM) Random sampling from the data pool, and the EM

algorithm is run to convergence for each. Implemented in the Scikit-Learn library

(Pedregosa et al., 2011).

k-means++ Initialization (kmEM) The k-means++ algorithm is used to provide

initial partitions of the data. Implemented in the Scikit-Learn library (Pedregosa et al.,

2011).

emEM (Biernacki et al., 2003) Truncated runs of EM with random initializations

provide initial parameter values. Implemented as a wrapper for the Scikit-Learn library

(Pedregosa et al., 2011).

rndEM (Maitra, 2009) Similar to emEM with truncated runs lasting only one it-

eration. Implemented as a wrapper for the Scikit-Learn library (Pedregosa et al.,

2011).

mclust (Scrucca et al., 2016) Model-based hierarchical clustering provides initial

partitions of the data. Implemented in R and C as part of the mclust package.

REM is implemented in Python and can be invoked similar to scikit-learn mixture

methods. The code for REM, and code to reproduce the below experiments, is available

online.1

1https://github.com/tobinjo96/Thesis-Experiments/
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We report the execution time for each method to produce the optimal clustering and

the number of clusters detected. We adopt the widely used Adjusted Rand Index (ARI)

(Hubert and Arabie, 1985) and Adjusted Mutual Information (AMI) (Vinh et al., 2010)

for performance evaluation.

7.6.1 Experimental Setup

The bandwidth value in the Gaussian kernel is set to be the average of the distances

from instances to their k-th nearest neighbor, where k = min(
√
n, 30). The impact of

the bandwidth parameter on REM performance is further discussed in Section 7.6.5

below. For all the benchmark methods, the range for the number of clusters is required

as an input. If κ exemplars are selected for a given dataset by REM, then for competitor

methods, the cluster number m will range from 1 to κ+ 2. For each value of m, riEM

is initialized 25 times, kmEM is initialized 25 times, rndEM is initialized 200 times,

emEM is initialized 50 times (with the maximum number of iterations of the truncated

EM set to 50 and the tolerance for convergence of the log-likelihood set to 1× 10−3).

Model selection for REM is completed using three information criteria, the AIC, BIC,

and ICL computed using the parameter values provided by REM. A comparison of

the other model selection methods discussed in Section 7.5.3 is also given. For riEM,

kmEM, emEM, and rndEM, the AIC and BIC are used. For mclust, the authors

note a preference for the BIC. To allow fair comparison between methods, we allow

the covariance matrices to be free to take any particular form. The tolerance for

convergence of the log-likelihood for EM is set to 1× 10−5, and the maximum number

of iterations is set to 100 for each method. All experiments were conducted on a PC

running Debian 10 (Buster), consisting of 24 cores and 24GB of RAM.

7.6.2 Simulated Datasets

We first examine the performance of the peak-finding method when no cluster structure

is present in the data. Following Scrucca (2016a), we generate 40 datasets, 20 of

dimension p = 2 and p = 50 respectively, from independent χ2 distributions with
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Figure 7.7: The number of clusters returned by each algorithm using the AIC (yellow),
BIC (green), and ICL (purple) model selection criteria.
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10 degrees of freedom. The competitor methods are initialized with m ∈ [1, 5]. The

number of clusters returned by the competitor methods and REM for each of the

datasets is shown in Figure 7.7 (the Chi-squared columns). The peak-finding method

is adept at correctly choosing only one potential exemplar in the data. Since the data

are skewed, the competitor methods detect more than one component in the data.

This shows the efficiency of the peak-finding method for initialization.

We next consider datasets with a large number of well-separated clusters. Again, 40

datasets are generated, 20 each of dimension p = 2 and p = 50 respectively. The

MixSim package in R is used to generate 40 clusters with no overlap. The competitor

methods were initialized with m ∈ [30, 50]. The number of clusters returned by the

competitor methods and REM for each of the datasets is shown in Figure 7.7 (the

Large m columns). The advantages of deterministic initialization methods are clear in

this case. In Figure 7.7, kmEM and REM achieve the correct number of components

for p = 2, while the remaining stochastic initialization methods struggle to place initial

mean vectors in every cluster. Due to the high number of parameters in these models,

mclust returns a solution for only two of the 50-dimensional datasets. REM achieves

the correct number of clusters for each model selection criterion.

