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Summary

Supersymmetry provides a rich ground for qualitative and quantitative analy-

ses in both quantum field theory and gravity. Many supersymmetric theories

exhibit dualities such as the strong-weak coupling duality, which manifests it-

self through the equivalence of the dynamics of a theory for distinct values of its

coupling constants. The mathematical formulation of dualities in many cases

involves modular and automorphic forms, whose number theoretic properties

are often as intriguing as the dualities themselves. It is a natural problem to

determine a domain for the coupling constant parametrising inequivalent the-

ories, and finding the relations between the couplings giving rise to the same

dynamics.

In this thesis, we obtain several results on this question, particularly re-

garding the duality and modularity of Coulomb branches for four-dimensional

N = 2 supersymmetric quantum field theories. For pure N = 2 super Yang–

Mills theory (SYM) with gauge group SU(2), the Coulomb branch (CB) can

be identified with the modular fundamental domain for the duality group of

the theory. We extend this result for higher rank gauge groups and for the

inclusion of matter.

There are several applications and further directions of study that our

results enable. First, our exact results on fundamental domains allow to de-

termine BPS spectra for a larger class of N = 2 supersymmetric theories.

Furthermore, our precise statements of duality allow to study the strongly

coupled regions in great detail. Finally, they provide simple and exact formu-

las for the computation of correlation functions of topological theories. We

discuss these results in more detail in the following.

To begin with, we study the asymptotically free N = 2 SU(2) theories

with fundamental matter. The duality groups were only known for Nf = 2

and 3 massless flavours, whereas the generic mass case including the peculiar

role of massless Nf = 1 have remained elusive. We find a completely general

description for arbitrary masses mi and number Nf of flavours: The space of

inequivalent couplings is a fundamental domain F(mi), endowed with a collec-

tion of branch cuts and branch points. For special choices of the masses, the

branch points annihilate and F(mi) is a modular fundamental domain. The

CB parameter u is the root of a sextic polynomial, and for certain mass con-

figurations can be determined explicitly as a function of the effective coupling.

The description incorporates all possible mass limits, such as decoupling of

hypermultiplets and merging of local as well as non-local singularities, giving

an analytic handle on the superconformal Argyres-Douglas theories.

The superconformal Nf = 4 theory with gauge group SU(2) distinguishes

itself from the asymptotically free theories through a nontrivial dependence

of the theory on an ultraviolet coupling τUV, and is a building block for four-

dimensional N = 2 superconformal field theories. We prove that for special

mass configurations, the order parameter u transforms as a modular form for
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the infrared coupling τ as well as the ultraviolet coupling τUV. A simultane-

ous transformation on τ and τUV permutes the moduli spaces according to the

triality group of the flavour symmetry SO(8), and we show that the character-

istic CB functions organise into vector-valued bimodular forms. These results

allow to derive the S-duality transformations of the topologically twisted four

flavour theory.

In a different direction, we study the duality of pure N = 2 SYM with

gauge group SU(3), where the two-dimensional space of vacua parametrises

an intricate family of genus two Seiberg-Witten curves. We prove that two

natural complex one-dimensional loci of the CB are parametrised each by el-

liptic (i.e. genus one) curves, such that these elliptic loci allow a modular

parametrisation. The locus where mutually local dyons become massless pro-

vides a natural generalisation of the pure SU(2) fundamental domain, while the

locus containing the superconformal Argyres-Douglas points is a fundamental

domain for a Fricke group.

We furthermore consider topological twists of four-dimensional N = 2 su-

persymmetric quantum chromodynamics with gauge group SU(2) and Nf ≤ 3

fundamental hypermultiplets. The twists are labelled by a choice of back-

ground fluxes for the flavour group, which provides an infinite family of topo-

logical partition functions. We demonstrate that in the presence of such fluxes

the theories can be formulated for arbitrary gauge bundles on a compact four-

manifold. Moreover, we consider arbitrary masses for the hypermultiplets,

which introduce new intricacies for the evaluation of the low-energy path in-

tegral on the Coulomb branch. We develop techniques for the evaluation of

these path integrals.

When the topological version of pure N = 2 SU(2) SYM is formulated on a

simply connected four-manifold X, it is well-known that a physical correlation

function computes the celebrated Donaldson invariants of X, which are smooth

four-manifold invariants. Based on earlier work by Mariño and Moore, we

generalise recent results by Korpas and Manschot to the case where X is

non-simply connected, and show that correlation functions on such manifolds

can be evaluated using mock modular forms. For a product ruled surface

X = Σg × CP1, by shrinking the genus g Riemann surface Σg, this allows to

make a connection between mock modular forms and the topological A-model

with target space the moduli space of flat connections on Σg.
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1 Introduction

Theoretical physics has been enormously successful in predicting the behaviour

of nature. In the last century, two main fundamental theories have emerged.

On one hand, general relativity describes the fundamental interaction between

objects with mass or energy. On the other hand, quantum field theory com-

bines special relativity and quantum mechanics into a framework that describes

subatomic particles, which underlie the electromagnetic, strong and weak inter-

actions. The combination of both theories is necessary in order to understand

aspects of the natural world, such as the nature of black holes and the forma-

tion of the universe. Since there are many conceptual and technical obstacles

to the problem of combining both theories, it is of utmost interest to study

the intrinsic properties of candidate unified theories in great detail.

One area of such theories which is poorly understood is the problem of

strong coupling. The couplings of a theory measure the strength of the inter-

actions of its constituents. When a coupling is known to be small, we can use

the powerful method of perturbation theory to study the interactions. In many

cases, when the interactions are turned off the theory becomes rather simple

and can be solved exactly. Perturbation theory then allows to express the

effect of a small coupling as a small correction to the exact solution. This only

provides a good solution if the coupling is small compared to the quantities

involved.

When the coupling on the other hand is large, the correction to the exact

solution is large compared to the original solution, and thus does not provide

a good approximation. Therefore, perturbation theory typically becomes ob-

solete when studying strong interactions. For most relevant physical theories

such as the Standard Model, studying the physics of strong coupling in full

generality has remained an important open problem.

One way to gain access to the properties of strong coupling is through su-

persymmetry. Supersymmetry is a natural feature of many unified theories.

It allows us to study theories in a wider range of parameters (such as the

couplings), as well as to calculate interactions exactly rather than approxima-

tively. The broad motivation for this thesis is thus to study exact methods to

access the physics of strong coupling and to demonstrate that these analyses

allow to compute supersymmetric quantities exactly and in full detail.

This thesis considers the relation between supersymmetry, dualities, mod-

ular forms and topological field theory. The remainder of this first section is

devoted to giving an introduction to some aspects of these theories, which are

necessary to understand the following sections. We hopefully provide enough

references in order for the reader to fill in gaps, and also refer to the Appendix

A for more references.
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1.1 Supersymmetry

Supersymmetry is a symmetry between two basic classes of particles in quan-

tum field theory: bosons, which have integer-valued spin, and fermions, which

have half-integer spin (see [6–8] for excellent introductions to supersymmetry).

They have very different thermodynamic properties. While bosons follow the

Bose-Einstein statistics, fermions obey the Pauli exclusion principle and follow

the Fermi-Dirac statistics. In a supersymmetric theory, each particle from one

class has a superpartner from the other class, whose spin differs by a half-

integer number. Moreover, the supersymmetric partners share the same mass

and internal quantum numbers other than spin.

Supersymmetry is motivated by solutions to several problems in quantum

field theory which are difficult to study in non-supersymmetric theories. Due

to the constraints it gives on the dynamics, supersymmetric theories are often

simpler to analyse. In many cases, quantities such as path integrals, correla-

tion functions etc. can be determined exactly rather than only perturbatively,

which gives an analytic handle on the physics. For instance, many supersym-

metric theories contain interesting dualities, which manifests itself through

the equivalence of the dynamics of a theory for distinct values of its coupling

constants.

One instance of a duality is the strong-weak coupling duality, relating the

dynamics for large and small values of the coupling constants. This allows in

many cases to study strongly coupled phases of quantum field theory, which

are not accessible through traditional perturbative calculations. A particularly

interesting example of such a theory is quantum chromodynamics (QCD), as

it is the theory of the strong interaction between quarks and gluons and thus

an important part of the Standard Model of particle physics. QCD exhibits

many interesting features, such as asymptotic freedom and colour confinement.

Asymptotic freedom causes interactions between fields to become weaker as the

energy scale increases. In particular, quarks interact weakly at high energies,

and therefore can be studied through perturbation theory. At low energies

however, the interactions become strong, which leads to the confinement of

quarks and gluons. Colour confinement prohibits quarks and gluons to be

isolated from each other. The supersymmetric version of QCD is asymptoti-

cally free as well, however the emergent strong-weak coupling duality allows

to study the perturbative as well as non-perturbative dynamics at both weak

and strong coupling in great detail.

Supersymmetry can be incorporated into a theory by extending the familiar

Poincaré algebra by the supersymmetry algebra. The supersymmetry algebra

is generated by spinors QI
α and (QI

α)† called supercharges. Here, α are spinor

indices, while I = 1, . . . ,N are the supersymmetry indices. The integer N
counts the number of independent supersymmetries of the algebra. Represen-

tations of the supersymmetry algebra are called supermultiplets, or multiplets

for short. They consist of a collection of fields which are superpartners.
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In four dimensions, the possible amounts of supersymmetry for a quantum

field theory are N = 0, 1, 2, 3 and 4. For N = 1 supersymmetry, the most

commonly used supermultiplets are the N = 1 vector multiplet and the chiral

multiplet. In the vector multiplet, the highest component is the gauge field,

while that of a chiral multiplet is a spinor. In N = 2, common multiplets are

theN = 2 vector multiplet, containing the gauge field, and the hypermultiplet,

containing a spinor as the highest component. In N = 4, the vector multiplet

contains again all the superpartners of the gauge field.

The space of theories with N supersymmetries depends in an interesting

way on N :

• N = 0 theories do not contain any supercharges. They are constrained

only by physical principles, and a classification is currently out of reach.

• N = 1 theories form an enormously big class of theories, and are believed

to not be exactly solvable. However, certain subsectors are dictated by

supersymmetry, such as the chiral superpotential. This allows to obtain

many exact results on the low-energy dynamics [9–12].

• N = 2 supersymmetry is a rich class of theories capable of describ-

ing many interesting phenomena, while allowing full solutions of many

aspects of the theories. For instance, the low-energy effective action is

governed by the so-called prepotential. The N = 2 supersymmetry forces

the prepotential to be a holomorphic function of the moduli, and the per-

turbative quantum corrections can be found exactly. This is analogous

to the power of holomorphicity of conformal field theories in two dimen-

sions. This thesis will be almost exclusively about aspects of N = 2

supersymmetry.

• The number N = 3 is interesting in its own right, for the following

reason. If we consider a Lagrangian N = 3 theory, it might not by

itself be simultaneously charge conjugate, parity and time reversal (CPT)

invariant. CPT is a possible symmetry of quantum field theories, and

generally holds for all physical phenomena. When a Lagrangian N = 3

theory is not CPT invariant, we can take instead the direct sum with its

CPT conjugate. If the theory is assumed to contain particles of helicities

bounded by 1, for N = 3 and N = 4 the particle spectra coincide

precisely.

If we drop the requirement that the theory is Lagrangian, then it can

be shown that genuine N = 3 theories are necessarily isolated supercon-

formal field theories (SCFT) [13]. However, it was shown recently that

purely N = 3 theories exist with an infinite family of them realised as

the worldvolume of stacks of D3-branes probing so-called S-folds [14–17].

• N = 4 theories finally are highly constrained. The most prominent ex-

ample is maximally supersymmetric N = 4 Yang–Mills theory (SYM),

3



which is featured in the first example of the conjectured AdS/CFT holog-

raphy [18]. It is believed to be self-dual [19], that is, invariant under the

exchange of electric and magnetic charges. The physics of an N = 4 the-

ory is generally simpler than that of an N = 2 theory. For instance, the

low energy dynamics obtained from the Seiberg-Witten (SW) solution is

rather trivial.

A particular feature of supersymmetry is that it can be broken to lower

supersymmetry. For instance, maximally supersymmetric N = 4 SYM in four

dimensions can be broken to the so-called N = 2∗ theory, which is an N = 2

supersymmetry-preserving mass deformation of N = 4. This gives an analytic

handle on structures of N = 4 supersymmetric theories that are difficult to

understand without breaking the supersymmetry. For instance, any N = 2

theory, such as N = 4 SYM, contains a Coulomb branch of inequivalent vacua.

The mass terms of the N = 2∗ deformation break the conformal symmetry of

N = 4, and give rise to a richer structure of the Coulomb branch. This allows

for instance to study correlation functions in much greater detail than without

any deformation.

Supersymmetry is an integral part of string theory, which aims to provide

a unified description of gravity and quantum field theory. Indeed, a major

motivation to study N = 2 theories comes from string theory: Many N = 2

field theories in four dimensions can be obtained from geometric engineering in

Type IIA string theory on Calabi-Yau manifolds [20–23]. While all the theories

studied in this thesis have a natural origin in string theory, our results mostly

concern ordinary quantum field theory, i.e. without gravity. We will discuss

relations to string theory sparsely throughout the text, but will expand on

those in the conclusions in section 7.

1.2 Duality

In maximally supersymmetric N = 4 SYM, one obtains a physically equivalent

theory if the gauge coupling constant gYM is replaced by its inverse 2π/gYM.

To describe this duality, it is convenient to combine the theta angle θ and the

gauge coupling gYM into the complexified gauge coupling,

τ =
θ

2π
+

2πi

g2
YM

. (1.1)

It takes values in the upper half-plane

H = {τ ∈ C | Im(τ) > 0}, (1.2)

since the imaginary part of τ is positive. When the theta angle is included,

the Montonen–Olive duality acts by τ 7→ −1/τ [19, 24]. Furthermore, the

periodicity of the theta angle θ 7→ θ + 2π is translated to τ 7→ τ + 1. These
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two transformations τ 7→ −1/τ and τ 7→ τ + 1 can be considered as linear

fractional transformations

τ 7−→ γ · τ :=
aτ + b

cτ + d
, γ =

(
a b

c d

)
∈ SL(2,Z), (1.3)

where SL(2,Z) is the group of unit determinant 2 × 2 matrices with integer

coefficients. In particular, for S = ( 0 −1
1 0 ) and T = ( 1 1

0 1 ), we have that S · τ =

−1/τ and T · τ = τ + 1. The elements S and T generate SL(2,Z), i.e. any

element of SL(2,Z) can be written as a word in S and T . Put differently,

the N = 4 theory contains an SL(2,Z) symmetry acting on both gYM and θ

nontrivially. If the theta angle is set to zero, the S-duality exchanges weak

coupling (gYM � 1) with strong coupling (gYM � 1), which is why Montonen–

Olive duality is an example of a strong-weak coupling duality (see [25] for

a review). This demonstrates the power of dualities: Strong-weak dualities

allow to gain insight into the strongly coupled phases, which are not accessible

through traditional perturbative calculations.

The strong-weak coupling duality of N = 4 SYM is of course not the only

example of a duality in a physical theory. In fact, dualities are ubiquitous in

quantum field theories, string theory and gravity. The most basic one is per-

haps the electric-magnetic duality of electrodynamics, which is characterised

by an equivalence of the theory under an exchange of electric and magnetic

fields. One of the best-understood examples is the gauge/gravity duality, which

relates a strongly coupled quantum field theory to a weakly coupled gravita-

tional theory, and vice versa [18]. Another example is mirror symmetry, which

gives a relation between the topological A-model and B-model [26–29]. Finally,

there is a web of string dualities in string theory, M-theory and F-theory, such

as the T-duality, S-duality and U-duality. Dualities also have far-reaching con-

sequences and relations to pure mathematics, such as the study of enumerative

invariants or the geometric Langlands program [24,30–32].

We can schematically formalise a class of dualities as follows. Let us assume

that a theory T has a space M of couplings τ ∈ M. These couplings can be

considered as external parameters of T , on which observables such as the

partition function, correlation functions etc. depend explicitly. We can denote

this dependence by T [τ ], which indicates the theory with a coupling τ . The

symbol T can denote a theory as e.g. a collection of correlation functions, or

a sector of a specific theory such as the infrared.1 Let us make this idea more

precise in two examples.

One example carried throughout this introduction is N = 4 SYM, for in-

stance with gauge group SU(N). This theory enjoys superconformal invariance,

and has a complex one-dimensional N = 4 supersymmetry-preserving confor-

mal manifold. A conformal manifold is the space of couplings of a conformal

field theory (CFT) to exactly marginal operators, and thus can be understood

1We want to stress that the notions introduced below should be understood as schematic,

rather than precise.
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as the space that parametrises a CFT. For N = 4 SYM, this conformal mani-

fold may be parametrised by the complexified gauge coupling τ (1.1). Thus an

observable O in N = 4 for fixed rank N depends only on τ , and as such is a

function O(τ). Then by TN=4[τ ] we mean the collection of observables O(τ).

The main focus of this thesis is on N = 2 supersymmetry, which is not su-

perconformal unless it is coupled to matter in specific representations. As will

be discussed in detail below, N = 2 gauge theories have a moduli space of in-

equivalent vacua, a component of which is the Coulomb branch. The Coulomb

branch can be parametrised by order parameters ui, which are functions of the

low-energy effective coupling τ . As an example, in this context, by TN=2[τ ] we

could mean such a function ui(τ).

By comparing T [τ1] and T [τ2], we can use the “map” T to test whether two

couplings τ1 and τ2 generate two different theories or two equivalent theories.

For instance, in N = 4 SYM “equivalent” means that correlation functions

take the same values, and thus give rise to equivalent dynamics of the theory.

This idea naturally leads to the

Definition 1 (Fundamental domain). For a theory T with space of couplings

M, a fundamental domain F [T ] is a subset of M with the property that

• for any coupling τ 6∈ F [T ], there exists a τ ′ ∈M such that T [τ ] = T [τ ′],

and

• for any two couplings τ, τ ′ ∈ F [T ] with τ 6= τ ′ we have that T [τ ] 6= T [τ ′].

Let us now assume that a group G 3 g acts on the coupling τ , which we

denote by g · τ . If

T [g · τ ] = T [τ ] (1.4)

for all g ∈ G and for all τ ∈M, then we say that G is the duality group of the

theory T for the action on the coupling τ ∈ M. When the theory has such a

duality group G, there is different way to formulate a fundamental domain, as

two couplings in M can be compared as follows:

Definition 2 (Fundamental domain). Let T be a theory with space M of

couplings and duality group G acting on M. Then F̃ [T ] is a fundamental

domain, if

• for any τ 6∈ F̃ [T ], there exists a g ∈ G such that g · τ ∈ F̃ [T ], and

• for any two distinct τ, τ ′ ∈ F̃ [T ], there is no g ∈ G such that τ ′ = g · τ .

Fundamental domains are in general not unique, and there is no canonical

choice. For families of theories that are related by deformations, such as super-

symmetric quantum chromodynamics (SQCD), fixing a frame for the choice of

fundamental domains becomes important, since also the fundamental domains

must be related by certain deformations.
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An important class of dualities are those which have a nontrivial action on

the gauge group. For instance, Montonen–Olive duality of N = 4 SYM in gen-

eral is a symmetry which under a generalised S-duality τ 7→ − 1
nGτ

replaces the

gauge group G with its so-called Landlands dual group LG, where nG = 1, 2, 3

is an integer that depends on G. For instance, for G = SU(N), the Langlands

dual is LSU(N) = SU(N)/ZN , while LU(N) = U(N) is Langlands self-dual.

When the gauge group G is not Langlands self-dual, the S-transformation

is interesting because it explains the strong coupling dynamics in terms of a

weakly coupled description of a different theory with gauge group LG. Du-

alities affecting the gauge groups are not restricted to N = 4, they are also

found in N = 2 supersymmetric theories [21, 33, 34]. In our schematic setup

introduced above, we will only consider the cases where the duality keeps the

gauge group fixed.

In this thesis, we will mainly focus on the case whereM is a subset of the

upper half-plane H, (1.2). On H there is a natural group action of SL(2,Z) or

any subgroup thereof, as defined in (1.3). For such subgroups, the definition

2 for a fundamental domain is widely used in the literature of modular groups

and automorphic forms. From the generators of a group, there is an algorithm

that draws a certain choice of fundamental domain (see Appendix A.3).

We find many examples where g ·τ is not a linear fractional transformation

for G 3 g an honest group, and the action needs to be properly generalised.

Then definition 1 can be used instead of definition 2. This distinction will be

made clear in this thesis.

Let us briefly return to the above example of N = 4 SYM, whose duality

group is SL(2,Z) acting on the coupling τ ∈M = H through the transforma-

tion (1.3).2 The duality can be encoded in the equation

TN=4[γ · τ ] = TN=4[τ ], (1.5)

which is a formulation of the Montonen–Olive duality. This allows to extract

the physical consequences of the duality based on SL(2,Z) spectral theory [35].

For the duality group SL(2,Z), there is a standard choice of fundamental

domain F , which is given in Fig. 1.

From definition 2, it can be understood as follows. For some τ = x+iy ∈ H,

x ∈ R is a real number. As such, there exists a unique n ∈ Z such that

τ +n ∈ [−1
2
, 1

2
) lies in the unit interval between ±1

2
. Using the action (1.3), we

can write τ + n = T nτ , and the SL(2,Z) element T n maps τ inside this strip.

This implies that a fundamental domain F for SL(2,Z) must be contained in

the strip −1
2
≤ x < 1

2
. On the other hand, if |τ | < 1, then | − 1/τ | > 1. This

can be seen by writing a complex number as an absolute value times a phase.

Consequently, F must be contained in the region defined by |τ | ≥ 1. The

2We ignore several important aspects (such as modular weights, multiplier systems, ’t Hooft

fluxes, spin structures, non-holomorphicity, modular anomaly, line operators etc.) in order

to give a pedagogical example.
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−1 0 1

F

Figure 1: The key-hole fundamental domain F of SL(2,Z). The vertical sides are identified,

as well as the two halfs of the boundary arc on the unit circle.

intersection of both constraints from the T and S transformations precisely

gives the fundamental region in Fig. 1.

This explanation follows the construction of a fundamental domain as given

in Appendix A.3: First, we write down a list of generators for the group. The

modular group SL(2,Z) is generated by T and S. The generator fixing τ = i∞
is T , and determines a vertical strip of width 1, say from −1

2
to +1

2
. The S-

transformation then reflects the argument on the half-circle S1 ∩ H around

τ = 0 with radius 1. The half-circle defines an “interior” and “exterior”,

depending on whether a number is contained in the disk bounded by the unit

circle or not. A choice of fundamental domain is then given by the intersection

of all exterior regions with the strip defined by the element fixing τ = i∞. For

SL(2,Z), this gives precisely Figure 1.

1.3 Modular forms

A powerful tool to study dualities are modular forms. Modular or automorphic

forms are functions that satisfy a functional equation such as (1.4) or generali-

sations thereof. A part of their importance comes from the fact that if certain

growth conditions are included in the definition, they live in finite-dimensional

vector spaces. This gives powerful constraints on their behaviour, while still

being rich enough to encode nontrivial information. In this section, we present

basic aspects of modular forms and modular functions. For a pedagogical in-

troduction, we refer to the references in Appendix A.

Modular forms for SL(2,Z) are defined as follows:

Definition 3 (Modular form). Let k be an integer. A function f : H → C is

a modular form of weight k, if
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• f is holomorphic in H,

• f(γ · τ) = (cτ + d)kf(τ) for all γ = ( a bc d ) ∈ SL(2,Z) and all τ ∈ H,

• f is holomorphic at ∞.

The space of modular forms for a fixed weight k is a vector space over H,

and the third condition makes it finite-dimensional. For γ = T = ( 1 1
0 1 ), the

functional equation becomes f(τ + 1) = f(τ). This shows that f admits a

Fourier expansion

f(τ) =
∞∑
n=0

an q
n, (1.6)

where q = e2πiτ . The Fourier coefficients an ∈ C encode the same information

as the function f itself, and in many interesting cases are in fact integers. The

expansion (1.6) does not contain terms with nonzero an for negative n, since

for τ → i∞ we have q → 0, which would give a pole for f as τ → i∞.

When γ = −I in Definition 3, then f = (−1)kf implies that the only odd

weight modular form for SL(2,Z) is the zero function. For even k, a class of

examples are the Eisenstein series. They can be defined as the q-series

Ek(τ) = 1− 2k

Bk

∞∑
n=1

σk−1(n) qn, (1.7)

with σk(n) =
∑

d|n d
k the divisor sum and Bk the Bernouilli numbers. For E4

and E6, the Fourier series reads

E4(τ) = 1 + 240q + 2160q2 + 6720q3 + 17520q4 +O(q5),

E6(τ) = 1− 504q − 16632q2 − 122976q3 − 532728q4 +O(q5).
(1.8)

It can be shown that for k ≥ 4 even, Ek is a modular form of weight k for

SL(2,Z). For k = 2, E2 is a so-called quasi-modular form, which means that

the SL(2,Z) transformation includes a shift in addition to the weight factor

(see Appendix A.1).

If we denote the finite-dimensional vector space of modular forms of weight

k for Γ = SL(2,Z) by Mk(Γ), the direct sum

M∗(Γ) =
⊕
k

Mk(Γ) (1.9)

can be shown to be an algebra over C: A modular form can be multiplied

by a complex number, the sum of two modular forms of the same weight is

a modular form, and the product of two modular forms of weight k and k′ is

a modular form of weight k + k′. This gives a simple way to construct new

modular forms. One can show that for Γ = SL(2,Z), M∗(Γ) is freely generated

by E4 and E6. This implies in particular that the Eisenstein series of weight

8 and larger can always be written as sums of products of E4 and E6. For

instance, it is easy to confirm that E2
4 = E8, E4E6 = E10, etc. A proof of
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these identities is given by the insight that the vector spaces Mk(Γ) are finite-

dimensional, and as such it is enough to compare a finite number of Fourier

coefficients on both sides of the equation.

These relations furthermore predict an infinite number of functional iden-

tities among the Fourier coefficients of Ek, which are given by the divisor

sums σk(n). In this way, many problems in number theory can be cast into

problems involving identities of modular forms. For instance, the divisor

sum enjoys a multiplicative property: whenever a and b are coprime, then

σk(ab) = σk(a)σk(b).

A natural question suggested by (1.9) is whether the ring structure also

admits a division. In particular, if two functions f and f ′ have weight k, then

f/f ′ has weight 0 under SL(2,Z). However, since for a nonzero holomorphic

function f : H→ C, the inverse 1/f is generally meromorphic (i.e. it contains

poles), the definition 3 needs to be adapted.

Definition 4 (Modular function). A function f : H → C is called a modular

function, if

• f is meromorphic in H,

• f(γ · τ) = f(τ) for all γ ∈ SL(2,Z) and all τ ∈ H,

• f is meromorphic at ∞, i.e. the Fourier series is of the form f(τ) =∑∞
n=−m an q

n for some m ∈ Z.

From the generators E4 and E6 of M∗(Γ), the simplest modular function

that can be constructed is a quotient of two modular forms of weight 12, which

is the least common multiple of 4 and 6. One such quotient is the modular

j-invariant,

j =
123E3

4

E3
4 − E2

6

, (1.10)

which is a modular function for SL(2,Z),

j(γ · τ) = j(τ), γ ∈ SL(2,Z). (1.11)

Its Fourier coefficients

j(τ) = q−1 + 744 + 196884q + 21493760q2 +O(q3) (1.12)

enjoy a remarkable relation to group theory, a phenomenon called monstrous

moonshine [36]. It can be proven that the Fourier coefficients are the dimen-

sions of the graded part of an infinite-dimensional algebra representation of

the monster group M, the largest sporadic simple group of order ∼ 1054. The

Monster vertex algebra can be constructed as a conformal field theory describ-

ing 24 free bosons compactified on the torus induced by the 24-dimensional

self-dual Leech lattice, followed by a Z2 orbifold [37].

The j-invariant has many other important properties. First of all, it gen-

erates modular functions for SL(2,Z). In particular, every modular function
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for SL(2,Z) is a rational function in j, and conversely, every rational func-

tion in j is a modular function. This furthermore enhances (1.9) for weight 0

functions to an algebraic field: If g is a nonzero modular function, then f/g

is a modular function. For SL(2,Z), it can be shown that this function field

can be generated by a single transcendental function, j being an example. Up

to Möbius transformations and normalisations, such a function is unique and

traditionally called Hauptmodul.

Another property of the j-function is that it knows about the fundamental

domain F of its invariance group SL(2,Z): Its fundamental domain obtained

from Def. 1 coincides with the one from Def. 2. In other words, j : F → C is

an isomorphism. This illustrates that in the presence of an invariance group,

for a good choice of test function the definitions 1 and 2 can be equivalent.

For both modular forms and modular functions there is a variety of gener-

alisations that have been studied in great detail. The most immediate generali-

sation is to subgroups of SL(2,Z), in particular the congruence subgroups. The

most common examples are the groups denoted by Γ(n), Γ0(n) and Γ0(n), with

n ∈ N. They are defined through congruences of entries of the 2× 2 matrices,

for instance

Γ0(n) =

{(
a b

c d

)
∈ SL(2,Z)

∣∣ b ≡ 0 mod n

}
. (1.13)

The group Γ0(n) is similarly defined as the set of such matrices with c ≡ 0

mod n, while an element γ of Γ(n) satisfies γ ≡ 1 mod n for all components.

The importance of those subgroups comes from the fact that certain elemen-

tary functions transform precisely under elements of those groups, rather than

under all of SL(2,Z). The simplest class of modular forms for congruence sub-

groups of SL(2,Z) are arguably the Jacobi theta functions, which are defined

as

ϑ2(τ) =
∑
r∈Z+ 1

2

qr
2/2,

ϑ3(τ) =
∑
n∈Z

qn
2/2,

ϑ4(τ) =
∑
n∈Z

(−1)nqn
2/2.

(1.14)

They transform into each other under the action of SL(2,Z), however they

are invariant themselves under proper subgroups. See Appendix A.1 for the

transformations and further properties.

1.4 Elliptic curves

Modular forms are intimately related to the theory of elliptic curves. An

elliptic curve is a plane algebraic curve, which can be defined as the solution

space {(x, y)} of a cubic equation

E : y2 = 4x3 − g2x− g3, (1.15)
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where g2 and g3 are called Weierstraß invariants. The curve is required to be

non-singular, which means that it should not have cusps, self-intersections or

isolated points. Algebraically, this holds if and only if the discriminant

∆ = g3
2 − 27g2

3 (1.16)

is nonzero. The formulation of elliptic curves over the complex numbers corre-

sponds to an embedding of the torus into the complex projective plane. This

follows from the functional equation ℘′(z)2 = 4℘(z)3 − g2℘(z) − g3 for the

Weierstraß elliptic function ℘. The Weierstraß function is doubly periodic,

i.e. periodic with respect to a lattice Λ, and as such can be considered to be

defined on a torus T = C/Λ. The torus can be embedded in the complex

projective plane using the map z 7→ [1 : ℘(z) : 1
2
℘′(z)]. This map is an isomor-

phism of Riemann surfaces from the torus to the cubic curve (1.15), and thus

topologically an elliptic curve is a torus. The lattice Λ generating the torus

can be understood as the linear span of a pair of nonzero complex numbers

α1 and α2. This pair defines a smallest cell, which is called the fundamental

domain3 of the torus. Geometrically, the torus is then obtained by identifying

the opposite edges of the fundamental domain.

The shape of the domain and thus of the torus is described by the ratio

τ = α2/α1, and is the complex structure or the modular parameter of the torus.

It is clear that a different choice β1, β2 of complex numbers can describe the

same torus. Indeed, this is true if(
β1

β2

)
=

(
a b

c d

)(
α1

α2

)
, (1.17)

where γ = ( a bc d ) ∈ SL(2,Z). Since the ratio τ = α2/α1 furthermore cancels

overall signs of the vector (α1, α2)T, we can ignore overall signs also of γ and

identify γ ∼ −γ. In this way, we find the modular group of the torus as the

isometry group PSL(2,Z) acting on the modular parameter τ .

From the curve (1.15) we can compute the J -function

J = 123 g
3
2

∆
. (1.18)

This quantity is an invariant for isomorphism classes of elliptic curves, meaning

that two elliptic curves have the same J -invariant if and only if they are

isomorphic.

The types of elliptic curves relevant for this thesis are the ones that are

parametrised by a complex variable. A particular class of 1-parameter families

of elliptic curves are the elliptic surfaces. These are obtained by promoting

the Weierstraß invariants to functions on a base space CP1. Then the elliptic

fibration

E −→ S −→ CP1 (1.19)

3Not to be confused with definition 1 or 2.
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is called an elliptic surface, where CP1 can be understood as a compactification

of the complex plane C by adding a point∞. When g2 and g3 are polynomials

on CP1, then J : CP1 → C is a rational function. Let u denote a coordinate on

CP1. Then (1.18) is a rational function of u, and by the above arguments can

be identified with the modular j-invariant, which is a function of the complex

structure of the curve,

J (u) = j(τ). (1.20)

This gives interesting relations between the coordinate u and the modular

parameter τ , which are of central importance for this thesis. See [38–44] for

more details on elliptic surfaces.

1.5 Seiberg-Witten theory

A beautiful synthesis of all the above introduced concepts is the full non-

perturbative solution for the low-energy dynamics of four-dimensional N = 2

supersymmetric Yang–Mills theory with gauge group SU(2), due to Seiberg

and Witten [45,46]. See [8, 47–54] for reviews.

Seiberg-Witten duality can be regarded as a lift of the electric-magnetic

duality to N = 2 supersymmetric quantum field theory. It however cannot be

a duality analogous to Montonen–Olive duality in N = 4, for several reasons.

The maximally supersymmetric N = 4 SYM theory is superconformal, and as

such the gauge coupling is fixed. The pure N = 2 supersymmetric Yang–Mills

theory has the rather different feature that it is asymptotically free, such as the

non-supersymmetric quantum chromodynamics for example is. Asymptotic

freedom is the property of a theory that causes interactions between fields to

become weaker as the energy scale increases. Correspondingly, the couplings

should be considered as a function of the energy scale Λ. If duality exchanged

the coupling gYM with its inverse 1/gYM measured at a certain scale Λ, this

would in general not be true at another scale Λ′. Thus rather than N = 2 SYM

theory itself, we can study its Wilsonian low-energy effective action. Seiberg-

Witten duality is then an exact duality that acts on the effective coupling,

rather than of the microscopic SU(2) theory.

The Seiberg-Witten geometry underlies the Coulomb branch of N = 2

gauge theory. The N = 2 vector multiplet consists of a gauge field A, a

complex scalar field φ, and two Weyl fermions λ and ψ. They are all in the

adjoint representation of the gauge group G, which we fix to G = SU(2). The

Coulomb branch is the phase of the theory where SU(2) is broken to U(1) by a

vacuum expectation value (vev) of the vector multiplet scalar φ. The potential

of the theory is V (φ) = 1
g2 Tr[φ, φ†]2, and we are interested in the moduli space

of flat directions. These are found by setting

φ =

(
a 0

0 −a

)
, (1.21)

with a a complex parameter. However, note that the Weyl group of SU(2) acts
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on a by a 7→ −a. The gauge invariant order parameter is the Coulomb branch

expectation value of the theory in R4,

u =
1

16π

〈
Tr(φ2)

〉
R4 , (1.22)

which parametrises the moduli space of inequivalent vacua. The renormali-

sation group flow generates a quantum scale Λ, at which the gauge coupling

becomes strong.

The effective action then describes the physics of the remaining massless

U(1) supersymmetric multiplets in terms of a holomorphic function, the prepo-

tential F . By differentiating the prepotential with respect to the coordinate a,

one finds the magnetic dual period aD = ∂F
∂a

. A further differentiation results

in the low-energy effective gauge coupling

τ =
∂2F

∂a2
, (1.23)

which becomes a combination of the effective coupling constant and the effec-

tive theta angle, similar to (1.1). The spectrum of the theory contains so-called

dyonic states or dyons, which are states carrying electric as well as magnetic

charges. The central charge of such a dyonic state with electric and magnetic

charges γ = (nm, ne) is given by

Z = γ · π = nmaD + nea, (1.24)

where π = (aD, a)T is the period vector.

The Seiberg-Witten (SW) solution provides a family of elliptic curves para-

metrised by the order parameter u, whose complex structure corresponds to

the running coupling τ = θ
π

+ 8πi
g2 . For the pure SU(2) theory, it is given by

y2 = x3 − ux2 +
1

4
Λ4x. (1.25)

The curve provides exact results for the vevs of the scalar a and its dual aD
as period integrals. We have explicitly,

a =

∫
A

λ, aD =

∫
B

λ, (1.26)

where λ is a meromorphic 1-form with dλ
du

=
√

2
4π

dx
y

, and A and B are one-cycles

which form a symplectic basis of the SW curve. The A-cycle corresponds to a

straight line from 0 to 1, while the B-cycle corresponds to a straight line from

0 to τ .

As a and aD are given by period integrals of a meromorphic 1-form over

the elliptic curve, they satisfy a system of solutions to a set of Picard-Fuchs

equations. This allows to express the periods in terms of hypergeometric func-

tions [55]4,

aD(u) = i
2
(u− 1) 2F1(1

2
, 1

2
, 2; 1−u

2
),

a(u) =

√
(u+ 1)

2
2F1

(
−1

2
, 1

2
, 1; 2

1+u

)
.

(1.27)

4We momentarily set Λ = 1.
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At the strong coupling points, the periods π(u) = (aD(u), a(u)) become π(1) =

(0, 2
π
) and π(−1) = (−4i

π
,−2i

π
). According to the central charge formula (1.24),

these values confirm that for u = 1, the monopole γ = (1, 0) becomes mass-

less, while for u = −1 the dyon γ = (−1, 2) becomes massless. The limits

limu→±1 a(u) depend on the direction from which ±1 are approached, which is

due to the branch cut in the hypergeometric function [55].

The curve (1.25) is not in Weierstraß form (1.15) yet, however by rescaling

x→ x+ u
3

and y → y
2
, we find

y2 = 4x3 − (4
3
u2 − Λ2)x−

(
8
27
u3 + 1

3
uΛ4

)
, (1.28)

from which we can read off the Weierstraß invariants

g2 = 4
3
u2 − Λ4, g3 = 8

27
u3 + 1

3
uΛ4. (1.29)

Using (1.18), we can then compute the J -invariant

J (u) = 64
(4u2 − 3)

3

u2 − 1
, (1.30)

which is a rational function of the dimensionless quantity u = u
Λ2 , as a conse-

quence of the SW curve (1.25) being a rational elliptic surface.

1.6 Fundamental domains

By identifying the J -invariant of the SW curve with the modular j-invariant

as in (1.20), the order parameter u is related to the coupling τ through

J (u(τ)) = j(τ). (1.31)

Naively, u(τ) should be invariant under SL(2,Z), since j(τ) is (see (1.11)).

Below, we will show explicitly that this is not true. Acting with SL(2,Z) on

(1.31) leaves the rhs invariant, and so must be the lhs. Since J (u) is a rational

function, this implies that for any γ ∈ SL(2,Z) there exists a function hγ
such that u(γ · τ) = hγ(u(τ)), which is subject to the constraint that J (u) =

J (hγ(u)). In order to see this, let us solve the relation (1.31) for u. Using

(1.30), we can write (1.31) as a sextic polynomial equation

(u2 − 1)j − 64(4u2 − 3)3 = 0, (1.32)

where we suppress the τ dependence of u and j. Since the sextic equation

contains only even powers of u, it is a cubic equation in u2 and can thus be

solved exactly. One particular solution is

u = − 1

8
√

3 2

√√√√√ 3
√

9j

3

√(√
3
√

123 − j − 72
)
j

+
3
√

3 3

√(√
3
√

123 − j − 72
)
j + 123,

(1.33)
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such that u contains square and cube roots of modular functions. The other

five solutions take a similar form. Generally, roots of modular functions are not

modular, since roots induce branch points at zeros of the modular functions,

thus spoiling the holomorphicity. However, here this is not the case. From the

q-expansion of the j-invariant (1.12), we can easily compute the Fourier series

u(τ) = −1

8
(q−1/4 + 20q1/4 − 62q3/4 + 216q5/4 +O(q7/4)). (1.34)

It appears that up to a simple normalisation, all Fourier coefficients are inte-

gers. Considering (1.33) with convoluted roots which generally induce rational

coefficients with growing denominators, this might be rather surprising. In

fact, the q-series (1.34) is known in the mathematics literature as the McKay-

Thompson series of class 4C for the Monster group [36, 56–58]. As such, it is

an example of a replicable function (see Appendix A.4 for a definition). It can

be checked to arbitrary order that the q-expansion (1.34) agrees with that of

u(τ) = −1

2

ϑ2(τ)4 + ϑ3(τ)4

ϑ2(τ)2ϑ3(τ)2
, (1.35)

where the Jacobi theta functions are defined in (1.14). Using the formulas given

in Appendix A.1, one may check that this function is not invariant under the

generators T and S of SL(2,Z). For instance, under S the functions ϑ2 and ϑ4

are interchanged, while ϑ3 is invariant (ignoring the modular weights, which

cancel in this expression). Using the Jacobi identity ϑ4
2 + ϑ4

4 = ϑ4
3 we can then

eliminate one theta function to obtain the action of the S-transformation on

(1.35),

hS(u) =
2u
(
u−
√
u2 − 1

)
− 3

2
√

2u
(√

u2 − 1− u
)

+ 2
. (1.36)

We notice that hγ does not necessarily need to be rational. We can furthermore

confirm that J (hS(u)) = J (u), which is expected from (1.31). This shows that

u is not a modular function for SL(2,Z), but solving (1.31) for u instead breaks

SL(2,Z) into a subgroup.

Indeed, u can be shown to be a modular function for the congruence sub-

group Γ0(4) of SL(2,Z), which we have defined in (1.13). The group Γ0(4) is

generated by T 4 and ST−1S, and it can be checked explicitly using the for-

mulas given in Appendix A.1 that u is invariant under these transformations.

Furthermore, it is known that u is a Hauptmodul for Γ0(4), and as such it is

an isomorphism u : H\Γ0(4) → C. The quotient F0 := H\Γ0(4) is the funda-

mental domain for Γ0(4), and a particular choice can be drawn as explained

in Appendix A.3, and we plot it in Fig. 2. The function (1.35) makes precise

in which way its inverse τ(u) is multi-valued: For any given τ ∈ F0, we can

compute the infinite discrete set of couplings Γ0(4) · τ , which all give rise to

the same vacuum u(τ) and thus to the same dynamics.