Finally, we consider 20 simulations of the mixture provided in Experiment 3 of Mel-

nykov and Michael (2020). This mixture consists of three overlapping clusters in 10

dimensions, two with adjacent mean vectors. The competitor methods are initialized

with m ∈ [1, 5]. The number of clusters returned by the competitor methods and REM

for each of the datasets is shown in Figure 7.7 (the Overlap column). In this case, REM

achieves the correct number of components for the AIC and BIC model-selection cri-

teria for each dataset. The ICL criterion merges the components with adjacent mean

vectors, in keeping with its preference for sparser models relative to the other two

criteria. For the competitor methods, mclust achieves the correct number of clusters

for each dataset and the BIC is seen to generally outperform the AIC.
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Figure 7.8: The decision plots for the six real datasets with color representing the
true class label. The dashed lines show the values of τ and l that decide the initial
exemplars.

7.6.3 Real Datasets

Six datasets are used to compare the clustering performance of REM with the com-

petitor methods. Details of the datasets can be found in Table 7.1. Instances with

missing values were removed. For each dataset, the initial exemplars for the REM

algorithm are indicated in the decision plot in Figure 7.8. For the G2, Iris and Seeds

datasets, the number of components is immediately obvious from the decision plot.

For the other three datasets, we set the two threshold values to include all promising

exemplars.

Source Name n p m

Dua and Graff (2019) Ecoli 336 7 8
Mariescu-Istodor and Zhong (2016) G2 2048 128 2
Dua and Graff (2019) Iris 150 4 3
Dua and Graff (2019) Satellite 4435 36 6
Dua and Graff (2019) Seeds 210 7 3
Dua and Graff (2019) Wine 178 14 3

Table 7.1: The characteristics of the evaluated datasets.

The results for clustering the six datasets are presented in Table 7.2. For each method,

the ARI and AMI values are calculated from the clustering decided by the relevant
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Dataset REM riEM kmEM emEM rndEM Mclust

Ecoli 1.42 214.7 71.6 19.6 181.9 2.4
G2 32.0 2025.9 52.1 181.1 2433.0 1153.9
Iris 0.3 90.9 4.7 2.26 26.3 0.7
Satellite 295.0 7302.2 1161.9 1020.4 7242.5 437.7
Seeds 0.9 158.2 2.3 4.01 41.2 1.2
Wine 3.9 142.8 4.1 4.69 57.6 0.4

Table 7.3: Execution time (seconds) for the evaluated datasets.

model-selection criterion. REM achieves the best clustering, in terms of AMI, for

every dataset examined and, in terms of ARI, the best for five of the six datasets.

Moreover, the clustering results from REM are consistent across the different model-

selection criteria. This is due to the fact that, in REM, the mean vectors are fixed at the

exemplars. Mclust, the other deterministic initialization method assessed, outperforms

REM for the Seeds dataset, and achieves comparable performance for the Satellite and

Wine datasets. Unlike REM, which achieves the perfect clustering on the G2 dataset,

Mclust is not able to detect the two clusters, as the BIC criterion merges the two

components in search of a sparse model. The stochastic initialization approaches are

capable of achieving excellent results, for example the rndEM on the Iris dataset.

However, the performance is not consistent between different runs, and the results are

not robust to the choice of the model-selection criterion.

The run time, in seconds, for each of the methods is presented in Table 7.3. For small

datasets, we see that REM is competitive with Mclust, and both are much faster than

the other methods. REM runs faster for the low-dimensional datasets, whereas Mclust

is faster for the Wine dataset. The magnitude of difference is negligible and unlikely

to hinder the use of REM in applications. We see that, for larger datasets, REM

has the fastest run time. The difference is most pronounced for the G2 dataset and

the Satellite dataset. The execution times of the stochastic methods are significantly

higher than Mclust and REM. For riEM and rndEM, this is caused by the slow conver-

gence of the EM algorithm as a result of naive initializations. For emEM and kmEM,

providing the initializations requires significant computation, slowing down execution

significantly.
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7.6.4 Model Selection Methods

To assess the performance of the various model selection methods introduced in Section

7.5.3, we compare the quality of the clusterings chosen by each method for the six real-

world datasets. We compare seven model selection methods: the three used thus

far which input the clusterings produced by REM directly into the AIC, BIC and ICL

respectively and are denoted as such; three that select the optimal clustering from those

produced by REM as having the same number of clusters as that selected by the AIC,

BIC, and ICL when computed using maximum likelihood parameter estimates taken

from a supplementary full run of EM with the REM clusterings used as initializations,

denoted AICsup, BICsup, ICLsup; and a heuristic elbow-rule approach that assesses

the value of the cluster overlap for the pruned component at each iteration of the REM

algorithm denoted Elbow. The elbow-rule plots are shown in Figure 7.9 and the results

are given in Table 7.4.