Since u : F0 → C is an isomorphism, the Coulomb branch can equivalently

be understood from the fundamental domain. From (1.30) it is clear that the
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Figure 2: Fundamental domain of Γ0(4). This is the duality group of the pure SU(2) theory.

The two cusps on the real line correspond to the strong coupling singularities of the gauge

theory, while the cusp at τ = i∞ corresponds to weak coupling.

theory becomes singular at precisely three points: u = ∞ and u = ±1. At

large τ , u is large and describes the weakly coupled region. The asymptotics

and monodromy can be found from the one-loop prepotential. At τ = 0 and

τ = 2, the low-energy theory becomes singular since either the monopole or

dyon, which were integrated out in the effective theory, becomes massless.

These are precisely the two points where the elliptic curve (1.30) degenerates,

and they correspond to u = −1 and u = 1. This can be confirmed by studying

the q-expansions of the S and T 2S transformations of (1.35).

The duality group Γ0(4) can be equivalently found by studying the action

of the monodromies on the Coulomb branch. Combining the periods a and aD
to the period vector π = (aD, a)T has an important property: They constitute

a holomorphic section of a flat SL(2,Z) bundle, which are characterised by the

monodromies around the singular points u =∞, u = ±1:

M∞ =

(−1 4

0 −1

)
, M−1 =

(
1 0

−1 1

)
, M+1

(−1 4

−1 3

)
. (1.37)

They satisfy the important consistency property M∞ = M−1M+1. Since the

start and end point of a loop around a singular point coincide, the monodromies

must leave u invariant, and the same must be true for the action of (1.37) on

the coupling τ . Indeed, the monodromies (1.37) are in Γ0(4), under which u is

invariant.

In view of the fact that the monodromy matrices (1.37) generate a subgroup

of SL(2,Z), it is not surprising that u should be a modular function of τ .

However, from the derivation of (1.35) from (1.33) this is not obvious. In fact,

the presentation here has been chosen to demonstrate that this property is
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quite special and should be appreciated. One result of this thesis is that when

the theory is generalised in various directions, such a correspondence

pure N = 2 SU(2) SYM ←→ Γ0(4) (1.38)

of the theory and its duality group can not be found in general. The arguably

simplest generalisation is the inclusion of a massless hypermultiplet in the

fundamental representation of SU(2), for which the SW curve was found in [46].

In section 2.4, we give at least five explanations why such a correspondence

(1.38) does not exist for that theory, and thus does not exist in general. Rather,

we generalise aspects of the notion of a duality group to fundamental domains,

and then the correspondence (1.38) can be made precise.

Let us instead study why the surface (1.25) is special, and gives rise to

a modular function. One reason is that the elliptic surface for pure SU(2)

SYM is a modular elliptic surface. Such surfaces were studied in [40] and

classified in [38]. In fact, all rational elliptic surfaces are classified through their

configuration of singular fibres. Singular fibres are the loci of elliptic surfaces

where the discriminant vanishes. As discussed above, for the SW curves these

are u =∞ and u = ±1. Every singular fibre has an associated Kodaira type,

which is characterised by the order of vanishing of the Weierstraß invariants

(see Appendix A.6). The singularities u = ±1 correspond to an I1 singularity,

while the singularity u = ∞ corresponds to an I∗4 singularity. The Kodaira

configuration of the pure SU(2) theory is thus (I∗4 , 2I1), which is known to be

a modular elliptic surface [38].

The singularity configuration (I∗4 , 2I1) is closely related to properties of the

fundamental domain as plotted in Fig. 2: The cusp τ = i∞ has width 4, while

there are two cusps τ = 0 and τ = 2 of width 1. The precise definition of a

cusp and its width is given in Appendix A.3. From a fundamental domain such

as the one in Fig. 2, the widths can be read off from the number of copies of

F that taper to a cusp. Furthermore, when a Hauptmodul for the subgroup is

known, then the width is given by the smallest τ -periodicity of the q-expansion

around a cusp. From (1.34) it is clear that at τ = i∞ this is 4.

Finally, there is an algebraic explanation, which is slightly more technical.

Let us assume that f is a modular function for a congruence subgroup Γ of

PSL(2,Z). Then it is known that f is the root of a polynomial over the al-

gebraic field C(PSL(2,Z)) of modular functions on PSL(2,Z). A proof of this

statement can for instance be found in [59], and is based on the following obser-

vation: If Γ is a congruence subgroup of PSL(2,Z), then PSL(2,Z) =
⋃n
j=1 αjΓ,

where αj ∈ PSL(2,Z) for j = 1, . . . , n are coset representatives, with n the in-

dex of Γ in PSL(2,Z). We can construct a function g(τ) =
∏n

j=1 (f(αjτ)−X),

with some constant X. Since PSL(2,Z) transformations merely permute the

coset representatives αj, g is a modular function for PSL(2,Z). If we consider

this expression as a polynomial P (X) =
∏n

j=1(f ◦αj−X) ∈ C(PSL(2,Z))[X],

then every coefficient must be a modular function for PSL(2,Z). This shows

that f is a root of the polynomial P (X) whose coefficients are modular func-
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tions for PSL(2,Z). We discuss this aspect in more detail in Appendix A.5.

What is clear from the above discussion is that the sextic equation (1.32) con-

structed from the SW curve is one example of such a polynomial whose roots

are PSL(2,Z)-transformations of the modular function u. We study generali-

sations of this aspect in great detail in section 2.

1.7 Topological QFT

Topological quantum field theory has been one of the most important con-

tributions to mathematical physics in the 20th century, with a fruitful in-

terplay between ideas from physics and mathematics [29, 60, 61]. It provides

many insights into non-perturbative aspects of quantum field theory as well

as low-dimensional topology [52, 62–69]. One example is Donaldson-Witten

(DW) theory, which is a topological formulation of the N = 2 supersymmetric

Yang–Mills theory on an oriented smooth four-manifold X (see [52] for an in-

troduction). Its equivalent IR (long distance) counterpart is an abelian theory,

where Seiberg-Witten geometry dictates the physics [61]. One of the most im-

portant insights is that the classical Donaldson invariants can be derived from

the Seiberg-Witten solution to N = 2 supersymmetric Yang–Mills theory with

gauge group SU(2) [61, 70–73]. In the seminal paper [73], the path integral of

DW theory was found as

ZDW = Zu + ZSW, (1.39)

where ZSW denotes the generating function of SW invariants of the four-

manifold [71], while Zu denotes the contribution to ZDW from the Coulomb

branch of the low-energy effective U(1) theory, the so-called u-plane. The u-

plane and its contribution to the path integral were studied in detail in [73–76].

The u-plane integral Zu is of particular interest since it is non-vanishing only

for four-manifolds with b+
2 (X) ∈ {0, 1}. In turn, such four-manifolds are of

particular interest since they are candidate topologies that probe the Coulomb

branch of the theory.

Recently, interest in DW theory, and in particular the u-plane integral,

was revived due to observations relating the latter for special four-manifolds

to the theory of mock modular forms and harmonic Maass forms [77, 78]. For

more generic compact four-manifolds, it was later reformulated in terms of the

modular completion of a mock modular form [79–86].

One motivation of this thesis is to study correlation functions for topological

theories other than the pure N = 2 SYM. Many results were already obtained

in the 1990s, for instance the generalisation to higher rank gauge groups [87],

massless QCD [88], superconformal theories [66, 89], extensions to non-simply

connected four-maniolds [76, 90], etc. The formulation and computation of

such u-plane integrals has remained a challenge, and an explicit evaluation

for arbitrary four-manifolds and general 4d N = 2 theories has not yet been

achieved.
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The rest of the thesis is structured as follows. In the following section 2,

we discuss the generalisation of the aspects introduced in section 1.6 to the

asymptotically free N = 2 supersymmetric QCD with gauge group SU(2).

We argue that the correspondence (1.38) does not exist when hypermultiplets

are introduced, and instead propose an alternative formulation in terms of

fundamental domains that do not correspond to subgroups of SL(2,Z). The

obstruction is described precisely by a locus of branch points, which renders

u(τ) non-holomorphic and thus non-modular. The branch points are closely

related to other Coulomb branch functions such as da
du

or the discriminant

through a generalisation of Matone’s relation. We demonstrate our claims in

a plethora of examples that we work out explicitly.

In section 3, we discuss the four flavour SU(2) theory, which is superconfor-

mal up to mass terms. While often it is studied in the massless limit, allowing

for generic masses gives a more intricate structure of the Coulomb branch,

where the symmetry group provides an interesting permutation of special mass

configurations. This allows us to find nontrivial examples of bimodular forms

and vector-valued bimodular forms.

In section 4, we then move on to the SU(3) theory, where the Coulomb

branch is complex two-dimensional. For pure N = 2 SYM, we demonstrate

that there is a map from the genus two SW curve to elliptic (i.e. genus one)

curves, which allows to study the Coulomb branch geometry using elliptic

modular forms. For the locus where mutually local dyons become massless, we

find a natural generalisation of the domain 2 for the pure SU(2) theory. For

the locus containing the superconformal Argyres-Douglas vacua on the other

hand, we find a fundamental domain for an Atkin-Lehner group, which is a

subgroup of PSL(2,R) rather than PSL(2,Z). This is due to the fact that this

locus gives rise to a non-rational elliptic surface.

In section 5, we consider the topological twists of the theories studied in

section 2 and 3, mainly focusing on the asymptotically free theories. The

fundamental domains for the effective gauge coupling can be understood as

integration domains for topological correlation functions. One of the key ideas

of the map from the a-plane to the fundamental domains is that the integrand

becomes a modular function of τ . This allows us to prove that the integrand is

single-valued under modular transformations, which is an important and non-

trivial consistency check of the topological theory. We also present a formula

for the evaluation of such correlation functions.

Finally, in section 6 we study the Donaldson-Witten theory on non-simply

connected four-manifolds X. By adding a certain sum ofQ-exact operators, we

show that correlation functions can be computed using mock modular forms.

This generalises recent results on the case where b1(X) = 0.

We conclude in section 7, with giving directions for future research and

suggesting extensions and applications of our results to other theories. In

Appendix A, we finally collect properties and definitions of modular forms

and elliptic curves, which are of fundamental importance for this thesis.
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2 Asymptotically free N = 2 QCD

In this section, we study the duality and modularity of N = 2 SYM with Nf =

0, 1, 2, 3 hypermultiplets in the fundamental representation. These theories

have a negative one-loop beta function and thus are asymptotically free. This

section is mainly based on [2], while parts of section 2.2 are based on [5] and

parts of section 2.6 are based on unpublished work.

2.1 Introduction

A manifestation of S-duality or strong-weak coupling duality is the equiv-

alent dynamics of a quantum field theory at distinct values of its coupling

constant [19, 45, 91–93]. A natural question for such a quantum field theory

is the determination of a domain for the coupling constant parametrizing in-

equivalent quantum field theories. In this section, we address this question

for asymptotically free N = 2 Yang–Mills theories with gauge group SU(2)

and Nf ≤ 3 fundamental hypermultiplets. To this end, we consider the order

parameter for the Coulomb branch, which is a function of the running coupling

τ invariant under S-duality [45,46,94–97]. We put forward a fundamental do-

main FNf for τ such that the function is one-to-one. Part of our motivation

is the u-plane integral [73, 74], which is a physical approach to Donaldson in-

variants and other topological gauge-theoretic invariants of smooth compact

four-manifolds. This approach involves an integral over the Coulomb branch of

the theory. Recently, the change of variables from u to τ has been instrumen-

tal for the evaluation of the integral for generic four-manifolds [76–86, 98, 99],

which suggests a potential fundamental role for this parametrisation of the

Coulomb branch.

The Coulomb branches of the rank 1 theories mentioned above are complex

one-dimensional, and parametrised by the Higgs vacuum expectation value

u = 1
16π2 〈Trφ2〉, φ being the complex scalar of the N = 2 vector multiplet [46]

(see [8,47] for a review). In general, these order parameters are functions of the

running coupling τ , the masses mi of the hypermultiplets and the dynamical

scales ΛNf generated by the renormalisation group flow.

Compared to the pure SU(2) case, in the massive theories with Nf ≤ 3, we

find a number of new phenomena. To study these theories, we consider their

order parameters as roots of certain degree six polynomials constructed from

the Seiberg-Witten (SW) curves. These polynomials in turn encode many

of the interesting structures of the Coulomb branches. For example, their

ramification loci include the Argyres-Douglas (AD) theories, where the curves

degenerate, as well as branch points. We show that the fundamental domain

of u can be described as six or less copies of the corresponding fundamental

domain of the full modular group SL(2,Z) as displayed in Figure 1. The cusps

of these domains correspond to the singularities of the physical theory and the

width of each cusp to the number of hypermultiplets becoming massless there.
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The images of the SL(2,Z) fundamental domains under the map u(τ) provide

intriguing partitions of the u-plane. See for example Figures 5, 6 and 9

Since the polynomials are order six in u it is in general not possible to

find the roots, and solve for u in terms of the coefficients. Only for special

configurations of the masses, e.g., equal masses in Nf = 2 and one non-zero

mass in Nf = 3, the polynomial splits over the field of modular functions

for a congruence subgroup of SL(2,Z), and we can thus find explicit closed

expressions for u in terms of known modular forms, reproducing and extending

previous results [88,100–103].

For generic choices of the masses, the function u(τ) gives rise to branch

points τbp, where u − u(τbp) ∼ √τ − τbp + . . . does not return to itself as τ

encircles τbp. While the branch points, and the inevitable branch cuts, obstruct

the identification of FNf as a quotient Γ\H with Γ a congruence subgroup, they

provide a mechanism for FNf to evolve as function of the mass. More precisely,

the branch points move in the domain FNf upon varying the masses, and the

domain FNf is literally cut and glued along the branch cuts. This provides a

way to analyse how the domain evolves as function of the masses. We have

studied this phenomena in detail in the following limits:

• Decoupling of a hypermultiplet:

A hypermultiplet decouples in the limit that its mass goes to infinity,

m→∞. We demonstrate that in this situation, a branch cut disconnects

(or cuts) the strong coupling cusp associated to this hypermultiplet from

the rest of the domain. At the same time, the sides of the branch cut

are identified to the sides of another branch cut. In this way, the strong

coupling cusp is glued back to the weakly coupled cusp, near i∞, where

these branch points and cuts disappear in the limit m → ∞. As a

result, the periodicity at i∞ increases by 1 in the limit, while the cusp

has disappeared from the strongly coupled region. This is displayed for

Nf = 1 in Figures 10.

• Merging of local singularities:

For a generic choice of masses, the theory with Nf hypermultiplets has

Nf + 2 distinct strong coupling singularities in the u-plane, where dyons

become massless and the effective field theory breaks down. By tuning

the masses to special values, the singularities for l mutually local dyons

can merge in the u-plane. We demonstrate that such cases give rise to

a cusp with width l > 1 in FNf . Moreover, when perturbing away from

such a special value of the masses, we find that two branch cuts develop

from the cusp, which disconnect the singularity in FNf . This is displayed

for Nf = 2 in Figure 12.

• Merging of non-local singularities (AD theories):

The dynamics is quite different if we tune the masses to special values

where singularities corresponding to non-local dyons collide in the u-
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plane. Such singularities give rise to superconformal Argyres-Douglas

(AD) field theories [104–109]. In such a situation, we find that two

branch points in FNf typically come together and annihilate at the pre-

image τAD of the AD singularity uAD. The two branch cuts join at

τAD in the interior of FNf , and disconnect a region from FNf with the

“non-local” cusps. Thus FNf consists then of < 6 copies of the SL(2,Z)

fundamental domain, and the AD point is in a sense a remnant of the

disconnected region. On the other hand if we take the appropriate scaling

limit near the CFT point [105], we find that the disconnected region is

a fundamental domain for the order parameter of the AD theory. If

no other branch points remain in FNf , the order parameters become

modular functions for a congruence subgroup.

Let us briefly return to the u-plane integral. The change of variables from

u to τ , gives rise to the factor du/dτ in the integrand. Interestingly, du/dτ can

be expressed in case of the Nf = 0 theory in terms of the discriminant ∆ and

du/da [73], which is a consequence of a relation between the prepotential and

u [100, 110]. Up to numerical constants, ∆ and du/da are precisely the two

gravitational couplings of the topological theory [72, 111], such that du/dτ is

naturally included. Extending previous work on the massless Nf ≤ 3 [88], we

derive a further generalisation for all cases Nf ≤ 4 with generic masses. We

also discuss how this relation encodes interesting information on the special

points of the Coulomb branch, specifically the branch points.

2.2 Fundamental domains

In this section, we develop techniques to determine a fundamental domain for

the effective coupling of asymptotically free N = 2 SU(2) SQCD.

2.2.1 The SW solutions

We recall a few essential aspects of the SW solutions for these theories, which

we use to analyse u as function of τ . The gauge group SU(2) is spontaneously

broken to U(1) on the Coulomb branch. The order parameter for this branch

is the vev u, defined as

u =
1

16π2

〈
Trφ2

〉
R4 ∈ BNf , (2.1)

where the trace is in the 2-dimensional representation of SU(2). Topologically,

BNf is the complex plane C minus 2 +Nf singular points (for generic masses).

The scalar field related to the photon in the low energy effective field theory

is a, while aD is related to the dual photon. The SW solution identifies these

fields as periods of a specific differential λ over two dual cycles, A and B, of

an elliptic curve with complex structure τ ,

a =

∫
γ

λ, aD =

∫
γD

λ. (2.2)
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To list the SW curves of the theories with Nf ≤ 3 hypermultiplets, let ΛNf

be the scale of the theory with Nf hypermultiplets, and mj, j = 1, . . . , Nf be

the masses of the hypermultiplets. The SW curves of the theories are given

by [46]5

Nf = 0 : y2 = x3 − ux2 +
1

4
Λ4

0x,

Nf = 1 : y2 = x2(x− u) +
1

4
mΛ3

1x−
1

64
Λ6

1,

Nf = 2 : y2 = (x2 − 1

64
Λ4

2)(x− u) +
1

4
m1m2Λ2

2x−
1

64
(m2

1 +m2
2)Λ4

2,

Nf = 3 : y2 = x2(x− u)− 1

64
Λ2

3(x− u)2 − 1

64
(m2

1 +m2
2 +m2

3)Λ2
3(x− u)

+
1

4
m1m2m3Λ3x−

1

64
(m2

1m
2
2 +m2

2m
2
3 +m2

1m
2
3)Λ2

3.

(2.3)

The family of SW curves are Jacobian rational elliptic surfaces with singular

fibres [39, 40, 114, 115]. Rational in this context means that g2 and g3 are

polynomials in u of degree at most 4 and 6, respectively [116].

Decoupling a hypermultiplet corresponds to the following double scaling

limit [117]

mj →∞, ΛNf → 0, mjΛ
4−Nf
Nf

= Λ
4−(Nf−1)
Nf−1 (2.4)

One can directly decouple more than one hypermultiplet, where the scales of

the low energy theories are defined as

Λ2
0 = mΛ2, Λ4

0 = m3Λ3, Λ3
1 = m2Λ3, (2.5)

and m is the equal mass of the hypermultiplets being decoupled. These curves

are constructed in such a way that their mathematical discriminants will, up

to an overall normalisation, correspond to the physical discriminant. This we

define as the monic polynomial,

∆Nf :=

Nf+2∏
i=1

(u− ui), (2.6)

with ui being singular points of the effective theory, where hypermultiplets

become massless. It is a polynomial of degree deg ∆Nf = Nf + 2 in u.6 To

see this, we bring the SW curves (2.3) into Weierstraß form by shifting x →
x+ u

3
+

Λ2
3

192
δ3,Nf , and rescaling y → y/2,

W : y2 = 4x3 − g2 x− g3, (2.7)

5There are other formulations of the SW curve. For example the class S form is x2 =

pNf
(z, u,ΛNf

,m) [20, 112, 113]. This has the advantage that the SW differential is canon-

ically determined as λ = x dz. The analysis in the present section still holds for these

formulations.
6One important note is that in [45] another convention is used for the curve of the pure

theory. This gives the duality group Γ(2) rather than Γ0(4) as in the above. The Γ(2)-

convention, however, turns out to not be suitable for the discussion in this section due to

multiplicities of the singularities of the curve.
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where g2 = g2(u,m,ΛNf ) and g3 = g3(u,m,ΛNf ) are polynomials in u,

m = (m1, . . . ,mNf ) and the scale ΛNf . The discriminant ∆Nf is unchanged

for this change of variables, and equals

∆Nf = (−1)NfΛ
2Nf−8
Nf

(g3
2 − 27 g2

3), (2.8)

where the last factor is the “mathematical” discriminant. The functions g2

and g3 can be combined to an absolute invariant J ,

J = 123 g3
2

g3
2 − 27g2

3

. (2.9)

As opposed to g2 and g3, J is invariant under admissible changes of variables.

Two curves are isomorphic if and only if they have the same absolute invariant

J . Since g2(u,m,Λ) and g3(u,m,Λ) are polynomial functions of u, m and

Λ for the SW curves, J is naturally a rational function J (u,m,Λ) of these

variables. On the other hand, the modular Weierstraß form expresses J in

terms of the complex structure τ , namely as the modular j-invariant j(τ) (see

(A.9) for a definition).

J (u,m,Λ) = j(τ). (2.10)

This allows to obtain u as function of τ , which is physically the effective

coupling constant. Cusps are points where j(τ) = ∞, which correspond to

τ ∈ {i∞} ∪ Q. The j-function has fundamental domain F = SL(2,Z)\H,

which is typically taken to be the key-hole fundamental domain displayed in

Figure 1. In other words, the function j : F → C is a bijective map.

2.2.2 Partitioning the upper half-plane

We are interested in determining the fundamental domains FNf for the effective

coupling τ for a theory with 0 ≤ Nf < 4. Let us consider u as a function,

u : H −→ BNf , (2.11)

and study the analytic properties of this map. We will discuss later the depen-

dence of FNf on the masses m, which we will make manifest in the notation

as FNf (m) or more compactly F(m). We find that for Nf ≥ 1 and generic

masses the duality group does not act on τ by fractional linear transforma-

tions. This prevents us from defining a fundamental domain as is customary

for a congruence subgroup Γ of SL(2,Z): For any point τ ∈ H there exists

a g ∈ Γ such that g · τ ∈ Γ\H, and no two distinct points τ , τ ′ in Γ\H are

equivalent to each other under Γ. Rather, we can compare if points τ , τ ′ are

equivalent under (2.11): If we define the equivalence relation

τ ∼ τ ′ ⇐⇒ u(τ) = u(τ ′), (2.12)

then the quotient set H/∼ is a fundamental domain FNf for the function u.

Upon plotting FNf as a domain in H, we will have to introduce identifications

along co-dimension 1 segments as for F in Figure 1.
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To determine FNf , we bring (2.9) into a more convenient form. We multiply

(2.9) by ∆Nf and bring all terms to one side. This gives the sextic polynomial,

PNf (X) :=
(
g2(X,m,Λ)3 − 27g3(X,m,Λ)2

)
j − 123g2(X)3

= a6X
6 + a5X

5 + . . .+ a1X + a0,
(2.13)

where the coefficients ai = ai(m,Λ, j) are polynomial functions of m, Λ, and

the j function, ai(m,Λ, j) ∈ C[m,Λ, j]. The polynomials (2.13) can thus be

viewed as polynomials over the field C[m,Λ, j]. As discussed in Appendix

A.5, roots to such polynomials can be considered as algebraic modular forms,

generalising the well-studied class of classical modular forms for congruence

subgroups of PSL(2,Z).

We see that (2.9) is equivalent to PNf (u) = 0 for ∆Nf 6= 0, or in other words,

away from the singular locus of the theory. The roots of PNf can therefore be

identified with the order parameter of the corresponding SW curve. Recall

that we can assign U(1)R charges [u : mi : x : y] = [4 : 2 : 4 : 6] to the

quantities of the Seiberg-Witten curves [46]. Since g2 and g3 are polynomials

in u by construction, by bringing the SW curves to the Weierstraß form and

using that [u] = 4 we have that the degrees of g2 and g3 as polynomials in u

must be deg(g2) = 2 and deg(g3) = 3. Therefore, PNf is a sextic polynomial

in X.

For generic masses m, the sextic equation PNf = 0 gives rise to n = 6

different solutions as functions of j, while for special choices of m, such as

those giving rise to superconformal (AD) theories, we have 2 ≤ n ≤ 4 different

j-dependent solutions and 6−n j-independent solutions. Since j : F → C is an

isomorphism, the n ≤ 6 solutions provide a multi-valued (n-valued) function

over F .

To obtain u as a single-valued function of the effective coupling, we choose a

different copy of F for each of the n ≤ 6 branches, and appropriately identify

the boundaries of these domains. These are related to F by an element of

SL(2,Z), and their union is

FNf =
n⋃
j=1

αjF , (2.14)

with αj ∈ SL(2,Z). A priori, there is no canonical choice for the αj, they are

determined up to the action of the duality group of the theory. However, some

choices are more natural than others. If we demand that FNf is connected

and take α1 = 1 ∈ SL(2,Z), there is only a finite number of choices for

FNf . In some cases, FNf is a modular curve Γ\H for a congruence subgroup

Γ ⊆ SL(2,Z). In such cases, n equals the index of Γ in SL(2,Z) [118] (see also

Appendix A.3 for the corresponding definitions for modular curves). For later

use, we define the set of αj as CNf = {αj, j = 1, . . . , n}.
For generic masses, n = 6 and FNf has 3+Nf cusps, corresponding to weak

coupling τ → i∞ and the 2+Nf singularities of the theory. We find the widths
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of the cusps by expanding j(τ) = J (u,m,ΛNf ) for τ near the cusp. For general

Nf ∈ {0, 1, 2, 3}, the cusp at infinity has width h∞ = 4−Nf . This is because

q−1 ∼ j(τ) = J ∼ u4−Nf , which implies u(τ) ∼ q
− 1

4−Nf (where q = e2πiτ ).

Thus for large τ , u(τ) is invariant under T 4−Nf , where T : τ 7→ τ + 1. Near

any singularity us, it is clear that q−1 ∼ 1
(u−us)hs , where ns is the multiplicity

of the singularity. Similarly, near us one finds u(τ) − us ∼ q
1
hs . Locally, the

function u(τ) has period hs, giving the width hs of the cusp. The widths of

all cusps then add up to 6,

h∞ +
∑
s

hs = 6. (2.15)

As mentioned above, the equation PNf = 0 gives six different solutions for

u. A natural question that then arises is which of these six to use as our u.

In some sense this is of course arbitrary, all of them correspond to the order

parameter u simply expressed in different duality frames. On the other hand,

the most natural solution is the one corresponding to the weak coupling duality

frame where |u| is large for τ → i∞. Since the width of the cusp at infinity is

4−Nf we see that there is still some ambiguity in this choice as long as Nf < 3,

but for Nf = 3 there is exactly one choice. We show in section 2.6 that this

has u → −∞ for τ → i∞, and it turns out that this choice can be taken for

all Nf ≤ 3 theories, and is preserved under the decoupling of hypermultiplets,

we therefore make this choice throughout. Note that this sign differs from the

conventional choice in the literature [46, 88,102].

Different mass configurations can give different decompositions of 6. When

singularities merge, their cusps are identified under the duality group and

their widths add up. Moreover a cusp moves from the real axis to infinity

upon decoupling of a matter multiplet.

For special choices of the masses, not all singularities correspond to cusps

i∞ or the real line; also singularities in the interior of the upper half-plane can

occur. The theories at these points are of superconformal or Argyres-Douglas

type, and the widths of all cusps add up to n.

Yet another aspect of the parametrisation by τ is that for special values of τ

in the interior of F , otherwise distinct solutions can coincide. These are branch

points of the solutions, where the function u(τ) ceases to be meromorphic in

τ . The branch points in FNf emanate a branch cut. We will discuss these

aspects in more detail in section 2.2.3.

For generic masses the equation PNf (X) = 0 furthermore defines a Rie-

mann surface, which is a 6-fold ramified covering over the classical modular

curve SL(2,Z)\H [119]. On this Riemann surface, any root u forms a mero-

morphic map to the Coulomb branch. It would be interesting to study the

topology of these surfaces in more detail. See also Appendix A.5 and [120].

Even if the duality group is not a congruence subgroup of SL(2,Z), there

is a procedure to find closed expressions for the order parameters in special
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cases. The sextic equation (2.13) for fixed massesm and scale Λ can be viewed

as a polynomial over the algebraic field C(Γ) of modular functions on Γ =

SL(2,Z). Such nontrivial polynomials define field extensions over C(Γ). By the

fundamental theorem of Galois theory, there is a one-to-one correspondence

between the Galois group of the field extension and its intermediate fields.

Intermediate fields can be obtained by adjoining roots of the polynomial to

the base field. Since PNf (X) is a sextic polynomial, for generic masses m

it is not possible to find exact expressions for the roots. However, if one of

the intermediate fields is known, the polynomial factors over the intermediate

field into products of polynomials of lower degree. If the resulting degree is

less than or equal to 4, there are closed formulas for the roots.

We find below that in many cases, such as massive Nf = 2 and 3 with

one mass parameter, C(Γ(2)) for the principal congruence subgroup Γ(2) (see

Appendix A.1) is an intermediate field. Since the function λ =
ϑ4

2

ϑ4
3

is a Haupt-

modul for the genus 0 congruence subgroup Γ(2), it is the root of a polynomial

of degree [Γ : Γ(2)] = 6 over C(Γ). More precisely, there exists a rational

function R with the property that R(λ(τ)) = j(τ). It is given by

R(p) = 28 (1 + (p− 1)p)3

(p− 1)2p2
. (2.16)

Instead of solving J (u,m,Λ) = j(τ) we can then rather solve J (u,m,Λ) =

R(λ(τ)). If C(Γ(2)) is an intermediate field, the sextic equation corresponding

to this equation factors over C(Γ(2)). In massive Nf = 2, 3 we find that

it factors into three quadratic polynomials with coefficients depending on λ,

which can be easily solved analytically. Such rational relations between the j-

invariant and Hauptmoduln exist for any genus 0 congruence subgroup, which

are classified. They allow to invert the equation J (u,m,Λ) = j(τ) for a large

class of mass parameters, as we demonstrate in the following sections. See

also [121–123].

2.2.3 Ramification locus

The covering FNf (m) → BNf is not 1-to-1 on a discrete subset, namely at

points of FNf (m) where the discriminant D(PNf ) vanishes.7 In all cases, Nf =

0, 1, 2, 3, we find that the discriminant of PNf factorises as

D(PNf ) = j4 (j − 1728)3 (DAD
Nf

)3Dbp
Nf
. (2.17)

We discuss each of the three factors:

The m-independent factor

7The discriminant of a polynomial p(X) = Xn+an−1X
n−1 + . . .+a1X+a0 =

∏n
j=1(X−rj)

is defined as D(p) =
∏
i<j(ri − rj)

2, in particular it vanishes if and only if two roots

coincide. Since we are interested in finding the zeros of D(p), we are not careful about

overall normalisation factors.
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The factor j4 (j−1728)3 is independent of the massesm and can be understood

from (2.13). It is immediate that when j = 123, every root of PNf has multi-

plicity at least 2, and if j = 0 every root has multiplicity at least 3. On H this

occurs whenever τ ∈ SL(2,Z) · i or τ ∈ SL(2,Z) · ω3, with ωj = e2πi/j. On the

modular curve SL(2,Z)\H, these orbits collapse to a point and in fact the cov-

ering π is ramified only over {i∞, i, α}, or j ∈ {0, 1728,∞}, respectively. This

resembles the Belyi functions, which are holomorphic maps from a compact

Riemann surface to P1(C) ramified over precisely these three points [39, 124].

They can be described combinatorially by so-called dessins d’enfants. Such

dessins have also appeared in the context of SW theory [125–127]. For generic

masses, the SW family of curves do not satisfy this definition, as there are

additional ramification points.

The polynomial DAD
Nf

The factor DAD
Nf

corresponds to Argyres-Douglas (AD) loci, where two or more

singularities coincide [104, 105]. More precisely, the zero locus of DAD
Nf

corre-

sponds to the masses for which the Coulomb branch contains AD points. To

see this, recall that the AD points correspond to

g2(u,m,Λ) = g3(u,m,Λ) = 0. (2.18)

Since g2 and g3 are polynomials in u of degrees 2 and 3, respectively, we can

eliminate u from the above equations and characterise LAD
Nf

as the zero locus

of a polynomial DAD
Nf

in m,

LAD
Nf

= {m ∈ CNf |DAD
Nf

(m) = 0}. (2.19)

These are precisely the polynomials appearing in (2.17). From the SW curves

we can easily find that they are given by

DAD
0 = 1,

DAD
1 = 27Λ3

1 − 64m3,

DAD
2 = Λ6

2 − 12m1m2Λ4
2 + 3(9m4

1 + 9m4
2 − 2m2

1m
2
2)Λ2

2 − 64m3
1m

3
2,

DAD
3 = Λ9

3 − 12M̃2Λ7
3 + 168M̃3Λ6

3 − 174M̃ ′
4Λ5

3 + 48M̃4Λ5
3

+ 168M̃2M̃3Λ4
3 − 372M̃2

3 Λ3
3 + 24M̃ ′

6Λ3
3 − 64M̃6Λ3

3

− 24M̃3M̃
′
4Λ2

3 + 96M̃3M̃4Λ2
3 + 6M̃2M̃

2
3 Λ3 − 27M̃ ′

8Λ3 + 8M̃3
3 ,

(2.20)

where for Nf = 3 we have defined the symmetric combinations

M̃2k = 26k

3∑
j=1

m2k
j , M̃3 = 29

3∏
j=1

mj,

M̃ ′
4 = 212

∑
i<j

m2
im

2
j , M̃ ′

6 = 218
∑
i 6=j

m2
im

4
j , M̃ ′

8 = 224
∑
i<j

m4
im

4
j .

(2.21)

The type of singularity that appears for specific masses on these loci are found

by studying the order of vanishing of g2, g3 and ∆ according to the Kodaira
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classification,

II : ord(g2, g3,∆) = (1, 1, 2) or (2, 1, 2),

III : ord(g2, g3,∆) = (1, 2, 3),

IV : ord(g2, g3,∆) = (2, 2, 4).

(2.22)

See Appendix A.6 for more details. The zero loci of the AD polynomials can

be understood as codimension 1 loci in the space CNf 3m [105]. For Nf = 3

such a locus is shown in Fig. 3. Argyres-Douglas loci are studied for a more

general class of SW theories in [108].
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Figure 3: The AD locus LAD
3 for Nf = 3 with massesm = (m,m, µ) in the real (m,µ)-plane,

with units Λ3 = 1. It is a union of three smooth lines, two of them generically describing

type II AD points and the third one type III. The two II lines touch at a III point, while

both II lines touch the III line in a type IV AD point.

In section 2.2.2, we argued that the widths of the different cusps of the

SU(2) theories always add up to n ≤ 6. We will now argue that n < 6 if

and only if m is a zero mAD of DAD
Nf

. It is possible that some zero of ∆ is

also a zero of g2. Then the index is given by the degree of the numerator of

j, which can be smaller than 6. In Sections 2.4.2, 2.5.3 and 2.6.4-2.6.6 we

study a few examples of AD theories appearing in the Nf = 1, 2, 3 theories,

and demonstrate that the curve degenerates to Kodaira types II, III or IV .

Each singularity type is not exclusive to a specific number of flavours, but

appears on the discriminant divisor of the higher Nf theories as well [105].

See Sections 2.6.5 and 2.6.6 for two explicit examples of this. The three types

of AD theories corresponds to 2, 3 or 4 mutually non-local states becoming

massless at the AD point. The cusps corresponding to the non-local states are

disconnected from the rest of the domain, and the branch points collide at an
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elliptic point of the duality group. As a result, the index is reduced by ord ∆,

which equals the number of mutually non-local states becoming massless, i.e.,

2, 3, and 4 for the theories II, III and IV , respectively. Note that the order of

vanishing of the discriminant may be larger than zero for ordinary singularities

as well, so it is not enough to simply subtract ord ∆ from six to get the index

right but rather we should subtract the number of mutually non-local states

becoming massless at each cusp,

n = 6−# (mutually non-local massless dyons). (2.23)

This is because for the index to reduce it is necessary for g2 and ∆ to have

a common root, such that due to (2.8) it is also a root of g3 and because

of (2.18) therefore an AD point. In the limit m → mAD, the 6 − n copies of

FNf (m) corresponding to the regular singularities are removed from the funda-

mental domain. We have also found mass configurations whose corresponding

Coulomb branch contains two (type II) AD points. The correspondence (2.23)

nevertheless holds, for a similar argument as presented above.

The polynomial Dbp
Nf

The last factor Dbp
Nf

corresponds to branch points. These are values of j for

which two solutions of PNf (X) = 0 coincide, such that the map u : FNf (m)→
BNf is not 1-to-1 on these points. The identifications are different from the

multiple images of F in BNf , which identify the images of the boundary of F ,

αj(∂F), in FNf (m).

The Dbp
Nf

are explicitly given by

Dbp
0 = 1,

Dbp
1 = 27jΛ6

1 − 27 · 214m3Λ3
1 + 220m6,

Dbp
2 = (m2

1 −m2
2)2j2Λ8

2 − 128Λ4
2

(
216(m8

1 +m8
2)− 288m2

1m
2
2(m4

1 +m4
2)

+ 16m4
1m

4
2 + 240m3

1m
3
2Λ2

2 − 72m1m2(m4
1 +m4

2)Λ2
2 + 9(m4

1 +m4
2)Λ4

2

− 42m2
1m

2
2Λ4

2 − 2m1m2Λ6
2

)
j + 212(16m1m2 − Λ2

2)3PAD
2 ,

(2.24)

and we define Lbp
Nf

as the zero locus of Dbp
Nf

. The expression for Dbp
3 for generic

masses is very long so we do not write it out here, but we can note that it is

has degree three in j. For later reference we write it out for two special mass

configurations

Dbp
3 (m,m,m) = 432m4Λ2

3j + (8m− Λ3)2(16m+ Λ3)3(64m+ Λ3),

Dbp
3 (m, 0, 0) = 16m4Λ2

3j + (8m− Λ3)3(8m+ Λ3)3.
(2.25)

To show that the zero locus of these polynomials really correspond to branch

points we will need some specific details of the corresponding theory and we

therefore hold off on this discussion until the respective sections below. We

can, however, note that by solving Dbp
Nf

= 0 for j and plugging it into (2.13)

we get the corresponding solutions for u. For example, in Nf = 1 we find
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u = 4
3
m2 and as we will see, away from m = mAD = 3

4
Λ1, this is not part of

the discriminant of the curve and therefore does not correspond to a physical

singularity of the theory. We denote a branch point of u in FNf by τbp, and its

image in BNf as ubp. As explained in Section 2.3.3, for generic masses there

are two branch points τbp and τ ′bp with image ubp = u(τbp) = u(τ ′bp). Since

their image in BNf is the same, the points τbp and τ ′bp are identified in FNf ,
even though they appear as distinct points in plots of FNf in H. A branch cut

emanates from each branch point; there can be a single cut connecting both

branch points, or two separate cuts which go to either i∞ or to the real axis.

Mutually local singularities

As the masses are tuned, some of the singularities on the Coulomb branch

can collide. If we consider ∆Nf as a polynomial in u, its discriminant D(∆Nf )

vanishes if and only if two roots coincide. It is straightforward to show that

for Nf ≤ 3,

D(∆Nf ) =
(
DAD
Nf

)3∏
i<j

(mi −mj)
2(mi +mj)

2. (2.26)

This factorises the locus in mass space where singularities collide into two

orthogonal components: The first component is the Argyres-Douglas (AD)

locus given by the polynomial equation DAD
Nf

= 0, where mutually non-local

singularities collide [105, 128]. The other component is characterised by the

equations mi = ±mj, and one can check that this gives rise to mutually local

singularities colliding. Here, the flavour symmetry gets enhanced and a Higgs

branch opens up [46].

Given a mass configuration m = (m1, . . . ,mNf ), we can denote by kl the

weight (or multiplicity) of the l-th singularity, and by k(m) = (k1, k2, . . . ) the

vector of those weights. Since the Coulomb branch BNf (m) contains 2 + Nf

singularities aside from weak coupling u = ∞, it is clear that k(m) provides

a partition of 2 + Nf . This in turn partitions the mass space CNf 3 m into

finitely many regions where k(m) is locally constant. As an example, in Fig.

4 we plot the contours of (2.26) for Nf = 2 in the real m = (m1,m2) plane.

The possible singularity structures of the rational elliptic curves (2.3) are

classified in Persson’s list of allowed configurations of singular fibres [43, 44].

From Kodaira’s classification, it follows that any solution to (2.26) gives rise

to a singularity on the Coulomb branch of Kodaira type Ik, II, III, or IV . As

described in [2,129], the solutions to 0 = DAD
Nf

give rise to AD points of Kodaira

type II, III and IV . The second component 0 =
∏

i<j(mi − mj)(mi + mj)

can be studied in more detail. These are 2(Nf − 1) independent equations.

Whenever one of the factors vanishes, the SW surface contains an Ik singu-

larity with k ≥ 2. For Nf = 2, the only possibility is I2, while for Nf = 3

singularities of type I2, I3 and I4 are possible. The point in the Coulomb

branch BNf corresponding to an Ik singularity with k ≥ 2 intersects with

a Higgs branch of quaternionic dimension k − 1 ≥ 1 [46]. Further merging

these Ik singularities with a mutually non-local singularity does not affect the
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Figure 4: Partitioning of the real m = (m1,m2) plane in Nf = 2, in units of Λ2 = 1. On

the AD component the Coulomb branch B2(m) contains an AD point of Kodaira type II

(blue) or III (green). On the other component (orange), mutually local singularities collide.

If m is varied along a continuous path that does not cross the partitioning 0 = D(∆Nf
),

the weight vector k(m) is constant.

Higgs branch, such that the points with a III or IV singularity also intersect

with a Higgs branch of quaternionic dimension one or two, respectively, while

the points with AD theories of type II do not intersect with any Higgs branch.

The genus of FNf (m)

For special choices of the masses m, F(m) coincides with the modular curve

X(Γ) for a congruence subgroup Γ ∈ SL(2,Z). Then the genus of F(m) is

given by that of X(Γ), for which there is the formula (A.40) in terms of the

index n, the number of elliptic points ε2 and ε3 and the number of cusps ε∞.

In all examples of such masses m discussed below, we find that F(m) is a

genus zero Riemann surface. In the presence of branch points in F(m), Equa-

tion (A.40) needs to be modified. First, we note that for an AD theory, τAD

corresponds to an elliptic point. In fact, in all AD cases studied here, (2.23)

can be expressed as8

n = 6− 2ε3 − 3ε2, (2.27)

For ε∞ there is no simple formula since for example it is not unique in some

limit m → mAD, but rather depends on the direction in mass space from

which mAD is approached. As the map u : F(m)→ BNf is between Riemann

surfaces F(m) and BNf , we can consider the Riemann-Hurwitz formula (A.39),

which relates their genera g. The inverse map τ : BNf → F(m) can be defined

8The type IV AD point can be viewed as a collision of two elliptic fixed points of period 3.
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through τ = daD
da

= daD
du
/ da
du

, with the periods a, aD given by (2.2). The

dependence of τ on u is holomorphic everywhere [41,42]. Then (A.39) for the

inverse map implies that 0 = gBNf ≥ gF(m), such that

gF(m) = 0. (2.28)

Applying this to the Riemann-Hurwitz formula for the ramified covering F(m)→
F , we find the number of distinct branch points on F(m) for arbitrary m as∑

τbp∈F(m)

(eτbp
− 1) = ε∞ − 3 + ε2 + ε3. (2.29)

This shows that F(m) is a Riemann sphere with ε∞ cusps, ε2, ε3 elliptic points

of periods 2 and 3 and ε∞−3+ε2+ε3 branch points. As an example, in massless

Nf = 1 (see section 2.4.1) we have ε∞ = 1 + 3 = 4, while all singularities are

on Q and thus ε2 = ε3 = 0. There is one branch point in F(0), which agrees

with (2.29).

2.2.4 Partitioning the u-plane

An approach to better understand the u-plane geometry is to study the parti-

tions that the map u : FNf → BNf produces on the u-plane BNf . Let us study

the union (2.14). Now since u(FNf ) = BNf , it is natural to ask what

Tm = u

(
n⋃
j=1

αj∂F
)
⊆ BNf (2.30)

describes. The insight is that while j : F → C is an isomorphism, it surjects

the boundary onto a half-line,

j(∂F) = (−∞, 123] ⊆ R ⊆ C. (2.31)

This is straightforward to prove. On the half-lines i[
√

3
2
,∞) the q-series of j is

an alternating series with the same Fourier coefficients as j and therefore real.

On the arc {eϕi |ϕ ∈ (π
3
, 2π

3
)} the complex conjugate of j(eϕi) is equal to the

value of j at the S-transform of eϕi and therefore equal to j(eϕi).

The only other region in F where j is real are the SL(2,Z) images of the

half-line i[1,∞) on the imaginary axis. We can directly apply this to the SW

curves, whose j-invariant J (u,m,Λ) is identified with j(τ). The partitioning

is then

Tm = {u ∈ BNf | J (u,m,ΛNf ) ∈ (−∞, 123]}. (2.32)

It is included in the level set ImJ = 0. Let us therefore study the curves

ImJ (u,m,ΛNf ) = 0, (2.33)

which contrary to (2.32) are algebraic curves. It turns out that some of the

components of this equation do not belong to the partitioning (2.32), and it
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Figure 5: Identification of the components of the partitioning T in the pure theory. The

u-plane B0 is partitioned into 6 regions u(αF), with the α ∈ SL(2,Z) given in both pictures.

is clear that they correspond to components of curves with j > 123. Due to

the imaginary part, it is instructive to choose coordinates u/Λ2
Nf

= x + iy.

The equations (2.33) are straightforward to compute in terms of zero-loci of

polynomials in x and y. For fixed m, they define algebraic varieties

Tm(x, y) = 0. (2.34)

More specifically, they are an Nf -parameter family of affine algebraic plane

curves. For the pure Nf = 0 theory, one finds

T0 = xy(81− 288x2 + 336x4 − 128x6 + 288y2 − 352x2y2

− 128x4y2 + 336y4 + 128x2y4 + 128y6).
(2.35)

The identification of this partitioning of the u-plane for the pure theory is

shown in Figure 5. The defining equations can be computed in full generality

for any Nf , but they are rather lengthy: The polynomials Tm for generic

masses have total degree 8 +Nf . For generic real masses, the polynomials Tm
have 30, 131, and 1081 terms in Nf = 1, 2 and 3, respectively. If we allow the

masses to be complex, we can decompose mi = Remi + iImmi and the Tm are

then polynomials in x, y, Remi and Immi. For generic (complex) masses in

Nf = 1, 2 and 3, Tm has 93, 1310 and 48754 terms, respectively.

The polynomials Tm are in general reducible. For instance, form = (m,m)

and m = (m, 0, 0), Tm factors into multiple nontrivial polynomials. It is

straightforward to check that Tm for given Nf flows into Tm for Nf − 1 by

decoupling one hypermultiplet. This allows to study the decoupling procedure

of the fundamental domains in detail.

The partitioning Tm is a finite union of smooth curves that intersect. The

tessellation of H in SL(2,Z) images of F ,

TH =
⋃

α∈SL(2,Z)

α(∂F) =
{
τ ∈ H | j(τ) ≤ 123

}
, (2.36)
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has intersection points τ ∈ SL(2,Z) · eπi3 , where j(τ) = 0. From (2.10) we

see that these intersection points correspond to J (u,m,Λ) = 0, whose only

solutions are given by g2(u,m,Λ) = 0 (see (2.9)). Since g2 is a polynomial in u

of degree 2 for all curves (2.3), there are at most two intersection points in Tm
corresponding to J = 0. As g2 is strictly quadratic, there is also always at least

one such point. We find below that when the branch points (as introduced in

section 2.2.3) belongs to Tm, they give further intersection points of Tm.

One can study how the partitioning is deformed upon varying the masses.

For the cases where the branch points belong to Tm, the complex u-plane is

generically partitioned into 6 regions. When going to the AD locus two or more

of these regions shrink to a point together with at least one branch point. At

precisely m = mAD, the u-plane is then partitioned into ≤ 4 regions, giving

an explanation for the discontinuous decrease in the index in the limit m →
mAD. This can also be understood directly from the polynomials Tm(x, y). For

instance, at the point m = mAD = 3
4
Λ1 in Nf = 1, the polynomial TmAD

(x, y)

contains a factor 9 − 24x + 16x2 + 16y2. Its zero locus in R2 is just a point

x+ iy = 3
4

= uAD/Λ
2
1, while the massive deformation away from mAD describes

a curve that encloses a region. For ubp /∈ Tm one needs to cut and glue interior

points of different regions and the u-plane is therefore partitioned into less

than 6 regions. See for example Fig. 11.

2.3 Matone’s relation

In pure N = 2 supersymmetric gauge theories, there is a relation between

instanton corrections of the prepotential F to instanton corrections of u ∼
〈Trφ2〉 (2.1). For the pure SU(2) gauge theory, it has been found in [110] that

u = πi(2F − a∂aF ). (2.37)

In combination with the Picard-Fuchs differential equations for the periods a

and aD (see [96, (2.5)] or [110, (30)]), this gives an explicit recursion relation

[100, (8)]

∂3
aF =

π2

4

(a∂2
aF − ∂aF )3

(1 + π2(2F − a∂aF )2
(2.38)

for the prepotential F . Using (2.37), one may write this relation as

du

dτ
= −4πi∆

(
da

du

)2

, (2.39)

where ∆ = u2 − Λ4
0 is the physical discriminant. In order to see this, one can

differentiate (2.37) w.r.t. a to find du
da

= πi(aD − aτ). In the following, we will

call relations such as (2.39) Matone’s relations rather than (2.37), (2.38) or

equivalent equations.

One can furthermore differentiate (2.37) w.r.t. u to find aa′D − a′aD =
i
π
, where ′ = ∂u. By computing dτ

du
= ∂u∂

2
aF , this identity together with

the Picard-Fuchs equations implies (2.39). Due to its central importance,
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generalisations of (2.37) to many theories have been found. For SU(N) SQCD

it reads

2F =
(

Λ∂Λ +
∑

jmj∂mj +
∑

j aj∂aj

)
F, (2.40)

which can be interpreted as an RG flow of the prepotential, Λ∂ΛF ∼ u [130–

132]. By combining π = (Λ,m,a)T into a vector, the prepotential satisfies

the differential equation πT∂πF = 2F . This Euler equation characterises the

homogeneity of the prepotential. Its relations to supergravity [131, 133], the

Ω-background [134,135], integrability [136–138] and 5 dimensions [139,140] are

well-known.

In N = 2 SU(2) SYM, all ingredients of (2.39) are classically modular,

while the prepotential F is not. This is easy to see from the above relations: It

involves the period aD, which unlike a is not modular since it depends explicitly

non-modularly on τ . Picard-Fuchs solutions of massive SU(2) SQCD have been

studied in [141–143], where generalisations of (2.39) for the massless Nf =

1, 2, 3 theories have been obtained. By including massless hypermultiplets,

(2.39) receives interesting corrections [88]: The physical discriminant ∆ is

divided by another polynomial in u. For massless Nf = 2, 3 it divides ∆,

while it does not for Nf = 1. In this Section, we derive a generalisation of

(2.39) for Nf = 1, 2, 3, 4 with generic masses and give an explanation of these

denominators.

Another motivation comes from the topologically twisted theory [61], where

correlation functions of the topological theory on a four-manifold X can be

computed as integrals over the u-plane [73]. The coupling of the low energy

effective theory to topological invariants of the background gravitational field

is encoded by a holomorphic function AχBσ, where χ and σ are the the Euler

characteristic and the signature of X. For pure SU(2) SYM, the functions

A and B are A =
(
∆dτ
du

) 1
4 and B = ∆

1
8 [72].9 The function B8 can in fact

be viewed as a definition of the physical discriminant [144]. Due to the pure

SU(2) Matone relation (2.39), it was realised in [73] that A =
(
du
da

) 1
2 . If we

include hypermultiplets, (2.39) is modified and this argument does not work

anymore. Instead, it was argued [73] that A =
(
du
da

) 1
2 is in fact correct when

including hypermultiplets. However, this bases on the assumption that Aχ is

a holomorphic modular form of weight −χ
2
, and has neither zeros nor poles

anywhere on the u-plane. In N = 2 SQCD, these statements are not quite

true. We will discuss these issues in section 5.

In this Section, we derive a generalisation of (2.39) for massive Nf = 1, 2, 3.

Section 2.3.1 derives expressions for da/du and ∆Nf as functions of τ . Section

2.3.2 derives Matone’s relation (2.52) for generic Nf ≤ 3.

9The prefactors were determined in [73] for pure SU(2) and in [111] for the asymptotically

free SU(2) theories. We ignore them in the following.
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2.3.1 Periods and Weierstraß form

We proceed by deriving an expression for da/du. To this end, recall that a is

given as a period integral (2.2), and that the derivative of the SW differential

λ to u is holomorphic [46]. Therefore, we can express da/du in terms of the

variables x and y of (2.7)
da

du
=

√
2

4π

∫
γ

dx

y
, (2.41)

where γ is one of the cycles of the elliptic curve. To determine this quantity

for the theories with Nf ≤ 3, we map the curve W to the modular Weierstraß

form W̃ , A :W → W̃ . See for example [145, Section 7.1]. The curve W̃ reads

W̃ : ỹ2 = 4x̃3 − g̃2x̃− g̃3, (2.42)

with the variables related by the map A as

A :


x̃ = α2 x = ℘(z),

ỹ = α3 y = ℘′(z),

g̃2 = α4 g2,

g̃3 = α6 g3,

(2.43)

where ℘ is the Weierstraß function and z ∈ C a coordinate on the curve. Since

W̃ is the modular Weierstraß curve, the variables g̃2 and g̃3 equal

g̃2 = 4π4

3
E4, g̃3 = 8π6

27
E6, (2.44)

with Ek the Eisenstein series defined in (1.7). We note that the variables forW
(2.7) have weight 0 under modular transformations, while in (2.42) the weights

are wt (α, ỹ, x̃, g̃2, g̃3) = (1, 3, 2, 4, 6). Using the two equations for g̃2 and g̃3,

we can solve for u and α. The relation

α =

√
2π

3

√
g2

g3

E6

E4

, (2.45)

will be particularly useful for us in the next subsection. This relation can also

be derived using Picard-Fuchs equations [146].

Now it is straightforward to determine da/du (2.41) using the Weierstraß

representation of (x̃, ỹ),

da

du
=

√
2α

4π

∫
γ̃

dx̃

ỹ
=

√
2α

4π
, (2.46)

where γ̃ is the image of the γ under the map A, with the variable z of x̃(z)

changing from 0 to 1.

We continue by studying the discriminants ofW and W̃ . Using E3
4 −E2

6 =

123 η24 with η as in (A.18), we find for the discriminant of W̃ , ∆̃ = (2π)12 η24.

The discriminant of W , ∆Nf (2.8), on the other hand is a polynomial in u, m

and Λ and therefore has weight 0. The two discriminants are related by

∆̃ = α12(−1)NfΛ
8−2Nf
Nf

∆Nf , (2.47)
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or substituting α in terms of da/du (2.46),

η24 = 26(−1)NfΛ
2(4−Nf )
Nf

(
da

du

)12

∆Nf , (2.48)

which holds for 0 ≤ Nf ≤ 3. Similar expression exist for Nf = 4 and N = 2∗

[85].

Let us consider the case that W or W̃ is singular. The curve W̃ is only

singular at the cusps τ ∈ {i∞} ∪ Q, since ∆̃ ∼ η24 vanishes at the cusps and

is non-vanishing for τ in the interior of H. From (2.47) we see that, at the

cusps of W̃ either da/du or ∆Nf must vanish. On the other hand, for τ in the

interior of H, ∆̃ is non-vanishing. This means that, ifW is singular (∆Nf = 0)

for such values of τ , da/du should diverge. This is exactly what happens at

the AD points,

du

da
(τAD) = 0, ∆Nf (u(τAD)) = 0, τAD ∈ H. (2.49)

We can further note that du
da

(τ) = 0 is true also for singularities that are cusps

and not elliptic points, i.e., ∆Nf = 0 for τ ∈ Q. This is because if u is not an

elliptic point then g2 6= 0 and g3 6= 0, since otherwise, from ∆ = g3
2 − 27g2

3,

both would be zero, giving an elliptic point. Then, from (2.46) we have that(
du
da

)2
is proportional to E4

E6
. This is a meromorphic modular form of weight −2

for SL(2,Z), and one can show using modular transformations that it vanishes

on Q. Therefore, we have that ∆Nf = 0 implies du
da

= 0.

2.3.2 Matone’s relation

We will now give a generalisation of (2.39) that holds also for the massive

Nf = 1, 2, 3 theories. Let us denote by ′ the derivative with respect to u

keeping m and ΛNf fixed. The derivative with respect to τ is always given

explicitly. From the explicit expression for j as function of τ (A.9), it is easy

to check that d
dτ
j = −2πiE6

E4
j. Using the chain rule and (2.10), we can express

this as d
dτ
J = J ′ du

dτ
. This gives the first important identity,

du

dτ
= −2πi

E6

E4

J
J ′ , (2.50)

which holds for any SW curve. From (2.9) we can compute J ′ in terms of g′2
and g′3. Using relations (2.45) and (2.46), we can substitute E6/E4 in terms of

g2, g3 and da/du. This gives the exact relation

du

dτ
= −72πi

g3

g2

J
J ′
(
da

du

)2

= −8πi

3

g3
2 − 27g2

3

2g2g′3 − 3g′2g3

(
da

du

)2

. (2.51)

An analogous formula for five-dimensional gauge theories was derived from the

Picard-Fuchs perspective in [147, Eq. (4.23)]. Both factors on the rhs are only

relative invariants, but their product is an absolute invariant of the curve W .
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The numerator on the rhs is proportional to the physical discriminant. The

equation has modular weight 2, since both du
dτ

and
(
da
du

)2
are of weight 2.

For 0 ≤ Nf ≤ 3, we can compute the corresponding gi, and one can rewrite

(2.51) as10

du

dτ
= − 16πi

4−Nf

∆Nf

PM
Nf

(
da

du

)2

, (2.52)

where we substituted (2.8) for ∆Nf , and defined the polynomial PM
Nf

,

PM
Nf

=
6

4−Nf

(−1)Nf Λ
2Nf−8
Nf

(2g2g
′
3 − 3g′2g3). (2.53)

The normalisation is chosen such that PM
Nf

is a monic polynomial. Explicit

computation gives,

PM
0 = 1,

PM
1 =u− 4

3
m2

1,

PM
2 =u2 − 3

2
(m2

1 +m2
2)u+ 2m2

1m
2
2 + 1

8
m1m2Λ2

2 − 1
64

Λ4
2,

PM
3 =u3 − 2M2u

2 +
(
3M ′

4 + 3
4
M3Λ3 − 1

64
M2Λ2

3

)
u+ 1

256
M3Λ3

3

− 1
4
M2M3Λ3 + 1

32
(M4 −M ′

4)Λ2
3 − 4M2

3 ,

(2.54)

where we defined

M2 = m2
1 +m2

2 +m2
3, M3 = m1m2m3,

M4 = m4
1 +m4

2 +m4
3, M ′

4 =
∑
i<j

m2
im

2
j .

(2.55)

We note that these polynomials appear in the Picard-Fuchs equations for the

periods of these theories and their zeros give regular singular points of the

differential equations [141,143].11

2.3.3 Branch points

An important difference between Nf = 0 and Nf > 0 are the poles where PM
Nf

vanishes. To understand these poles as well as zeros of du/dτ , note that at

such points the change of variables between u and τ is ill-defined. We have

seen earlier that the change of variables is ill-defined at the points where the

discriminant D(PNf ) (2.17) vanishes. Indeed if we substitute J (u,m,ΛNf ) for

j(τ) in Dbp
Nf

, PM
Nf

factors out.

The reason for this is the following. The discriminant of a polynomial p

vanishes if and only p has a double root. It can be computed as the resultant of

10We can in fact perform the same computations in the case of Nf = 4, leading to a similar

formula.
11The identity (2.52) does in fact not depend on the specific form of the SW curves. Given

a Jacobian rational elliptic surface, let ω =
∫
γ
dx
y be the period of the Néron differential

on the elliptic curve. Then du
dτ = 1

3πiω
2∆/(2g2g

′
3 − 3g′2g3), with u a coordinate on P1(C).
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the polynomial and its formal derivative, D(p) ∼ ResX(p, p′) (see also [106]).12

The zero locus D(PNf ) = 0 of PNf (X) is then given by the solutions to the

two equations PNf (X) = 0 and PNf
′(X) = 0. Since ∆Nf 6= 0, all solutions

can be found by solving the former for j and inserting into the latter. It is

straightforward to show that this gives

g2
2g3

∆Nf

PM
Nf

= 0, (2.56)

which provides the decomposition (2.17): If g2 = 0 but g3 6= 0, then j = 0. If

g3 = 0 but g2 6= 0, then j = 123. If both g2 = g3 = 0, we are in LAD
Nf
⊆ L∆

Nf
.

Now since the sextic equation is only well-defined away from the physical

discriminant locus L∆
Nf

where ∆Nf = 0, the true branch point locus Lbp is the

difference of the Matone locus LM
Nf

= {u ∈ BNf |PM
Nf

= 0} and the discriminant

locus,

Lbp
Nf

= LM
Nf
\ L∆

Nf
. (2.57)

On the Coulomb branch with Nf hypermultiplets there are generically

2 + Nf distinct singular points. For special mass configurations m, some

singularities can collide. Then ∆Nf has a double root. From above it is clear

that this is equivalent to D(∆Nf ) = 0, which in turn is equivalent to ∆Nf = 0

and ∆′Nf = 0. We can again solve the former for g2 and g3 and insert into

the latter to obtain PM
Nf
∼ g′2

g3
∆Nf = 0. This implies that whenever ∆Nf has a

double root, it is also a root of PM
Nf

. It is also observed in all examples below.

To be more precise, if ∆Nf contains a root of d > 1-th order, then ∆′Nf has

the same root but with multiplicity d− 1. The excess factors can be extracted

by the operation gcd(∆Nf ,∆
′
Nf

), where gcd is the polynomial greatest com-

mon divisor. The multiple roots are removed from the discriminant by the

square-free factorisation13

∆̂Nf =
∆Nf

gcd(∆Nf ,∆
′
Nf

)
. (2.58)

This reduced discriminant ∆̂Nf has single roots only, concretely we map
∏

s(u−
us)

ns to
∏

s(u − us). This quantity is also of importance for determining

gravitational couplings to Seiberg-Witten theory [148]. One can show that

gcd(∆Nf ,∆
′
Nf

) always divides PM
Nf

, such that

P̂M
Nf

:=
∆̂Nf

∆Nf

PM
Nf

(2.59)

12The resultant of two polynomials over a commutative ring is a polynomial of their co-

efficients which vanishes if and only if the polynomials have a common root. It can be

computed as the determinant of their Sylvester matrix.
13The polynomial gcd is unique only up to multiplication with invertible constants, we

choose it such that ∆̂Nf
is again monic.
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is in fact a polynomial. The branch point equation (2.56) is then equivalent

to P̂M
Nf
/∆̂Nf = 0, which reduces to

P̂M
Nf

= 0. (2.60)

The Matone relation thus always takes the form

du

dτ
= − 16πi

4−Nf

∆̂Nf

P̂M
Nf

(
da

du

)2

, (2.61)

where both ∆̂Nf and P̂M
Nf

are polynomials. In the subsequent sections we show

explicitly that the roots of the denominator (2.60) are precisely the branch

points. We note that for generic masses the form (2.61) does not differ from

(2.52), because ̂ is trivial when all roots are distinct.

As argued above, AD points correspond to points τAD in the upper half-

plane. Since they lie on the discriminant locus, we exclude them to define

the sextic polynomial PNf . We will discuss in more detail below that, if the

masses approach the AD locus, a branch point in the u-plane collides with

two mutually non-local singularities forming the AD point. The branch point

under consideration lifts, while the Nf − 1 other branch points remain for a

generic point on the AD mass locus LAD
Nf

. Thus for a generic point on the AD

mass locus, AD points are not branch points of u(τ). A non-generic example

is the most symmetric AD theory, the IV fibre in Nf = 3, discussed in more

detail in Section 2.6.4. For this theory, τAD corresponds to a singular point of

the theory as well as a branch point. As a result, the domain for τ does not

correspond to that of a congruence subgroup of SL(2,Z).

Since any branch point τbp induces a non-trivial monodromy, u does not

have a regular Taylor series at such a point. For instance, if the u-plane

contains one branch point ubp = u(τbp), then we have u(τ)−ubp = O(
√
τ − τbp)

as τ → τbp. If the leading coefficient is nonzero, then du
dτ

diverges at τbp. Away

from the discriminant locus, this can be understood from (2.61): From (2.46)

we see that da
du

is regular and nonzero at a branch point, since none of g2, g3, E4

and E6 diverge or vanish. Thus the zeros of the denominator P̂M
Nf

correspond

to the singular points of du
dτ

, as observed.

This can also be seen directly from the J -invariant of the SW curve. It is

easy to show that

J ′ = 363 g
2
2g3

∆2
Nf

PM
Nf
, (2.62)

which due to (2.56) vanishes at any branch point ubp. Since for fixed mass and

scale J (u) is rational in u, it is a meromorphic function on BNf . Away from

the discriminant locus it thus has a Taylor series around ubp, where the linear

coefficient is missing. We therefore find

J (u)− J (ubp) = O ((u− ubp)nbp) , (2.63)
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with nbp ≥ 2. Now we identify J (u) = j(τ), which relates the power series of

u and τ . For a generic τ ∈ H, j has a regular Taylor series at τ with non-zero

linear coefficient. However if τ is in the SL(2,Z)-orbit of i or e
πi
3 , j has a zero

of order 2 or 3. Let nτbp
∈ {1, 2, 3} be this number for a given branch point

τbp ∈ H. Then J (u) − J (ubp) = O ((τ − τbp)nτbp ), such that from (2.63) we

conclude

u(τ)− ubp = O
(

(τ − τbp)nτbp
/nbp

)
, (2.64)

where the leading coefficient is strictly non-zero. From this we see that the

branch point τbp does not necessarily correspond to an nbp-th root, but since

the ratio can cancel τbp rather corresponds to a branch point of order

nbp

gcd(nbp, nτbp
)
. (2.65)

It is difficult to compute this integer for a generic branch point, however in all

examples discussed below it is equal to 2, which corresponds to a square root.

If the number
nτbp

nbp
∈ Q\Z is larger than 1, then it is clear that du

dτ
(τbp) = 0.

Conversely, if
nτbp

nbp
< 1 then du

dτ
(τbp) =∞. We thus see that any branch point

has the property that du
dτ

diverges or vanishes, such that the change of variables

from the u-plane to the τ -plane is not well-defined.

The branch point locus also allows to find the effective coupling at the AD

points. In the limit where the masses approach the AD locus, m→mAD, the

AD point uAD is the point where branch points ubp in the u-plane merges with

mutually non-local singularities. While away from mAD the effective coupling

τ of the singularities remain as distinct cusps on the real line, the branch points

move along certain paths inside H. In an AD limit m → mAD, a number of

pairs of branch points, τbp and τ ′bp, coincide at the intersection of copies of

F , and the branch cut will then disconnect regions from FNf . The effective

coupling of the AD point τAD is therefore given by that of the merged branch

points. This is an efficient way to determine τAD, which otherwise can only

be found by inverting modular functions. Moreover, if the duality group is a

congruence subgroup of SL(2,Z), τAD corresponds to an elliptic point of the

duality group.

2.4 The Nf = 1 curve

To make the above discussions more concrete we will now go on to study some

specific examples. We will start by including one hypermultiplet. The Nf = 1

theory has been discussed in some detail in [103,149–152].

In the massive Nf = 1 theory, there are three (in general) distinct strong

coupling singularities where a hypermultiplet becomes massless. These remain

at distinct points in the massless limit, while for special values of the mass two

of them can merge into AD points. To analyse the Nf = 1 theory we will start

by restricting to the massless case and then go to an AD mass. Here we can

find closed expressions for u in terms of well-known modular forms. Only in
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the AD case does the theory turn out to be modular. In the end we can use

the knowledge gained from these cases to draw some conclusions of the general

massive case.

2.4.1 The massless theory

Let us begin with the massless Nf = 1 theory. Using the procedure outlined

in Sec. 2.2.2 we find [101]

u(τ)

Λ2
1

=− 3

2
7
3

√
E4(τ)

3

√
E4(τ)

3
2 − E6(τ)

=− 1

16
(q−1/3 + 104q2/3 − 7396q5/3 +O(q8/3)),

(2.66)

where we again have made the choice of solution consistent with our conven-

tion, such that u → −∞ for τ → i∞. This function also appears as an

order parameter in pure SU(3) SW theory (see section 4) as well as in the

description of certain elliptically fibred Calabi-Yau spaces [153]. The singular-

ities of the curve are u3

Λ6
1

= −33

28 . They are associated with states of charges

(1, 0), (1, 1) and (1, 2) becoming massless. The global Z3 symmetry acts as

T−1 : u(τ − 1) = ω3u(τ), with ωj = e
2πi
j .

By restricting to the imaginary axis, we can perform the S-transformation.

For this, let τ = iβ with β > 0. We have that E4(i/β) = (iβ)4E4(iβ) =

β4E4(iβ). Taking the square root is unambiguous since E4 is real on the

imaginary axis and β4 is positive. This gives E
1
2
4 (i/β) = β2E

1
2
4 (iβ). On the

other hand for E6 we have E6(τ) = (iβ)6E6(iβ) = −β6E6(iβ). This implies

that the relative sign of E6 flips, and it holds for τD ∈ iR>0 that

uD(τD)

Λ2
1

= − 3

2
7
3

E4(τD)
1
2(

E4(τD)
3
2 + E6(τD)

) 1
3

=
3

2
8
3

(
1 + 144q − 3456q2 + 596160q3 +O(q4)

)
.

(2.67)

With the Z3 symmetry u(τ − 1) = ω3u(τ) this confirms the strong coupling

singularities given above.

The monodromies on the massless Nf = 1 u-plane are [46]

M1 = ( 1 0
−1 1 ) = STS−1,

M2 = ( 0 1
−1 2 ) = (TS)T (TS)−1,

M3 =
( −1 4
−1 3

)
= (T 2S)T (T 2S)−1,

M∞ =
( −1 3

0 −1

)
= PT−3,

(2.68)

where P = S2 = −1. Note that these matrices generate the full SL(2,Z)

modular group rather than a (congruence) subgroup. Indeed, as fractional

linear transformations acting on the complex structure through their matrix
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representations, they do not leave u invariant. However, we can consider these

matrices as compositions of paths in the fundamental domain, and as such they

do leave u invariant. To make the connection to the discussion in [1] more direct

we can note that by using another choice of homology basis in the present case

we can construct a different set of monodromies, see for example [117], which

exactly coincides with the ones listed for the SU(3) case of [1].

Since E4 has a simple zero at τ = ω3 (and SL(2,Z)-images), u(τ) has a

branch point at τbp = ω3. The function u(τ) does not possess a Taylor series at

τbp and is therefore not holomorphic at τbp. Since u(τbp) = 0, the branch point

of u(τ) indeed agrees with what is found in (2.24). Since u is not holomorphic

on H, it can also not be classically modular. Another reason why u is not

modular is the following. If we define x := −16 u
Λ2

1
= q−

1
3 + O(q

2
3 ), then one

can read off from the curve that J = x6/(x3−432). This implies that u should

be a Hauptmodul of an index 6 subgroup of SL(2,Z) with width h(∞) = 3 and

width decomposition 6 = 3 + 1 + 1 + 1 (see (A.37)). From the classification

of index 6 groups in Table 4 we see that such a subgroup of SL(2,Z) does

not exist. In fact, no index 6 subgroup of SL(2,Z) with 4 cusps exists. This

distinguishes massless Nf = 1 from massless Nf = 0, 2, 3, where the duality

groups are congruence subgroups isomorphic to Γ0(4) [101].

From (2.66) one finds

du

dτ
=
πiΛ2

1

2
7
3

E
3
2
4 + E6

E
1
2
4

(
E

3
2
4 − E6

) 1
3

,
da

du
=
i
(
E

3
2
4 − E6

) 1
6

2
1
3

√
3Λ1

. (2.69)

We can explicitly check that these satisfy Matone’s relation, (2.52), for massless

Nf = 1,

du

dτ
= −16πi

3

∆

u

(
da

du

)2

. (2.70)

The fundamental region

F1(0) =
2⋃
`=0

T `F ∪ T `SF (2.71)

as in (2.14) was obtained in [1]. It is shown in Fig. 6, together with its image

under u to the u-plane. We stress that (2.71) can not be written as G\H for

any subgroup G ⊆ SL(2,Z).

In the massless Nf = 1 theory, the partitioning (2.32) is contained in the

algebraic plane curve T(0)(x, y) = 0, where u
Λ2

1
= x+ iy and

T(0)(x, y) = y(3x2 − y2)(27x3 + 128x6 − 81xy2 + 384x4y2 + 384x2y4 + 128y6).

(2.72)

The first two factors of T(0)(x, y) contains also values which correspond to

j > 123 and they need to be sufficiently truncated. The identification of the

algebraic curve with the partitioning of H is immediate from Fig. 6.
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T

TS

T 2

T 2S

Figure 6: Left: Proposal of a fundamental region for massless Nf = 1. It is clear that it can

not be a fundamental domain of any SL(2,Z) subgroup if we identify the sides, τ ∼ τ + 3.

This is because the lower boundary is not given by a union of half-disks. If we do not identify

the sides then the picture is in fact a fundamental domain for Γ0(4). This is because there is

an element in Γ0(4) which maps i∞ 7→ 1. Right: Plot of the massless Nf = 1 u-plane as the

union of the images of u under the six SL(2,Z) images of F as in (2.71), in units of Λ2
1 = 1.

In particular, the function u is surjective onto C on this domain. The singular points sit

neatly in the interior of the strong coupling regions u(S`F), ` = 0, 1, 2. The origin u = 0 is

τ = ω3 + Z as discussed above, and bounds all six domains as is clear from the left figure.

2.4.2 Type II AD mass

In section 2.2.3 we saw that the Nf = 1 theory has AD fixed points in its

moduli space. To study these, we fix the mass to be one of the AD values,

m → mAD = 3
4
Λ1, specified by the zero locus of the AD polynomials (2.20).

Two mutually non-local singularities now collide at the AD point u = uAD =
3
4
Λ2

1 while the third one simplifies to u0 = −15
16

Λ2
1, such that the discriminant

reads

∆ = (u− uAD)2(u− u0). (2.73)

From the curve we now find

u(τ)

Λ2
1

= −f3B(τ) + 15

16
, (2.74)

where f3B is the McKay-Thompson series of class 3B for the Monster group [36]

(see Appendix A.4 for an overview of McKay-Thompson series),

f3B(τ) =

(
η( τ

3
)

η(τ)

)12

= 27

(
b3,0( τ

3
)

b3,1( τ
3
)

)3

− 27

= q−
1
3 − 12 + 54 q

1
3 − 76 q

2
3 − 243 q + 1188 q

4
3 − 1384 q

5
3 +O(q2).

(2.75)

The Dedekind η-function is defined in (A.18), while the functions b3,j are de-

fined in (A.14). We are again careful to choose the solution for u with the

consistent asymptotics. Substitution of the q series (2.75) in (2.74) reproduces

the q-series based on [103, Eq. (4.93)].

Using Theorem 1 in Appendix A.1, we find that τ 7→ f3B(3τ) is a classical

modular function for Γ0(3) and therefore u is a modular function for Γ0(3). A
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−1 0 1 2 3

F TF

SF

T 2F

τAD

Figure 7: Left: Fundamental domain of Γ0(3), the duality group of Nf = 1 with m = mAD.

The AD point τAD =
√

3ω12 is highlighted. Right: Plot of the Nf = 1 u-plane with AD mass

as the union of the images of u under the 6− 2 = 4 SL(2,Z) images of F forming Γ0(3)\H,

as in the left figure. The complex plane can clearly be covered by 4 triangles. There is only

one strong coupling region, which is the circular region. It contains u0 in its interior. The

AD point (orange) lies on the boundary of T±1F , as is clear from the left figure. The areas

with the same colours are mapped to each other in the two figures.

fundamental domain of Γ0(3) is

F1(mAD) =
2⋃
`=0

T `F ∪ SF . (2.76)

This is shown in Fig. 7 together with the map to the u-plane. The cusps are

i∞ and 0, with widths 3 and 1, respectively. We take from [154, Table 4.1]

that Γ0(3) has an elliptic fixed point of order 3.

Using the transformation properties of the η-function (A.19) it is straight-

forward to show that the locations of the singularities of (2.73) in the τ -plane

are given by (ωj = e2πi/j)

u(i∞) =∞, u(0) = u0, u(
√

3ω12) = uAD, (2.77)

where the proper limits are understood. The AD point
√

3ω12 is stabilised by

the order 3 element
( −1 3
−1 2

)
∈ Γ0(3), and it is therefore the order 3 elliptic fixed

point of Γ0(3). Comparing the locations to the massless case we see that the

regular singularity u0 has stayed on τ = 0, while, contrary to the massless case,

the cusps with the two mutually non-local singularities are disconnected (or

cut) from the domain for massless Nf = 1, and leaves as remnant the point τAD

into the interior of H. This procedure also reduces the index of the solution:

Indeed, from (A.32) we compute that ind Γ0(3) = 4, where the 6 − 4 = 2 AD

points do not contribute since they are not cusps. This can also be seen from

the fact that

j =
(f3B + 3)3(f3B + 27)

f3B

. (2.78)

Indeed, since J = 1728
g3
2

∆
, a common factor (f3B + 27)2 of g3

2 and ∆ has

cancelled. The last factor f3B + 3 = 0 in (2.78) implies j(τ) = 0 and therefore
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τ = ω3 mod SL(2,Z). In fact, it corresponds to u(ω3) = u(ω3 + 1) = −3
4
Λ2

1

and it is just a regular point in the u-plane. We can also read off from this that

ord(g2, g3,∆) = (1, 1, 2) and therefore the AD theory in Nf = 1 is according

to Table 5 a type II singular fibre [155].

We can also study more characteristic functions of the theory with the AD

mass. Using Appendix A.1, we can differentiate (2.74) to find

du

dτ
(τ) =

πiΛ2
1

24
f3B(τ)b3,0( τ

3
)2. (2.79)

This implies that du
dτ

is a modular form of weight 2 for Γ0(3), without phases.

One can also show that

da

du
(τ) =

√
2i√

27Λ1

√
b3,1( τ

3
)3

b3,0( τ
3
)
. (2.80)

An expression for da/du in terms of 2F1 was given in [156, Eq. (4.13)].

The q-expansion of da
du

has growing denominators, and therefore da
du

is not

a modular form of weight 1 for Γ0(3). However, it is straightforward to check

that
(
da
du

)2
is a modular form of weight 2 for Γ0(3). We thus find the Matone

relation
du

dτ
= −16πi

3
∆̂

(
da

du

)2

, (2.81)

where ∆̂ denotes the reduced discriminant. This is consistent with (2.52).

The monodromies can be found from the ones of the massless theory (2.68),

M1 = STS−1 =

(
1 0

−1 1

)
, MAD = M2M3 = T 2(ST )−1T−2 =

(−1 3

−1 2

)
.

(2.82)

They generate the duality group Γ0(3) and give the large umonodromyM1MAD =

PT−3. Furthermore, M1 stabilises τ = 0 and MAD stabilises the AD point

τAD =
√

3ω12. We have that M6
AD = 1 and therefore τAD is indeed an elliptic

fixed point. The AD monodromy is conjugate to (ST )−1, which fixes τ = ω3.

Since τAD = ω3 + 2, this gives a path in τ -space.

2.4.3 Generic real mass

By turning on a generic real mass, the singularities do not split compared to the

massless case since there are already Nf + 2 = 3 singularities. Therefore, the

fundamental domain of the massive theory should look similar to the massless

one of Fig. 6, but we now need to consider the presence of branch points and

cuts in more detail. We will discuss this and the limits to the pure theory as

well as the the theory with the AD mass now.

For generic mass we have not been able to find a closed expression for u

as a function of τ . By expanding J (u,m,Λ1) and inverting the series we can,
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however, get an expansion of u for the general massive theory near any cusp.

For example, the expansion near τ = i∞ reads (µ = m
Λ1

)

u(τ)

Λ2
1

= − 1

16
q−

1
3−1

3
µ2+

(
32

9
µ4 − 6µ

)
q

1
3−
(

5120

81
µ6 − 160

3
µ3 +

13

2

)
q

2
3 +O(q),

(2.83)

where we are careful to choose the expansion such that u → −∞ for consis-

tency with our conventions. It is easy to see that this reproduces the earlier

expansions, (2.66) and (2.74), in the respective limits.

The branch point locus is given by the zero locus of (2.24). By calculating

J (u,m,Λ1) from the curve and plugging it into the polynomial Dbp
1 we find

that the zero of the linear polynomial is u = ubp = 4
3
m2, and we recognise that

this is the polynomial appearing in the denominator of the generalised Matone

relation, (2.54), such that du
dτ

diverges here. In the massive Nf = 2, 3 theories,

where the theories can be studied in detail, we argue that it corresponds to two

branch points in the closure of the fundamental domain, which are connected

by a branch cut. Motivated by these analyses, we can draw the two branch

point loci for positive mass. It is given in Fig. 8. For m = 0, the branch point

is located at the origin u = 0. At the AD point, they collide, the branch cut

vanishes and the order parameter becomes holomorphic, and even modular.

In the m→∞ limit, the branch points also move to infinity.

−1 0 1 2 3

m = 0mADm = 0

m → ∞

m = ∞

Figure 8: Conjectured paths of the branch points in the fundamental domain of the massive

Nf = 1 theory.

We can also confirm this from the analysis in section 2.3.3. By expanding

J (u)−J (ubp) around ubp for generic mass m, the linear coefficient is zero. The

(u − ubp)2 coefficient vanishes if and only if either m = 0 or m = mi := 3

4 3√2
.

For m = 0 we have τbp ∼ ω3, such that nω3 = 3 in the notation of section
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2.3.3. Furthermore, nbp = 6, such that the order of the branch point (2.65) is

the denominator of the reduced fraction 3
6
, namely 2. Since E4 has a simple

zero at τbp, this agrees with (2.66) having a square root.

From Fig. 8 we see that the branch point loci pass through τbp = 1 + i

where m = mi, such that ni = 2. Furthermore we find nbp = 4, and thus the

order of the branch point is 2. Since 2
4

= 1
2
, it is indeed again the branch point

of a square root.

For any other mass m ∈ R≥0\{0,mi,mAD} we have nbp = 2 while nτbp
= 1,

such that the branch point is again of order 2. This demonstrates that the loci

in Fig. 8 are complete: there is a single branch point on the Coulomb branch

B1, and for any mass there are two branch points of a square root in H, which

are connected by a single branch cut. It also implies that if an expression

such as (2.66) existed for generic mass, while it could contain higher roots of

modular forms, they can never have zeros in H (as is the case also for m = 0).

We can study the partition of the u-plane provided by (2.32) in detail. For

m 6= mAD the u-plane is partitioned into six regions, whose union of boundary

pieces is included in the algebraic curve given by the zero locus (2.34) of T1,

where T1 = yT̃1 and

T̃1 = 972µ4 + 8192µ2x7 − 21504µ3x5 − 12096µ2x4 + 18432µ4x3 + 1296µ3x2

+ 16128µx6 + 1944µx3 + 8192µ2x5y2 + 22528µ3x3y2 − 8192µ2x3y4 − 3456µ2x2y2

+ 2304µx4y2 − 6912µx2y4 − 16384x6y2 − 12288x4y4 + 4320x3y2 − 6144x8

− 1296x5 − 5184µ5x− 729µ2x− 18432µ4xy2 − 21504µ3xy4 − 8192µ2xy6

− 1944µxy2 − 1296xy4 + 4752µ3y2 + 8640µ2y4 + 6912µy6 + 2048y8.
(2.84)

Since the AD point m = mAD corresponds to a phase transition, we have to

study the two cases m < mAD and m > mAD separately.