The AIC exhibits the best performance of the model selection methods assessed, with

the BIC and ICL method also performing well. These results indicate that the in-

formation criteria remain useful guides for detecting high-quality clusterings, even in

the absence of maximum likelihood estimates for the mean parameters. For the Ecoli,

G2, Iris and Seeds datasets, the results are relatively consistent across different model

selection methods, with high-quality clusterings returned for each. It is for the Wine

dataset that the greatest variation between the approaches is seen. There, the BICsup

and ICLsup do not detect any cluster structure in the data while the remaining meth-

ods detect similar clusterings. Each method is able to return the the best or joint-best

clustering for at least one of the datasets, and the choice of model selection method

can be made by the user, balancing the practical reliability of the method, theoretical

guarantees for the approach, and the degree of automation desired.
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Figure 7.9: Elbow-rule plots for the clustering produced by REM for the six real-world
datasets. The number of components chosen is highlighted in red.

Metric Ecoli G2 Iris Sat. Seeds Wine
AIC ARI 0.623 1.000 0.904 0.524 0.766 0.534

AMI 0.621 1.000 0.900 0.578 0.744 0.526
BIC ARI 0.575 1.000 0.904 0.429 0.766 0.520

AMI 0.572 1.000 0.900 0.507 0.744 0.621
ICL ARI 0.575 1.000 0.904 0.429 0.766 0.520

AMI 0.572 1.000 0.900 0.507 0.744 0.621
AICsup ARI 0.575 1.000 0.775 0.524 0.600 0.534

AMI 0.572 1.000 0.770 0.524 0.653 0.526
BICsup ARI 0.575 0.659 0.904 0.429 0.659 0.000

AMI 0.572 0.659 0.900 0.429 0.674 0.000
ICLsup ARI 0.575 0.659 0.904 0.429 0.659 0.000

AMI 0.572 0.659 0.900 0.429 0.674 0.000
Elbow ARI 0.575 1.000 0.775 0.330 0.659 0.534

AMI 0.575 1.000 0.770 0.447 0.674 0.526

Table 7.4: Clustering results on the real datasets for the model selection methods. The
best results are highlighted in bold.
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Figure 7.10: The performance of the REM algorithm evaluated by the ARI (yellow)
and AMI (green) as the parameter h changes.

7.6.5 Ablation Study

REM has two tuning parameters: (1) h, the bandwidth of the Gaussian kernel and (2)

κ, the number of exemplars selected from the decision graph. To examine the impact

of h and κ on the REM algorithm, we assess the quality of the clusterings produced

by REM for a broad range of parameter values.

To assess the impact of the bandwidth parameter, we compute the minimum (dmin)

and maximum (dmax) pairwise distances in the data, and set h = dmin+λ(dmax−dmin).

We increase λ from 0 to 1 in increments of 0.005 and run REM for each increment.

We can see from Figure 7.10 that, for the Iris, Satellite and Seeds datasets, the results

are robust to the choice of h, with REM achieving high quality clusterings over a very

broad range of λ values. While the Ecoli dataset is seen to be relatively sensitive

to the parameter choice, the range of high-quality values allows for λ to be selected

between 0 and 0.3, a wide range for users to exploit. The other two datasets exhibit

perfect consistency for all values of λ, emphasising the robustness of the proposed
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Figure 7.11: The performance of the REM algorithm evaluated by the ARI (yellow)
and AMI (green) as the number of selected exemplars changes.

approach.

To assess the impact of κ on the clustering quality, we run REM on the datasets

ten times, initialized with κ ∈ [m,m + 10] centers. The selected exemplars are the

κ instances with highest values of f̂h(x) × ω(x). The results, shown in Figure 7.11,

demonstrate that the REM algorithm is robust to the number of initial exemplars. This

confirms the intuition that the penalty introduced in Section 7.5.2 correctly prunes

spurious exemplars. The Ecoli and G2 datasets are also robust to the choice of κ.