The case m < mAD

From Fig. 8 we can take the location of the branch points. There is one singu-

larity u1 on the negative real line, and the other two are complex conjugates

(as ∆1 is a real polynomial). Using the definition (2.32), it is straightforward

to show that not all of y = 0 lies in T1, but rather only the real half-line with

u ≥ u1. Furthermore, the lines truncate at the singularities. On the upper-half

plane, the branch points can be viewed as endpoints of branch cuts coming

from τ = 1
2

+
√

3
2
i and τ = 5

2
+
√

3
2
i. See Fig. 9. From this it is straightforward

to see how taking the massless limit gives back Fig. 6.

The case m > mAD

At m = mAD two singularities collide, and ∆1 has a double root. Since ∆1

is a real polynomial and depends smoothly on m, the two singularities which

are complex for m < mAD are real for m > mAD. There is no meaningful

identification of the singular points when going through m = mAD, however

for large m there is a distinguished singularity u∗ that diverges. We can make
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Figure 9: Identification of the components of the partitioning Tm in Nf = 1 for µ < µAD,

here for the choice µ = 1
10 . The u-plane B1 is partitioned into 6 regions u(αF), with the

α ∈ SL(2,Z) given in both pictures. The branch point (purple) identifies two points on

∂F1(m). The green/orange arcs are separated by a branch cut, and the opposite ends are

glued with the corresponding identical colour on the other side. The blue points correspond

to j = J = 0 and form the intersection points of T1.

the choice of Fm suitable for the limit m → ∞, where we should obtain Fig.

2. By studying the dependence of the partition of the u-plane on the mass,

one finds that u∗ is bounded by a region whose area grows as m → ∞. It

squeezes into TF and T 3F and becomes T 2F in the limit m→∞. However,

as we want to put the singularities on the real line we need it to touch this axis

for finite m > mAD. In order to find the corresponding fundamental domain,

we can glue parts of the boundary ∂F1, such that it not only agrees with the

geometry of the partition of the u-plane, but also the decoupling procedure is

inherent. See Fig. 10.

2.4.4 Generic complex mass

We can also consider a generic complex mass. The locus of AD masses (2.20)

is then real codimension 2. In fact, it is just ω3mAD, with ω3 a cube root of

unity. If m is not any of these three values, the corresponding Coulomb branch

has three distinct singularities.

We can decompose m = a + ib, and Tm is then a polynomial in a, b, x

and y. From (2.24) we see that if m is complex, then j(τbp) = J (ubp) is also

complex, such that τbp is generically an interior point of F or an SL(2,Z) copy

thereof. The branch cuts most conveniently run from such branch points to

the intersection points of the curves, where J (u) = j(τ) = 0. From (2.9) it

is clear that they correspond to the two solutions of g2(u) = 0. We plot the

partitioning of the u-plane with the branch cuts for an imaginary mass in Fig.

11.

Due to the fact that ubp 6∈ T1, the branch cuts run to the interior of the
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Figure 10: Identification of the components of the partitioning Tm in Nf = 1 for µ > µAD,

here for the choice µ = 6
5 . The u-plane B1 is partitioned into 6 regions u(αjF), with the

αj ∈ SL(2,Z) given in both pictures. The branch point (purple) identifies four points on

∂F1(m).
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Figure 11: Identification of the components of the partitioning Tm in Nf = 1 for a complex

mass µ ∈ C, here for the choice µ = i
10 . The u-plane B1 is partitioned into 5 regions, which

is due to the fact that u(F) and u(T 2SF) are glued at the branch cuts (dashed). The purple

dot is the branch point in Nf = 1.
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αjF . The four sides of the two cuts are pairwise identified, which makes points

on the branch cut smooth points on the Riemann surface. This identification

glues different regions u(αjF) together, in this case u(F) and u(T 2SF). This

is clearly visible in Fig. 11, where the dashed lines in the u-planes are the

images of the branch cuts in Fm, and they do not belong to the partitioning

T1. As a result, the u-plane is partitioned into five and not six components.

This is not in contradiction with section 2.2 because the fundamental domain

F1(m) is still a union of six copies of F : the cutting and glueing along the

branch cuts is an additional feature of the domain.

2.5 The Nf = 2 curve

Let us now move on to discuss the theory with two hypermultiplets. This

theory has four strong coupling singularities where massless hypermultiplets

appear. For general masses they are distinct points while for special mass

configurations one or more singularities can collide.

The equal mass case m = (m,m) is has been studied in [157]. Its modular

properties, fundamental domains, and mass limits are studied in great detail

in [2]. It is also conceptually and computationally equivalent to the Nf = 3

theory withm = (m, 0, 0), which we discuss in section 2.6.1. For these reasons,

we omit the discussion here and refer the reader to section 5.1 of [2].

2.5.1 Two distinct masses

In the generic case, the two masses are distinct. As in Nf = 1, we can expand

and invert the J -invariant for large u to find the series (µi = mi
Λ2

)

u(τ)

Λ2
2

= − 1

64
q−

1
2 − 1

2
(µ2

1 + µ2
2) +

(
24(µ4

1 + µ4
2) + 16µ2

1µ
2
2 − 32µ1µ2 −

5

16

)
q

1
2

−128
(
µ2

1 + µ2
2

) (
16(µ4

1 + µ4
2)− 14µ1µ2 + 1

)
q +O(q

3
2 ).

(2.85)

The double singularity u∗ in the equal mass case now splits into two distinct

singularities, u±∗ . Due to the locus of masses giving rise to u-planes with AD

points, it is difficult to give a fundamental domain F2(m) for any choice of

m = (m1,m2). From (2.24) it is clear that there are two distinct branch

points in B2. When both m1 and m2 are real and small, i.e. have not made

a phase transition compared to m = 0, one branch point ubp,1 belongs to Tm,

while the other ubp,2 does not. However, J (ubp,2) = j(τbp,2) ∈ R is also real

but larger than 123. A natural choice of branch cuts is along the tessellation

{τ ∈ H | j(τ) ∈ R}, which aside from (2.36) contains the SL(2,Z) images of

the positive imaginary axis. The plot of the partitioning Tm shows a feature

found already in Nf = 1 with a complex mass (see section 2.4.4): The u-plane

is partitioned into only 5 regions, which is due to two regions u(αjF) being

glued along pairs of branch cuts (see Fig. 12). The splitting of u∗ into two

distinct singularities in this case does not require the two regions TSF and
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Figure 12: Identification of the components of the partitioning T(m1,m2) in Nf = 2 for the

particular choice µ1 = 1
10 and µ2 = 1

4 . The u-plane B2 is naively partitioned into six regions

u(αF), with the α ∈ SL(2,Z) given in both pictures. Two regions u(TSF) and u(TST−1F)

are however glued along the pairs of branch cuts (dotted), running from the two singular

points u±∗ (orange, square) to the branch point τbp,2 (purple, square). They do not belong

to the partitioning Tm. A natural choice for the branch cut is along the lines where j(τ) is

real.

TST−1F to taper to distinct cusps, as we have that both TS, TST−1 : i∞ 7→ 1.

The two singularities are rather split due to the branch cut, and the limit of

u(τ) as τ → 1 depends on the path from which τ = 1 is approached. This

is different from u+ 6= u−, where the boundary pieces near the cusps are not

identified.

2.5.2 The massless theory

When we go to the massless theory we now find

u(τ)

Λ2
2

=− 1

8

ϑ3(τ)4 + ϑ4(τ)4

ϑ2(τ)4
= −1

8
− 1

64

(
η( τ

2
)

η(2τ)

)8

=− 1

64
(q−1/2 + 20q1/2 − 62q3/2 + 216q5/2 +O(q7/2)).

(2.86)

This function is the completely replicable function of class 4C and is a Haupt-

modul for Γ(2) [56–58]. The physical discriminant becomes ∆ = (u+
Λ2

2

8
)2(u−

Λ2
2

8
)2. The two cusps correspond to u(0) = −Λ2

2

8
and u(1) = +

Λ2
2

8
. They are

associated with the particles of charges (1, 0) and (1, 1) becoming massless.

A fundamental domain for Γ(2) is given by

F2(0, 0) = F ∪ TF ∪ SF ∪ TSF ∪ ST−1F ∪ TSTF (2.87)

and is plotted in Fig. 13 together with the map to the u-plane. This picture

gives rise to the dessin d’enfant of the j-invariant [158, Fig. 6], as u is a linear

function of the modular λ-invariant, which has critical points λ = 0, 1,∞.
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Figure 13: Left: Fundamental domain of Γ(2). This is the duality group of massless Nf = 2.

All three cusps {i∞, 0, 1} have width 2. Right: Plot of the massless Nf = 2 u-plane as the

union of the images of u under the ind Γ(2) = 6 SL(2,Z) images of F . Here, we use the

decomposition Γ(2)\H =
⋃1
k,`=0 T

`SkF ∪ ST−1F ∪ TSTF . There is a Z2 symmetry which

acts by u 7→ −u. The singularities τ = 0, 1 are both touched by two triangles each.

2.5.3 Type III AD mass

If we choose m1 = m2 = mAD = 1
2
Λ2, we find a u-plane with an AD theory of

type III located at u = uAD = 3
8
Λ2

2 [105]. Three singularities collide in this

point, while one remains at u0 = −5
8
Λ2

2. The discriminant now takes the form

∆ = (u− uAD)3(u− u0). (2.88)

Using Γ(2) as an intermediate field of the sextic equation, we can show that

u(τ)

Λ2
2

= −f2B

(
τ
2

)
+ 40

64
= − 1

64

(
q−1/2 + 16 + 276q1/2 − 2048q +O(q3/2)

)
,

(2.89)

where f2B is defined as

f2B(τ) =

(
η(τ)

η(2τ)

)24

= 256
ϑ3(τ)4ϑ4(τ)4

ϑ2(τ)8
, (2.90)

and it is the McKay-Thompson series of class 2B [56–58]. It is a Hauptmodul

for Γ0(2). Therefore, u is a modular function for Γ0(2). A fundamental domain

of Γ0(2) is

F2(mAD) = F ∪ TF ∪ SF (2.91)

and is shown in Fig. 14. It has index 3 in PSL(2,Z), since three mutually

non-local singularities have collided. This can also be seen from the fact that

the curve reads

j(τ) =
(f2B( τ

2
) + 16)3

f2B( τ
2
)

. (2.92)

One has that u(τAD) = uAD whenever f2B( τAD

2
) = −64, whose solution

locus intersects with our choice of Γ0(2)\H in τAD = 1 + i. This can be proven

from the S-transformation of the Dedekind η function. It is also easy to check

55
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τAD

F TF

SF

Figure 14: Fundamental domain of Γ0(2). This is the duality group of Nf = 2 with masses

m = 1
2 (Λ2,Λ2). The AD point corresponds to the elliptic fixed point τAD = 1 + i.

that u(0) = u0. Taking the proper limits from Nf = 2 [2] we directly find du
dτ

as well as da
du

and we can check that they satisfy the Matone relation

du

dτ
= −16πi

2
∆̂

(
da

du

)2

, (2.93)

consistent with (2.52). Both branch points of the Nf = 2 theory have collided

along with the singularities where mutually non-local states become massless.

The monodromies are

M0 = STS−1 =

(
1 0

−1 1

)
, MAD = TS−1T−1 =

(−1 2

−1 1

)
, (2.94)

and they satisfy M0MAD = M∞ with M∞ = PT−2. Furthermore, M4
AD = 1,

such that τAD indeed is an elliptic fixed point of Γ0(2). The AD monodromy

is conjugate to S−1, which fixes τ = i. Since τAD = i + 1, this gives a path in

τ -space.

2.6 The Nf = 3 curve

We will start by discussing the Nf = 3 theory with one non-zero mass, m =

(m, 0, 0), where we can find an explicit expression for u in terms of Jacobi theta

functions. After this we discuss the generic mass case, the massless theory and

a number of theories with specific AD masses.

2.6.1 One non-zero mass

For the general theory it turns out to be complicated to find closed expressions

for u, but if we only keep one non-zero mass, m = (m, 0, 0), we can make more

progress. Four of the strong coupling singularities now merge in pairs of two

and the physical discriminant becomes

∆ = (u− u+)2(u− u−)2(u− u∗), (2.95)
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with

u± = ±mΛ3

8
, u∗ =

Λ2
3

28
+m2. (2.96)

There are two AD points at m = mAD = ± 1
16

Λ3 and u = uAD = 1
128

Λ2
3 where

either u+ or u− merges with u∗ to give a type III singular fibre. We now find

that the sextic equation for u again splits over the intermediate field Γ(2). In

this case there is only one solution that has |u| → ∞ for τ → i∞, and as

mentioned before this has u → −∞. This is then the reason why we have

persistently chosen this convention in all other cases, to make the decoupling

limits from Nf = 3 consistent. We find that

u

Λ2
3

= −2ϑ4
3ϑ

4
4 + (ϑ4

3 + ϑ4
4)
√
f3

64ϑ8
2

= − 1

212

(
1

q
+ (−8 + 4096µ2) + 4(5 + 32768µ2 − 4194304µ4)q +O(q2)

)
,

(2.97)

where we have defined f3 = 64m2

Λ2
3
ϑ8

2 +ϑ4
3ϑ

4
4 and µ = m

Λ3
. Due to the appearance

of the square root in (2.97) u is not holomorphic, and similarly to the Nf = 1

case there will be branch points in the fundamental domain. They are given

by

jbp(m) =
(Λ3 − 8m)3(Λ3 + 8m)3

16m4Λ2
3

. (2.98)

By plugging in the expression for J in terms of u we find that the branch

point lies at ubp = 2m2 in the u-plane, as is also found by studying the Matone

polynomial (2.54). We can also use known relations between the j-invariant

and theta functions to check that (2.98) coincides with f3 = 0, such that the

branch point of u is that of the square root in (2.97).

We see that the branch point of the square root is f3(τ0) = 0. Near τ0,

the expansion of f3 reads f3(τ) = (τ − τ0)h(τ), where h(τ) is holomorphic

near τ0 and h(τ0) 6= 0. Then one branch of the square root reads
√
f3(τ) =√

τ − τ0

√
h(τ). Now since h(τ0) 6= 0, we have that τ 7→

√
h(τ) is nonzero

and in fact holomorphic in a neighbourhood of τ0. However, τ 7→ √τ − τ0 is

strictly non-holomorphic at τ0. This proves that u is not holomorphic at τ0.

It is straightforward to calculate other interesting quantities explicitly from

(2.97), including

da

du
=

2
√

2i

Λ3

ϑ4
2√

ϑ4
3 + ϑ4

4 + 2
√
f3

du

dτ
= πiΛ2

3ϑ
4
3ϑ

4
4

28µ2ϑ8
2 + ϑ8

3 + 6ϑ4
3ϑ

4
4 + ϑ8

4 + 4(ϑ4
3 + ϑ4

4)
√
f3

27ϑ8
2

√
f3

.

(2.99)

We can explicitly check that they satisfy Matone’s relation (2.52),

du

dτ
= −16πi

∆̂

u− ubp

(
da

du

)2

. (2.100)

On the rhs, the double singularities u+ and u− have cancelled, while, as dis-

cussed in section 2.3, the branch point ubp = 2m2 remains in the denominator.
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Fundamental domain

A fundamental domain can be found in the following way. The six roots of

the sextic equation give the six cusp expansions. They can be canonically

normalised to match the form of the expansion (2.97) at ∞. Then instead

of studying which transformations give the right values at the cusps, we can

take the cusp expansions and try to find maps αj ∈ SL(2,Z) that take u(τ)

to the functions under study. Due to the square root, this is quite subtle. We

furthermore need to take m as generic, such that the square root does not re-

solve. This allows to find the maps αj ∈ SL(2,Z), which give the fundamental

domain

F3(m, 0, 0) = F ∪ SF ∪ ST−1F ∪ TSTF ∪ TST 2F ∪ TST 2SF , (2.101)

shown in Fig. 15. It is valid for all masses m that do not allow the square

root to resolve. We prove below that this does not happen unless m = 0 or

m = mAD = 1
16

Λ3.

Let us also study the paths of branch points in the fundamental domain.

Similarly as in massive Nf = 1, 2 [2], we analyse the critical values of (2.98).

We have that limm↘0 j
bp(m) = +∞, jbp(mAD) = 123, jbp(Λ3

8
) = 0 and

limm→∞ jbp(m) = −∞. It is easy to show that jbp : (0,∞) → R is mono-

tonically decreasing and therefore injective.

Since ubp = 2m2, we have that at m = 0 the branch points coincides with

u+ and u−. At the AD point, m = Λ3

16
, it collides along with u∗ and u+. Finally,

for m→∞ it diverges, just as u∗ does. This fixes the points τ = 0 and τ = 1

for m = 0, τ = τAD = 1
2

+ i
2

for m = mAD and τ = 1
2

or i∞ for m = ∞. The

simplest curves connecting these three points are quarter-circles with radius 1
2

around τ = 1
2

starting from either τ = 0 or τ = 1, followed by a vertical path

from 1
2

+ i
2

to either 1
2

or i∞.

The fundamental domain together with the path of the branch points found

from the above considerations is shown in Fig. 15.

The various checks of the branch points paths are analogous to Nf = 1, 2.

We can plot j(τ) along these curves and find that it has the same global

properties and critical points as (2.98). The intermediate value j(τ) = 0

corresponds to m = Λ3

8
and τ = 1

2
+ 1

2
√

2
i, which is in the SL(2,Z)-orbit of ω3.

Along the branch point locus, u simplifies to

u(τbp) = −f2B(τbp)

213
, (2.102)

with f2B given by (2.90). On the paths in Fig. 15 this function behaves

precisely as ubp(m) = 2m2.

Partitioning of the u-plane

Finally, we can study the partitioning that the domain (2.101) induces on the

u-plane under the map (2.97). As studied in section 2.2.4, the partitioning
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m = 1
8

m → ∞

mAD

Figure 15: Fundamental domain for Nf = 3 with m = (m, 0, 0). The dashed lines corre-

sponds to the path of the branch points on the positive ray from massless to infinite mass.

is contained in a real algebraic plane curve, which is given by the equation

ImJ (u,m,Λ3) = 0. For generic µ = m
Λ3

where m = (m, 0, 0), we can compute

it as the zero locus of the polynomial

T(m,0,0) =y
(
2µ2 + 128x2 − 256µ2x− x+ 128y2

)
×
(
10616832µ8 + 147456µ6 + 672µ4 + µ2 + 2199023255552x8 − 137438953472µ2x6

+ 8796093022208x6y2 − 25769803776x6 + 51539607552µ2x5 + 1275068416x5

− 22548578304µ4x4 − 2617245696µ2x4 + 13194139533312x4y4 − 137438953472µ2x4y2

− 77309411328x4y2 − 12976128x4 + 1610612736µ4x3 + 2097152µ2x3 + 103079215104µ2x3y2

+ 2550136832x3y2 + 49152x3 − 301989888µ6x2 + 37748736µ4x2 + 159744µ2x2

+ 8796093022208x2y6 + 137438953472µ2x2y4 − 77309411328x2y4 − 53687091200µ4x2y2

− 2550136832µ2x2y2 − 9175040x2y2 − 64x2 − 37748736µ6x− 344064µ4x− 768µ2x

+ 51539607552µ2xy4 + 1275068416xy4 + 536870912µ4xy2 − 18874368µ2xy2 − 16384xy2

+ 2199023255552y8 + 137438953472µ2y6 − 25769803776y6 − 22548578304µ4y4

+ 67108864µ2y4 + 3801088y4 + 301989888µ6y2 + 16777216µ4y2 + 102400µ2y2 + 64y2
)
.

(2.103)

The second factor on the rhs gives a circle on the x+iy = u
Λ2

3
-plane with radius

|µ2 − 1
28 | and centre (x, y) = (µ2 + 1

28 , 0). By tuning the mass µ from 0 to ∞,

one passes through the AD point µ = 1
24 where the radius of the circle shrinks

to 0. For this mass, three regions defined through T(m,0,0) = 0 collapse to a

point x + iy = uAD

Λ2
3

= 1
128

, which is the only root over R2 of the quadratic

polynomial. This gives further evidence that the domain 15 is in fact correct

for all µ ∈ (0,∞)\{ 1
16
}.

Limits to zero, AD and infinite mass

As in the m = (m,m) Nf = 2 theory, there are three interesting limits:

m → 0, m → ∞ and m → mAD. In the massless limit, we aim to recover

Γ0(4)\H. This is not difficult to see: Under Γ0(4), we can identify TST 2SF
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with ST−2SF , and similarly TST 2F with ST−2F , since the transition maps

are in Γ0(4). This gives precisely Fig. 17.

By decoupling the massive hypermultiplet, the theory flows to massless

Nf = 2. We find that u∗ →∞, while u± → ±Λ2
2

8
. From section 2.5.2 it is clear

that the singularities u± do not move in τ -space. The cusp region TST 2SF is

identified with TF under the duality group Γ(2) of massless Nf = 2. Moreover,

the remaining differing triangle TST 2F can be mapped to TSF using Γ(2).

This then gives precisely Γ(2)\H as in Fig. 13.

Finally, in the limit m → mAD = 1
16

Λ3 the singularities u∗ and u+ collide.

Since they drop out of the curve, we should remove all regions near those

cusps. In Fig. 15 we can remove the triangles TSTF , TST 2F and TST 2SF ,

after which the index 3 group Γ0(2) remains. This is precisely what is found

as the duality group of the m = (mAD, 0, 0) theory, as shown in Fig. 14. The

pre-image of the merged non-local singularities uAD is the point τAD, which

lies in the interior of H and corresponds to the point where the branch points

have collided.

2.6.2 Generic masses

For generic masses m = (m1,m2,m3), the order parameter reads

u

Λ2
3

= − 1

212

(
1

q
+ (−8 + 4096M2)

+ 4 (5 + 32768M2 + 3670016M3 − 4194304M4 − 4194304M ′
4) q +O(q2)

)
,

(2.104)

where the coefficients Mi are the symmetric polynomials defined in (2.55) for

the variables mi
Λ3

. There are five generally distinct singular points.

Due to the Nf = 3 distinct branch points on the u-plane, the fundamental

domain for a given mass m has an intricate web of branch cuts. Furthermore,

the fundamental domains F3(m) change as m passes through LAD
3 (see Fig.

3). A fundamental domain F3(m) can also change when m is varied such

that ∆3 has any double root, and when branch points in H pass through the

SL(2,Z) tessellation TH (2.36).

For any given massm one easily computes T3 from (2.33), and truncates the

plot of the level set to the region where J (u,m,Λ3) ≤ 123. The branch points

ubp are the zeros of PM
3 (2.54). On the upper half-plane H, a branch point τbp

is any of the SL(2,Z)-images of (j|F)−1(J (ubp)). When J (ubp) ≤ 123, then

obviously τbp ∈ TH. If J (ubp) > 123, then τbp ∈ SL(2,Z) · iR>0. Lastly, if

J (ubp) 6∈ R, then τbp is an interior point of an SL(2,Z) copy of F .

In Fig. 16 we plot the u-plane and corresponding fundamental domain for

three distinct masses. The five distinct singular points are partitioned into five

regions u(αF), where two of them are glued by branch cuts.

60



-1.0 -0.5 0.0 0.5 1.0

0.0

0.5

1.0

1.5

-0.4 -0.2 0.0 0.2 0.4 0.6

-0.4

-0.2

0.0

0.2

0.4

Figure 16: Identification of the components of the partitioning T(m1,m2,m3) in Nf = 3 for

the particular choice µ1 = 1
10 , µ2 = 3

10 and µ3 = 5
10 . The u-plane B3 is partitioned into five

regions u(αF), as those for ST−1 and ST are glued by two branch cuts. The fundamental

domain is given by six copies of F , with three pairs of branch points (purple). Two branch

points (triangle and disk) lie on T3. The third (square) lies in the interior and glues the

copies STF and ST−1F . A natural choice for the branch cuts not lying in T3 (dashed) is on

the real axis in the u-plane, for which the path in H is along the tessellation SL(2,Z) · iR>0.

The singularity at τ = 0 does not have width 3 as apparent, since due to the branch cuts

u(τ) assumes three different values depending on which side of the branch cut τ = 0 is

approached from.

2.6.3 The massless theory

When sending m→ 0 from above we find

u(τ)

Λ2
=− 1

64

ϑ3(τ)2ϑ4(τ)2

(ϑ3(τ)2 − ϑ4(τ)2)2
= − 1

212

(
η(τ)

η(4τ)

)8

=− 1

212
(q−1 − 8 + 20q − 62q3 +O(q9/2)).

(2.105)

It is the completely replicable function of class 4C and a Hauptmodul for

Γ0(4) [56–58]. The physical discriminant is ∆ = u4(u − Λ2
3

28 ), and one finds

that the singularities are located at u(0) = 0 and u(1
2
) =

Λ2
3

28 . At τ = 0 a dyon

with charge (1, 0) becomes massless, while at τ = 1
2

one finds instead that a

dyon with charge (2, 1) becomes massless. The massless Nf = 3 u-plane has

no global symmetries.

A choice of fundamental domain for Γ0(4) is

F3(0, 0, 0) = F ∪ SF ∪ STF ∪ ST−1F ∪ ST−2F ∪ ST−2SF , (2.106)

and is shown in Fig. 17.

2.6.4 Type IV AD mass

As illustrated in Fig. 3, on the generic mass Nf = 3 u-plane, there is not only

the IV AD point but also a variety of III and II points. We will give a few
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Figure 17: Fundamental domain of Γ0(4), the duality group of massless Nf = 3. The cusp

at τ = 0 has width four, while the cusp at τ = 1
2 has width one.

explicit examples of the u-plane of the theories with masses tuned to these

specific values, starting with the most symmetric case.

For m = (m,m,m) and m = 1
8
Λ3, four mutually non-local singularities

collide in uAD = 1
32

Λ2
3. The remaining singularity is u0 = −19

28 Λ2
3 and never

collides with the other four. The physical discriminant is ∆ = (u − u0)(u −
uAD)4. One finds that

u

Λ2
3

= −j
∗ + 304

212
, (2.107)

where

j∗ = 432

√
j +
√
j − 1728√

j −√j − 1728
= 432

E
3
2
4 + E6

E
3
2
4 − E6

=
1

q
− 120 + 10260q − 901120q2 + 91676610q3 +O

(
q4
) (2.108)

is the Ramanujan-Sato series of level 1 [159–161].14

Inverting (2.108) we find

j =
(j∗ + 432)2

j∗
. (2.109)

Using this and a discussion similar to the massless Nf = 1 case for the trans-

formations of j∗ we find that the singularities are located at (ωj = e2πi/j)

u(i∞) =∞, u(ω3) = uAD, u(0) = u0. (2.110)

14The Ramanujan-Sato series generalise Ramanujan’s formula for 1
π as a series of quotients

of modular forms. They exist for level 1 up to 11 and beyond. The level 1 series is the

only one whose generating function can not be expressed by an η-quotient [162].
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−1 0 1− 1
2

1
2

F

SF
τAD

Figure 18: Left: Proposed fundamental domain of the duality group Γj∗ of the Nf = 3

m = 1
8 (Λ3,Λ3,Λ3) theory. It is a region with index 6− 4 = 1 + 1, elliptic fixed point ω3 and

cusp at 0. This uniquely fixes it. Right: Plot of the u-plane for the corresponding theory

as the union of the images of u under the 6 − 4 = 2 SL(2,Z) images of F as in the left

figure. The complex plane can clearly be covered by 2 triangles. This demonstrates that the

proposal of the left figure is indeed a fundamental domain for (2.107). The weak coupling

region is covered by u(F). The strong coupling region u(SF) contains the singular point u0

in its interior. The AD point (orange) lies on the boundary.

We can read off from (2.109) that ord(g2, g3,∆) = (2, 2, 4) at the AD point,

such that according to Table 5 we indeed have a singular fibre of Kodaira type

IV [155].

From (2.109) we read off that the duality group Γj∗ has index 2, which is

consistent with the previous cases in Nf = 1, 2 in that a factor of (u − uAD)4

has cancelled from g3
2 and ∆, and therefore does not contribute to the index.

The fundamental region of u is therefore of index 2 with 0, ω3 and i∞ on its

boundary. However, there is no index 2 subgroup of SL(2,Z) with two distinct

cusps [154, Table 4.1].15 This agrees with the fact that (2.107) is not a classical

modular form and the monodromy group does not promote to a modular group

since its action on u is not associative (see section 2.4.1). We can nevertheless

propose a fundamental region

F3(mAD) = F ∪ SF , (2.111)

see Figure 18.

The monodromies are found by consistency,

m0 = STS−1 =

(
1 0

−1 1

)
, mAD = TS−1 =

(−1 1

−1 0

)
, (2.112)

and are unique in SL(2,Z).16 They fix τ = 0 and τAD = eπi/3 = 1
2

+
√

3
2
i,

respectively, and produce the large u monodromy m0mAD = PT−1. Just as

in the massless Nf = 1 case, we note that as matrices they do not form a

15In fact, there is exactly one index 2 subgroup of SL(2,Z) and it has only one cusp of width

two. This group is sometimes referred to as Γ0(1)∗ and is generated by TS and T 2, and

the Hauptmodul is given by
√
j − 1728 = 8

(ϑ4
2+ϑ4

3)(ϑ4
3+ϑ4

4)(ϑ4
4−ϑ4

2)

ϑ4
2ϑ

4
3ϑ

4
4

.
16The overall signs are fixed in the following way. The large u monodromy is PT−1. The

monodromy at m0 is oriented such that it conjugates to T . This fixes the sign of mAD

from the below relation.
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congruence subgroup but instead generate the whole of SL(2,Z), since m∞ =

PT−1 and Tm0T = S. However, u is not invariant under S.

2.6.5 Type III AD mass

In the single mass case m = (m, 0, 0) with mAD = 1
16

Λ3, the Nf = 3 curve has

an AD point at uAD = 1
128

Λ2
3. The physical discriminant is ∆ = (u−uAD)3(u−

u0)2 with u0 = − 1
128

Λ2
3, which is −uAD by coincidence. One easily finds

u(τ)

Λ2
3

= −f2B(τ) + 32

212
, (2.113)

with f2B defined in (2.90). This fits nicely into the description as ind Γ0(2) = 3

is equal to 6 − 3 = 3, being the number of mutually non-local singularities

collided at uAD. We find that u(τ) = u0 is equivalent to f2B(τ) = 0, and one can

easily show that f2B vanishes at the cusp τ = 0. Using the S-transformation of

η, we can show that τAD = 1
2

+ i
2
. In terms of the Hauptmodul, the curve reads

j = (f2B+256)3

f2
2B

. This shows that the AD point is indeed a type III singularity.

It also follows that j(τAD) = 123 and that τAD is in the SL(2,Z) orbit of i.

The duality group Γ0(2) is generated by g1 = T and g2 = ST 2S. The AD

point is stabilised by g1g2 ∈ Γ0(2), which makes it an elliptic fixed point. A

fundamental domain for u is given in Figure 19. The effective coupling at

the AD point is explained through the fact that the Nf = 3 branch point

collides along with the three mutually non-local singularities in uAD, and the

two branch points on the upper half-plane as drawn in Fig. 15 collide at τAD

for m = mAD.

−1 0 1− 1
2

1
2

F

SF

ST−1F τAD

Figure 19: Fundamental domain of Γ0(2). This is the duality group of Nf = 3 with mass

m = 1
16 (Λ3, 0, 0). The AD point is the elliptic fixed point of the domain, located at τAD =

1
2 + i

2 .
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The monodromies are

M0 = ST 2S−1 =

(
1 0

−2 1

)
, MAD = (TS)−1S−1TS =

(−1 1

−2 1

)
. (2.114)

The first one describes the path around the cusp τ = 0, which has width 2. The

AD monodromy is conjugate to S−1, which fixes τ = i. The path is then given

by the map (TS)−1 : i 7→ τAD. The matrices (2.114) satisfy M0MAD = M∞
with M∞ = PT−1 and M2

AD = 1, such that τAD is indeed an elliptic fixed

point for Γ0(2) of order 2. They are also related to (2.94) by conjugation with

diag(2, 1), which induces the isomorphism between the Γ0(2) and Γ0(2) curves.

2.6.6 Type II AD mass

On the equal mass m = (m,m,m) curve we can also tune the mass to m =

mAD = − 1
64

Λ3 to find a type II AD theory at uAD = 5
210 Λ2

3. By fixing the mass

to this value we find
u(τ)

Λ2
3

= −f3B(3τ) + 7

212
(2.115)

with f3B given in (2.75). At uAD two mutually non-local singularities collide,

while the other three reside at u0 = − 7
212 Λ2

3. The physical discriminant is

therefore ∆ = (u − uAD)2(u − u0)3. We know from section 2.4.2 that τ 7→
f3B(3τ) is a Hauptmodul for Γ0(3), and in fact the fundamental domain is just

given by the one for Γ0(3) as in Fig. 7, with every point divided by 3. It also

decomposes into SL(2,Z) images of F , see Fig. 20.

−1 0 1− 1
2

1
2

F

SF

STF ST−1F

τAD

Figure 20: Fundamental domain of Γ0(3), the duality group of Nf = 3 with mass m =

− 1
64 (Λ3,Λ3,Λ3). It has index 4 in PSL(2,Z) and a type II AD point located at the elliptic

fixed point τAD = ω12√
3

= 1
2 + 1

2
√

3
i. The width of the cusp τ = 0 is 3.

The AD point u(τAD) = uAD translates to f3B(3τAD) = −27 which has

τAD = 1√
3
ω12 as a solution (where ωj = e2πi/j). The other singularity satisfies
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f3B(3τ) = 0 and therefore τ = 0. In terms of the Hauptmodul of Γ0(3)

the j-invariant of the curve with above given mass mAD reads j = (f3B +

27)(f3B + 243)3/f 3
3B. This proves that the AD singularity is Kodaira type II

and therefore indeed equivalent to the II theory in Nf = 1, see section 2.4.2.

It is interesting that both curves are parametrised by the same Hauptmodul,

as the number of singularities on the curves are different.

The monodromies are given by

M0 = ST 3S−1 =

(
1 0

−3 1

)
, MAD = (TS)−1(ST )−1(TS) =

(−1 1

−3 2

)
,

(2.116)

which are just (2.82) conjugated by diag(3, 1). They furthermore satisfyM0MAD

= M∞ with M∞ = PT−1. Since M6
AD = 1 in PSL(2,Z), the AD point τAD

is an elliptic fixed point in Γ0(3). Its stabiliser MAD decomposes into the

monodromy (ST )−1 around τ = ω3, and the path (TS)−1 : ω3 7→ τAD.

2.7 Discussion

We have studied the Coulomb branches BNf of SU(2) N = 2 Yang–Mills the-

ories with Nf ≤ 3 massive hypermultiplets in the fundamental representation.

In particular, we have considered the order parameter u as function of the effec-

tive coupling, and derive domains FNf such that u : FNf → BNf is 1-to-1. We

find that generically the function u has square roots appearing in the expres-

sions for u, such that FNf is not isomorphic to a domain Γ\H for a congruence

subgroup of SL(2,Z). Nevertheless, exact expressions can be determined, such

as for Nf = 2 with 2 equal masses, and Nf = 3 with one non-vanishing mass.

For other special values, branch points and cuts can be absent and the fun-

damental domain is that of a modular curve for a congruence subgroups of

SL(2,Z), as also encountered in cases in the literature [45,100–102].

We described how the order parameters are naturally expressed as roots of

certain degree six polynomials with modular functions as coefficients. Many

interesting aspects of the theories can be read off from these polynomials:

• The degree of the polynomial tells us that the fundamental domains

of the order parameters can be described as six copies of the ordinary

SL(2,Z) domain.

• For the modular theories this further implies that the duality group needs

to be at most index six in SL(2,Z).

• The discriminant of the sextic polynomials includes the branch points as

well as the superconformal AD fixed points of the theories.

• We further discussed how one can explicitly construct fundamental re-

gions of order parameters as images of fundamental domains in FNf . The

partitioning of the fundamental regions of the order parameters seem to
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generalise aspects of the dessins d’enfants [39, 124–127, 158, 163, 164] to

the case of non-modular elliptic surfaces.

Physically, the branch points and cuts provide a mechanism for FNf to

evolve as function of the mass. This is most apparent in the limits where a

hypermultiplet decouples or multiple singularities coincide, where branch cuts

appear to “cut” and “glue” regions of FNf . In particular near an AD point,

regions with non-local cusps are disconnected from FNf . This makes it manifest

that on the u-plane, not only non-local singularities become coincident, but

also branch points, which ceases to be branch points in the limit because also

the pre-images in FNf have collided.

We believe that our methods can be adapted to many other rank one the-

ories, such as those of class S [21, 113]. The present analyses could perhaps

also be used to draw lessons about moduli spaces of other theories, such as

N = 2 SYM with gauge group SU(N) for N > 2 or Calabi-Yau compactifi-

cations in string theory, where in many cases similar structures should arise.

Remnants of which could perhaps be seen in [1, 153]. Lastly, we hope our

methods find applications in similar geometries such as F-theory [165] and

5d SCFTs [166]. Moreover, our findings benefit the evaluation of the u-plane

integral [71,73,81,82,84], which we discuss in section 5.

We would further like to mention to explore potential physical consequences

of the branch points. It is known that the AD points correspond to critical

points of a second order phase transition [157, 167, 168]. It might then be

natural to think of the branch cuts in FNf , as in for example Fig. 8, as

boundaries over which a first order phase transition takes place. Since branch

points and cuts seem to be a generic feature, it would suggest that similar

points appear in all theories with these kinds of superconformal fixed points.

It would of course be very interesting to study this further and we leave that

for future work.
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3 Four flavours, triality and bimodular forms

In this Section, we study the N = 2 supersymmetric SYM theory with Nf = 4

fundamental hypermultiplets. Together with the asymptotically free theories

investigated in section 2, it completes the study of SU(2) theories with funda-

mental hypermultiplets and non-positive one-loop beta functions. This section

is based on [3].

3.1 Introduction

The N = 2 supersymmetric Yang–Mills field theory with gauge group SU(2)

and Nf = 4 fundamental hypermultiplets is distinguished for various reasons

[46], including:

• The theory is superconformal up to mass terms for the hypermultiplets,

and is a benchmark for four-dimensional SCFT’s with N = 2 supersym-

metry [105,169–171].

• The theory is a building block for other four-dimensional N = 2 SCFT’s

and the 2d/4d correspondence [21,172].

• The theory exhibits an intriguing electric-magnetic duality group includ-

ing triality [46]. This duality group acts on the UV coupling τUV and

running coupling constant τ , and contains elements which act simulta-

neously on the two couplings as well as separately.

• The theory is a “parent” theory from which the asymptotically free

N = 2, SU(2) theories with Nf ≤ 3 hypermultiplets can be obtained

by decoupling one or more hypermultiplets [45,46].

The focus of the present section is on the third bullet point. We analyse

duality groups for the couplings τUV and τ of the Nf = 4 theory as function

of the masses. To this end, explicit expressions for the order parameter u =

〈Trφ2〉, with φ the complex scalar of the vector multiplet, are determined as

function of both τUV and τ . We identify several loci in the space of masses

where u transforms as a modular form for both τUV and τ . This extends

section 2 on theories with Nf ≤ 3 to Nf = 4. In section 2, we determined

fundamental domains for the running coupling τ for the asymptotically free

theories by analysing in detail the order parameter u as function of the effective

coupling τ ∈ H. We have demonstrated that for generic masses this function

has branch points, with the consequence that the fundamental domain for τ is

in general not of the form Γ\H for a congruence subgroup Γ ⊂ SL(2,Z). Only

for specific values of the masses, such as those giving rise to Argyres-Douglas

(AD) points, the order parameter is (weakly) holomorphic as function of τ ,

and the fundamental domain is that of a congruence subgroup. In this section,

we find that these features are present as well for the Nf = 4 theory, but with

an additional dependence on τUV.
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At special modular loci, some properties of the Nf = 4 order parameters

are similar to that of the N = 2∗ SU(2) theory, i.e. the superconformal theory

with a single adjoint hypermultiplet. The N = 2∗ order parameter transforms

as a modular form under the group Γ(2) × Γ(2) with the first factor acting

on τ and the second on τUV, while it also transforms as a modular form under

simultaneous SL(2,Z) transformations of τ and τUV [148, 173, 174]. It was

later clarified that u(τ, τUV) is an example of a meromorphic bimodular form

[85]. Such functions have appeared, although sporadically, in the mathematical

literature [175–177].

The SU(2) Nf = 4 theory exhibits a richer structure: It has four mass

parameters that give rise to seven singular vacua on the u-plane. For special

choices of the masses, the u-planes contain any of the three SU(2) Argyres-

Douglas superconformal points (A1, A2), (A1, A3) and (A1, D4), while in the

massless case there is a non-abelian Coulomb point with a five quaternionic-

dimensional Higgs branch [104, 105]. For generic masses, the singularities are

roots of a sextic polynomial, for which there is no known expression. The

flavour symmetry SO(8) becomes the universal cover Spin(8) in the quantum

theory. It has a triality group Out(Spin(8)) of outer automorphisms, which

is isomorphic to the symmetric group S3 on three letters. The full symmetry

group of the Nf = 4 curve is then the semidirect product Spin(8)oϕ SL(2,Z),

which is induced by the group homomorphism ϕ : SL(2,Z) → Out(Spin(8)).

As the triality group is of order |S3| = 6, the orbits of the group action on mass

space C4 generally have six elements. However, there are specific mass config-

urations with enhanced global symmetry that are invariant under subgroups

of the triality group, for which the orbits collapse, either to three elements or

to a single element.