While for the Wine dataset, the quality is seen to degrade as κ increases, it should be

noted that the decision graph included in Figure 7.8 points users to values that return

high-quality clusterings.

The importance of the main features of REM are demonstrated by individually sub-

stituting (1) the peak-finding exemplar selection with random selection, (2) the it-

erative pruning algorithm with an ordering of exemplars based on the magnitude of

fh(x) × ω(x), and (3) the EM-type algorithm with fixed means with the full EM al-
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Peaks Prune Fixed ARI AMI
M1 ✓ 0.237 0.283
M2 ✓ 0.571 0.541
M3 ✓ ✓ 0.417 0.563
M4 ✓ ✓ 0.601 0.598
REM ✓ ✓ ✓ 0.623 0.621

Table 7.5: Clustering results on the Ecoli dataset by the ablation methods.

Metric G2 Iris Sat. Seeds Wine
M1 ARI 0.431 0.795 0.516 0.475 0.383

AMI 0.522 0.808 0.572 0.555 0.471
M2 ARI 1.000 0.899 0.463 0.640 0.463

AMI 1.000 0.879 0.559 0.670 0.501
M3 ARI 0.000 0.664 0.492 0.641 0.456

AMI 0.000 0.730 0.597 0.671 0.501
M4 ARI 1.000 0.870 0.524 0.715 0.000

AMI 1.000 0.883 0.578 0.737 0.000
REM ARI 1.000 0.904 0.524 0.766 0.534

AMI 1.000 0.900 0.578 0.744 0.536

Table 7.6: Clustering results on the real datasets by ablation methods. The best results
are highlighted in bold.

gorithm detailed in Section 7.4. The results for the Ecoli dataset are shown in Table

7.5 and the remaining datasets are given in Table 7.6. Random initialization leads

to significantly poorer results than the peak-finding method as seen when comparing

methods M1 and M2 in the Table 7.5. The impact of the pruning approach is also

clear when comparing methods M2 and M4. Finally, it is noted that REM achieves the

best result for each metric on each of the datasets assessed, highlighting the mutually

beneficial impact of each of the constituent parts.

The results for the ablation study for the G2, Iris, Satellite, Seeds and Wine datasets

are shown in Table 7.5. The strength of the REM method is again demonstrated. The

peak-finding initializations are seen to significantly outperform the random initializa-

tion used in M1. Furthermore, the peak-finding initializations are seen to complement

the pruning method introduced in this work.
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7.7 Conclusion and Future Work

This chapter introduced REM, an algorithmic tool for model-based clustering, which

extricates the EM algorithm from the initialization problem. We showed that the

peak-finding method is an effective tool for quickly determining high-quality exem-

plars. For exemplar pruning, we developed a novel objective function that originates

from the log-likelihood function, integrates a data-driven penalty, admits analytic solu-

tions, and allows distributed computing. Through iterative pruning of the exemplars,

our algorithm generates a sequence of nested clusterings, from which the preferred

partition can be selected. Experimental results demonstrated that our method has

excellent performance. It achieves perfect clusterings for datasets containing well-

separated clusters and outperforms prominent benchmark methods on a broad range

of simulated and real-world datasets. The hyper-parameters of our model are conven-

tional and can be handily tuned by users. We showed that our algorithm achieves

consistent results over a broad range of hyper-parameter values. In future, we envisage

incorporating structured covariance matrices into our method to allow for even faster

computation.
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8 Conclusions

8.1 Summary

This thesis has analyzed the density peaks clustering algorithm, provided theoreti-

cal guarantees regarding its consistency, and developed three well-justified derivative

methods which ameliorate deficiencies of the original algorithm while extending the

range of its potential applications. This work has both broadened and deepened the

body of existing literature on these topics.

8.1.1 Non-Parametric Clustering

The first analysis of the consistency of the estimates returned by the density peaks

clustering algorithm has been produced. Density peaks clustering with a consistent

density estimator returns consistent estimates of the modes of the underlying density

with high probability. Furthermore, it was shown that if the modes are estimated suffi-

ciently well, then the assignment strategy of density peaks clustering correctly clusters

the instances in the data. Despite these guarantees, several issues were illustrated with

the operation of the density peaks clustering algorithm for commonly sized datasets.

It was shown that the density peaks clustering algorithm can erroneously detect spu-

rious modes in the data in the presence of a noisy density estimate. Moreover, the

allocation mechanism can produce results which do not meet the notion of a cluster

used in non-parametric density-based clustering.

Aiming at remedying these issues, two novel non-parametric density-based clustering
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methods were developed.

The first, termed DCF, seeks to model high density regions of the data using modal

sets rather than point modes. By doing do, the algorithm is robust to fluctuations in

the density estimate. Theoretical results showed that the set of modal set estimates

returned by the DCF method can be bijectively related to true modal sets of the

underlying density. The superiority of the DCF method over competitor approaches

was demonstrated in an experimental analysis. The DCF method was also shown to

be capable at an important computer vision application, namely unsupervised face

detection.

The second method developed in this thesis, termed CPF, aims to improve the alloca-

tion mechanism of the density peaks clustering method. To eradicate the possibility of

assigning instances to clusters over regions of very low density in the data, the data is

first partitioned into density-level sets. This partition separates regions between which

there are areas of low density. To each level set, a peak-finding clustering approach is

applied, utilizing a procedure to prune spurious modes which is similar to that used in

DCF. The benefits of combining level set and mode-seeking density-based clustering

methods was demonstrated using an experimental analysis on simulated and real-world

datasets. Subsequently, a modified version of the CPF method was introduced, incor-

porating instance-level clustering constraints to allows its application for a modern

computer vision task, multi-image matching.

Both methods were included in an extensive experimental comparison, assessing the

performance of prominent non-parametric density-based clustering methods on an ex-

panded pool of real-world datasets. DCF and CPF were shown to significantly outper-

form competitor methods in terms of clustering quality. The effect of hyper-parameters

on the clustering results was also assessed, demonstrating that the quality of the clus-

terings produced by DCF and CPF is not degraded for a broad range of parameters.

Guidance for parameter selection was also discussed.
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8.1.2 Parametric Clustering

The density peaks clustering method is shown to achieve high quality estimates of the

modes. Considering the notion of a cluster in a parametric clustering as a unimodal

component within an appropriate finite mixture model, a novel approach adapting

the density peaks clustering methodology for mixture modelling was presented. The

method, termed REM, selects an intial set of mode estimates using the peak-finding

approach. These estimates are used as initializations for runs of the EM algorithm.

REM uses a novel pruning algorithm to iteratively remove redundant exemplars from

the pool. The pruning algorithm is well-justified in the context of mixture modelling

and uses convex optimization to determine the exemplars to be pruned. The relevant

theoretical results regarding mode recovery are discussed and analytical solutions to

the optimization problem were also provided. To confirm the suitability of REM for

parametric clustering, an experimental analysis using simulated and real-world data

was completed. The results confirm that REM outperforms popular competitor meth-

ods and consistently recovers high quality parametric clusterings from the data.

8.1.3 Research Aims

Recalling the primary research aims discussed in the introduction, each has been

achieved. The density peaks clustering algorithm has been theoretically analyzed for

the first time, deepening understanding of its place in the field of non-parametric

density-based clustering. Subsequently, two novel approaches have been developed

which adapt and extend the density peaks clustering method. By detecting cluster

cores in the data, the vulnerability to fluctuations in the density estimate was remedied.

The allocation mechanism of density peaks clustering was also improved, reducing the

likelihood of incoherent clustering outputs. The improvements offered by these new

approaches have been extensively validated in experimentation and their performance

in modern applications has been demonstrated. Moreover, we have proposed a novel

direction for mode detection using the density peaks methodology, namely providing
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stable estimates for the mean parameters in Gaussian mixture models. The density

peaks clustering framework has, in this thesis, been shown to be a consistent, adapt-

able, and effective non-parametric density-based clustering method with the potential

for quality application across a broad spectrum of data analysis tasks.

8.2 Further Work

8.2.1 Parametric Density Peaks Clustering

The REM method uses non-parametric estimates of the modes, provided by the density

peaks clustering method, as initialization for the mean vector of a Gaussian mixture

model. That the combination of parametric and non-parametric clustering methods

proved fruitful motivates a proposal for a method that uses a parametric density es-

timate, obtained from a Gaussian mixture model, as an input to a peak-finding algo-

rithm.

Assuming a parametric model for the density has several benefits: (1) the estimation

process for the mixture density is well understood, following the work on model-based

clustering outlined in Chapter 2; (2) the quality of the density estimation can be

quantified using information criteria; (3) the form of the mixture components can be

readily controlled by the used; and (4) the parametric density estimation process is

accepted to scale better as the dimension of the data increases.