We study four such configurations in detail, and show that their order

parameters, periods and discriminants are bimodular forms for subgroups of

SL(2,Z). For the triality invariant case (m1,m2,m3,m4) = (m,m, 0, 0) we find

that the order parameter is a bimodular form of weight (0, 2) with Γ(2) acting

on both τ and τUV individually, while it is also bimodular for SL(2,Z) acting on

τ and τUV simultaneously. If all four hypermultiplets are rather given an equal

mass, the triality orbit has three elements. The u-planes for these three mass

configurations are modular curves for the three subgroups of SL(2,Z) conjugate

to Γ0(4). The order parameters, periods and discriminants are permuted by

triality, and can thus be organised into vectors to form one-parameter families

of vector-valued bimodular forms for SL(2,Z). We further give some examples

of exact expressions for order parameters of more complicated theories with

two independent mass parameters. These theories then include both AD points

and branch cuts.
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3.2 Four flavours and triality

The one-loop beta function of N = 2 supersymmetric Yang–Mills theory with

Nf ≤ 4 hypermultiplets in the fundamental representation is βNf (gYM) =

− g3
YM

16π2 (4 − Nf ). The gauge coupling gYM is combined with the theta angle

θ in the Lagrangian as τ = θ
π

+ 8πi
g2
YM

. This complexified gauge coupling can

be considered as the expectation value of a background chiral superfield. In

the renormalisation scheme where the superpotential remains a holomorphic

function of all chiral superfields, the one-loop running coupling at the energy

scale E can be expressed as [10]

τ(E) = τUV −
4−Nf

2πi
log

E

ΛUV

. (3.1)

It is one-loop exact in the holomorphic scheme, and thus for Nf < 4 the

combination

Λ
4−Nf
Nf

:= Λ
4−Nf
UV e2πiτUV (3.2)

of the scale ΛUV and the coupling τUV is invariant to all orders in perturbation

theory. This complexified dynamical scale ΛNf sets the overall scale of the

theory. For Nf = 4 on the other hand, there is a distinguished dimension-

less parameter τUV, on which the theory depends nontrivially. To shorten the

notation, we will also set τ0 := τUV and q0 := e2πiτ0 in the following.

3.2.1 The curve

The low-energy physics of N = 2 SYM with Nf = 4 massive hypermultiplets

has been determined in [46, 148, 173, 178–180]. Similar to the asymptotically

free (Nf ≤ 3) cases, the physics is encoded in an elliptic curve which depends

holomorphically on the Coulomb branch parameter u ∈ B4. This coordinate u

parametrises the Coulomb branch B4 of the Nf = 4 theory. Let us first define

the symmetric mass combinations

q
mk

1

y
=

4∑
i=1

mk
i ,

q
m2

1m
2
2

y
=
∑
i<j

m2
im

2
j

q
m4

1m
2
2

y
=
∑
i 6=j

m4
im

2
j ,

q
m2

1m
2
2m

2
3

y
=
∑
i<j<k

m2
im

2
jm

2
k,

Pf(m) = m1m2m3m4.

(3.3)

The Nf = 4 curve for generic masses is then [46]

y2 = W1W2W3 +A (W1T1 (e2 − e3) +W2T2 (e3 − e1) +W3T3 (e1 − e2))−A2N,

(3.4)
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where

Wi = x− eiu− e2
iR,

A = (e1 − e2) (e2 − e3) (e3 − e1) ,

R =
1

2

q
m2

1

y
,

T1 =
1

12

q
m2

1m
2
2

y
− 1

24

q
m4

1

y
,

T2,3 = ∓1

2
Pf(m)− 1

24

q
m2

1m
2
2

y
+

1

48

q
m4

1

y
,

N =
3

16

q
m2

1m
2
2m

2
3

y
− 1

96

q
m4

1m
2
2

y
+

1

96

q
m6

1

y
, (3.5)

and the half periods

e1 =
1

3
(ϑ4

3 + ϑ4
4), e2 = −1

3
(ϑ4

2 + ϑ4
3) e3 =

1

3
(ϑ4

2 − ϑ4
4) (3.6)

are functions of τ0 = τUV, with e1 + e2 + e3 = 0. The Jacobi theta functions

ϑi are defined in Appendix A. Since the rhs of (3.4) is a cubic polynomial

in x, it is indeed an elliptic curve. We obtain the low energy theory with

Nf = 3 flavours by taking the limit τ0 → i∞ (or, equivalently, q0 → 0) and

m4 → ∞ while holdingtuasl2z Λ3 = 64q
1
2
0 m4 fixed. The order parameters are

then related as [46]

uNf=4 +
1

4
e1

q
m2

1

y
→ uNf=3. (3.7)

See (2.3) for the corresponding curves.

Let us study the singularity structure of the Coulomb branch. For generic

masses m = (m1,m2,m3,m4), there are six distinct strong coupling singulari-

ties. By tuning the mass, some of those singularities can collide. If we weight

each singularity by the number of massless hypermultiplets at that point, the

total weighted number of singularities on the u-plane is thus always 6. Denote

by kl the weight of the l-th singularity, and by k(m) = (k1, k2, . . . ) the vec-

tor of those weights. In Table 1, we list a selection of specifically symmetric

mass configurations. One notices that certain a priori unrelated cases have the

same weight vector k and global symmetries, such as the cases {B, C, D} and

{E, F, G}. This will be explained in the next subsection. It is also clear that

k(m) gives a partition of 6, the total number of singularities on B4.

3.2.2 Triality

Let us study the symmetries of the Nf = 4 curve (3.4) with mass m =

(m1,m2,m3,m4). Scale invariance, the U(1)R R-symmetry and the SL(2,Z)

symmetry acting on τ0 are explicitly broken by the masses. There is a rem-

nant scale invariance on the Coulomb branch, which manifests itself in the

J -invariant B4×C4×H→ C of the curve being a quasi-homogeneous rational

function of degree 0 and type (2, 1, 0),

J (s2u, sm, τ0) = J (u,m, τ0), s ∈ C∗. (3.8)
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Name m k(m) global symmetry

A (m,m, 0, 0) (2, 2, 2) SU(2)× SU(2)× SU(2)× U(1)

B (m,m,m,m) (4, 1, 1) SU(4)× U(1)

C (2m, 0, 0, 0) (4, 1, 1) SU(4)× U(1)

D (m,m,m,−m) (4, 1, 1) SU(4)× U(1)

E (m,m, µ, µ) (2, 2, 1, 1) SU(2)× SU(2)× U(1)× U(1)

F (m+ µ,m− µ, 0, 0) (2, 2, 1, 1) SU(2)× SU(2)× U(1)× U(1)

G (m,m, µ,−µ) (2, 2, 1, 1) SU(2)× SU(2)× U(1)× U(1)

Table 1: List of some mass cases with enhanced flavour symmetry in Nf = 4, with µ 6= m.

The vector k(m) lists the multiplicities of all singularities on the Coulomb branch B4 with

mass m.

The Nf = 4 theory has an SO(8) flavour symmetry, which becomes the uni-

versal double cover Spin(8) in the quantum theory. In particular, there exists

a short exact sequence

1→ Z2 → Spin(8)→ SO(8)→ 1 (3.9)

of Lie groups. The cover Spin(8) has an order 6 group Out(Spin(8)) of outer

automorphisms, which is isomorphic to S3 [181,182].17

This group of outer automorphisms acts on the Nf = 4 theory as follows.

The states with (nm, ne) = (0, 1) are the elementary hypermultiplets, which

transform in the fundamental vector representation of Spin(8). The magnetic

monopole (1, 0) transforms as one spinor representation, and the dyon (1, 1)

transforms as the conjugate spinor representation [46]. By an accidental iso-

morphism, these three representations are all 8-dimensional and irreducible,

and they are permuted by the outer automorphism group Out(Spin(8)) ∼= S3.

It is generated by

T =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 , S =
1

2


1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

 , (3.10)

which act on the column vector m ∈M := C4 from the left [46,183,184]. The

map T exchanges the two spinors keeping the vector fixed, while S exchanges

the vector with the spinor, keeping the conjugate spinor fixed. This is depicted

in Fig. 21.

The generators (3.10) satisfy the algebra

T 2 = S2 = (ST )3 = ST 2S = 1, (3.11)

17For any Lie group G, there are three associated groups. Aut(G) is the Lie group consisting

of all automorphisms of G (i.e. group isomorphisms G→ G), Inn(G) is a normal subgroup

of Aut(G) consisting of inner automorphisms given by αg(h) := ghg−1 for any g ∈ G, and

Out(G) = Aut(G)/Inn(G) is the quotient group. The automorphism group of Spin(8) is

Aut(SO(8)) = PSO(8) o S3 [181].
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S

T
v ad

s̄

s

Figure 21: Dynkin diagram of d4 = Lie(Spin(8)). The group T ∼= S3 of outer isomorphisms

acts by permutations on the three conjugacy classes of irreducible representations v, s and

s̄ attached to the nodes of the diagram. The 28-dimensional adjoint representation is left

invariant by T .

which is a presentation of the symmetric group S3. Since T TT = STS = 1

but det T = detS = −1, the matrices T and S generate a subgroup

T = 〈T ,S〉 (3.12)

of the orthogonal group O(4,C), isomorphic to S3.18 As a consequence, they

leave the inner product Jm2
1K (3.3) invariant.

The flavour symmetry mixes with the SL(2,Z)-symmetry acting on the

UV-coupling τ0 in an interesting way. To see this, notice that the reduction

Z → Z2 modulo 2 induces a homomorphism SL(2,Z) → SL(2,Z/2Z). Since

SL(2,Z/2Z) ∼= S3 are isomorphic, by transitivity we have a group homomor-

phism

ϕ : SL(2,Z) −→ Out(Spin(8)). (3.13)

The full symmetry group of the Nf = 4 theory is the semidirect product [46]19

T := Spin(8) oϕ SL(2,Z). (3.14)

The group (T, •) consists of elements (A, γ) ∈ Spin(8)× SL(2,Z), with group

operation

(A, γ) • (Ã, γ̃) := (Aϕ(γ)(Ã), γ ◦ γ̃). (3.15)

The action of (3.10) is thus accompanied with an action of SL(2,Z) on τ and τ0.

From (3.11) we find that T 2 and ST 2S leave any mass configuration invariant.

This implies that the theory should also be invariant under the simultaneous

action of T 2 and ST 2S on the two couplings. These two matrices in SL(2,Z)

generate the principal congruence subgroup Γ(2). From this it is also clear

that

SL(2,Z)/Γ(2) = {I, T, S, TS, ST, TST} ∼= S3, (3.16)

which is another way to see that the group of outer isomorphisms is S3 [184].

This action is depicted in Fig. 22. The subgroup Γ(2) is the kernel of the

18They actually form a subgroup of O(4,Q), but act on m ∈ C4.
19Recall that for two groups G and H, a group homomorphism ϕ : G → Aut(H) de-

fines a semi-direct product H oϕ G ⊂ H × G with the multiplication (h1, g1)(h2, g2) :=

(h1ϕ(g1)(h2), g1g2). For (h, g) ∈ H oϕ G, the inverse is found as (ϕ(g−1)(h−1), g−1).
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Figure 22: Action of SL(2,Z) on SL(2,Z)/Γ(2) ∼= S3

above group homomorphism SL(2,Z)→ SL(2,Z/2Z), such that it is in fact a

normal subgroup Γ(2) � SL(2,Z).

The moduli spaces of the cases A–G of Table 1 are related by T in the

following way. We have that mA,mC,mF are invariant under T . Case A is

invariant under both T and S. The S-transformation relates cases B and C,

as well as E and F, while leaving cases D and G invariant. We depict the

relation among cases B, C and D in Fig. 23. For the cases E, F and G, there

is an analogous diagram. An instance of these relations is that the weights of

mB mD

mC

T

S

S

T

Figure 23: Relation among mB = (m,m,m,m), mC = (2m, 0, 0, 0) and mD =

(m,m,m,−m).

the singular structure on the Coulomb branch are invariant under those spaces

that are related by triality,

k(T m) = k(m). (3.17)

Using the action of the SO(8) flavour group, a large range of masses with

equivalent duality diagrams can be reached. For example, the mass m =

(2m, 0, 0, 0) is related to m = (0, 0, 0, 2m) by an SO(8) rotation. The first one

is invariant under T while the second one is not. The orbit under T and S for

the case m = mB = (2m, 0, 0, 0) is, as we have just discussed, given by Fig.

23, while that of m = (0, 0, 0, 2m) is given in Fig. 24. We see that it is of

order six, and includes different relative signs compared to mA and mD. On

closer inspection, we note that the mass vectors come in pairs differing by an

overall sign, which is an element of SO(8). Thus identifying the mass vectors

related by SO(8) in diagram 24, we find that it is equivalent to diagram 23.
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(0, 0, 0, 2m) (m,−m,−m,m)

(0, 0, 0,−2m) (m,−m,−m,−m)

(−m,m,m,−m) (−m,m,m,m)

S

TT

SS

T

Figure 24: Orbit of the mass vector m = (0, 0, 0, 2m) under T and S.

3.2.3 Group action

The action
T ×M −→M

(g,m) 7−→ g ·m
(3.18)

of the triality group T on mass space M can be studied in great detail. It is

easy to check that the action is faithful20, but neither free21 nor transitive22.

Up to conjugation, S3
∼= T has four subgroups. They are: the trivial

group Z1, the symmetric group S2
∼= Z2, the alternating group A3

∼= Z3,

and S3 itself. They have order 1, 2, 3, and 6, respectively. All three proper

subgroups are abelian. For a given m, triality thus not always acts by the

full S3 but rather by a subgroup. For every m ∈ M we can study the orbit

T ·m = {g ·m | g ∈ T }. The sets of orbits of M then give a partition of M

under the action (3.18).

First, notice that since T is a finite group, all elements have finite order.

In particular, T 2 = S2 = (T ST )2 = 1 and (ST )3 = (T S)3 = 1. The stabiliser

subgroup of a mass m ∈M is defined as Tm = {g ∈ T | g ·m = m}. By the

orbit-stabiliser theorem

|T ·m| = |T |/|Tm|, (3.19)

it suffices to study the fixed point equations in order to identify the stabiliser

subgroups {Z1, S2, A3, S3} with the subgroups of T . It is straightforward to

identify the fixed point loci

LT = {m ∈M |m4 = 0},
LS = {m ∈M |m1 = m2 +m3 +m4},

LST S = {m ∈M |m1 = m2 +m3 −m4},
LST = LT S = {m ∈M |m1 = m2 +m3 and m4 = 0},

(3.20)

20For every g 6= h ∈ T there exists an m ∈M such that g ·m 6= h ·m.
21A group action is free if it has no fixed points, but m = 0 is a fixed point for any g ∈ T .
22For each pair m, m̃ ∈M there exists g ∈ T such that a g ·m = m̃. A counterexample

would be m = 0 and m̃ 6= 0.
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where Lg = {m ∈ M | g ·m = m}. For m in precisely one of LT , LS or

LST S , one finds that |T ·m| = 3. From (3.19) it then follows that |Tm| = 2,

such that Tm ∼= S2. In fact, since T , S and ST S are all order 2 elements of

T , the stabiliser groups Tm for m in either of the three loci are precisely the

three order 2 conjugate subgroups of T ∼= S3.23

The intersection

L1 = LT ∩ LS = {m ∈M |m1 = m2 +m3 and m4 = 0} (3.21)

is the locus of triality invariant masses, T ·m = m. Thus, according to

(3.19) we have |Tm| = 6 for such masses, such that indeed Tm = T . For the

last locus in (3.20), we see immediately that LST = LT S = LT ∩ LS contains

precisely the invariant masses. Therefore, if m is kept fixed by either T S or

ST then it is also fixed by both T and S and therefore by all of T . Since

ST and T S are the only elements of T of order 3, there is actually no mass

m such that T ·m has 2 elements, and so there is no stabiliser subgroup

isomorphic to A3. By case analysis, it is also easy to prove that the set T ·m
has 1, 3 or 6 elements.

Let us summarise. If m ∈ L1, it is invariant under T . If m is in any of

LT , LS or LST S , it could be in the intersection of any two of them. These

intersections are however all equal to L1, which is of course because any two

elements of {T ,S,ST S} generate T . This is depicted in Fig. 25.

m1

m4

LSLST S

LT

L1

Figure 25: The loci (3.20) with nontrivial stabiliser groups on the subspace m2 = m3 = 0

in M . They all mutually intersect in the locus L1 of triality invariant masses.

If m is then an element of

L3 = LT ∪ LS ∪ LST S \ L1, (3.22)

then the stabiliser group of m is isomorphic to S2. If m does not lie in either

L1 or L3, then there is no remaining symmetry. It lies in

L6 = M \ L1 ∪ L3, (3.23)

23If we represent S3 in cycle notation of permutations of {1, 2, 3}, the three order 2 conjugate

subgroups of S3 are {(), (1, 2)}, {(), (1, 3)} and {(), (2, 3)}.
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and its stabiliser group is trivial.

3.3 Order parameters and bimodular forms

For the Nf = 4 SW theory, there are other curves than the one introduced by

Seiberg and Witten [20,21,111,113,148,179,185–187]. In this section, we focus

on the modularity of the original SW curve (3.4). We proceed by studying the

mass configurations with the largest flavour symmetry groups, A, B, C and D.

In all these cases, u is a weight (0, 2) bimodular form, which we define below,

for a triple of groups related to the duality group of the decoupling theory

where the mass of the hypermultiplets is infinitely large, and the stabiliser

group of the mass under the triality action. Since case A is triality invariant,

u in that case transforms under the full SL(2,Z) group. The other cases B, C

and D are permuted by triality, and furnish a vector-valued bimodular form.

The massless case wherem0 = (0, 0, 0, 0) is very simple, as j(τ) = J (u, 0, τ0)

= j(τ0) and therefore

τ(u) = τ0 (3.24)

is constant over the whole Coulomb branch B4 3 u. In other words, the

coupling τ is fixed and thus does not run, which is a consequence of the massless

Nf = 4 theory being exactly superconformal. There are six singularities, which

all sit at the origin u = 0 and form the non-abelian Coulomb point with a five

quaternionic-dimensional Higgs branch [105].

3.3.1 Case A

For the mass mA = (m,m, 0, 0), this allows to express u as a rational function

in Jacobi theta functions of τ0 and τ . There are in fact six solutions to the

correspondence J (u(τ),m, τ0) = j(τ). A consistent way of choosing which

solution to use, which we will employ throughout, is to take the one that has

the right decoupling limit when decoupling the massive hypermultiplets, i.e.,

the one that decouples to the order parameter of massless Nf = 2, Eq. (2.86).

In view of the more complicated mass cases, we can further simplify the

rather lengthy expression. The dependence on τ is in fact only through λ =
ϑ4

2

ϑ4
3
.

This is not quite true for τ0, for which u has weight 2 [148]. This weight factor

can be extracted by eliminating ϑ4(τ0) through the Jacobi identity (A.12) and

ϑ2(τ0) through the definition of λ(τ0). This gives

uA(τ, τ0) = −m
2

3
ϑ3(τ0)4λ(τ0)2 + 2 (λ(τ)− 1)λ(τ0)− λ(τ)

λ(τ0)− λ(τ)
. (3.25)

The simple mass dependence of uA is a consequence of the scaling symmetry

(3.8). The second prefactor ϑ3(τ0)4 gives the weight 2. The remaining quotient

is written in a manifestly invariant fashion. Let us denote by Γτ (Γτ0) a group

acting by linear fractional transformations on τ (τ0). As ϑ3(τ0)4 is a modular

form of weight 2 and λ(τ0) a modular function (of weight 0) for Γ(2)τ0 , one
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can easily see that uA(τ, τ0) is a weight 2 modular form for Γ(2)τ0 for fixed τ ,

and a modular function for Γ(2)τ for fixed τ0. We thus have that

uA(γ1τ, γ2τ0) = (c2τ0 + d2)2uA(τ, τ0), γi =

(
ai bi
ci di

)
∈ Γ(2) (3.26)

for i = 1, 2. We call uA modular for Γ(2)τ × Γ(2)τ0 , where the occurrence of

two groups indicates that they act on both variables τ and τ0 separately.

The mass mA is invariant under the triality group (3.12). As triality acts

on τ and τ0 together, this suggests that uA transforms under a simultaneous

transformation of SL(2,Z). Indeed, if one acts simultaneously on τ and τ0

with SL(2,Z), it is easy to check from T : λ 7→ λ
λ−1

and S : λ 7→ 1 − λ that

uA(τ, τ0) transforms as

uA(γτ, γτ0) = (cτ0 + d)2 uA(τ, τ0), γ =

(
a b

c d

)
∈ SL(2,Z). (3.27)

We call uA modular for SL(2,Z)(τ,τ0), where the notation indicates that the

single group SL(2,Z) acts on both τ and τ0 simultaneously. The two transfor-

mations (3.26) and (3.27) are characteristic properties for functions known as

“bimodular forms” [175–177]. For our application to Nf = 4 SQCD, we will

adopt the following definition:

Definition 5 (Bimodular form). Let (Γ1,Γ2; Γ) be a triple of subgroups of

SL(2,R) commensurable with SL(2,Z).24 A two-variable meromorphic func-

tion F : H×H→ C is called a bimodular form of weight (k1, k2) for the triple

(Γ1,Γ2; Γ) if it satisfies both Condition 1 & 2:

• Condition 1: For all γi =
(
ai bi
ci di

)
∈ Γi, i = 1, 2, F transforms as

F (γ1τ1, γ2τ2) = χ(γ1, γ2) (c1τ1 + d1)k1(c2τ2 + d2)k2F (τ1, τ2), (3.28)

for a certain multiplier χ : Γ1 × Γ2 → C∗. We call this the separate

transformation of F under (Γ1,Γ2), and denote it by (Γ1)τ1 × (Γ2)τ2.

• Condition 2: For all γ = ( a bc d ) ∈ Γ, F transforms as

F (γτ1, γτ2) = φ(γ) (cτ1 + d)k1(cτ2 + d)k2F (τ1, τ2), (3.29)

for a multiplier φ : Γ→ C∗. We call this the simultaneous transformation

of F under Γ, and denote it by Γ(τ1,τ2).

Note that condition 2 follows from condition 1 if Γ is the intersection of Γ1

and Γ2, Γ = Γ1 ∩ Γ2 with φ(γ) = χ(γ, γ), γ ∈ Γ.

24A subgroup Γ ⊂ SL(2,R) is commensurable with SL(2,Z) if Γ ∩ SL(2,Z) has finite index

in both SL(2,Z) and SL(2,R). This includes in particular all congruence subgroups of

SL(2,Z).
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This definition contains the main aspects of other definitions of bimodular

forms in the literature [85,175–177].

The definition above for the triple (Γ1,Γ2; Γ1 ∩ Γ2) is equivalent to the

definition in [176]. For the triple (Γ1,Γ1; SL(2,Z)), our definition is equivalent

to the one of [85]. Finally, for k1 = k2 and the triple (Γ1,Γ1; Γ), our definition

is equivalent with [177]. Finally, the definition of Stienstra and Zagier [175],

as cited in [176], does require Condition 2 without requiring Condition 1.

From definition 5, we find that uA : H × H → C in (3.25) is a bimodular

form of weight (0, 2) for the triple

(Γ(2),Γ(2); SL(2,Z)), (3.30)

with trivial multipliers χ and φ. In fact, m 7→ uA is a 1-parameter family of

such bimodular forms.

The function (3.25) can be easily expanded in either q = e2πiτ or q0 = e2πiτ0 .

When expanding uA around q0 = 0, every coefficient is a modular function for

Γ(2)τ . If we denote the vector space of holomorphic modular forms of weight

k for Γ ⊆ SL(2,Z) by Mk(Γ), then uA ∈ M0(Γ(2))Jq
1
4
0 K. Conversely, we have

that uA ∈M2(Γ(2))Jq
1
4 K.

Recall that Γ(2) is a genus zero congruence subgroup. As such, its Haupt-

modul λ is the single transcendental generator of the function field of Γ(2)\H∗.
Since uA is modular in τ as well as τ0 for Γ(2) and no larger subgroup of

SL(2,Z), the transcendence of λ then implies that (3.25) cannot be simplified

further.

The Coulomb branch B4 for the mass m = mA has six singularities that

come in three pairs of two. By expanding λ(τ) around the cusps, one easily

finds

uA(1
2
, τ0) = −m

2

3
ϑ3(τ0)4(λ(τ0)− 2),

uA(0, τ0) = −m
2

3
ϑ3(τ0)4(λ(τ0) + 1),

uA(1, τ0) = −m
2

3
ϑ3(τ0)4(−2λ(τ0) + 1).

(3.31)

Notice that the singularities are holomorphic modular forms of weight 2 for

Γ(2)τ0 , and are permuted by elements of (SL(2,Z))/Γ(2))τ0 . The reason for

uA(1
2
, τ0) = uA(i∞, τ0) is explained in section 3.4.2. Since λ is a Hauptmodul

for Γ(2), for given τ0 ∈ Γ(2)\H there is exactly one τ ∈ Γ(2)\H where u has a

pole. It is where τ approaches τ0, uA(τ0, τ0) =∞.

We can furthermore compute the period da
du

. Actually, da
du

is not invariant

under the monodromy around∞, but multiplied by −1. Instead of da
du

, we may

consider
(
da
du

)2
, which is monodromy invariant [2, 146]. In the pure (Nf = 0)

SU(2) case, it is a modular form of weight 2 for Γ0(4). The weight is the same in

Nf = 4, however it also transforms well under fractional linear transformations

of τ0. More specifically, we find that(
da

du

)2

A

(τ, τ0) =
1

8m2

ϑ3(τ)4

ϑ3(τ0)8

λ(τ)− λ(τ0)

λ(τ0)(λ(τ0)− 1)
. (3.32)
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The normalisation may be checked from the fact that da
du
∼ 1√

8u
for u → ∞,

which due to (3.25) corresponds to τ → τ0. Since ϑ4
3 is a modular form of

weight 2 for Γ(2), it follows that
(
da
du

)2

A
satisfies condition 1 of definition 5 with

weight (2,−4) for Γ(2)τ × Γ(2)τ0 . As mA is left invariant by triality,
(
da
du

)2

A

must also be modular for SL(2,Z). Indeed, one easily finds that
(
da
du

)2

A
also

satisfies condition 2, such that it is a bimodular form of weight (2,−4) for the

triple (Γ(2),Γ(2); SL(2,Z)).

We can also compute the physical discriminant, which for the case A reads

∆A = (u− uA(1
2
, τ0))2(u− uA(0, τ0))2(u− uA(1, τ0))2. (3.33)

Since the singularities (3.31) themselves are modular forms for τ0, it is again

a bimodular form. One easily computes

∆A(τ, τ0) = m12ϑ3(τ0)24λ(τ)2(λ(τ)− 1)2λ(τ0)4(λ(τ0)− 1)4

(λ(τ)− λ(τ0))6
. (3.34)

As ϑ24
3 is a modular form of weight 12 for Γ(2), this shows that ∆A has mod-

ular weight (0, 12) under Γ(2)τ × Γ(2)τ0 . With the same reasoning as above,

we find that ∆A is a bimodular form of weight (0, 12) for the same triple (3.30).

The SW curve for the N = 2∗ theory with mass m is identical to the one

of Nf = 4 (3.4) with 1
2
mA = (m

2
, m

2
, 0, 0) [46]. A reason for this is that both

theories have three singularities each with monodromy being conjugate to T 2.

This was in fact the ansatz of Seiberg and Witten to determine the curve with

generic masses. This allows to easily find the order parameter for N = 2∗,

uN=2∗(τ, τ0) =
1

4
uA(τ, τ0). (3.35)

In particular, it is a bimodular form of weight (0, 2) for (Γ(2),Γ(2); SL(2,Z)).

The derivative da
du

also only receives an overall normalisation from Nf = 4. In

N = 2∗ the singularities each have degeneracy 1 and not 2 as in Nf = 4 case

A. Therefore, we have that ∆N=2∗ =
√

∆A, which is a polynomial of degree 3

in u and a bimodular form of weight (0, 6) [85].

The expressions for uN=2∗ in the literature [85,148,173,188,189] are related

to uA(τ, τ0) by a transformation in (3.16), which corresponds to the choice of a

different solution of the sextic equation associated with the N = 2∗ theory [2].

The different choices can be absorbed in the double scaling limit. The counting

of the number of poles of uA is immediate from our expression (3.25) (see

comment on the transcendence of λ in section 3.3.1).

3.3.2 Case B

The equal mass case mB = (m,m,m,m) can be treated with the same tech-

nique as in the previous subsection. Since Nf = 4 with four equal masses

flows to Nf = 0 for m → ∞, we can express the τ dependence through the
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Hauptmodul f :=
ϑ4

2+ϑ4
3

ϑ2
2ϑ

2
3

of Γ0(4). In fact, the Nf = 0 order parameter (1.35)

is just u
Λ2

0
= −1

2
f . The order parameter uB reads

uB(τ, τ0) = −m
2

3
ϑ2(τ0)2ϑ3(τ0)2 2f(τ0)2 + f(τ)f(τ0)− 12

f(τ0)− f(τ)
, (3.36)

which thus does not involve ϑ4. Since ϑ2(τ0)2ϑ3(τ0)2 is a holomorphic modular

form of weight 2 for Γ0(4)τ0 , we find that uB(τ, τ0) has bimodular weight (0, 2)

for the separate transformations under Γ0(4)τ × Γ0(4)τ0 .

As T : mB 7→ mD, there is no simultaneous action of T on τ and τ0

leaving uB invariant. Also, since S : mB 7→mC, S does not leave uB invariant.

However, a subgroup TmB
of T leaves mB invariant: Out of the six elements

of T , mB is left invariant by 1 and T ST . As the action of T is combined in

(3.14) with a simultaneous action on τ and τ0, we find that uB is expected to be

invariant under a simultaneous transformation of TST ∈ SL(2,Z). However,

due to the algebra (3.11), the same holds for T 2. These two matrices generate

the congruence subgroup Γ0(2) of SL(2,Z). It is straightforward to check from

the explicit expression (3.36) that uB transforms with weight (0, 2) under a

simultaneous transformation on τ and τ0 of Γ0(2)(τ,τ0). This proves that uB is

an example of a bimodular form of weight (0, 2) for the triple

(Γ0(4),Γ0(4); Γ0(2)). (3.37)

As classified in section 3.2.3, the stabiliser subgroup TmB
= {1, T ST } for the

mass mB is isomorphic to the group S2
∼= Z2 of order 2. This agrees with the

fact that SL(2,Z)/Γ0(2) ∼= S2.

The singularities are

uB(1, τ0) = −m
2

3
ϑ2(τ0)2ϑ3(τ0)2(−f(τ0)),

uB(0, τ0) = −m
2

3
ϑ2(τ0)2ϑ3(τ0)2(2f(τ0) + 6),

uB(2, τ0) = −m
2

3
ϑ2(τ0)2ϑ3(τ0)2(2f(τ0)− 6),

(3.38)

which again are holomorphic modular forms of weight 2 for Γ0(4)τ0 . Due to

the duality group Γ0(4)τ , we have that uB(1, τ0) = uB(i∞, τ0). This singularity

has degeneracy 4, and flows to∞ for m→∞. The singularity in the interior is

uB(τ0, τ0) =∞. One can also check that the singularities (3.38) never collide:

The conditions uB(1, τ0) = uB(0, τ0) or uB(1, τ0) = uB(2, τ0) are equivalent to

f(τ0) = ±2, whose only solutions are the two cusps τ+
0 = 0 and τ−0 = 2 of

Γ(2). Since the SW curve is singular for those values of τ0, the singularities do

not merge for any finite masses.

Similarly as before, one finds(
da

du

)2

B

(τ, τ0) =
1

8m2

ϑ2(τ)2ϑ3(τ)2

ϑ4(τ0)8
(f(τ)− f(τ0)) . (3.39)
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Since f is a Hauptmodul, ϑ2
2ϑ

2
3 a modular form of weight 2 and ϑ8

4 a modular

form of weight 4 for Γ0(4), it follows that
(
da
du

)2

B
is a bimodular form of weight

(2,−4) for the triple (3.37). Finally, the physical discriminant reads

∆B(τ, τ0) = m12ϑ4(τ0)24 (f(τ)2 − 4)(f(τ0)2 − 4)2

(f(τ)− f(τ0))6
, (3.40)

which is a bimodular form of weight (0, 12) for the triple (3.37).

3.3.3 Case C

Let us study the case where only one hypermultiplet is massive, that is, mC

= (2m, 0, 0, 0). The particular normalisation of mC is chosen such that the

diagram 23 holds without any prefactors. Since in the limit m → ∞ we get

massless Nf = 3, we can express the τ dependence through the Hauptmodul

f̃ =
ϑ2

3ϑ
2
4

(ϑ2
3−ϑ2

4)2 of Γ0(4). The order parameter of the massless Nf = 3 theory

reads u
Λ2

3
= − 1

64
f̃ (2.105), and the functions f and f̃ are related by f(4τ) =

16f̃(τ) + 2. One finds for the order parameter uC,

uC(τ, τ0) = −m
2

3
ϑ3(τ0)2ϑ4(τ0)2 2f̃(τ0)2 + (10f̃(τ) + 1)f̃(τ0) + 2f̃(τ)

f̃(τ0)(f̃(τ0)− f̃(τ))
, (3.41)

which is independent of ϑ2(τ0). Again, the factor ϑ3(τ0)2ϑ4(τ0)2 is a modular

form of weight 2 for Γ0(4)τ0 , and the quotient is a meromorphic modular func-

tion of Γ0(4) for both τ and τ0. Thus uC satisfies condition 1 of definition 5

with weight (0, 2) for Γ0(4)τ × Γ0(4)τ0 .

Since T : mC 7→mC, there is a simultaneous T -duality

T : uC(τ + 1, τ0 + 1) = uC(τ, τ0), (3.42)

which is straightforward to check from (3.41). As S : mC 7→ mB, this ex-

changes the order parameters

uC(− 1
τ
,− 1

τ0
) = τ 2

0uB(τ, τ0), (3.43)

which we can also explicitly check. We can again study the stabiliser subgroup

of TmC
of T . It is the group generated by T and ST 2S, such that uC is

expected to transform simultaneously under T and ST 2S. These two matrices

generate the congruence subgroup Γ0(2) of SL(2,Z), which is conjugate to

Γ0(2). Thus we find that uC is a bimodular form of weight (0, 2) for the triple

(Γ0(4),Γ0(4); Γ0(2)). (3.44)

Lastly, we can also study(
da

du

)2

C

(τ, τ0) =
1

8m2

ϑ3(τ)2ϑ4(τ)2

ϑ2(τ0)8

f̃(τ)− f̃(τ0)

f̃(τ)f̃(τ0)
. (3.45)

It is straightforward to check that
(
da
du

)2

C
is a bimodular form of weight (2,−4)

for the triple (3.44). For the discriminant ∆C there exists a similar expression

to (3.40), and it is a bimodular form of weight (0, 12) for (3.44).
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3.3.4 Case D

Let us finally also study the case mD = (m,m,m,−m). It is related to cases B

and C as in Fig. 23. We have thatmD ∈ LS , whilemB ∈ LST S andmC ∈ LT .

From the SW curve one easily finds

uD(τ, τ0) = −m
2

3
iϑ2(τ0)2ϑ4(τ0)2 2f̂(τ0)2 + f̂(τ)f̂(τ0)− 12

f̂(τ0)− f̂(τ)
, (3.46)

where

f̂(τ) = f(τ + 1) = i
ϑ2(τ)4 − ϑ4(τ)4

ϑ2(τ)2ϑ4(τ)4
. (3.47)

Since f is a Hauptmodul for Γ0(4), f̂ is a Hauptmodul for a subgroup of

SL(2,Z) conjugate to Γ0(4),

Γ̃0(4) = T Γ0(4)T−1 = 〈T 4, ST 2〉. (3.48)

A fundamental domain for Γ̃0(4) is given by

Γ̃0(4)\H = F ∪ TF ∪ T 2F ∪ T 3F ∪ TSF ∪ T 3SF , (3.49)

with F = SL(2,Z)\H. It is straightforward to check that uD(τ, τ0) transforms

with weight (0, 2) under Γ̃0(4)τ × Γ̃0(4)τ0 .

The subgroup TmD
⊂ T leaving invariant mD is generated by S and T 2.

The two corresponding SL(2,Z) transformations S and T 2 generate the theta

group Γ̃0(2) := Γθ (A.2), which is a congruence subgroup of SL(2,Z) with

index 3, conjugate to Γ0(2) and Γ0(2). Thus we find that uD is a bimodular

form of weight (0, 2) for the triple

(Γ̃0(4), Γ̃0(4); Γ̃0(2)). (3.50)

The three groups {Γ0(2),Γ0(2), Γ̃0(2)} 3 Γ are in fact the three groups SL(2,Z) ⊃
Γ ⊃ Γ(2) with index 3 and 2 cusps, and they correspond to the three conjugate

order 2 subgroups of S3.

3.4 Vector-valued bimodular forms

The analysis of the A, B, C and D theories may suggest that the order param-

eter um for a generic mass m transforms with weight (0, 2) under Gτ × Gτ0

for some subgroup G ⊆ SL(2,Z). This is however not true in general, as for

generic masses there are branch points and associated branch cuts, which spoil

the modularity [2]. The discussion in section 2 for Nf ≤ 3 suggests that for a

fixed τ or fixed τ0, there is a natural choice of fundamental domain F(m) ⊆ H
for um, such that um : F(m) → B4 is one-to-one. For a generic choice of

masses, monodromies on the u-plane give rise to monodromies of F(m), but

these do not generate a congruence subgroup of SL(2,Z) for a generic mass. For

special cases however, F(m) is equal to Γ\H for some subgroup Γ ⊆ SL(2,Z),
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such as when m is equal to mA, mB, mC or mD, for which Γ is Γ(2), Γ0(4),

Γ0(4) or Γ̃0(4). If the mass m is such that B4 contains a superconformal

Argyres-Douglas point, Γ ⊆ SL(2,Z) can also be a subgroup of index smaller

than 6 [2, 3, 129].

3.4.1 Generic masses

In the above discussed examples A–D, the duality groups Γ1 of τ and Γ2 of

τ0 are identical. This is not generally true, even if u(τ, τ0) is modular in τ

and τ0 [3]. However, we can demonstrate that Γ1 ⊂ Γ2. A common non-

perturbative definition of the UV coupling constant is the low-energy effective

coupling τ in the limit where the order parameter is large,

τ0 = lim
u→∞

τ(u). (3.51)

Since it is not associated with a singularity, it is neither a cusp nor an elliptic

point and therefore an arbitrary interior point in the space of τ ∈ H. If Γ1 ( Γ2

is not a proper subgroup, then in general τ0 ∈ Γ2\H is not an element of a

choice of fundamental domain Γ1\H. However, there exists a γ1 ∈ Γ1 with the

property that γ1τ0 ∈ Γ1\H. Since u(τ, τ0) has weight 0 in τ , we notice that

u(γ1τ0, τ0) = u(τ0, τ0) =∞, (3.52)

which is the weak coupling region in B4. If Γ2 ( Γ1 however, then there exist

two points τ0 6= τ̃0 in the fundamental Γ1\H, which are not related by any

element γ1 ∈ Γ1. Then u(τ, τ0) and u(τ, τ̃0) are two distinct points in B4. This

contradicts the fact that the Nf = 4 Coulomb branch B4 only contains one

such singularity. This shows that indeed Γ1 ⊆ Γ2.

The weight (0, 2) of u can be explained as follows. Monodromies on the

u-plane act on the low-energy effective coupling τ and by definition leave u

invariant. Thus u(τ, τ0) is required to have weight 0 in τ . For τ0, recall that the

order parameter relates to the prepotential F of the theory by a logarithmic

derivative with respect to the instanton counting parameter [110,130–132,190,

191]

u = 4πiq0
∂F

∂q0

= 2
∂F

∂τ0

. (3.53)

As the prepotential F has weight 0 in τ0, this shows that u(τ, τ0), has weight

2 in τ0.

The other possible modular transformations are those involving the masses,

which is the action of the triality group Spin(8) oϕ SL(2,Z). From the above

analysis, we expect that for generic massm the order parameter um transforms

as
T : um(τ + 1, τ0 + 1) = uTm(τ, τ0),

S : um(− 1
τ
,− 1

τ0
) = τ 2

0 uSm(τ, τ0).
(3.54)

Due to the branch points and cuts for generic masses, these transformations

are again very subtle to perform. From (3.11) and in particular T 2 = 1, (3.54)
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implies

T 2 : um(τ + 2, τ0 + 2) = um(τ, τ0). (3.55)

We can check explicitly that it is true for example for case B as in (3.36),

which is not T -invariant.

As discussed in section 3.2.3, the group action T ×M →M partitions the

mass space M 3m into three regions L1, L3 and L6, where the orbits T ·m
have length 1, 3 and 6. The stabiliser subgroups of m are then subgroups of S3

of order 6, 2 and 1, i.e. isomorphic to S3, S2 or S1 = {e}. The homomorphism

ϕ (3.13) between SL(2,Z) and T = Out(Spin(8)) then dictates the subgroup

ϕ−1[Tm] (3.56)

under which um is simultaneously invariant. The preimage of the stabiliser sub-

group under ϕ thus constitutes the third component Γ of the triple (Γ1,Γ2; Γ)

in definition 5.

The case m ∈ L1

When m ∈ L1, then the stabiliser group of m has six elements and the orbit

T ·m consists of m only. Then there is only one function in (3.54), and um
transforms with weight (0, 2) under SL(2,Z)(τ,τ0), as in condition 2 of definition

5. An example is uA as given in (3.25), and the transformation is checked in

(3.27).

The case m ∈ L3

The case m ∈ L3 is most interesting, as it is not trivial (m ∈ L1) and not

generic (m ∈ L6). Namely, when the orbit T ·m contains three elements, the

stabiliser group is isomorphic to the symmetric group S2 with two elements.

Then the three functions associated with the three elements of the orbit T ·m
form a vector that transforms under SL(2,Z). An example for this are the

functions uB, uC, uD found in Sections 3.3.2–3.3.4. As is clear from Fig. 23,

they are related to each other by triality. If we organise u3 = (uB, uC, uD)T,

using (3.36), (3.41) (3.46) one can prove that

u3(τ + 1, τ0 + 1) =

0 0 1

0 1 0

1 0 0

u3(τ, τ0),

u3(−1/τ,−1/τ0) = τ 2
0

0 1 0

1 0 0

0 0 1

u3(τ, τ0).

(3.57)

As the matrices are in GL(3,C), there exists a 3-dimensional representation

SL(2,Z) → GL(3,C). This shows that u3(τ, τ0) furnishes a vector-valued
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bimodular form of weight (0, 2) for SL(2,Z), agreeing with the following defi-

nition:25

Definition 6 (Vector-valued bimodular form). Let

F =

 F1

...

Fp

 : H×H→ Cp (3.58)

be a p-tuple of two-variable meromorphic functions, p ∈ N. Then F is called

a vector-valued bimodular form of weight (k1, k2) for Γ ⊂ SL(2,Z), if

• each component Fj is a bimodular form of weight (k1, k2) for some triple

(Γj1,Γ
j
2; Γj), as in definition 5, and

• there exists a p-dimensional complex representation ρ : Γ → GL(p,C)

such that

F (γτ1, γτ2) = (cτ1 + d)k1(cτ2 + d)k2ρ(γ)F (τ1, τ2) (3.59)

for all γ = ( a bc d ) ∈ Γ and all τ1, τ2 ∈ H.

Since u3 is parametrised by the mass m ∈ C, m 7→ u3(m, τ, τ0) is in fact

a 1-parameter family of vector-valued bimodular forms of weight (0, 2) for

SL(2,Z). The triality action of SL(2,Z) permutes the triples (Γj1,Γ
j
2; Γj) in

an interesting way. The action of the SL(2,Z) generators on u is given by

(3.57). As Γj1 = Γj2 for the cases B, C, D, both Γj1 and Γj2 are conjugated by

the corresponding element of SL(2,Z). An instance of this is the group Γ̃0(4)

(3.48), which is the set of elements of Γ0(4) conjugated by T . Similarly, we have

that Γ0(4) is conjugate to Γ0(4) by conjugation with S. The same is true for

the three groups Γ0(2), Γ0(2) and Γ̃0(2) that the cases B, C, D simultaneously

transform under, these three conjugate subgroups are permuted under SL(2,Z)

just as Γ0(4), Γ0(4) and Γ̃0(4) are.

The case m ∈ L6

The remaining case is that m ∈ L6, where T ·m has six elements. Then we

can organise u6 = (um, uTm, uSm, uT Sm, uSTm, uT STm)T, which is a collection

of six pairwise distinct functions. By studying the action of T and S on the

25It is customary to define vector-valued modular forms for SL(2,Z), however vector-valued

modular forms for proper subgroups Γ of SL(2,Z) are familiar in rational CFTs [192–194]

and so we leave our definition more generic.
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vector (m, Tm,Sm, T Sm,STm, T STm)T, we find the transformations

u6(τ + 1, τ0 + 1) =



0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0


u6(τ, τ0),

u6(−1/τ,−1/τ0) = τ 2
0



0 0 1 0 0 0

0 0 0 0 1 0

1 0 0 0 0 0

0 0 0 0 0 1

0 1 0 0 0 0

0 0 0 1 0 0


u6(τ, τ0).

(3.60)

The vector u6 is not a vector-valued bimodular form for SL(2,Z), because

the components of u6 do not transform as modular forms under the separate

action of Γj1,2, j = 1, . . . , 6 due to the branch cuts, as discussed for the Nf ≤ 3

theories in section 2. The simultaneous action of SL(2,Z) on τ and τ0 is not

obstructed by the branch cuts of u(τ, τ0) [3].

The matrices in (3.57) and (3.60) are not only in GL(n,C), but they are

in fact permutation matrices: Because triality permutes the respective moduli

spaces, the order parameters are merely permuted and there are no phases.

Thus we have that

u(γτ, γτ0) = (cτ0 + d)2Pπ(γ)u(τ, τ0), (3.61)

where Pπ(γ) is the permutation matrix for the permutation π(γ) ∈ S|T ·m|,

which can be found from the action of T on m.

For the period
(
da
du

)2
, there are similar results. For instance, one can check

that ((
da
du

)2

B
,
(
da
du

)2

C
,
(
da
du

)2

D

)T
(3.62)

is a vector-valued bimodular form of weight (2,−4) for SL(2,Z). As u has

weight (0, 2), it is not obvious how the discriminant ∆ transforms since it is a

polynomial in u. However, because triality acts on the 6 singularities as well, in

general ∆ is a vector-valued bimodular form of weight (0, 12) for SL(2,Z). This

can be checked explicitly for the cases B, C, D, where ∆3 = (∆B,∆C,∆D)T

is a 1-parameter family of vector-valued bimodular forms of weight (0, 12) for

SL(2,Z).

3.4.2 Fundamental domains

In the asymptotically free theories we argued that the u-planes can be identified

with fundamental domains FNf (m). For this we make the correspondence that
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the number of singularities gives the number of rational cusps, the number of

BPS states becoming massless at each singularity gives the width of each cusp,

and the width at i∞ is given by 4 − Nf . Then, the sum of all cusps is RG

invariant. By following the RG flow from Nf = 3 to Nf < 3 we find that

gradually a singularity at strong coupling (a rational cusp) moves to infinity

and is identified with the weak coupling region (i∞). Reversing this argument

implies that for Nf = 4 there should be six rational cusps and the width at

infinity vanishes. This is consistent with the fact [46] that u = ∞ does not

correspond to a cusp of the curve anymore. Rather, it lies in the interior of

H 3 τ0.

It is found in the above subsections that depending on the mass configu-

ration, the fundamental domain for an order parameter is related to the one

of the underlying theory where all massive hypermultiplets are decoupled. We

can depict those domains in an equivalent way that is more suitable to our

description. For this, one chooses an equivalent fundamental domain with the

property that the width at i∞ is zero and the number of rational cusps is

equal to the number of singularities, with according width. For instance, in

case A where m = (m,m, 0, 0) the duality group is Γ(2), whose cusps in the

decoupling limit (with the same duality group) we choose as {i∞, 0, 1}. In

Nf = 4 it is more suitable to represent i∞ by a rational number. For this

we can use that Γ(2) 3 ST−2S : i∞ 7→ 1
2
, being a preferable representative

of the third cusp. As it necessarily also has width 2, both F and TF can be

mapped to the region τ = 1
2
. This is depicted in Fig. 26. The decoupling

to massless Nf = 2 is illustrated in Fig. 27. The domains in this case are

exactly equivalent, Fig. 26 merely allows to extend the Nf ≤ 3 description of

the cusps to Nf = 4.

We stress that the decoupling limit for Nf = 4, with the order parameter

a bimodular form as (3.25), is quite different from the asymptotically free

theories with Nf ≤ 3. In the latter theories, u(τ) is not holomorphic and

modular except for special points in mass space (complex co-dimension Nf ) [2].

The decoupling of a hypermultiplet is in these theories accompanied by a

branch point moving to infinity. In this way, a singularity merges with the

weak coupling cusp. For cases A, B, C and D in Nf = 4 on the other hand,

there is no branch point for any value of the mass m, and in particular there

is also none for m→∞.

3.5 Discussion

In this section, we have studied in detail the Coulomb branch of the supercon-

formal Nf = 4 theory with gauge group SU(2), which has remained of great

interest throughout the years [21, 46, 50, 73, 77, 105, 111, 113, 148, 173, 178–180,

183–187, 195, 196]. For the mass configurations with the largest flavour sym-

metry group, such as when one, two and four hypermultiplets have an equal

mass, we show that the Coulomb branch is parametrised by a function u(τ, τ0)
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Figure 26: Fundamental domain of Nf = 4 case A with m = (m,m, 0, 0).

− 1
2

0 1
2

1 3
2

F T

TSS

ST−1 TST

ST−2 TST 2

ST−2S TST2S

Figure 27: Decoupling the two massive hypermultiplets in Nf = 4 case A gives the domain

of massless Nf = 2 (blue). Two of the differing regions (gray) are the regions near τ = 1
2 ,

which are mapped (orange) to i∞. The remaining two are merely mapped to Γ(2) equivalent

regions near the same cusp such that the resulting domain is connected. Alternatively, the

fundamental domain in this figure is the image of ST−1STS acting on the domain in Figure

26.
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that is not only invariant under separate modular transformations of τ and τ0,

but also exhibits invariance under a simultaneous transformation under τ and

τ0. By restricting to the stabiliser subgroup of a given mass under the trial-

ity action, such order parameters constitute nontrivial examples of bimodular

forms (see (3.25) for example). Furthermore, the moduli spaces are permuted

under triality, and the order parameter, periods, discriminants etc. furnish

vector-valued bimodular forms, which we also introduce (see definition 6).

The analysis of other mass configurations can be done using the tech-

niques established in section 2. As more complicated mass configurations m

inevitably introduce branch points and cuts, in general um is not a bimodular

form. A simultaneous transformation of τ and τ0 is yet to be expected by

triality, while the separate transformations are induced by monodromies and

as such do not in general lie in SL(2,Z) [46]. However, even in such cases the

action of the monodromy group of the u-plane can be understood as paths

in the fundamental domain for τ . See section 4.3.3 for a discussion of these

aspects for gauge group SU(3).

Our results allow to study the topologically twisted theory on a four-

manifold X [52, 61, 72–74], where the the path integral can be expressed as

an integral over the fundamental domain for the effective coupling τ . In fact,

a closed expression for the order parameter is enough to define the integrand.

The modularity for τ allows to show that the integral measure is well-defined.

The triality action then gives the S-duality orbit of the Nf = 4 theory on

X [197].

It would also be interesting to apply our results to other theories with an

IR moduli space of vacua as well as a non-trivial conformal manifold. Such

theories may include subsectors with triality symmetry, such as F-theory [198],

quiver gauge theories [21], the AGT correspondence [172], little string theory

[199] and string/string/string triality [200].
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4 Elliptic loci of SU(3) vacua

In this section, we investigate the modularity of the pure SU(3) SW theory.

While in the SU(2) theories of Sections 2 and 3 the obstruction to modularity

is due to the hypermultiplets, we show here that for rank two the modularity

is broken in specific cases even without hypermultiplets. This section is mainly

based on [1], and section 4.6 is based on unpublished work.

4.1 Introduction

Many observables in supersymmetric theories can be determined non-pertur-

batively in terms of hypergeometric, modular or other special functions. The

best understood example is N = 2 supersymmetric Yang–Mills theory with

gauge group SU(2) [45, 46], which we introduced in detail in section 1.5. Its

space of vacua is parametrised by the vacuum expectation value (vev) u =
1
2
〈Trφ2〉, where φ is the complex scalar in the N = 2 vector multiplet. The

renormalisation group flow generates a quantum scale Λ, at which the gauge

coupling becomes strong. In the weak-coupling region |u| � Λ2, the semi-

classical BPS spectrum consists of massive monopoles and dyons. The theory

can be solved non-perturbatively in terms of the Seiberg-Witten (SW) curve

[45]. This solution demonstrates that the effective abelian gauge theory breaks

down at two special points, u = ±Λ2. The electric-magnetic duality group is

generated by the monodromies around these singular points. It is a subgroup

of SL(2,Z), which acts by linear fractional transformations on the effective

coupling constant τ . With the SW solution, various physical quantities can be

exactly determined as functions of τ using modular functions [73,74,101,103,

201].

Similar non-perturbative solutions have been developed for gauge theories

with matter multiplets [46] and theories with other gauge groups [94–97,202–

204]. In pure Yang–Mills theory with compact gauge group G, the Coulomb

branch has complex dimension r = rank(G). Classically, the moduli space

is parametrised by the vevs uI+1 ∼ 〈TrφI+1〉, I = 1, . . . , r. The r(r + 1)/2

couplings τIJ are determined by the r order parameters uI . The electric-

magnetic duality group is a subgroup of Sp(2r,Z), generated by monodromies

around singular loci. While this also demonstrates a link to modularity, the

connection has remained more elusive, and the connection is best established

for the superconformal theories [178,205–208].

One complication for asymptotically free theories is that the structure of

the singular loci is in general quite intricate. This section focuses on the

asymptotically free SU(3) theory without hypermultiplets, whose singular loci

have a rich structure [104,105,128,209,210]. There are six singular (complex)

lines which intersect in five points. A particularly interesting phenomenon

occurs at two of these five vacua, namely those where three mutually non-local

dyons become massless, such that there is no duality frame in which all of these

91



states only carry electric charge. This indicates that the system is in a critical

phase, which led to the discovery of new superconformal theories [104,105,128].

Another complication for SU(N > 2) is that the number of couplings ex-

ceeds the dimension of the Coulomb branch. The observables are therefore

defined on a subspace of the genus N − 1 Siegel upper half-space HN−1. For

the SU(3) theory, the Coulomb branch is parametrised by two order parameters

which determine three coupling constants, τ11, τ12 and τ22. The curve and the

SW differential for pure SU(N) gauge theory have first been proposed in [94].

As a first step to explore the modularity of the SU(3) theory, we relate the hy-

perelliptic Seiberg-Witten curve to the Rosenhain form, which is an algebraic

expression in terms of Siegel theta series. To exactly match the Rosenhain

curve and Seiberg-Witten curve, we use the fact that the complexified masses

aI and aD,I = ∂F
∂aI

are solutions of second order partial differential equations

of Picard-Fuchs (PF) type. The solutions to such equations can be expressed

in terms of the generalised hypergeometric function F4 of Appell [96]. The

Siegel theta series and their modular transformations can provide insights for

the analytic continuation and monodromies of the solution in terms of F4.

The Rosenhain curve allows us to characterise the SU(3) Coulomb branch,

parametrised by the two Casimirs u = u2 and v = u3, as the zero-locus of three

equations inside a five-dimensional space. The structure of these equations

simplifies on one-dimensional loci of the Coulomb branch. We study two of

these loci in detail, namely Eu where v = 0 and Ev where u = 0. On each

of these loci, the equations reduce to two algebraic relations of Siegel theta

functions, relating the couplings τIJ to a single independent one. Interestingly,

each of these loci in the space of genus two curves also parametrises a family of

(genus 1) elliptic curves. Both loci interpolate between a weak-coupling regime

with large order parameters and a strong-coupling regime where u/Λ2 and v/Λ3

are O(1). Locus Eu contains three cusps where mutually local dyons become

massless, while locus Ev contains two special points where mutually non-local

dyons becomes massless. The latter are the superconformal Argyres-Douglas

points.

Since an elliptic locus parametrises a family of elliptic curves, there must

be a coupling τ valued in a fundamental domain (or modular curve) for a

discrete group in the upper half-plane H. We derive the generators of the

discrete subgroup from the monodromies of the SU(3) theory. We provide two

solutions for the locus Eu. The coupling for the first solution is τ− = τ11− τ12,

while τ22 = τ11. The order parameter u equals a modular form u− for the

congruence subgroup Γ0(9) ⊂ SL(2,Z) (4.49),

u = u−(τ−). (4.1)

The cusps of the fundamental domain of Γ0(9) map exactly to the singular

points on this locus. The coupling for the second solution is τ+ = τ11 + τ12. In

terms of this coupling, Equation (4.59) expresses u as

u = u+(τ+), (4.2)
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where u+ is expressed in terms of roots of modular forms, while it is not a

modular function for a congruence subgroup of SL(2,Z). We call it a sextic

modular function since it is a solution to a sextic equation. The inverses of

the identities (4.1) and (4.2) provide all order u-expansions for τ11 = τ22 and

τ12 on this locus. The function u+ appeared earlier as the solutions for the

order parameter on the Coulomb branch of the N = 2, SU(2) theory with

one massless hypermultiplet [101]. While this Coulomb branch and Eu are

isomorphic as four punctured spheres, it is striking that the solutions of the

order parameters are identical.

We find another intriguing structure for the second locus Ev where u = 0.

We are able to demonstrate for this locus that v is left invariant by the action of

the principal congruence subgroup Γ(6) ⊂ SL(2,Z). The fundamental domain

Γ(6)\H has 12 cusps, where v diverges. Surprisingly, this appears to imply

the existence of strongly coupled vacua in the region where v is large, which

is unexpected since large v is known to correspond to weak coupling. The

paradox is resolved by realizing that v is invariant under a transformation

which is not contained in SL(2,Z), namely a Fricke involution τ 7→ −1/nτ

for integer n ≥ 2. This transformation maps the putative cusps to i∞. The

result is that v is a modular function for a discrete subgroup Γv ⊂ SL(2,R)

of Atkin-Lehner type, and we show that the non-trivial monodromies on this

locus do generate this group.

We demonstrate furthermore that the elliptic curves underlying the two

loci Eu and Ev are related to the genus two curve in a precise way. For a genus

two curve Σ2, a holomorphic map ϕ : Σ2 → Σ1 to an elliptic curve Σ1 may

exist. Such maps were studied in the classic works by Legendre and Jacobi,

and more recently in [211, 212]. The existence of the map ϕ depends on the

complex structure moduli τIJ . The family of such curves spans a complex

co-dimension one locus L2 in the complex three-dimensional space of genus

two curves. At the elliptic loci of the Coulomb branch of the SU(3) theory

mentioned above, L2 intersects the SU(3) Coulomb branch, such that for any

point on the elliptic loci, there is a degree two map from the genus two curve

to an elliptic curve, or in other words the genus two curve is a double cover

of the elliptic curve. Besides Eu and Ev, L2 also includes a third elliptic locus,

E3 (4.91), which does not contain any of the singular points of the Coulomb

branch.

Our work motivates a similar analysis for SU(N) gauge theories, whose

Coulomb branch parametrises a curve of genus N − 1. The order parameters

uI , I = 2, . . . , N , are expected to be given by higher genus modular functions

of the coupling matrix τIJ . They should furthermore be invariant under a

subgroup of Sp(2r,Z) generated by the monodromies. The existence of maps to

elliptic or lower genus curves is however more subtle for such theories [213,214].
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4.2 The SU(3) Coulomb branch

We study in this section the SU(3) Coulomb branch. We first recall the Seiberg-

Witten geometry in section 4.2.1 following [94, 96, 215]. Section 4.2.2 reviews

the Picard-Fuchs solution for the complexified masses and couplings. Section

4.2.3 uses those results to write the curve in Rosenhain form.

4.2.1 Seiberg-Witten geometry

The vector multiplet scalar φ can be gauge rotated into the Cartan subalgebra

of SU(3). Then, φ can be expanded in terms of the two Cartan generators HI ,

I = 1, 2, as

φ = a1H1 + a2H2. (4.3)

Non-vanishing vevs of φ break the gauge group in general to U(1)2. The central

charges of the gauge bosons are then given by

Z1 = 2a1 − a2,

Z2 = 2a2 − a1,

Z3 = a1 + a2.

(4.4)

We denote electric-magnetic charges under U(1)2 as γ = (m1,m2, n1, n2),

where mi are the magnetic and ni the electric charges respectively, and the

period vector as π = (aD,1, aD,2, a1, a2)T. The central charge for a generic γ is

then given by Zγ = γ · π, where · is the standard scalar product.

The Coulomb branch is parametrised by vevs of Casimirs of φ, uI ∼ 〈TrφI〉,
I = 2, 3. Gauge invariant combinations for SU(3) are

u = u2 =
1

2
〈Tr(φ2)〉R4 = a2

1 + a2
2 − a1a2,

v = u3 =
1

3
〈Tr(φ3)〉R4 = a1a2(a1 − a2).

(4.5)

These relations can be rewritten in terms of two cubic equations for a1 and a2

as

a3
1 − ua1 − v = 0,

a3
2 − ua2 + v = 0.

(4.6)

There is a spontaneously broken global Z6 symmetry acting on u and v by

u 7→ αu and v 7→ −v, with α = e2πi/3. Classically, the discriminant is the

determinant ∆classical of the matrix BIJ = ∂uI+1

∂aJ
. It reads

∆classical = detBIJ = (a1 − 2a2)(2a1 − a2)(a1 + a2), (4.7)

and vanishes when one of the gauge bosons (4.4) becomes massless.

Let us denote the space parametrised by u and v by U . We parametrise

points on this space by (u, v) ∈ U , where u is the normalised parameter,
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u = 3

√
4
27
u. The moduli space U parametrises a complex two-dimensional

family of hyperelliptic curves of genus two [94,215],

y2 = (x3 − ux− v)2 − Λ6, (4.8)

which has discriminant

∆Λ = Λ18(4u3 − 27(v + Λ3)2)(4u3 − 27(v − Λ3)2). (4.9)

This can be viewed as a product of the discriminants of two elliptic curves

whose v parameters are separated by 2Λ3. Note that the Z6 global symmetry

leaves the discriminant invariant. It vanishes if and only if u3 = (v±Λ3)2. We

will frequently use units where the dynamical scale Λ = 1 and we note that it

can always be restored from dimensional analysis.

If we restrict to Im v = 0, the zero locus of the discriminant describes six

singular curves which intersect in the following points. On the v = 0 plane,

there are four singularities, namely u ∈ {∞, 1, α, α2}. On the other hand for

u = 0, there are two singularities at v = ±1. These are the Argyres-Douglas

points, where mutually non-local BPS states become massless and the theory

becomes superconformal [104]. Figure 28 sketches the singular lines on the

subset of U where Im v = 0. The singular lines represent regions in U where

the effective action of the pure N = 2 theory becomes singular, and they are

associated with vacua where hypermultiplets become massless.

Similarly to the SU(2) case, the periods transform under monodromies

which generate the duality group of the theory. The classical part of the mon-

odromy group is given by the Weyl group of the SU(3) root lattice, which acts

as reflections on lines perpendicular to the positive roots. The perturbative

quantum correction comes from the one-loop effective action. It contributes

to the prepotential as

F1−loop =
i

2π

∑
α

Z2
α logZα, (4.10)

where the sum runs over all positive roots α1, α2 and α3 = α1 + α2. Here, Zα
are the central charges (4.4) of the gauge bosons.

4.2.2 Picard-Fuchs solution

One way to find the non-perturbative solution is to notice that the periods

satisfy second order partial differential equations of Picard-Fuchs (PF) type,

whose solution space is spanned by the generalised hypergeometric function

F4 of Appell [96]. We review some aspects of the PF solution in the following,

and more details can be found in [1]. We study two interesting regions, one

where u is large and v small, and the other one where v is large and u is small.

In the limit of large u and small v, reference [96] determines the aI and

aD,I non-perturbatively in terms of the fourth Appell hypergeometric function
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Re(v)

Im(u)

Re(u)Eu

Ev

Figure 28: Singular lines ∆(u, v) = 0 in the SU(3) moduli space with Im v = 0, associated

to massless dyons [96]. The red dots represent the strong coupling points (u, v) = (1, 0),

(α, 0) and (α2, 0) on the v = 0 plane Eu, where two singular lines intersect. The blue dots

represent the AD points (u, v) = (0, 1) and (0,−1) respectively, where three singular lines

intersect. They lie on Ev, which is represented by the Re v axis here. The two loci Eu and

Ev intersect in the origin (u, v) = (0, 0) (brown).

F4(a, b, c, d;x, y). For
√
|x|+

√
|y| < 1, this function is given by

F4(a, b, c, d;x, y) =
∑
m,n≥0

(a)m+n (b)m+n

m!n! (c)m(d)n
xm yn, (4.11)

where (a)m = Γ(a+m)
Γ(a)

is the Pochhammer symbol. We will also need expansions

of F4 for large y, which can be achieved by replacing the sum over n by the

hypergeometric series 2F1,

F4(a, b, c, d;x, y) =
∑
m≥0

(a)m (b)m
m! (c)m

2F1(a+m, b+m, d; y)xm. (4.12)

While analytic continuations are known for 2F1, they are not well established

for F4.

In order to match the Picard-Fuchs solutions with the periods, we need to

expand the periods around the classical solutions in (4.6). We therefore need

to find the roots of these two cubics.

The general formula for the roots of a depressed cubic equation, ax3 + bx+

c = 0, is given by

ξk = − 1

3a

(
αkC +

∆0

αkC

)
, k ∈ {0, 1, 2}, (4.13)
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where α = e2πi/3, C3 =
∆1±
√

∆2
1−4∆0

2
, ∆0 = −3ab and ∆1 = 27a2c [216]. The

choice of sign in front of the square root in C is arbitrary, in the sense that it

only corresponds to a permutation of the roots.

It is however important to fix the ambiguities in taking the square and

cubic root. We fix the ambiguity in the square root by the following choice

for the branch of the logarithm: For any complex number z ∈ C∗, we set

log(z) = log|z| + iArg(z) with −π < Arg(z) ≤ π. The ambiquity in the cubic

root of a complex number z is fixed by demanding that the real part of 3
√
z

has the largest absolute value among the three solutions to ρ3 = z. Thus
3
√

1 = 1 and 3
√
−1 = −1. Two of the cube roots of i and −i have equal real

parts. We fix the remaining ambiguity by setting 3
√
i = eπi/6 =

√
3

2
+ i

2
and

3
√
−i = e−πi/6 =

√
3

2
− i

2
.

To list the roots of our two equations, we define

s±(a, b) =
3

√
b

2
±
√
b2

4
− a3

27
. (4.14)

Using Eq. (4.13), we then find that the roots of (4.6) for a1 are given by

ξ1(u, v) = s+(u, v) + s−(u, v),

ξ2(u, v) = α s+(u, v) + α2 s−(u, v),

ξ3(u, v) = α2 s+(u, v) + α s−(u, v),

(4.15)

and the roots for a2 by −ξj(u, v). This gives the 3 × 3 = 9 solutions to

the equations in (4.6). However, (4.5) is supposed to have only 2 × 3 = 6

solutions. Let us determine the 6 solutions in one of the regimes of interest

for SU(3) Yang–Mills theory: we assume u is large and close to the positive

axis: u = λ− iελ with λ real and very large and 0 < ε� 1. Note that in this

regime

s±(u, v) =
3

√
v

2
± i
√
u3

27
− v2

4
. (4.16)

Furthermore, s+(u, v) s−(u, v) = u/3 and

s−(u,−v) = e−πi/3s+(u, v) = −αs+(u, v) (4.17)

hold. For v = 0, we have s+(u, 0) = eπi/6
√
u/3 and s−(u, 0) = e−πi/6

√
u/3,

and thus

ξ1(u, 0) =
√
u,

ξ2(u, 0) = −√u,
ξ3(u, 0) = 0.

(4.18)

This demonstrates that the solutions to (4.5) for (a1, a2) are given by

(ξ1,−ξ2), (ξ1,−ξ3), (ξ2,−ξ1), (ξ2,−ξ3), (ξ3,−ξ1), (ξ3,−ξ2). (4.19)
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The non-perturbative effective action is characterised by the holomorphic

prepotential F , which allows to define the dual periods aD,I = ∂F
∂aI

. Both

periods aI and aD,I are given by linear combinations of Appell functions. The

large u expansion reads [96]

aD,1(u, v) = − i

2π

(√
u+

3

2

v

u

)
log

(
27

4u3

)
− 1

π

(
i

2
+ 2α1

)√
u+ . . . ,

a1(u, v) =
√
u+

1

2

v

u
+ . . . ,

(4.20)

with aD,2(u, v) = aD,1(u,−v), a2(u, v) = a1(u,−v) and α1 ∈ C a constant.

The coupling constants τIJ =
∂aD,I
∂aJ

are determined using the chain rule,

τ11(u, v) = τ22(u,−v) =
i

π
log(8u3) +

9iv

2π
u−3/2 −

(
129i

32π
+

63iv2

8π

)
u−3 + . . . ,

(4.21)

The off-diagonal τ12 is given by the series

τ12(u, v) = −τ11(u, v) + τ22(u, v)

4
− 1

2πi
log(8) +

1

2πi

27

4
f(u, v), (4.22)

where

f(u, v) =
(1− 4v2)

8
u−3 +

(
453

1024
− 3v2 − 31

16
v4

)
u−6 + . . . . (4.23)

Similarily, we find that the large v expansion of the coupling matrix reads

(ω = eπi/6)

τ11 ∼
i

π
log(108v2)− 1 +

ω

π
uv−2/3 +

ω5

6π
u2v−4/3 −

(
11i

18π
+

4i

27π
u3

)
v−2 + . . . ,

(4.24)

and τ12 and τ22 are given by similar series. At u = 0 we have τ11 = τ22 + 1 and

τ12 = − τ11

2
+ 1.

4.2.3 Seiberg-Witten curve in Rosenhain form

In this section, we will relate the SU(3) Seiberg-Witten curve to the curve in

Rosenhain form, which is a degree 5 equation. Every genus two hyperelliptic

curve can be brought to the Rosenhain form [217]

y2 = x(x− 1)(x− λ1)(x− λ2)(x− λ3). (4.25)

The three roots λi of the polynomial are also referred to as Rosenhain invari-

ants. These invariants are complementary to the Igusa invariants [218,219].

By a lemma of Picard, the Rosenhain invariants can be expressed in terms

of even theta constants as

λ1 =
Θ2

1 Θ2
3

Θ2
2 Θ2

4

, λ2 =
Θ2

3 Θ2
8

Θ2
4 Θ2

10

, λ3 =
Θ2

1 Θ2
8

Θ2
2 Θ2

10

. (4.26)
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The functions Θj are instances of genus two Siegel modular forms,

Θ

[
a

b

]
(Ω) =

∑
k∈Z2

exp
(
πi(k + a)TΩ(k + a) + 2πi(k + a)T b

)
, (4.27)

where the entries of the column vectors a and b take values in the set {0, 1
2
}.

The argument Ω is a 2× 2-matrix

Ω =

(
τ11 τ12

τ12 τ22

)
, (4.28)

valued in the Siegel upper half-plane H2. We refer to Appendix A.2 for a

precise definition and references. The moduli space of genus two curves M2

is complex three-dimensional. Since the SW order parameters u and v are

two complex parameters, the SU(3) Coulomb branch maps out a complex two-

dimensional space U ⊂M2 in the moduli space of genus two curves. In other

words, U is a divisor of M2.

To relate the Rosenhain curve (4.25) to the Seiberg-Witten curve (4.8), note

that a degree 5 polynomial as in (4.25) can be obtained by a linear fractional

transformation of a degree 6 hyperelliptic equation y2 =
∏6

j=1(x − rj), which

maps three of the roots to∞, 0 and 1. Linear fractional maps leave cross-ratios

invariant, which is a convenient way to relate the λj to u and v. Let us define

the cross-ratio of four points zi ∈ CP1 as

C(z1, z2, z3, zj) =
(z1 − z3)(z2 − zj)
(z1 − zj)(z2 − z3)

, (4.29)

such that C({∞, 0, 1, λj}) = λj.

Note that we have 120 different possibilities to map three roots among the

{rj} to 0, 1,∞, and another 3! possibilities to identify the three cross-ratios in

the hyperelliptic setting with the λj. By studying the large u expansions of

these for non-zero v, one can easily identify which cross-ratios, in terms of the

ri, correspond to which λj. To this end, let α = e2πi/3 as before. The roots of

the rhs of (4.8) are then given by (with Λ = 1)

r1 = s+(u, v + 1) + s−(u, v + 1), r4 = s+(u, v − 1) + s−(u, v − 1),

r2 = α s+(u, v + 1) + α2 s−(u, v + 1), r5 = α s+(u, v − 1) + α2 s−(u, v − 1),

r3 = α2 s+(u, v + 1) + α s−(u, v + 1), r6 = α2 s+(u, v − 1) + α s−(u, v − 1),
(4.30)

where

s±(u, v) =
3

√
v

2
±
√
v2

4
− u3

27
. (4.31)

To simplify notation, let us set s±± := s±(u, v ± 1). The large u, small v
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expansions for the roots are

r1 =
√
u+

1 + v

2u
+ . . . , r4 =

√
u− 1− v

2u
+ . . . ,

r2 = −√u+
1 + v

2u
+ . . . , r5 = −√u− 1− v

2u
+ . . . ,

r3 = −1 + v

u
+ . . . , r6 =

1− v
u

+ . . . .

(4.32)

Plugging the weak-coupling expansions (4.21) into the Rosenhain invariants

gives the leading behaviour for the λj. From this we can see that each invariant

λj approaches 1 in the large u limit.

We continue by determining which of the 720 possible sets of cross-ratios

matches with the theta constants. We have to determine which roots corre-

spond to the first three points zi, i = 1, 2, 3, in the cross-ratio (4.29). Since

the three theta constants approach 1 in the large u limit, we should take for

{z1, z2} in (4.29) the roots which vanish in this limit, thus {r3, r6}. Together

with the choice of z2, this reduces to 8 possible triplets. From a further com-

parison between the Rosenhain invariants and the cross-ratios, we determine

that z1 = r6, z2 = r3 and z3 = r2. With Cj := C(r6, r3, r2, rj) for j = 1, 4 and

5, we arrive at

λ1 = C5, λ2 = C1, λ3 = C4. (4.33)

These are three equations for five unknowns, namely τ11, τ12, τ22, u and v. To

make it more manifest that the right hand side depends on only two variables,

let us express the cross-ratios Cj in terms of s±±,

C1 = α2 [α s+− + s−− − s++ − α s−+] [s++ − α s−+]

[α2s+− + α s−− − s++ − s−+] [s−+ − s++]
,

C4 = − [α s+− + s−− − s++ − α s−+] [α2 s++ + α s−+ − s+− − s−−]

3[s+− − α s−−] [s−+ − s++]
,

C5 = −α2 [α s+− + s−− − s++ − α s−+] [α s++ + s−+ − s+− − α s−−]

3[s−− − s+−] [s−+ − s++]
.

(4.34)

Note that these expressions are true on the full moduli space. For u 6= 0,

we can define

X =
s++√
u/3

, Y =
s+−√
u/3

, (4.35)

such that X−1 = s−+/
√
u/3 and Y −1 = s−−/

√
u/3, since s+± s−± = u/3.

The cross-ratios can then be expressed as

C1 =− α2X(X − αY )(X − Y −1)(X − αX−1)

(X2 − 1)(X − α2Y )(X − αY −1)
,

C4 =− 1

3
α2 (X − αY )2(X − Y −1)(X − αY −1)

X(X2 − 1)(Y − αY −1)
,

C5 =
1

3

(X − αY )(X − Y −1)2(X − α2Y )

X(X2 − 1)(Y − Y −1)
.

(4.36)
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We thus see that the Coulomb branch can be identified with the zero-locus

of the three equations (4.36) inside the space (λ1, λ2, λ3, X, Y ). One may in

principle eliminate X and Y to arrive at a single equation in terms of the λj. In

the following two sections, we will restrict to the two one-dimensional sub-loci

Eu and Ev of the solution space of (4.33), where v = 0 and u = 0 respectively.

4.3 Locus Eu: v = 0

In this section we analyse the locus v = 0. We will demonstrate that the

order parameter u can be expressed in terms of classical modular forms on

this locus. In fact, we will arrive at two distinct expressions depending on a

choice of effective coupling. In Section 4.5, we will discuss these aspects from

the geometric point of view.

4.3.1 Algebraic relations

On the locus v = 0 we have that τ11(u, 0) = τ22(u, 0) and τ12(u, 0) is given by

(4.22). Let us analyse these coupling constants, now from the perspective of

Section 4.2.3. For u large and positive, s+± has a large magnitude and phase

eπi/6. Similarly, the phase of s−± is approximately given by e−πi/6. This means

that

s−− = −α s++, s+− = −α2 s−+, X = −α2 Y −1. (4.37)

Using this and (4.35), we find that (4.36) now turns into

C1 =− (X +X−1) (X − αX−1)

(X −X−1) (X + αX−1)
,

C4 =− 1

3

(X +X−1)2

(X −X−1)2
,

C5 = +
1

3

(X +X−1) (X + αX−1)

(X − αX−1) (X −X−1)
.

(4.38)

Since the rhs of (4.38) depends only on one variable X, the cross-ratios Cj sat-

isfy two algebraic equations, which can be determined by solving the equations

for X2. One finds

C1C5 − C4 = 0,

(3C4 − C1)2 − C4(C1 + 1)2 = 0.
(4.39)

Using (4.33) and (4.26), the cross-ratios are identified with quotients of Siegel
theta functions (see Appendix A.2), and the above equations take the form

0 = Θ4
3 −Θ4

4, (4.40)

0 = Θ2
1Θ2

2Θ4
8Θ4

3 −Θ4
2Θ2

8Θ2
10Θ4

3 + 8 Θ2
1Θ2

2Θ2
4Θ2

8Θ2
10Θ2

3 + Θ2
1Θ2

2Θ4
4Θ4

10 − 9 Θ4
1Θ4

4Θ2
8Θ2

10.

The two systems of equations above are equivalent given that none of the λj
vanish or are infinite, which is an assumption of Picard’s lemma (4.26). We
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can use the second relation of (4.38) to solve for u,

u3 =

√
27

2

(3C4 + 1)3

√
C4(C4 − 1)

, (4.41)

and in terms of theta constants this gives

u3 =

√
27

2

(3Θ2
1Θ2

8 + Θ2
2Θ2

10)3

Θ1Θ3
2Θ8Θ3

10(Θ2
1Θ2

8 −Θ2
2Θ2

10)
. (4.42)

This can be viewed as a generalisation of the rank 1 result (1.35), in the sense

that we can write the parameter u as a rational function of theta series. It

follows naively that u transforms as a weight 0 function under a subgroup of

Sp(4,Z).

4.3.2 A modular expression for u

The solutions to the algebraic relations (4.40) are not unique due to the peri-

odicity in the τIJ . The first equation implies τ11 − τ22 = 2k with k ∈ Z, but

we know from (4.21) that k = 0. From (4.22) we can make a power series

expansion for τ12 in terms of p = e2πiτ11 . One finds

τ12 = −1

2
τ11 −

1

2πi
log(8) +

1

2πi

27

4
h(p), (4.43)

with

h(p) = p
1
2 − 63

16
p+

1447

64
p

3
2 − 307679

2048
p2 +O(p

5
2 ), (4.44)

by satisfying the second relation in (4.40) order by order. Substitution of (4.43)

in (4.41) gives the following p-expansion for u,

u =
1

2
p−

1
6 +

43

8
p

1
3 − 2923

128
p

5
6 +

1713

16
p

4
3 +O(p

11
6 ). (4.45)

One can verify agreement with the Picard-Fuchs approach by substituting this

expansion in Eq. (4.21). As this series is only an expansion for small p, it is

not very elucidating. To arrive at a closed expression, we aim to express u as

a function of a “coupling constant” which transforms well under the duality

transformations. This is not the case for τ11.

However when τ11 = τ22, the inversion S = ( 0 −1
1 0 ) ∈ Sp(4,Z) acts naturally

on the linear combinations τ± = τ11 ± τ12, which are in one-to-one correspon-

dence with τ11 and τ12. From (A.24), we deduce for the action of S on τ±

S : τ11 ± τ12 7→ −
1

τ11 ± τ12

. (4.46)

That is to say, it reduces to the ordinary S-transformation τ± 7→ −1/τ±.

Moreover, τ± ∈ H for both ±. To see this note that since Im(Ω) is positive

definite, we have that y11 > 0 and y11y22 − y2
12 > 0, where yIJ = Im(τIJ).

Whenever y11 = y22, the latter inequality implies that y2
11 > y2

12. Since y11 > 0,
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it implies y11 > y12 and y11 > −y12 simultaneously. From this we learn that

y11 − y12 and y11 + y12 are both positive and therefore τ± := τ11 ± τ12 ∈ H.

We will proceed by considering τ− =: τ , leaving the discussion on τ+ for

section 4.3.3. To determine u as function of τ , one can first find the series ex-

pansion for τ in terms of p, invert and substitute p(τ) in (4.45). Alternatively,

one can revert to the Picard-Fuchs solution, by inverting the series (4.21) for

v = 0,

q = e2πi(τ11(u)−τ12(u)) = U3 + 45U4 + 1512U5 + 45672U6 + . . . , U =
1

4u3
.

(4.47)

Either method gives us the following series for u,

3
√

4u = q−
1
9 + 5 q

2
9 − 7 q

5
9 + 3 q

8
9 + 15 q

11
9 − 32 q

14
9 +O(q

17
9 ). (4.48)

This expansion is also known as the McKay-Thompson series of class 9B for

the Monster group [36, 56–58]. Thus similarly to the u for rank 1 (1.35), we

find a McKay-Thompson series. We then have

u = u−(τ) = 3

√
27
4

b3,0

(
τ
3

)
b3,1

(
τ
3

) , (4.49)

where b3,j are theta series for the A2 root lattice,

b3,j(τ) =
∑

k1,k2∈Z+ j
3

qk
2
1+k2

2+k1k2 , j ∈ {−1, 0, 1}. (4.50)

The theta series b3,j transform under the generators of SL(2,Z) as (α = e2πi/3)

S : b3,j

(
−1

τ

)
= − iτ√

3

∑
l mod 3

α2jl b3,l(τ),

T : b3,j(τ + 1) = αj
2

b3,j(τ).

(4.51)

The solution u− can also be expressed in terms of the Dedekind η-function

(A.18) as

u−(τ) = 3

√
27
4

(
1 +

1

3

η
(
τ
9

)3

η(τ)3

)
. (4.52)

Using Theorem 1 in Appendix A.1, one finds that u−(9τ) is a modular

function for the congruence subgroup Γ0(9) (also defined in Appendix A.1).

This implies that u is a modular function for Γ0(9), which is generated by

the matrices T 9, STS and (T 3S)T (T 3S)−1. In fact, it is easy to see from

(4.51) that u−(τ − 3) = αu−(τ) for all τ ∈ H. Furthermore, u rotates as well

under TST−2, u−
(
τ−3
τ−2

)
= αu−(τ). The two elements T 3 and TST−2 generate

Γ0(3) and u can therefore be interpreted as a modular function for Γ0(3) with

multipliers αk.

103



Let us analyse the strong coupling singularities u3 = 27
4

for v = 0 in terms

of the variable τ . We will demonstrate that these correspond to τ → 0, 3 and

−3. Using (4.51), one finds that the expansion around 0 takes the form

3

√
4
27
u−,D(τD) =

b3,0(3τD) + 2b3,1(3τD)

b3,0(3τD)− b3,1(3τD)

= 1 + 9 qD + 27 q2
D + 81 q3

D + 198 q4
D +O(q5

D),

(4.53)

with τD = −1/τ , qD = e2πiτD and u−,D(τD) := u−(−1/τD). In the same

notation we can invert the series to find

qD = χ− 3χ2 + 9χ3 − 22χ4 + 21χ5 + 207χ6 +O(χ7), (4.54)

where χ := ( 3
√

4/27u − 1)/9. It follows that qD → 0 for 3
√

4/27u → 1 or

χ→ 0. This can be directly confirmed by analytically continuing the Picard-

Fuchs expansion around u = 3
√

27/4.

The expansion around ±3 can then be obtained from the one around 0 by

shifting the argument τD,± = − 1
τ
±3, and one finds using the T -transformation

(4.51) that

u−,D(τD,±) = α∓1 3

√
27
4

b3,0(3τD) + 2b3,1(3τD)

b3,0(3τD)− b3,1(3τD)
(4.55)

The expansions around the points 3 and −3 differ from the one around 0 only

by the phases α−1 = α2 and α. Together with (4.53), this proves that indeed

τ → {0,−3, 3} corresponds to the three singularities u → {1, α, α2}. Due to

the T 9-invariance of the solution (4.49), there is an ambiguity in identifying the

τ -parameter with τ + 9Z. These Z2 points are studied in detail in [215, 220].

They correspond to the 3 vacua of theN = 1 theory after deforming theN = 2

theory by relevant or marginal terms.