In Chacón (2016), a mixture density is first fit to the data and then a non-parametric

clustering algorithm based on mean shift is applied to cluster the data. Similarly

Scrucca (2016b) fit a mixture model before applying a non-parametric clustering ap-

proach, extracting level sets from the mixture density. Considering the improved per-

formance of the density peaks clustering methods, compared to competitor level set

and mode-seeking methods, demonstrated in this thesis, it is natural to consider the

application of density peaks clustering using mixture densities as the estimator.
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8.2.2 Density Peaks Clustering for High Dimensional Data

The effect of high dimensional data on the quality of the density peaks clustering

method is a second potential topic of future study. In high-dimensional spaces, the

curse of dimensionality can lead to all points becoming near equidistant from one

another as the space becomes increasingly sparse. While the methods introduced in

this thesis outperform the competitor methods for datasets of high dimension (for

example see the performance of DCF and CPF for the Phonemes dataset and the

performance of REM on the G2 dataset), in such a case methods based on distance

between instances can fail.

The task of developing adaptations of the density peaks clustering method that provide

quality clusterings of high-dimensional data offers many potential avenues of research.

One could investigate density estimators designed to provide accurate estimates in

high dimensions, such as those reviewed in Wang and Scott (2019). An alternate route

would investigate the ability of dimension reduction techniques to provide mappings

to lower-dimensional spaces while preserving the cluster structure uncovered by the

peak-finding method. Such work leads naturally to the estimation of clusters that

lie on lower dimensional manifolds within the data space. A brief review of such

methods is available in Wasserman (2018), but as of yet no work has used the density

peaks clustering method for this task. A related field is the task of detecting subspace

clusters present in the data. Here, rather than seeking to project the data to a single

low-dimensional subspace, as is done with many dimension reduction techniques, it

is assumed that the data points are drawn from multiple subspaces. The task is to

simultaneously cluster the data into multiple subspaces and find a low-dimensional

subsapce fitting each group of points. In this situation, point modes are unlikely to

adequately represent the clusters, but there is potential for the cluster core method

used in DCF to determine true subspace clusters present in the data.

Finally, this formulation could be extended to be applicable for clustering functional

data, with density peaks clustering methods applied once a suitable dissimilarity metric
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and density estimator has be chosen.

8.2.3 Model Selection Criteria for Non-Parametric Cluster-

ing

The non-parametric methods introduced in this thesis, namely DCF and CPF, are hard

clustering methods where each observation is assigned to one and only one cluster. By

contrast, the mixture model method REM attempts to capture the uncertainty in

the cluster assignment by producing an m assignment vector for each instance that

is a probability distribution over the clusters. As discussed in Chen et al. (2016),

soft clustering methods provide insights into two types of cluster uncertainty, at the

sample level and at the population level. The sample level uncertainty reflects the

uncertainty in the density estimate f̂ , and the population uncertainty captures the

relationship between an observation and the true modes of the underlying density. For

example, if an instance is on the border between the attraction regions of two modes,

the assignment vector should reflect this uncertainty. Capturing and quantifying this

uncertainty using soft assignments allows for the creating of model selection criteria

for non-parametric clustering.

The work of Chen et al. (2016) develops a soft clustering adaptation for mean shift

and uses it to develop a model selection criterion based on the connectivity among

clusters. A worthwhile avenue of future research would be to develop a comparable

method for density peaks clustering. Such an approach would develop further the theo-

retical results for the sample-based assignment mechanism of density peaks clustering

to understand the uncertainty associated with each observation, accounting for the

uncertainty introduced by the density estimator.
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8.2.4 Sparse Covariance Structures and Non-Gaussian Mix-

ture Models for REM

A simple extension of the REM method will implement the sparse covariance structures

outlined in Chapter 2. This extension will bring the REM Python package closer to

the suite of mixture model tools available in the popular mclust package. Integrating

sparse covariance structures will also further improve the execution efficiency of the

REM method.

The REM framework also has the potential to be extended to mixtures of multivariate

Gaussian components. As discussed in Chapter 2, the mixture model framework has

been applied for mixtures of multivariate-t distributions, skew-normal distributions,

skew-t distributions, among others. For each of these component distributions, the

modes of the mixture density are symptomatic of the underlying population structure.