The modular analysis is completely analogous to the SU(2) theory, as re-

viewed in section 1.5: The cusps of Γ0(9) are {0,−3, 3, i∞}, which is exactly

where u assumes the Z2 vacua and the semi-classical limit. The fundamental

domain of Γ0(9) is given in Figure 29 and is the union of 12 images of the

SL(2,Z) fundamental domain F = SL(2,Z)\H,

Γ0(9)\H =
4⋃

`=−4

T `F ∪ SF ∪ T 3SF ∪ T−3SF . (4.56)

Using (4.52), we can find the exact coupling at the origin of the moduli

space. We have that u(τ0) = 0 for the Γ0(9) orbit of

τ0 =
√

3ω =
3

2
+

√
3

2
i, (4.57)

with ω = eπi/6. The point τ0 lies on the boundary of the fundamental domain,

on the point where the boundary arcs from different cusps meet. The elements

(STS)k ∈ Γ0(9) map τ0 7→ τ0− 3k for integer k, which identifies the “corners”
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−5 −4 −3 −2 −1 0 1 2 3 4 5

F TF T 2F T 3F T 4FFT−1FT−2FT−3FT−4F

SF T 3SFT−3SF

Figure 29: Fundamental domain Γ0(9)\H of the congruence subgroup Γ0(9). It consists of

12 images of the key-hole fundamental domain F .

in Figure 29. This is compatible with the global Z3 symmetry, which also acts

by T−3 and leaves the origin invariant. It is in complete analogy to the SU(2)

picture: We find the nice picture that the cusps of Γ0(9)\H are in one-to-one

correspondence with the singularities u3 = 27
4

and u =∞ and the origin is the

symmetric point where the boundary arcs meet.

4.3.3 u as a sextic modular function

While we chose in the above the modular parameter τ− = τ11 − τ12, Equation

(4.46) shows that we could equally well consider τ+ = τ11 + τ12. We will

consider the variable τ := τ+ in this subsection. We can determine the first

terms in the q-expansion of u, which results in

u = u+(τ) =
1

4

(
q−1/3 + 104 q2/3 − 7396 q5/3 +O(q8/3)

)
. (4.58)

This series can be recognised as the q-expansion of

u+(τ) = 3

√
27
2

E4(τ)1/2

(E4(τ)3/2 − E6(τ))1/3
, (4.59)

where E4 and E6 are the Eisenstein series (1.7). We will derive this explicitly

in section 4.5. The function u+ is a root of the sextic equation

X6 − j(τ)

64
X3 +

27 j(τ)

256
= 0, (4.60)

where j is the j−invariant (A.9). Since the coefficients of this sextic equation

are modular functions for SL(2,Z), we call u+ a sextic modular function (see

also Appendix A.5). Due to the fractional powers in (4.59), u+ is not a mod-

ular function for SL(2,Z). In fact, E
1/2
4 and u+ are not invariant under any

subgroup of SL(2,Z). One way to see this is that E4 has a simple zero for

τ = α, such that the square root introduces a branch cut. While the family
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of sextic modular functions thus includes functions which are not modular for

SL(2,Z), this family also includes functions which are modular for an index 6

congruence subgroup of SL(2,Z). The order parameter for SU(2) (1.35) is an

example of the latter. One can thus view the family of sextic modular func-

tions as an extension of the family of modular functions for index 6 congruence

subgroups.

Interestingly, u+ is up to an overall factor the same function as the order

parameter of the masslessNf = 1 theory with gauge group SU(2) [101,103,221],

see (2.66). This aspect distinguishes massless Nf = 1 from Nf = 0, 2, 3,

since for the latter theories the order parameters are modular functions for

congruence subgroups isomorphic to Γ0(4) [101]. On the other hand, it is

known since the time of Fricke and Klein that similar fractional powers of

modular forms as in u+ do appear in the context of Picard-Fuchs equations

and hypergeometric functions [222,223].

As mentioned before, the fractional powers in (4.59) are incompatable with

any subgroup of SL(2,Z). Nevertheless, if we choose a basepoint, we can show

that u+ is invariant under transformations of τ , which combine to a closed

trajectory with starting and endpoint equal to the base point. We choose the

base point τb with Re(τb) = 0 and Im(τb) � 1. First, using the modular

transformation of E4 and E6, we find for the expansion of τ near 0,

τ → 0 : u+(τ) = u+,D(−1/τ), (4.61)

with

u+,D(τD) = 3

√
27
2

E4(τD)1/2

(E4(τD)3/2 + E6(τD))1/3

= 3

√
27
4

(
1 + 144 qD − 3456 q2

D + 596160 q3
D + . . .

)
.

(4.62)

The S-transform u+,D is also a solution to (4.60) and thus also a sextic modular

function. From Eq. (4.58) we see that u+ is invariant under τ 7→ τ + 3 at

weak coupling, Im(τ) � 1. Let us introduce Tw for the translation at weak

coupling. Moreover at strong coupling, 0 < Im(τ) � 1, u+ is invariant under

τD = −1/τ 7→ τD + 1. Let us introduce Ts for the translation at strong

coupling. We can get the monodromies around the other cusps, τ = ±1 from

conjugation with Tw. We then find that u+ is left invariant by

T 3n
w , (T `wS)Ts(T

`
wS)−1, `, n ∈ Z, (4.63)

where S is the usual inversion τ 7→ −1/τ , mapping τ from weak to strong

coupling. These transformations are sketched in Figure 30 for n = 1 and

` = 0,±1.

We denote the invariance group of u+ by Γu+ . It is generated by the

elements in (4.63) with n = 1, and ` = 0, 1. From the invariance under (4.63),

one derives that a fundamental domain is given by

1⋃
`=−1

T `F ∪ T `SF . (4.64)
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It consists of six copies of F , which is directly related to u+ being a sextic

modular function. This fundamental domain is the grey area in Figure 30.

The domain is clearly topologically equivalent to the fundamental domain in

Figure 29. The expansions of u+ and u+,D demonstrate that u+(i∞) = ∞,

−2 −1 0 1 2

τb

Ts TsTs

SS S

Tw Tw

T 3
w

Figure 30: Fundamental domain for u+. The vertical lines at τ = ±3/2 are identified, as

well as each pair of the two arcs meeting at a cusp −1, 0 or 1. The point τb is the base point

for the monodromies, which are compositions of Tw, Ts and S. Tw is a shift τ 7→ τ + 1 at

weak coupling, Ts circles around a strong coupling cusp, and S maps τ from weak to strong

coupling.

u+(0) = 3

√
27
4

and u+(±1) = α∓ 3

√
27
4

. We will derive u+ from the SW geometry

in section 4.5.

Because u+ is not a weakly holomorphic modular form, but involves frac-

tional powers of modular forms, it is problematic to identify the transforma-

tions (4.63) with elements of SL(2,Z). One way to see that this identification

is problematic is that the composition of S, Tw and Ts does not satisfy the

relation (ST )3 = −1, if we identify Tw = Ts = T =

(
1 1

0 1

)
. To further
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study this aspect, let us list the SL(2,Z) matrices corresponding to (4.63),

T 3 =

(
1 3

0 1

)
,

STS−1 =

(
1 0

−1 1

)
,

(TS)T (TS)−1 =

(
0 1

−1 2

)
,

(T−1S)T (T−1S)−1 =

(
2 1

−1 0

)
.

(4.65)

These matrices fix each of the cusps {∞, 0, 1,−1}. On the other hand, u+

is not invariant under the modular action of the matrices on τ , τ 7→ (aτ +

b)/(cτ + d) except for T 3n. For example, STS−1 would map τ = i∞ to −1.

The values of u+ are however different for these two arguments: u+(i∞) =∞
and u+(−1) = α 3

√
27
4

. Furthermore, the matrices (4.65) generate the full

modular group SL(2,Z).

The origin u+(τ0) = 0 of the moduli space is again given by the points

where the boundary arcs meet: At τ0 = α we have that E4 vanishes but E6

does not. From (4.59) it is then clear that τ0 + Z are indeed the zeros of u+.

This is also compatible with the Z3 global symmetry, which according to (4.58)

acts as T−1 and leaves the origin invariant.

4.4 Locus Ev: u = 0

We will now consider the second elliptic locus, namely where u = 0. By doing

a similar analysis as in section 4.3 but now for large v, we find that the correct

matching between the cross-ratios and the Rosenhain invariants for this limit

is

λ1 = C5, λ2 = C4, λ3 = C1. (4.66)

Note that the only difference from before is that the rôles of λ2 and λ3 have

been interchanged. One could perform a change of symplectic basis to have the

same matching as (4.33). This can be be done by acting on the periods with

the matrix Tθ = ( 1 θ
0 1

) ∈ Sp(4,Z) with θ =
( −1 2

2 −4

)
.26 This would however

also change the Rosenhain form, and we therefore prefer to continue with the

identification in (4.66).

We will proceed by deriving the relations satisfied by the couplings τIJ on

the locus u = 0.

4.4.1 Algebraic relations

To determine the algebraic relations among the theta constants, we assume

that v is real, large and positive. In this limit we find that s+± = 3
√
v ± 1 and

26Note that there is an ambiguity in the choice of Tθ. The λj are invariant under a subgroup

of Sp(4,Z). Multiplying Tθ with an element of this group thus gives the same result.
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s−± = 0. The cross-ratios (4.34) simplify, and one finds

C1 =− α2 s++ − αs+−
s++ − α2s+−

,

C4 =− α2

3

(s++ − αs+−)2

s++s+−
,

C5 = +
1

3

(s++ − αs+−) (s++ − α2s+−)

s++s+−
.

(4.67)

From this we find two algebraic relations between the cross-ratios, namely

C1C5 − C4 = 0,

C2
5 + C2

4 − C5C4 − C4 = 0.
(4.68)

Writing these in terms of the theta constants, we have

0 = Θ4
1 −Θ4

2,

0 = Θ4
2Θ2

3Θ4
8 + Θ4

1Θ2
3Θ4

10 −Θ2
1Θ2

2Θ2
3Θ2

8Θ2
10 −Θ4

2Θ2
4Θ2

8Θ2
10.

(4.69)

4.4.2 Modular expression for v

Our next aim is to determine a modular expression for v on this elliptic locus.

The first relation in (4.69) implies τ11 = τ22 + 2Z + 1, while the second one

implies τ12 = ±1
2
τ11 + Z. We claim that these are all the solutions. As in the

case v = 0, the PF solution (4.24) fixes these relations,

τ11 = τ22 + 1, τ12 = −τ11

2
+ 1. (4.70)

In contrast to the locus Eu, these linear relations between the τ11, τ22 and τ12

are exact on Ev. Using the first equation in (4.67), we can solve for v,

v = − i√
27

(C1 − 2)(C1 + 1)(2C1 − 1)

C1(C1 − 1)
. (4.71)

This can again be written as a rational function of Siegel theta functions,

v = − i√
27

(Θ2
8 − 2Θ2

10)(Θ2
8 + Θ2

10)(2Θ2
8 −Θ2

10)

Θ2
8Θ2

10(Θ2
8 −Θ2

10)
. (4.72)

As a function of τ− = τ11 − τ12, one finds (q− = e2πiτ−)

v =
i

2
√

27

(
α q
− 1

6
− − 33α2 q

1
6
− − 153 q

1
2
− − 713α q

5
6
− +O(q

7
6
−)
)
. (4.73)

The expansion in terms of τ+ = τ11 + τ12 is very similar. One can recognise

these series as
v = i

2
√

27
m( τ+

2
),

v = i
2
√

27
m( τ−

6
+ 2

3
),

(4.74)

109



where

m(τ) =

(
η (2τ)

η (6τ)

)6

− 27

(
η (6τ)

η (2τ)

)6

= q−1 − 33 q − 153 q3 − 713 q5 − 2550 q7 − 7479 q9 +O(q11).

(4.75)

The function m is known in the literature as the completely replicable function

of class 6a [56–58]. The perturbative expansion (4.73) can also be verified from

the Picard-Fuchs solution by starting from Eq. (4.24) and setting u = 0. Then,

expand q = e2πi(τ11(v)−τ12(v)) as a series in v and invert it to find (4.73).

4.4.3 The Z3 vacua

Let us study the solution (4.74) near the strong coupling vacua. To this end,

we eliminate the phases in (4.73) by substitution of τ := τ− + 1 in (4.74). In

the new variable τ , the solution reads

v = − i
2
√

27
m
(
τ
6

)
. (4.76)

It can be shown that the values of τ at the Argyres-Douglas (AD) vacua

vAD,1 = 1 and vAD,2 = −1 are (ω = eπi/6)

τAD,1 = −3

2
+

√
3i

2
=
√

3ω5,

τAD,2 = +
3

2
+

√
3i

2
=
√

3ω,

(4.77)

and the origin (u, v) = (0, 0) is located at τ0 =
√

3i. This can be rigorously

using the properties of m.

The solutions to v = 1 and v = −1 are not straightforward to obtain. Let

us start with the point (u, v) = (0,−1). In the following, all arguments are

those of m. Due to the prefactor in (4.76), v = −1 is in fact a quadratic

equation with zero discriminant and therefore satisfied if and only if(
η(2τ)

η(6τ)

)6

= −
√

27 i. (4.78)

A solution to this equation can be found to be

τ−1 =
ω

2
√

3
=

1

4
+

i

4
√

3
=
τAD,2

6
, (4.79)

with ω = eπi/6 as before and τAD,2 the argument of v in (4.77). The other AD

point can be found using the symmetry of m, and it is given by

τ+1 =
ω5

2
√

3
= −1

4
+

i

4
√

3
=
τAD,1

6
. (4.80)

The zero of m (and therefore of v) is given by

τ0 =
i

2
√

3
. (4.81)
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Note that all these numbers have the same absolute value 1
2
√

3
.

Let us prove (4.79) first: In order to compute both the numerator and the

denominator, we can resort to the S- and T -transformations of η as given in

A.1,

η(2τ−1)
S
= 3

1
4ωe−

πi
12η(−1

2
+
√

3
2
i)

T
= 3

1
4 e

πi
12η(α)

η(6τ−1) = η(3
2

+
√

3
2
i)

T
= e

πi
6 η(α).

(4.82)

Equation (4.78) follows immediately.

In order to find the point where v = +1, we can make the observation that

m(− 1
τ
) = −m( τ

12
). This implies that under the Fricke involution ( 0 −1

12 0 ), the

solution receives a minus sign,

m

(
− 1

12τ

)
= −m(τ). (4.83)

Using the T -transformation of η, one also finds that m
(
τ ± 1

2

)
= −m(τ). We

can use either of those maps, τ+1 = τ−1 − 1
2

= − 1
12τ−1

to obtain (4.80).

We can also study the zeros of v. Every root of m(τ) is given by the

equation η(2τ)12 = 27 η(6τ)12. A solution to this equation is (4.81), which we

can prove: Using the S-transformation, we find

η(2τ0) = η( i√
3
) = 3

1
4η(
√

3i) = 3
1
4η(6τ0). (4.84)

The result follows immediately. Another proof follows simply from the fact

that τ0 is the fixed point under (4.83).

The modular group of v is closely related to the duality group of the SU(3)

theory on this locus. It can be shown that v is a modular form for the prin-

cipal congruence subgroup Γ(6), as defined in Appendix A.1. However, the

fundamental domain of this group has twelve cusps, and v diverges at all of

them. This suggests that we found strongly coupled vacua in the region of the

moduli space where v is large. But from the discriminant ∆Λ|Ev = v2 − 1 we

expect the only singularities to be at v ∈ {1,−1,∞}.
To resolve this problem, let us study the function m in more detail. It

is a linear combination of eta quotients, whose modular properties have been

studied extensively [224,225]. Applying Theorem 1 in Appendix A.1, one finds

that m is a modular function for the Hecke congruence subgroup Γ0(12). In

addition, it satisfies the following non-SL(2,Z) transformations

m
(
τ − 1

2

)
= −m(τ), (4.85a)

m
(
− 1

12τ

)
= −m(τ). (4.85b)

The transformation (4.85b) is also known as a Fricke involution. Translating

both equations to the argument of v, we find that v picks up a minus sign

under both T−3 and F = ( 0 −3
1 0 ). Taking products, we find that v is properly

invariant under FT−3 =
(

0 −3
1 −3

)
and T−6. Let us normalise the former to
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X = 1√
3

(
0 −3
1 −3

)
, and denote the subgroup of PSL(2,R) generated by these two

elements as

Γv =
〈
X,T−6

〉
. (4.86)

This group is a proper subgroup of the modular group Γ0(6|2) + 3 of Atkin-

Lehner type, in the notation of [58]. This Atkin-Lehner group extends the

ordinary congruence subgroup Γ0(6
2
) by elements in PSL(2,R). See Appendix

A.1 for the precise definition. If we allow for a non-trivial multiplier system,

the modular group associated with m is Γ0(6|2) + 3 [58] . The latter contains

for example T−3, under which we have shown that v is anti-invariant. We can

write a similar set of matrices as (4.65),

M1 =

( −3 −3

1 0

)
, M2 =

(
0 3

−1 3

)
, M∞ =

(
1 −6

0 1

)
= T−6,

(4.87)

under which v ∼ m(τ/6) is invariant. If we consider their normalisation to

unit determinant, Π(Mj) := |det(Mj)|−1/2Mj, they lie in the group Γv (4.86),

and furthermore satisfy

Π(M1)Π(M2) = M∞. (4.88)

A fundamental domain for Γv can be drawn using the algorithm given

in [58], and it is shown in Figure 31. The element T 6 contains the domain to

|Re τ | < 3. X identifies the interior of the circle with radius
√

3 centered at

0, with a region inside the blue domain in Figure 31. Similarly, the interior of

the circles centered at ±3 is identified with a region of the blue domain. We

conclude,

Γv\H = {z ∈ H | |Re z| < 3} \
1⋃

`=−1

D√3(3`). (4.89)

where Dr(c) is the closed disc of radius r and center c.

The Argyres-Douglas vacua v = 1 and v = −1 correspond to the spe-

cial points τAD,j (4.77). They are stabilised by M1 and M2, respectively.

This makes the AD vacua elliptic points of Γv. They are in fact expected

to not get mapped to cusps of v, since their coupling matrix lies inside the

Siegel upper half-space H2 [1]. This is a familiar property of superconformal

points [104,155]. It is different from the Z2 points where the coupling matrices

are located on the boundary ∂H2 and therefore mapped to the real line ∂H1.

The origin τ0 =
√

3i is mapped under FT−3 to τ0− 3, which is identified with

τ0 since v = 0 is a fixed point under T−3 : v 7→ −v. The anti-invariance under

T−3 is in fact directly derived from the Z2 symmetry ρ : v 7→ eπiv [1]. The

large v monodromy ρ2 acts on τ as T−6, under which v is invariant. The origin

of the Fricke involution can therefore be understood from the global structure

on the u = 0 plane.

The discussion is similar for the parameter τ+ = τ11 + τ12. If we introduce

here τ = τ+ − 1, v equals − i
2
√

27
m(τ/2), which is again invariant under Γ(6).
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−3 −2 −1 0 1 2 3

τAD,1 τAD,2

Figure 31: Fundamental domain Γv\H for the group Γv. The values of the special points

are: τAD,1 =
√

3ω5 and τAD,2 =
√

3ω.

It is multiplied by a sign under T as well as under the Fricke involution F̃ =

( 0 −1
3 0 ). This means that it is invariant under T 2 together with the involution

X̃ := F̃ T−1 =
(

0 −1
3 −3

)
, which again generate an Atkin-Lehner type group. The

fundamental domain of this group equals that in Figure 31, but with all points

divided by 3.

4.5 Elliptic curves for Eu and Ev
It is natural to expect that the complexified couplings τ± for both loci Eu and

Ev have an interpretation as complex structures of elliptic curves. Moreover,

these elliptic curves are expected to be related to the geometry of the genus

two Seiberg-Witten curve (4.8). We will make these expectations precise in

this section.

Recall that the moduli space M2 of genus two curves is complex three-

dimensional. The moduli space M2 contains two-dimensional loci L2 ⊂ M2,

for which the genus two curves can be mapped to genus one with a map of

degree 2 [226]. The map can be lifted to a map of the Jacobians of the curves.

The Jacobian of the genus two curve is a four-torus, while the Jacobian of

a genus one curve is a two-torus. For the curves contained in L2, there is a

degree two map from the genus two Jacobian to the genus one Jacobian. The

Jacobian of a curve in L2 factors, T 4 ≡ T 2 × T 2, which demonstrates that for

a generic curve in L2, there are two distinct maps ϕj : Σ2 → Σ1,j, j = 1, 2 to

two elliptic curves Σ1,j. We will see in this section that these elliptic curves

Σ1,j have precisely the complex structures τ± introduced above.

The locus L2 of genus 2 fields with elliptic subfields of degree 2 reads
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[211,212,227]

8748J10J
4
2J

2
6 + 507384000J2

10J
2
4J2 − 19245600J2

10J4J
3
2 − 592272J10J

4
4J

2
2 + 77436J10J

3
4J

4
2

− 81J3
2J

4
6 − 3499200J10J2J

3
6 + 4743360J10J

3
4J2J6 − 870912J10J

2
4J

3
2J6 + 3090960J10J4J

2
2J

2
6

− 78J5
2J

5
4 − 125971200000J3

10 + 384J6
4J6 + 41472J10J

5
4 + 159J6

4J
3
2 − 236196J2

10J
5
2 − 80J7

4J2

− 47952J2J4J
4
6 + 104976000J2

10J
2
2J6 − 1728J5

4J
2
2J6 + 6048J4

4J2J
2
6 − 9331200J10J

2
4J

2
6

+ 12J6
2J

3
4J6 + 29376J2

2J
2
4J

3
6 − 8910J3

2J
3
4J

2
6 − 2099520000J2

10J4J6 + 31104J5
6 − 6912J3

4J
3
6

− J7
2J

4
4 − 5832J10J

5
2J4J6 − 54J5

2J
2
4J

2
6 + 108J4

2J4J
3
6 + 972J10J

6
2J

2
4 + 1332J4

2J
4
4J6 = 0.

(4.90)

It is the zero locus of a weight 30 polynomial in the genus two Igusa invariants

J2, J4, J6, J10. The Igusa invariants of a generic sextic curve can be found

in [228], for example.

Additionally, the SU(3) vacuum moduli space also corresponds to a two-

dimensional locus U in M2. On U the weight 30 polynomial factors in three

terms, such that U and L2 intersect in three one-dimensional loci:

E1 = Eu : v = 0,

E2 = Ev : u = 0,

E3 : 784u9 − 24u6
(
297v2 + 553

)
− 15u3

(
729v4 + 5454v2 − 4775

)
+ 8

(
27v2 − 25

)3
= 0.

(4.91)

Not suprisingly, we have seen the first two of these loci before. The latter is

a cubic equation in v2 as well as in u3, which does not reduce further. It does

not include special points of the SU(3) theory. For v = 0, the equation reduces

to the points u3 = 8 and u3 = 125
28

in the u-plane, and for u = 0 it intersects in

v2 = 25
27

on the v-plane.

The locus L2 can also be characterised in terms of Rosenhain invariants of

the curve [211, Equation (18)]. By plugging in the cross-ratios we can check

that the SU(3) Seiberg-Witten curve is not in L2 for generic u, v. For v = 0

we rediscover the first algebraic relation (4.39), while for u = 0 we find both

relations (4.68). This arises from an additional symmetry of the u = 0 curve,

which we will comment on below.

4.5.1 Elliptic curves for locus Eu
In this subsection we will establish two elliptic curves corresponding to the two

modular parameters τ± in section 4.3. The curves described by the locus L2

can be written in the form [211]

Y 2 = X6 − s1X
4 + s2X

2 − 1, (4.92)

with s1 and s2 complex coordinates for L2. This family of curves is left invariant

by a non-trivial automorphism group, which contains the Klein four-group

V4 [229]. Namely, the curve (4.92) is left invariant by (X, Y ) 7→ (−X, Y ) and

(X, Y ) 7→ (X,−Y ), which generate the dihedral group D4
∼= V4

∼= Z2×Z2. We

interpret this group as the symmetry group of BPS/anti-BPS spectrum, and
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more precisely the central charges of the W-bosons Zj (4.4) and their charge

conjugates. For v = 0, Eq. (4.20) shows that a1 = a2 = a, such that Z1 =

Z2 = a, and Z3 = 2a. One Z2 ⊂ D4 corresponds to the charge conjugation

symmetry, while the other Z2 corresponds to the a1 ↔ a2 symmetry on Eu.
Note that the automorphism group of a generic genus two curve is Z2, which

is consistent with the charge conjugation symmetry for arbitrary (u, v).

For v = 0, the Seiberg-Witten curve Y 2 = (X3 − uX)2 − 1 is of the form

(4.92), with s1 = 2u and s2 = u2. The degree two map to an elliptic curve is

(x, y) = (X2, Y ), (4.93)

which maps the algebraic equation (4.92) to

y2 = x(x− u)2 − 1. (4.94)

We can determine u in terms of the complex structure τ of the curve from the

j-invariant, j = 256u6/(4u3 − 27). This gives

4u(τ) = q−1/3 + 104 q2/3 − 7396 q5/3 +O(q8/3). (4.95)

We immediately recognise this function as the function u+ (4.58), which was

obtained from the Picard-Fuchs solution for the modular parameter τ+ = τ11 +

τ12. The curve (4.94) is exactly the Seiberg-Witten curve for the SU(2) theory

with one massless hypermultiplet in the fundamental representation and scales

related by ΛSU(2) = 2ΛSU(3) [46], which clarifies the observation in section 4.3.3.

The curve that corresponds to τ− = τ11− τ12 can be constructed as follows.

On the curve (4.92), the transformation (X, Y ) 7→ ( 1
X
, iY
X3 ) interchanges s1 and

s2. Interchanging those coefficients, s1 = u2 and s2 = 2u, and setting again

(x, y) = (X2, Y ), we obtain

y2 = x(x2 − u2x+ 2u)− 1. (4.96)

One finds j = 256u3(u3− 6)3/(4u3− 27), which reproduces the solution u− for

the Γ0(9) curve (4.49). Note that the equation for j shows that u− is the root

of a degree 12 polynomial, which matches with the number of copies of F in

Figure 29. Another way to obtain this curve is to set x = X2 and y = XY ,

from which one gets a quartic curve with the same j-invariant.

We have thus demonstrated that the two natural choices τ± of the mod-

ular parameter indeed correspond to the complex structures of two elliptic

curves covering the hyperelliptic curve. The physical u is given in terms of two

different functions u± : H→ C with arguments τ±.

4.5.2 Elliptic curves for locus Ev
The Seiberg-Witten curve Y 2 = (X3 − v)2 − 1 for u = 0 is not in form (4.92)

for a curve of L2. However, the discussion around (4.91) suggests that it can

be written in this form. We can achieve this by comparing the invariants of
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the u = 0 hyperelliptic curve and (4.92), and solving for s1, s2. Just as two

elliptic curves are isomorphic if and only if their j-functions are equal, genus

two curves are isomorphic if and only if their absolute invariants

x1 = 144
J4

J2
2

, x2 = −1728
J2J4 − 3J6

J3
2

, x3 = 486
J10

J5
2

, (4.97)

are equal [212, 218, 219]. On L2, there are only two independent invariants.

For the curve (4.92), we find [212]

x1 =
9

4

405 + (a− 126)a+ 12b

(15 + a)2
,

x2 =
27

8

(a3 + 729a2 + 4131a− 36(39 + a)b− 3645)

(15 + a)3
,

x3 =
243

8192

(27− a(18 + a) + 4b)2

(15 + a)5
,

(4.98)

where a = s1s2, b = s3
1 + s3

2 are the dihedral invariants. Comparing these

absolute invariants with those of the SU(3) curve for u = 0, we arrive at

s1s2 = 9
(
25− 24v2

)
, s3

1 + s3
2 = 54

(
216v4 − 340v2 + 125

)
. (4.99)

To solve the two equations in (4.99), let us denote

Q±(v) = 27
(

216v4 − 340v2 + 125± 8v
(
27v2 − 25

)√
v2 − 1

)
. (4.100)

Then, one of the six solutions is given by

s±1 = 3
√
Q∓(v), s±2 = 9

25− 24v2

3
√
Q∓(v)

. (4.101)

In order to get an elliptic curve, we again take the map (x, y) = (X2, Y ). This

gives us the two curves

y2 = x3 − s±1 x2 + s±2 x− 1 (4.102)

with j-function

j± = −432
(

1458v6 − 2673v4 + 1340v2 − 125∓ 2v
(
729v4 − 972v2 + 275

)√
v2 − 1

)
(4.103)

and discriminant ∆ = v2 − 1. By inverting (4.103), the resulting function v

matches precisely with (4.74) in section 4.4.2. Note that j± vanish at the AD

points v = ±1 and the curve (4.101) becomes a cusp y2 = x3. This implies that

the AD points are elliptic fixed points and are in the SL(2,Z) orbit of α, which

is easy to check from (4.77): We have that τAD,1 = α − 1 and τAD,2 = α + 2.

See also Figure 31. They do however not fall into the (classical) Kodaira

classification of singular fibers, since the Weierstraß invariants of (4.101) are

not polynomials in v and their order of vanishing is half-integer rather than

integer.

116



In general, the j-invariants of the two elliptic curves for (4.92) are the two

solutions of [212]

j2 + 28 2a3 − 54a2 + 9ab− b2 + 27b

a2 + 18a− 4b− 27
j + 216 (a2 + 9a− 3b)3

(a2 + 18a− 4b− 27)2
= 0. (4.104)

Since the equations for s1 and s2 always have solutions, one elliptic curve is

found by substituting (x, y) = (X2, Y ), such that it becomes

y2 = x3 − s1x
2 + s2x− 1. (4.105)

The other elliptic curve is found by relating (x, y) = (X2, XY ), such that

y2 = x(x3 − x1x
2 + s2x− 1). (4.106)

Returning to the curve for Ev, we notice that Y 2 = X6− 2vX3 + v2− 1 for

u = 0 has enhanced symmetry compared to the Klein four-group for (4.92).

Since v2 − 1 is the discriminant, we can divide and rescale X to find

Y 2 = X6 − 2v√
v2 − 1

X3 + 1. (4.107)

It is easy to show that any curve of the form Y 2 = X6 − aX3 + 1 is invariant

under (X, Y ) 7→ ( 1
X
, Y
X3 ) and (X, Y ) 7→ (αX,−Y ), where again α = e2πi/3.

These order 2 and 6 elements generate the dihedral group D12. Similarly

to the enhanced automorphism group for Eu, we interpret this group as a

symmetry group of the BPS/anti-BPS spectrum. On the locus Ev, we find

that the periods a1 and a2 are related as a2 = −αa1. The central charges Zj
(4.4) of the W-bosons, together with their charge conjugates, span therefore a

regular 6-gon, whose symmetry group is D12.

Hyperelliptic curves C ∈ L2 with Aut(C) ∼= D12 satisfy an additional

constraint, it is given by the zero loci of a weight 12 and a weight 20 polynomial

in the Igusa invariants [227, Eq. (24)],

0 = − J4J
4
2 + 12J3

2J6 − 52J2
4J

2
2 + 80J3

4 + 960J2J4J6 − 3600J2
6 ,

0 = 864J10J
5
2 + 3456000J10J

2
4J2 − 43200J10J4J

3
2 − 2332800000J2

10

− J2
4J

6
2 − 768J4

4J
2
2 + 48J3

4J
4
2 + 4096J5

4 .

(4.108)

Moreover, the elliptic subcovers of hyperelliptic curves with Aut(C) ∼= D12 are

3-isogenous [211]. We can check explicitly that the u = 0 curve is of this form.

Another check on the D12 symmetry is [211]

0 = a2 − 110a− 4b+ 1125. (4.109)

This explains why the elliptic curves for the two complex structures produce

a single modular function (4.74), rather than the two independent functions

u± for Eu. On Eu the first algebraic relation in (4.39) holds and places the

curve in L2. On Ev both relations (4.68) hold, where the first one projects into

L2 and the second one gives the augmented D12 symmetry. This is consistent

with the argument of Section 4.3.2 that the maps ϕj should exist as long as

Im(τ11) = Im(τ22), such that it is possible to define τ± = τ11 ± τ12 ∈ H. The

first relations in both (4.39) and (4.68) are equivalent to this condition.
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4.6 SU(3) theory with matter

With the technology set up in section 4.5, it is in principle straightforward to

study other theories characterised by genus two hyperelliptic curves. One such

class of theories are the SU(3) theories with Nf ≤ 6 hypermultiplets in the

fundamental representation.

When Nf ≤ 5 and all the masses are equal to m, the curves are given

by [128,230]

Y 2 = C(X)2 − Λ2Nc−Nf (X +m)Nf ,

C(X) = X3 − uX − v +
1

4
Λ2Nc−Nf

Nf−Nc∑
k=0

XNf−Nc−k
(
Nf

k

)
mk.

(4.110)

These theories are also studied in [8, 178,205,231,232]27.

Let us thus study the SU(3) curve for N = 2 gauge theory with Nf ≥ 1

hypermultiplets in the fundamental representation.

Nf = 1

The locus L2 intersects with the m = 0, Nf = 1 curve in

0 =− 6165504u12v2 − 73809792u9v4 − 111484512u8v3 + 109220400u7v2

+ 1796349312u6v6 − 8196945984u5v5 + 9010440000u4v4 − 6598371456u3v8

− 4626787500u3v3 + 3826375200u2v7 + 1261406250u2v2 + 2581632u11v

− 27737500u6v + 2048u15 − 271784u10 + 2162500u5 − 492075000uv6

− 175781250uv − 1836660096v10 − 59231250v5 + 9765625,
(4.111)

and in particular neither u = 0 nor v = 0 are in L2. This is also the case for

generic masses, for which the equation because much more complicated.

Nf = 2

For Nf = 2, v = 0 is in fact a singular surface. It intersects with the singular

locus ∆Λ = 0 in the points u2 = 1. In fact, v = 0 is a sublocus of L2. However,

since it is singular, the usual maps φj : Σ2 → Σ1,j are degenerate. Thus the

map to the elliptic subcover is ill-defined.

Nf = 3

For massless Nf = 3 we find that only u = 0 is in L2. The discriminant is

∆Λ = (4v − 1)3
(
−3456u3v2 + 3888u3v + 256u6 − 729u3 + 11664v4 − 2916v3

)
,

(4.112)

and therefore u = 0 is not a singular locus. Rather, u = 0 intersects with

∆Λ = 0 in the two vacua v = 0 and v = 1
4
. We can compute the absolute

27The article [205] clashes with both [231] and [230].
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Figure 32: Fundamental domain of Γ0(3) (Fig. 32a) and Γ0(3) (Fig. 32b), both the domains

are for (u = 0) ∈ L2 for Nf = 3.

invariants of the u = 0 curve and compare with (4.98). This gives the dihedral

invariants

a = −9 (48v2 − 26v + 3)

2v
, b =

27 (6912v4 − 3968v3 + 1152v2 − 248v + 27)

16v2
.

(4.113)

One can then either proceed to compute s1 and s2, which gives fractional

powers of v, or insert (4.113) into (4.104) and compute the j-invariants of the

two elliptic curves. This gives

j1 = −27(4v − 9)3(4v − 1)

64v3
, j2 = −27(4v − 1)(36v − 1)3

4v
, (4.114)

demonstrating that the underlying elliptic surfaces are rational. From this,

one finds

v1 = −f3B(3τ)

108
,

v2 = −f3B(τ)

108
,

(4.115)

where f3B is defined in (2.75). This proves that v1 is a Hauptmodul for Γ0(3),

while v2 is a Hauptmodul for Γ0(3). The fundamental domains are drawn in

Fig. 32. We can see that they are topologically equivalent.

The singular point v = 0 translates to a root of f3B for both v1 and v2,

which holds at the cusp τ = 0. For v1, we have that v1 = 1
4

if and only if

f3B(3τ) = −27, and therefore τ = 1√
3
ω: This is an AD point. For v2 we get

f3B(τ) = −27, such that τ =
√

3ω. It is precisely the same parametrisation as

the II AD theory in SU(2) with Nf = 1 and m = 3
4
Λ1, where we get a Γ0(3)

curve, or Nf = 3 with m = − 1
64

Λ3, where the curve is Γ0(3) (see section 2.6.6).

We can see from (4.114) that both curves are quartic modular functions, which

agrees with Fig. 32 as both have index 4 in PSL(2,Z).

By solving (4.113) for s1 and s2, we can find the two elliptic curves from

(4.105) and (4.106) with j-invariants (4.114). It allows to check that at the

AD point uAD = 1
4
, the Kodaira signature is ord (g2, g3,∆) = (1, 1, 2) for both
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curves, such that it is a type II singularity. This explains the similarity to the

II AD theories found in rank 1.

The curve for u = 0 reads

Y 2 = X6 − (1
2

+ 2v)X3 + (v − 1
4
)2. (4.116)

By a rescaling of X, we can bring it to the form Y 2 = X6 − fX3 + 1, which

is known to have D12 symmetry. This can easily be checked with (4.108)

and (4.109). The D12 symmetry implies that the two curves (4.114) are 3-

isogenous [211]. The 3-isogeny is related to the fact that there is a determinant

3 Fricke involution that acts on the Hauptmoduln,

f3B(− 3
τ
) =

36

f3B(τ)
. (4.117)

It relates the j-invariants (4.114) as

j1( 1
16v2

) = j2(v2). (4.118)

Nf = 4, 5, 6

For Nf = 4 and Nf = 5, there are again no simple elliptic loci in the massless

case. The L2 locus for generic masses becomes increasingly lengthy, compared

to (4.111).

The massless Nf = 6 theory is superconformal. It is studied in [178, 180,

205–208,230,233,234]28, and it necessarily includes modular forms in the curve

itself. It is argued by Minahan and Nemeschansky that for mi = 0 and u = 0

the curve can be expressed as [178,205]

Y 2 = (f−X
3 − v)2 + (f 2

+ − f 2
−)X6, (4.119)

where

f±(τ) =

(
η3(τ)

η(3τ)

)3

± 27

(
η3(3τ)

η(τ)

)3

. (4.120)

The q-expansions read

f+(τ) = 1 + 18q + 108q2 + 234q3 + 234q4 + 864q5 +O(q6),

f−(τ) = 1− 36q − 54q2 − 252q3 − 468q4 − 432q5 +O(q6).
(4.121)

Both f± are weight 3 modular forms for Γ1(3). We find that

f+(τ) = b3,0(τ)3,

f−(τ) = b3,0(τ)3 − 2b3,1(τ)3.
(4.122)

This allows to define f1 := 3
√
f+ = b3,0, which together with f− is claimed to

generate the ring of modular forms on Γ0(3).29 From (4.119), we can compute

28Some of these references contradict each other.
29Without this, it is not obvious as in [178,205] why f1 should be modular.
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the absolute invariants of the curve,

x1 =
81
(
4f 2
−f

2
+ + 5f 4

+

)
(f 2
− − 10f 2

+)
2 ,

x2 = −729
(
−26f 2

−f
4
+ + 4f 4

−f
2
+ − 5f 6

+

)
(f 2
− − 10f 2

+)
3 ,

x3 =
729f 4

+

(
f 2
− − f 2

+

)3

256 (f 2
− − 10f 2

+)
5 .

(4.123)

They do not depend on v. Since (x1, x2, x3) labels isomorphism classes of

hyperelliptic curves, in fact the curve (4.119) does not depend on v at all.

This is reminiscent of the massless SU(2) Nf = 4 curve [46].

There is also a proposed curve for nonzero u,

Y 2 = (f−X
3 − f1uX − v)2 + (f 2

+ − f 2
−)X6. (4.124)

Aside from u = 0 and v = 0, the loci 0 = 27f−v2 − 2f 3
1u

3 and

0 =15f 6
1 f

2
+u

6v4
(
512f 2

− + 325f 2
+

)
− 96f 3

1 f−u
3v6
(
2f 2
− + 25f 2

+

)2

− 1160f 9
1 f−f

2
+u

9v2 + 48f 12
1 f 2

+u
12 + 8v8

(
2f 2
− + 25f 2

+

)3
(4.125)

are in L2.

Other gauge groups

We could also run an analysis for other gauge groups. The curves for SO(Nc)

for instance are found in [97, 235, 236], see also [237] for a review. However,

for SO(Nc) the genus of the hyperelliptic curve is g = 2l − 1, where l = Nc
2

for Nc even and l = Nc−1
2

for Nc odd. So in fact there are no genus 2 curves

for SO(Nc) theories: For SO(3) of course one finds the same curve Γ0(4) as for

SU(2). For SO(Nc > 3) on the other hand the curve has genus g > 2.

4.7 Discussion

In this section, we have discussed the modular properties of N = 2 Yang–

Mills theory in four dimensions with gauge group SU(3). For the pure theory,

on the two loci Eu and Ev, where v = 0 and u = 0 respectively, we express

the parameters u and v of the moduli space as modular functions for discrete

subgroups of SL(2,R). See (4.49) and (4.76). To this end, we formulate the

genus two SU(3) SW curve in Rosenhain form in terms of Siegel theta series.

The parameters of the theory are then found by relating the Rosenhain form

to the PF solution of [96]. We provide an explicit fundamental domain for

the effective coupling on the two elliptic loci Eu and Ev. The relation between

cross-ratios of the curve and theta constants suggests that the full moduli space

can be parametrised by higher genus modular forms. It would be interesting
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to find a general solution to (4.36) by expressing u and v as algebraic functions

of theta constants.

On Eu, we established a nice generalisation of the structure appearing in the

SU(2) case. In rank one, the parameter u is a weakly holomorphic modular

function for the congruence subgroup Γ0(4). For SU(3), we instead found

that on Eu the parameter u is a weakly holomorphic modular function of τ−
for the group Γ0(9) ⊂ SL(2,Z). The structure of the moduli space near the

special points of this locus also seems to generalise the rank one picture: We

find that u maps the Z2 singularities to the cusps of its fundamental domain.

Furthermore, the duality group is generated by the nontrivial monodromies

on Eu. For the other choice of modular parameter τ+ = τ11 + τ12, we find

that u is not invariant under a congruence subgroup, but is rather a sextic

modular function, which is the same function as appears for rank 1 Nf = 1

SQCD. Nevertheless, we are able to show that the monodromies can be viewed

as paths in a new fundamental region, which we propose.