The consistent estimates provided by the density peaks clustering method could pro-

vide high quality initializations as is done for Gaussian mixtures. It should be noted

that the extension to mixture of non-Gaussian components will require the pruning

methodology to be reformulated, as it is currently justified only in the context of Gaus-

sian mixtures. Such a goal could reasonably achieved and would provide an interesting

addition to the literature.

8.2.5 Riemannian Optimization for Gaussian Mixture Mod-

els

Hosseini and Sra (2020) develop an alternative estimation approach for Gaussian mix-

ture models using Riemannian optimization. Using a clever reparameterization of the

mean vectors and covariance matrices, the maximum likelihood estimates are found

through manifold optimization on the product space of the m p-dimensional positive

definite matrices,
∏m

j=1 Pp, and the (m− 1)-dimensional product vector, R(m−1). This

approach is shown to converge faster than EM and produce higher quality parameter
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estimates. Unfortunately, as a result of the reparameterization, the sparse covariance

structures used for Gaussian mixtures can not be integrated into their proposal.

It was shown in Chapter 7 that the density peaks clustering algorithm can provide

high quality estimates for the mean vectors of a mixture model, leaving only the

covariance matrices to be estimated. In this case, manifold optimization methods over

the space of positive definite matrices could be used to produce higher quality results

more quickly than the EM algorithm. Moreover, the sparse covariance structures for

Gaussian mixture models can be easily integrated into this proposal. In fact, the

manifold optimization becomes significantly easier as rather than optimizing over the

product space of positive definite matrices, the optimization will be over a reduced

space depending on the particular covariance constraints considered. For example, if

no constraints are adopted for m covariance matrices of size p× p, the optimization is

over the space
∏m

j=1 Pp × R(m−1). Instead, if the covariance matrices are restricted to

be diagonal, the space becomes
∏m

j=1Rp × R(m−1), or if they are common across each

component, the optimization is over Pp × R(m−1). A key benefit of this approach is

that simpler covariance structures are reflected in simpler and more efficient estimation

procedures.
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Verbeek, J. J., Vlassis, N., and Kröse, B. (2003). Efficient greedy learning of Gaussian

mixture models. Neural Computation, 15(2):469–485.

180



Verdinelli, I. and Wasserman, L. (2018). Analysis of a mode clustering diagram. Elec-

tronic Journal of Statistics, 12(2):4288–4312. Publisher: Institute of Mathematical

Statistics and Bernoulli Society.

Vinh, N. X., Epps, J., and Bailey, J. (2010). Information theoretic measures for clus-

terings comparison: Variants, properties, normalization and correction for chance.

The Journal of Machine Learning Research, 11:2837–2854.

Wang, D., Lu, X., and Rinaldo, A. (2017). Optimal rates for cluster tree estimation

using kernel density estimators. arXiv preprint arXiv:1706.03113.

Wang, H., Wang, Y., Zhou, Z., Ji, X., Gong, D., Zhou, J., Li, Z., and Liu, W. (2018a).

CosFace: Large Margin Cosine Loss for Deep Face Recognition. In 2018 IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 5265–5274. ISSN:

2575-7075.

Wang, Q., Zhou, X., and Daniilidis, K. (2018b). Multi-image Semantic Matching by

Mining Consistent Features. In 2018 IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 685–694, Salt Lake City, UT, USA. IEEE.

Wang, X.-F. and Xu, Y. (2017). Fast clustering using adaptive density peak detection.

Statistical Methods in Medical Research, 26(6):2800–2811.

Wang, Y., Gu, Y., and Shun, J. (2020a). Theoretically-Efficient and Practical Parallel

DBSCAN. In Proceedings of the 2020 ACM SIGMOD International Conference on

Management of Data, pages 2555–2571.

Wang, Y., Wang, D., Zhang, X., Pang, W., Miao, C., Tan, A.-H., and Zhou, Y. (2020b).

McDPC: multi-center density peak clustering. Neural Computing and Applications.

Wang, Y., Wei, Z., and Yang, J. (2018c). Feature trend extraction and adaptive

density peaks search for intelligent fault diagnosis of machines. IEEE Transactions

on Industrial Informatics, 15(1):105–115.

181



Wang, Z. and Scott, D. W. (2019). Nonparametric density estimation for high-

dimensional data—algorithms and applications. Wiley Interdisciplinary Reviews:

Computational Statistics, 11(4):e1461.

Wasserman, L. (2018). Topological Data Analysis. Annual Review of Statistics and

Its Application, 5(1):501–532. eprint: https://doi.org/10.1146/annurev-statistics-

031017-100045.

Wasserman, L., Azizyan, M., and Singh, A. (2014). Feature selection for high-

dimensional clustering. arXiv preprint arXiv:1406.2240.

Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics, 1:80–83.

Wishart, D. (1969). Mode analysis: A generalization of nearest neighbor which reduces

chaining effects. Numerical Taxonomy, pages 282–311.

Wolf, L., Hassner, T., and Maoz, I. (2011). Face recognition in unconstrained videos

with matched background similarity. In CVPR 2011, pages 529–534.

Wolfe, J. H. (1963). Object cluster analysis of social areas.

Xie, J., Gao, H., Xie, W., Liu, X., and Grant, P. W. (2016). Robust clustering

by detecting density peaks and assigning points based on fuzzy weighted k-nearest

neighbors. Inf. Sci., 354(C):19–40.

Xu, D. and Tian, Y. (2015). A comprehensive survey of clustering algorithms. Annals

of Data Science, 2(2):165–193.

Yan, J., Ren, Z., Zha, H., and Chu, S. (2016). A constrained clustering based approach

for matching a collection of feature sets. In 2016 23rd International Conference on

Pattern Recognition (ICPR), pages 3832–3837.

Yan, J., Xu, H., Zha, H., Yang, X., Liu, H., and Chu, S. (2015). A Matrix De-

composition Perspective to Multiple Graph Matching. In 2015 IEEE International

Conference on Computer Vision (ICCV), pages 199–207, Santiago, Chile. IEEE.

182



Yang, L., Zhan, X., Chen, D., Yan, J., Loy, C. C., and Lin, D. (2019). Learning to

Cluster Faces on an Affinity Graph. In 2019 IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pages 2293–2301.

Yaohui, L., Zhengming, M., and Fang, Y. (2017). Adaptive density peak clustering

based on K-nearest neighbors with aggregating strategy. Knowledge-Based Systems,

133:208–220.

Yu, D., Liu, G., Guo, M., Liu, X., and Yao, S. (2019). Density peaks clustering based

on weighted local density sequence and nearest neighbor assignment. Ieee Access,

7:34301–34317.

183


	Introduction
	Research Aims
	Methodology
	Thesis Structure

	Literature Review
	Parametric Density-Based Clustering
	Population Clusters
	Estimation Procedures

	Non-Parametric Clustering
	Population Clusters
	Estimation Procedures


	Density Peaks Clustering
	Summary
	The Method
	Theoretical Analysis
	Illustrative Analysis
	Conclusion

	Modal-Set Detection with the Peak-Finding Criterion
	Summary
	Introduction
	Related Work
	Our Method
	Notation and Definitions
	The DCF Algorithm

	Analysis of DCF
	Theoretical Analysis
	Complexity Analysis
	Simulated Experiments
	Real-World Experiments

	Application
	Results

	Conclusion

	Peak-Finding on Density-Level Sets
	Summary
	Introduction
	Related Work
	Our Method
	Motivation
	Notation and Definitions
	The CPF Algorithm

	Analysis of CPF
	Complexity Analysis
	Simulated Experiments
	Real-World Experiments

	Application
	Conclusion and Future Work

	Experimental Comparison
	Summary
	Introduction
	Experimental Set-Up
	Results
	Analysis of the Parameter Space

	Conclusion

	Density Peaks for Parametric Clustering
	Summary
	Introduction
	Background
	Exemplar Selection
	The Iterative Pruning Procedure
	EM Block
	Pruning Block
	Model Selection

	Evaluation
	Experimental Setup
	Simulated Datasets
	Real Datasets
	Model Selection Methods
	Ablation Study

	Conclusion and Future Work

	Conclusions
	Summary
	Non-Parametric Clustering
	Parametric Clustering
	Research Aims

	Further Work
	Parametric Density Peaks Clustering
	Density Peaks Clustering for High Dimensional Data
	Model Selection Criteria for Non-Parametric Clustering
	Sparse Covariance Structures and Non-Gaussian Mixture Models for REM
	Riemannian Optimization for Gaussian Mixture Models