On the other locus Ev where u = 0, we find that v can be expressed as a

modular function for a subgroup Γv ⊂ SL(2,R) of Atkin-Lehner type. The AD

points are mapped to the elliptic fixed points of the quotient Γv\H. The group

Γv includes a Fricke involution, which can be viewed as a manifestation of S-

duality [33, 178, 205]. We derive it from the monodromy group on Ev. On the

locus Ev, the genus two hyperelliptic curve splits into two elliptic curves with

complex structures τ± = τ11 ± τ12. The appearance of the Fricke involution is

a consequence of the two families of elliptic curves being isogenous [223, 238].

Fricke dualities also appear in String theory, where they have been shown to

play an important rôle in the web of dualities of CHL models, i.e. orbifolds of

heterotic string theory on T 6 or type II on K3×T 2 [239,240]. They are also the

natural generalisation of S-duality in the context of Montonen–Olive duality

in N = 4 super-Yang–Mills theory for non-simply laced gauge groups [241,242]

and the geometric Langlands program [30]. Moreover, Fricke involutions are

familiar in topological string theory where they act on higher genus amplitudes,

which are described by quasi modular forms. They exchange the large complex

structure of the Calabi-Yau threefold with the conifold loci, which gives an

analogue of the action of electric-magnetic duality or N = 2 S-duality in

topological string theory [223, 238]. They have also appeared recently in the

context of string compactifications and the swampland program [243].

It would be interesting to extend this work to other theories, such as

those with gauge group SU(N), including matter multiplets, theories of class

S [113], or gravitational couplings to these theories [103, 148]. For theories

with SU(N > 2), one can for example consider to turn on only the bottom

Casimir u2 and setting u3, . . . , uN to zero. Our analysis naively suggests that

it should be parametrised by a modular function for Γ0(N2). The discriminant
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of the SU(N) curve [94]

y2 =

(
xN −

N∑
j=2

ujx
N−j
)2

− 1 (4.126)

intersects with this locus in uN2 = NN(N − 2)2−N/4, confirming that there are

N singularities at strong coupling. However, it is easy to show that Γ0(N2)

has N cusps aside from i∞ if and only if N is prime. Note that this worked

for N = 2, 3. It is furthermore not obvious how the modular parameter would

relate to the coupling matrix, and the map to elliptic subcovers is more subtle

in the higher rank case [213].

We would like to finish by mentioning a few potential applications and

directions for further research:

• We observe that the functions parametrising the SU(2) and SU(3) moduli

spaces are all replicable [36,56–58] modular functions. See Appendix A.4

for a definition. The SU(2) order parameter u is of class 4C, u− of class

9B, and v of class 6a. It would be interesting to explore whether there

is an underlying reason for the functions to have this property.

• This work motivates exploring subloci of Coulomb branches for theories

with other gauge groups and including matter multiplets. This could

provide a better understanding of the modularity of these theories. More-

over, it would be interesting to understand whether the solution of the

theory on a sublocus is equivalent to the solution of another theory, such

as we found for Eu and the massless Nf = 1, SU(2) theory for example.

• The elliptic loci we consider are somewhat analogous to the special

Kähler strata of Coulomb branches being studied in the recent work

[244–246]. The latter aims to classify higher rank N = 2 SCFTs by

decomposing the singular locus into a nested series of one-dimensional

building blocks. It would be interesting to see if our methods find appli-

cations in this programme.

• The last application which we would like to mention, is topological quan-

tum field theory [61]. Evaluation of the path integral or correlation

functions for a compact four-manifold X involves the integration over the

Coulomb branch (the so-called u-plane integral) of the theory [73,87,144].

For gauge group SU(2), the integral becomes an integral over the modu-

lar fundamental domain Γ0(4)\H [73,77,81,84]. A better understanding

of the modularity of SU(N > 2) Seiberg-Witten theory could possibly

allow further progress in this direction for theories with N > 2.
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5 Topological twists of massive SQCD

In this section, we study an infinite family of topological twists of massive

N = 2 supersymmetric QCD on a compact four-manifold, and the formulation

of topological correlation functions. This section is based on [5].

5.1 Introduction

We consider topologically twisted N = 2 supersymmetric Yang–Mills the-

ories with additional matter multiplets on a compact four-manifold, which

were introduced in [247–252]. After the work by Seiberg and Witten on the

full non-perturbative solution [45, 46, 71], these theories have received much

attention in physics [65, 66, 73, 74, 82, 85, 88, 89, 98, 99, 188,253–256] and math-

ematics [196, 257–267]. For reviews, see for example [52, 53, 268, 269]. More

specifically, we consider in this section topological twists of N = 2 QCD with

gauge group SU(2) and matter multiplets in the fundamental representation of

the gauge group. By including background fluxes for the flavour group, we ob-

tain an infinite family of topological theories [255]. The choice of a background

flux makes it possible to formulate topologically twists for N = 2 SQCD for

arbitrary ’t Hooft fluxes, or first Chern classes of the gauge bundle. This is

similar to the topological twist of N = 2∗ SU(2) gauge theory, which requires a

non-vanishing background flux on a non-spin four-manifold [85]. We moreover

develop techniques to determine correlation functions for arbitrary values of

the masses of the hypermultiplets.

The starting point of our approach is the low-energy effective field theory on

the Coulomb branch. This phase of the theory contributes for a compact four-

manifold X with the topological condition that b+
2 (X) = 1 [73]. In this way,

the classical Donaldson invariants can be derived starting from the Seiberg-

Witten (SW) solution to N = 2 supersymmetric Yang–Mills theory with gauge

group SU(2). The Coulomb branch integral (or u-plane integral) reduces to

an integral over zero modes [73], and reads schematically

Φ =

∫
B
da ∧ dā ρ(a) Ψ(a, ā), (5.1)

where B is the Coulomb branch with local coordinates a and ā, ρ(a) contains

the couplings to the background and Ψ(a, ā) is a sum over fluxes of the un-

broken U(1) gauge group. For simplicity, we have suppressed the dependence

on the metric and not included observables here. For the pure SU(2) theory,

the Coulomb branch integral can be formulated and evaluated for arbitrary

four-manifolds, without a requirement for Kähler or toric properties.

Recently, progress has been made on evaluating these u-plane integrals

using a change of variables from a to the running coupling τ . As a result,

the integration domain becomes a fundamental domain F ⊆ H in the upper

half-plane H for the running coupling [4, 77–86]. The integral then takes the
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form

Φ =

∫
F
dτ ∧ dτ̄ ν(τ) Ψ(τ, τ̄), (5.2)

where the measure factor ν(τ) further contains the Jacobian for the change

of variables from a to τ . The domain F is a modular fundamental domain in

previous analyses, corresponding to the duality group Γ0(4) for the pure SU(2)

theory [73,81,84], Γ(2) for the N = 2∗ theory [85] and similarly Γ(2) and Γ0(4)

for the theories with two and three massless flavours [77].

As mentioned above, we aim to apply this approach to N = 2 super-

symmetric SU(2) theories with Nf ≤ 3 hypermultiplets in the fundamental

representation. Topological correlators of these asymptotically free theories

have been considered in various papers before, in particular the formulation of

the low energy path integral in [73, 74], SW contributions for four-manifolds

with b+
2 > 1 [65, 66, 73, 88], the u-plane integral for P2 [77], and the calcu-

lation of the partition function of the AD theory within the Nf = 1 the-

ory [82]. Since no background fluxes are included in these works, the ’t Hooft

flux necessarily matches the second Stiefel-Whitney class of the four-manifold,

w2(E) = w2(X), since the twisted hypermultiplets are not well-defined other-

wise.

Extending to generic ’t Hooft fluxes, and application of the above approach

(5.2) to fundamental hypermultiplets with generic masses, gives rise to several

new aspects. In particular:

1. The fundamental domain of the effective coupling constant becomes more

intricate for massive theories, and does for generic masses not corre-

spond to a modular fundamental domain for a subgroup of PSL(2,Z).

As demonstrated at length in Sections 2 and 3, the domain contains

generically a set of branch points, and branch cuts starting from these

points. These aspects have to be dealt with appropriately.

2. We couple the hypermultiplets to background fluxes kj for the flavour

group to formulate the theories for arbitrary ’t Hooft fluxes. This gives

rise to additional couplings in (5.1) and (5.2),

Nf∏
j,k=1

exp

(
−2πi

∂2F

∂mj∂mk

B(kj,kk)

)
, (5.3)

where F is the prepotential of the massive theory, and B(·, ·) is the

quadratic form associated to the intersection form on the middle ho-

mology H2(X,Z) of X. Such couplings were suggested by Shapere and

Tachikawa [144], and are also essential for the formulation of the N = 2∗

Yang–Mills theory on a non-spin four-manifold [85]. Similarly to [85],

we also deduce a non-holomorphic coupling to kj. Moreover, for arriv-

ing at a single-valued integrand, we fix an ambiguity in the quadratic
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terms of the prepotential. These terms have appeared earlier in the lit-

erature in the context of singularities of the SW differential and winding

numbers [46,141].

3. Special points on the Coulomb branch give rise to superconformal theo-

ries, such as the Argyres-Douglas (AD) theories [104,105] and the mass-

less Nf = 4 theory [46]. Their topological partition functions and corre-

lators can be found by considering them in certain mass deformations.

The case of Nf = 1 is analysed in [269].

The section is organised as follows. In section 5.2, we present the Seiberg-

Witten solution of SU(2) N = 2 SQCD in flat space, focusing on the fun-

damental domains for the effective coupling, which we illustrate in several

interesting examples. In section 5.3, we formulate the topological twist by

coupling the hypermultiplets to external fluxes, such that the topological field

theory is well-defined for arbitrary ’t Hooft flux and non-spin manifolds. The

topological low-energy effective theory coupled to Nf background fluxes is then

modelled in section 5.4 as a SU(2)×U(1)Nf theory, with the matter fields cor-

responding to frozen U(1) factors. This allows to compute the path integral

explicitly as an integral over the u-plane. In section 5.5, we formulate the u-

plane integral as an integral over the fundamental domains. We prove that the

single-valuedness under monodromies holds for a specific choice of magnetic

winding numbers. Finally, in section 5.6 we demonstrate that such integrals

may be evaluated using mock modular forms, and we show that they localise at

the cusps, elliptic points and interior singularities of the fundamental domains.

5.2 Special geometry and SW theories

In this Section, we review aspects of the non-perturbative solution for the

low energy effective theory of N = 2 SQCD with gauge group SU(2) and

0 ≤ Nf ≤ 3 fundamental hypermultiplets [45, 46]. See [47] for a review.

Throughout, we let ΛNf denote the scale of the theory with Nf hypermultiplets

having masses mj, j = 1, . . . , Nf , and a the mass of the W-boson on the

Coulomb branch.

5.2.1 Field content

The N = 2 theories we consider contain a vector multiplet and Nf ≤ 3 hy-

permultiplets. The fields in these multiplets form representations of Spin(4) =

SU(2)+ × SU(2)− and SU(2)R, which we denote by (k, l,m), with k, l and m

dimensions of the representations.

The vector multiplet consists of a gauge field Aµ, complex scalar field φ,

and a pair of Weyl fermions ΨI
α, Ψ̄I

α̇. This multiplet transforms under the

adjoint representation of the gauge group G. The representation of SU(2)+ ×
SU(2)− × SU(2)R formed by the bosonic fields is,

(2,2,1)⊕ (1,1,1)⊕ (1,1,1), (5.4)
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while the representation for the fermions is

(1,2,2)⊕ (2,1,2). (5.5)

The hypermultiplet consist of a pair of complex scalar fields, q and q̃, and

Weyl fermions, λα, λ̄α̇, χα and χ̄α̇. We fix the gauge group G = SU(2), and let

the hypermultiplets transform under the fundamental representation of this

group. With the same notation as above, the bosonic fields of this multiplet

form the representation,

(1,1,2)⊕ (1,1,2), (5.6)

while the fermions form the representation

(2,1,1)⊕ (1,2,1)⊕ (2,1,1)⊕ (1,2,1). (5.7)

5.2.2 Seiberg-Witten geometry

The Seiberg-Witten geometry underlies the Coulomb branch of N = 2 gauge

theory. The Coulomb branch is the phase of the theory where SU(2) is broken

to U(1) by a vacuum expectation value (vev) of the vector multiplet scalar φ.

The vev is semi-classically parametrised by a complex parameter (1.21), up

to gauge transformations. In particular, a → −a is a gauge transformation.

The gauge invariant order parameter is the Coulomb branch expectation value

of the theory in R4, (1.22). The non-perturbative effective action of N = 2

SQCD is characterised by the prepotential F (a,m), with m the mass vector

m = (m1, . . . ,mNf ). The semi-classical part of F reads [141,143,191,270]

F (a,m) =
2i

π
a2 log(a/ΛNf )−

1

2

Nf∑
j=1

(
nj
mj√

2
a+

3

8

i

π
m2
j

)

− i

4π

Nf∑
j=1

(
a+

mj√
2

)2

log((a+
mj√

2
)/ΛNf ) +

(
a− mj√

2

)2

log((a− mj√
2
)/ΛNf )

+ . . . ,

(5.8)

where the . . . indicate further non-perturbative corrections.

The nj ∈ Z in (5.8) are the magnetic winding numbers of the periods

aD := ∂F
∂a

dual to a [141, 143, 271]. These numbers seem to be only rarely

discussed in the literature beyond these references.30 Generally, the theory

allows for Nf electric winding numbers for a and Nf magnetic winding numbers

for aD. These appear in the massive Nf > 0 theories since the Seiberg-Witten

differentials now have poles with nonzero residues [143]. The choice (5.8) of

the prepotential corresponds to fixing the electric winding numbers to be zero,

or equivalently fixing the monodromy at infinity to map a → eπia. Compare

30Nekrasov’s partition function gives a specific choice upon expanding the function γ~(x; Λ)

in the perturbative part [191,272].
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for example with [143, Eq. (2.17)]. In section 5.5, we will discuss that the

single-valuedness of the u-plane integral requires nj ≡ −1 mod 4.

We introduce the period aD dual to a, and the parameters mD,j dual to mj

by

aD =
∂F

∂a
, mD,j =

√
2
∂F

∂mj

. (5.9)

These parameters are further combined into the (2+2Nf )−dimensional vector

Π,

Π =



aD
a

mD,1
m1√

2
...

mD,Nf
mNf√

2


. (5.10)

This vector forms a local system over the u-plane. The elements of the vector

form the symplectic form,

ωNf = daD ∧ da+
1√
2

Nf∑
j=1

dmD,j ∧ dmj. (5.11)

The effective gauge coupling is related to the prepotential through (1.23). We

also introduce the couplings vj and wjk with j, k ∈ 1, . . . , Nf .

vj =
√

2
∂2F

∂a∂mj

, wjk = 2
∂2F

∂mj∂mk

. (5.12)

If we consider F as a function of (a, 1√
2
m1, . . . ,

1√
2
mNf ), then the dual param-

eters are encoded in the Jacobian JF = (aD,mD), while the couplings are the

elements of the Hessian HF =
(
τ vT
v w

)
. The derivative of the prepotential with

respect to the scale ΛNf provides the order parameter u (1.22) on the Coulomb

branch,

u = − 4πi

4−Nf

ΛNf

∂F

∂ΛNf

. (5.13)

The weak-coupling limit in our convention is given by τ → i∞, a → ∞ and

u→ −∞.31

The Seiberg-Witten (SW) solution provides a family of elliptic curves para-

metrised by the order parameter u and the masses mi, whose complex structure

corresponds to the running coupling τ = θ
π

+ 8πi
g2 . For the theories of interest

in this section, the curves are given by (2.3).

31Note that this differs slightly from some of the previous literature. However, it is shown

in section 2 to be the unique limit consistent with the RG flow.
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5.2.3 Monodromies

This section determines the monodromies around the Nf + 2 monodromies.

We define the physical discriminant ∆Nf as the monic polynomial ∆Nf =∏Nf+2
j=1 (u − uj), where uj for j = 1, . . . , Nf + 2 are the singular points of the

effective theory. We let j = 1, . . . , Nf label the singular points where one of

the matter hypermultiplets becomes massless; and j = Nf + 1, Nf + 2 denote

the strong coupling singularities where a monopole and a dyon, respectively,

becomes massless.

We leave the winding numbers nj, j = 1, . . . , Nf , for aD generic. Starting

with the monodromy around infinity, a→ eπia, we deduce from the (5.8) that

the vector Π transforms as Π→M∞Π, with M∞ given by

M∞ =



−1 4−Nf 0 −n1 · · · 0 −nNf
0 −1 0 0 · · · 0 0

0 n1 1 1 · · · 0 0

0 0 0 1 · · · 0 0
...

...
. . .

0 nNf 0 0 · · · 1 1

0 0 0 0 · · · 0 1


. (5.14)

The monodromy matrix M∞ is in SL(2+2Nf ,Z), while it acts on the couplings

by a symplectic transformation, i.e. it preserves the symplectic form (5.11).

This can be checked by requiring that any monodromy M∞ satisfies MTJM =

J, with

J =

(
0 1

−1 0

)⊕Nf+1

. (5.15)

The action on the couplings τ (1.23), vj and wjk (5.12) is thus

M∞ :


τ → τ +Nf − 4,

vj → −vj − nj,
wjk → wjk + δjk,

(5.16)

with δjk the Kronecker delta.

If we assume that the mass mj is large, we can also deduce the monodromies

around a =
mj√

2
, j = 1, . . . , Nf from the perturbative prepotential (5.8). For a

encircling m1√
2

counterclockwise, Π→M1Π, we find for the monodromy matrix

M1,

M1 =



1 1 0 −1 · · · 0 0

0 1 0 0 · · · 0 0

0 −1 1 1 · · · 0 0

0 0 0 1 · · · 0 0
...

...
. . .

0 0 0 0 · · · 1 0

0 0 0 0 · · · 0 1


, (5.17)
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while the Mj for other values of j are given by permutations. Its action on

the couplings is

Mj :


τ → τ + 1,

vk → vk − δjk,
wkl → wkl + δklδjl.

(5.18)

Besides the monodromies M∞ and Mj, there are monodromies Mm and

Md around the points where a monopole and a dyon becomes massless, re-

spectively. By requiring that the electro-magnetic charges of the massless

particles are (nm, ne) = (1, 0) and (1,−2), respectively, we can fix the upper

left blocks of the monodromies. We fix the remaining entries by assuming

that the masses remains invariant, mj → mj, and that the other periods only

change by a multiple of the vanishing cycle at the corresponding cusp, together

with the requirement that

M∞ = MmMd

Nf∏
j=1

Mj. (5.19)

For Nf = 1 and n1 = n, this gives for Mm,

Mm =


1 0 0 0

−1 1 0 −(n+ 1)/2

(n+ 1)/2 0 1 (n+ 1)2/4

0 0 0 1

 . (5.20)

This acts on the couplings as

Mm :


τ → τ

−τ+1
,

v → v+(n+1)τ/2
−τ+1

,

w → w + (v+(n+1)/2)2

−τ+1
.

(5.21)

The monodromy Md around the dyon singularity for Nf = 1 is

Md =


−1 4 0 −n− 1

−1 3 0 −(n+ 1)/2

(n+ 1)/2 −n− 1 1 (n+ 1)2/4

0 0 0 1

 , (5.22)

This acts on the couplings as

Md :


τ 7→ −τ+4

−τ+3
,

v 7→ v+(n+1)τ−n−1
−τ+3

,

w 7→ w + (v+(n+1)/2)2

−τ+3
.

(5.23)

We can note that all the above monodromy matrices leave the symplectic form

(5.11) invariant and are independent of the masses.
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We get similar monodromies for Nf = 2, 3. The action on the running

couplings τ are the same for all Nf , by construction. The transformations of

vj and wjk also take the same form for all Nf and can be summarised as

Mm :

{
vj → vj+(nj+1)τ/2

−τ+1
,

wjk → wjk +
(vj+(nj+1)/2)(vk+(nk+1)/2)

−τ+1
,

Md :

{
vj → vj+(nj+1)τ−nj−1

−τ+3
,

wjk → wjk +
(vj+(nj+1)/2)(vk+(nk+1)/2)

−τ+3
.

(5.24)

5.3 The UV theory on a four-manifold

We review various aspects of the formulation of the UV theory on a compact

smooth four-manifold.

5.3.1 Aspects of four-manifolds

We let X be a smooth, compact, oriented Riemannian four-manifold, with

Euler number χ = χ(X) and signature σ = σ(X) = b+
2 − b−2 . The u-plane

integral is non-vanishing only for four-manifolds X with b+
2 ≤ 1. In this

article, we consider manifolds with b+
2 = 1. Such four-manifolds admit a linear

complex structure J on the tangent space TXp at each point p of X. The

complex structure varies smoothly on X, such that TX is a complex bundle.

We introduce furthermore the canonical class KX = −c1(TX) of X, with

c1(TX) the first Chern class of TX. For a manifold X with (b1, b
+
2 ) = (0, 1),

we have that

K2
X = 8 + σ(X). (5.25)

The middle cohomology H2(X,Z) of X gives rise to the uni-modular lattice

L. More precisely, we identify L with the natural embedding of H2(X,Z) in

H2(X,Z) ⊗ R, which mods out the torsion of H2(X,Z). A characteristic

element K ∈ L is an element which satisfies l2 + B(K, l) ∈ 2Z for all l ∈ L.

The Riemann-Roch theorem demonstrates that the canonical class KX of X

is a characteristic element of L. The Wu formula furthermore shows that any

characteristic vector K of L is a lift of w2(X).

The quadratic form Q of the lattice L for a four-manifold with (b1, b
+
2 ) =

(0, 1) can be brought to a simple standard form depending on whether Q is

even or odd [273]. This divides such manifolds into two classes, for which the

evaluation of their u-plane integrals needs to be done separately [84]. The

period point J ∈ H2(X,R) is defined as the unique class in the forward light

cone of H2(X,R) that satisfies J = ∗J and J2 = 1.

All four-manifolds without torsion and even intersection form admit a Spin

structure. More generally, for any oriented four-manifold one can define a

Spinc-structure. The group Spinc(4) can be defined as pairs of unitary 2 × 2

matrices with coinciding determinant,

Spinc(4) = {(u1, u2) ∈ U(2)× U(2)| detu1 = detu2}. (5.26)
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There exists a short exact sequence

1 −→ U(1) −→ Spinc(4) −→ SO(4) −→ 1. (5.27)

A Spinc-structure s on a four-manifold X is then a reduction of the struc-

ture group of the tangent bundle on X, i.e. SO(4), to the group Spinc(4).

The different Spinc-structures correspond to the inequivalent ways of choos-

ing transition functions of the tangent bundle such that the cocycle condition

is satisfied. The Spinc-structure defines two rank two hermitian vector bun-

dles W±. We let c(s) be the first Chern class of the determinant bundles,

c(s) := c1(detW±) ∈ H2(X,Z).

If s is the canonical Spinc structure associated to an almost complex struc-

ture on X, then c(s)2 = 2χ+ 3σ. More generally,

c1(s)2 ≡ σ mod 8. (5.28)

5.3.2 Topological twisting with background fluxes

We discuss in this section topological twisting of theories with fundamental

hypermultiplets including background fluxes. The discussion is parallel to the

case of N = 2∗ [85], where the hypermultiplet is in the adjoint representation

of the gauge group.

We let (E → X,∇) be a principal SU(2)/Z2
∼= SO(3)-bundle with con-

nection ∇. The second Stiefel-Whitney class w2(E) ∈ H2(X,Z2) measures

the obstruction to lift E to an SU(2) bundle, which will exist locally but not

globally if w2(E) 6= 0. We denote a lift of w2(E) to the middle cohomology

lattice L by w̄2(E) ∈ L, and define the ’t Hooft flux µ = w̄2(E)/2 ∈ L/2. The

instanton number of the principal bundle is defined as k = −1
4

∫
X
p1(E) and

satisfies k ∈ −µ2 + Z, where p1 is the first Pontryagin class.

To formulate the theories with Nf fundamental hypermultiplets on a com-

pact four-manifold, we perform a topological twist. Coupling the four-dimensional

N = 2 SU(2) theory to background fields means choosing two sets of data:

• A principal SU(2)R R-symmetry bundle, with connection ∇R,

• and a principal bundle L with connection for global symmetries (the

flavour symmetries) [85].

The relevant twist for the N = 2 supersymmetry algebra in four dimensions

is the Donaldson-Witten twist. This twist is the local identification of the

SU(2)+ with the diagonal subgroup of the SU(2)+×SU(2)R factor of the spin

lift of the local spin group Spin(4) ∼= SU(2)+×SU(2)− [61]. Alternatively, one

can view the fields as sections of a non-trivial R-symmetry bundle, isomorphic

to the spin bundle S+. Application of this to the representations of the vector

multiplet (5.4) and (5.7) gives:

bosons: (2,2)⊕ (1,1)⊕ (1,1),

fermions: (2,2)⊕ (3,1)⊕ (1,1).
(5.29)
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Thus the bosons remain unchanged, a vector and a complex scalar, while

the fermions reorganise to a vector, self-dual two-form and real scalar, which

we denote as ψ, χ and η, respectively. We note that none of these fields

are spinors, and can thus be considered on a non-spin four-manifold. The

original supersymmetry generators also transform in the representations for

the fermions above. Thus the theory contains a scalar fermionic supercharge

Q = εȦḂQȦḂ, whose cohomology provides the operators in the topological

theory [61].

For the fields of a hypermultiplet, (5.6) and (5.7), one finds

bosons: (1,2)⊕ (1,2),

fermions: (2,1)⊕ (1,2)⊕ (2,1)⊕ (1,2).
(5.30)

Thus hypermultiplet bosons become spinors, i.e. sections of the spin bundle

S+, while the fermions are sections of S+ and S−. Thus the twisted hypermul-

tiplets can in this case only be formulated on four-manifolds which are spin,

i.e. w2(X) = 0 [73,255].

However, if the hypermultiplets are charged under a gauge field or flux,

the product of these bundles with S± may be a Spinc bundle, W+ or W−

[52,85,255]. The latter are defined for arbitrary four-manifolds. For example,

an almost complex structure on X determines two canonical Spinc bundles

W± ' S± ⊗ K
−1/2
X with KX the canonical class determined by the almost

complex structure. Since the hypermultiplets are in the fundamental, two-

dimensional representation of SU(2), the topologically twisted hypermultiplets

are well-defined on a non-spin four-manifold if µ = −KX/2 [73].

Let us state this also in terms of the gauge bundle E. To this end, we

label the two components of the fundamental, two-dimensional representation

of SU(2) by ±. The two components are sections of a line bundle L±1/2
E with

c1(LE) = w̄2(E). Of course, the square root L1/2
E only exists if w2(E) ∈ 2L.

On the other hand, the physical requirement is that S+⊗L1/2
E is well defined,

or w̄2(X) + w̄2(E) ∈ 2L. Therefore, the obstructions can cancel each other for

a suitable choice of w2(E). Thus the topological twisted theory is not well-

defined for an arbitrary choice of ’t Hooft flux µ := 1
2
w̄2(E); but rather µ has

to satisfy µ = 1
2
w̄2(X) mod L [73], or

w̄2(X) = w̄2(E) mod 2L. (5.31)

To consider more general ’t Hooft fluxes µ or equivalently w2(E), we can

couple the j’th hypermultiplet to a background flux or line bundle Lj, with

Lj possibly different for each j. We let Ej = LE ⊗ Lj. Then the requirement

that S± ⊗ E±1/2
j is globally well-defined is that

c1(Ej) ∈ w̄2(X) + 2L, (5.32)

which can be satisfied for any w̄2(E) for a suitable choice of Lj. Thus we

can formulate the u-plane integral for arbitrary w̄2(E), if we require that the
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background fluxes satisfy

c1(Lj) ∈ w̄2(X) + w̄2(E) + 2L, (5.33)

for each j. This is consistent with (5.31) for c1(Lj) = 0.

The Chern classes c1(Lj) can also be seen as the splitting classes of the

Spin(2Nf ) principal bundle L. The Chern class of L reads

c(L) =
2∑
l=0

cl(L) =

Nf∏
j=1

(1 + c1(Lj)). (5.34)

The scalar generators of the equivariant cohomology of Spin(2Nf ) are the

massesmj, which generate theNf -dimensional Cartan subalgebra of Spin(2Nf ).

The gauge bundle Ek is also Spin(2Nf ) equivariant. For generic masses, the

flavour group is U(1)Nf , and is enhanced for special loci of the masses, for

example to U(Nf ) for equal masses [46].

The Q-fixed equations are the non-Abelian monopole equations with Nf

matter fields in the fundamental representation. For generic gauge group G

and with representation R, these equations read [254]

(
F a
α̇β̇

)+

+
i

2

Nf∑
j=1

M̄ j
(α̇T

aM j

β̇)
= 0,

/DM j =
∑
µ

σµDµM
j = 0,

(5.35)

where T a is a generator of the Lie algebra in the representation R. Including

the sum over matrix elements, we have

M j
(αT

aM j
β) =

∑
k,l

(M j)k(α(T a)kl(M j)lβ). (5.36)

We denote the moduli space of solutions to (5.35) by MQ,Nf
k,Lj , and leave the

dependence on the ’t Hooft flux µ and the metric J implicit. For Nf = 4 on

X = CP2, such moduli spaces are studied in [196].

The moduli spaces MQ,Nf
k,Lj is non-compact for vanishing masses [65, 265,

274]. This is improved upon turning on masses and localizing with respect to

the U(1)Nf flavour symmetry, M j
α → ei ϕjM j

α, which leave invariant the Q-fixed

equations (5.35). There are two components:

• the instanton component, with F+ = 0 and M j = 0, j = 1, . . . , Nf . The

moduli space for this component is denoted Mi
k. Since the hypermulti-

plet fields vanish, this component is associated to the Coulomb branch.

• the abelian or monopole component, for which a U(1) subgroup of the

flavour group acts as pure gauge. Here the connection is reducible, and a

U(1) subgroup of the SU(2) gauge group is preserved. For generic masses,

there are Nf such components, where M ` is upper or lower triangular for
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some `, and M j = 0 for all j 6= `. The moduli space of this component is

denotedMa,j
k , j = 1, . . . , Nf . Since some of the hypermultiplet fields are

non-vanishing, this component is associated to the Higgs branch [89,274].

The instanton componentMi
k is non-compact due to point-like instantons.

This can be cured using the Uhlenbeck compactification or algebraic-geometric

compactifications. We assume that the physical path integral chooses a specific

compactification, whose details are however not manifest at the level of the

low energy effective field theory other than that the compactification must be

in agreement with the correlation functions.

5.3.3 Correlation functions and moduli spaces

The Q-fixed equations (5.35) include a Dirac equation for each hypermultiplet

j = 1, . . . , Nf in the fundamental representation. The corresponding index

bundle W j
k defines an element of the K-group ofMi

k. Its virtual rank rk(W j
k )

is the formal difference of two infinite dimensions. It is given by an index

theorem and reads

rk(W j
k ) = −k +

1

4
(c1(Lj)2 − σ) ∈ Z, (5.37)

where c1(Lj) is the first Chern class of the bundle Lj. Note that the rhs is

not an integer for an arbitrary c1(Lj) ∈ H2(X,Z). To verify that the rhs is

integral for the c1(Lj)’s satisfying (5.33), we rewrite rk(W j
k ) as

rk(W j
k ) = −(k + µ2)− c1(Lj) · µ+

1

4

(
(c1(Lj) + 2µ)2 − σ

)
. (5.38)

Then the first term on the rhs is an integer since k ∈ −1
4
w2(E)2+Z for an SO(3)

bundle. The second term is an integer because c1(Lj) · µ = (w̄2(X)− 2µ) · µ
mod Z ∈ Z, and the third term is an integer using (5.28) and the fact that

c1(Lj) + 2µ equals the characteristic class of a Spinc-structure sj by (5.33),

c1(Lj) + 2µ = c(sj), (5.39)

for each j.

The mass mj is the equivariant parameter of the U(1) flavour symmetry

associated to the j’th hypermultiplet. The equivariant Chern class of W j
k reads

in terms of the splitting class xl,

c(W j
k ) =

−rk(W j
k )∏

l=0

(xl +mj) = m
−rk(W j

k )

j

∑
l

cl(W
j
k )

ml
j

. (5.40)

We abbreviate cl(W
j
k ) to cl,j, and let c(Wk) =

∏Nf
j=1 c(W

j
k ).

The moduli space MQ
k,µ,Lj for Nf hypermultiplets corresponds to the van-

ishing locus of the obstructions for the existence of Nf zero modes of the

Dirac operator. As a result, the virtual complex dimension of the moduli
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spaceMQ
k,µ,Lj is that of the instanton moduli space plus the sum of (typically

negative) ranks of the index bundles W j
k , vdim(MQ,Nf

k,Lj ) = vdim(MQ
k )Nf=0 +∑Nf

j=1 rk(W j
k ) [85, 99,261,265]. This gives

vdim(MQ,Nf
k,Lj ) = (4−Nf )k +

1

4

−3χ− (3 +Nf )σ +

Nf∑
j=1

c1(Lj)2

 . (5.41)

5.4 The effective theory on a four-manifold

We consider in this section the low energy effective field theory on a four-

manifold. We derive the semi-classical action of the theory coupled to back-

ground U(1) fields. As in previous cases [72, 73, 85, 144], the final expression

takes the form of a Siegel-Narain theta series multiplied by a measure factor.

5.4.1 Hypermultiplets and background fields

The effective theory coupled to Nf background fluxes can be modelled as

that of a theory with gauge group SU(2) × U(1)Nf , where the fields of the

U(1) factors have been frozen in a special way [85, 275]. To derive the pre-

cise form, we recall the low-energy effective Lagrangian for the r multiplets

(φJ , ηJ , χJ , ψJ , F J) of the topologically twisted U(1)r SYM theory [87]. Since

the u-plane integral reduces to an integral over zero-modes [73], it suffices to

only include the zero-modes in the Lagrangian. For simply connected four-

manifolds, there is no contribution from the one-form fields ψJ . The La-

grangian is then given in terms of the prepotential F ({aJ}) and its derivatives

to the vevs 〈φJ〉 = aJ , as

L =
i

16π
(τ̄JKF

J
+ ∧ FK

+ + τJKF
J
− ∧ FK

− )− 1

8π
yJKD

J ∧DK

+
i
√

2

16π
F̄JKLηJχK ∧ (D + F+)L,

(5.42)

with yJK = Im(τJK), τJK = ∂J∂KF ({aJ}) and FJKL = ∂J∂K∂LF ({aJ}). It is

left invariant by the BRST operator Q, which acts on the zero modes as

[Q,AJ ] = ψJ = 0, [Q,ψJ ] = 4
√

2daJ ,

[Q, aJ ] = 0, [Q, āJ ] =
√

2iηJ ,

[Q, ηJ ] = 0, [Q,χJ ] = i(F+ −D+)J ,

[Q,DJ ] = (dψJ)+ = 0.

(5.43)

Using this operator, we can write L as the sum of a topological, holomorphic

term and a Q-exact term,

L =
i

16π
τJKF

J ∧ FK + {Q,W}, (5.44)

with W = − i
8π
yJKχ

J(F+ +D)K .
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The low-energy theory of SU(2) gauge theory with Nf hypermultiplets

coupled to Nf background fluxes can then be modelled by the above rank r

description with r = Nf + 1. We identify F ({aJ}) with F (a,m). We let the

indices J,K run from 0 to Nf and identify the index 0 with the unbroken U(1)

of the SU(2) gauge group and the indices j, k, l = 1, . . . , Nf with that of the

frozen U(1)Nf factors. We further set φ0 := φ for any field φ. We will proceed

by using lower indices for j, k, l, except where the summation convention is

explicitly used, to avoid confusion with powers of the fields.

The masses of the hypermultiplets are the vevs of the frozen scalar fields of

the corresponding vector multiplets,
mj√

2
= 〈φj〉 = aj [275]. We set [Fj] = 4πkj

with

kj = c1(Lj)/2 ∈ L/2. (5.45)

To make the BRST variations of the fields from the frozen U(1) factors vanish,

we set ηj = χj = 0, as well as Dj = F j
+. With these identifications, the

Lagrangian becomes

L =
i

16π
τJKF

J ∧ FK +
1

8π
y00F+ ∧ F+ −

1

8π
y00D ∧D

+
i
√

2

16π
F̄000ηχ ∧ (D + F+) +

i
√

2

8π
F̄00jηχ ∧ F j

+

+
1

4π
y0j(F+ −D) ∧ F j

+.

(5.46)

Integrating over D, η and χ in the standard way [73,85,87], we end up with∫
dDdηdχ e−

∫
X L

=
∂

∂ā

(
i
√
y00B

(
F +

y0j

y00

F j, J

))
e−

∫
X L0 ,

(5.47)

where

L0 =
i

16π
τJKF

J ∧ FK +
1

8π
y00F+ ∧ F+ +

y0j

4π
F+ ∧ F j

+ +
1

8π

y0jy0k

y00

F j
+ ∧ F k

+

=
i

16π
(τ̄F+ ∧ F+ + τF− ∧ F−) +

i

8π
(vjF− ∧ F j

− + v̄jF+ ∧ F j
+)

+
i

16π
wjkF

j ∧ F k +
y

8π
Im(vj)Im(vk)F

j
+ ∧ F k

+,

(5.48)

and we identified τ := τ00, y = Im(τ) = y00, vj := τ0j and wjk := τjk. Thus the

coupling wjk is holomorphic, but the coupling vj is non-holomorphic. This is

similar to the couplings for N = 2∗ [85].

5.4.2 Sum over fluxes

The path integral includes a sum over fluxes k = [F ]/4π ∈ L/2. After summing

the exponentiated action (5.47) over the fluxes k and multiplying by dā
dτ̄

, we
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find that this takes the form

∑
k∈L+µ

∫
dDdηdχ e−

∫
X L =

 Nf∏
j,k=1

C
B(kj ,kk)
jk

 ΨJ
µ(τ, τ̄ ,z, z̄). (5.49)

The couplings Cjk are given in terms of wjk (5.12) by

Cjk = e−πiwjk , (5.50)

for j, k = 1, . . . , Nf . Such couplings were first put forward in [144], and were

also crucial in [85].

The term ΨJ
µ is an example of a Siegel-Narain theta function. It reads

explicitly

ΨJ
µ(τ, τ̄ ,z, z̄) = e−2πyb2

+

∑
k∈L+µ

∂τ̄ (4πi
√
yB(k + b, J))

× (−1)B(k,K)q−k
2
−/2q̄k

2
+/2e−2πiB(z,k−)−2πiB(z̄,k+),

(5.51)

and discussed in more detail in Appendix A.7. The elliptic variable reads in

terms of vj and kj,

z =

Nf∑
j=1

vjkj, and b =
Im(z)

y
, (5.52)

thus inducing a non-holomorphic dependence on vj. Furthermore, K appearing

in the fourth root of unity (−1)B(k,K) is a characteristic vector of L. Note

that ΨJ
µ changes by the sign (−1)B(µ,K−K′) upon replacing K by a different

characteristic vector K ′ [73, 85,276].

For Nf = 0, this phase can be understood as arising from integrating out

massive fermionic modes [72]. It also appears naturally in decoupling the

adjoint hypermultiplet in the analogous function for N = 2∗ [85]. For Nf > 0,

the constant part of the couplings vj (5.12) effectively contribute to the phase,

such that the total phase reads

eπiB(k,K)

Nf∏
j=1

eπi nj B(kj ,k), (5.53)

with nj the magnetic winding numbers. For arbitrary nj ∈ Z, the phase is

an eighth root of unity. It would be interesting to understand this phase from

integrating out massive modes.

We deduce from (5.53) that the summand of ΨJ
µ changes by a phase

eπi(n
′
j−nj)B(kj ,k) (5.54)

if the winding numbers nj are replaced by n′j. Since kj ∈ K/2 − µ mod L

(see (5.33)) and k ∈ L + µ, this phase is 1 if n′j − nj = 0 mod 4. We can
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therefore restrict to nj ∈ Z4. For specific choices of µ and kj, the nj can lie

in a subgroup of Z4.

The modular transformations of ΨJ
µ are discussed in Appendix A.7, which

are crucial input for single-valuedness of the u-plane integrand. We will demon-

strate in section 5.5.2 that the u-plane integrand is single-valued if we impose

further constraints on the winding numbers nj.

Finally, if the theory is considered on a curved background, topological

couplings arise in the effective field theory [72]. These terms couple to the

Euler characteristic and the signature of the four-manifold X, respectively

denoted A and B. These take the form [72,73],

A = α

(
du

da

)1/2

, B = β∆
1/8
Nf
. (5.55)

Here, ∆Nf is the physical discriminant incorporating the singularities of the

effective theory, while du
da

is the (reciprocal of) the periods of the SW curves as

introduced in section 5.2. Both can be determined directly from the SW curve,

as described in section 2.3.1. The prefactors α and β are independent of u, but

can be functions of other moduli such as the masses m, the dynamical scale

ΛNf or the UV coupling τUV. However, it turns out that for the theories with

fundamental matter they are independent of the masses and only depend on

the scale [66,111]. They satisfy several constraints from holomorphy, RG flow,

homogeneity and dimensional analysis, and can in principle be fixed for any

Lagrangian theory from a computation in the Ω-background [66,82,111,129].

5.4.3 Observables and contact terms

The observables in the topologically twisted theories are the point observable

or 0-observable u, as well as d-observables supported on a d-dimensional sub-

manifold of X. The d-observables are only non-vanishing if the submanifold

corresponds to a non-trivial homology class. For b1 = 0, the d-observables

with d odd therefore do not contribute.

To introduce the surface observable, let x ∈ H2(X,Q). Then the surface

observable reads in terms of the UV fields,

I(x) =
1

4π2

∫
x

Tr

[
ψ ∧ ψ − 1√

2
φF

]
. (5.56)

In the effective infrared theory, this operator becomes,

Ĩ(x) =
i√
2π

∫
x

1

32

d2u

da2
ψ ∧ ψ −

√
2

4

du

da
(F− +D). (5.57)

Generating functions of correlation functions are obtained by inserting

e
p u/Λ2

Nf
+Ĩ(x)/ΛNf (5.58)
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in the path integral. The surface observable leads to a change in the argument

of the sum over fluxes (5.51),

z → z +
x

2πΛNf

du

da
, z̄ → z̄. (5.59)

and to analytically continue b (5.52) to the complex number by setting b =

(z − z̄)/(2iy).

The inclusion of the surface observable also gives rise to a contact term

[70, 73, 277], which in particular ensures that the u-plane integrand is single-

valued. For 0 ≤ Nf ≤ 3, the contact term is exp(x2GNf ) with [74,98,278]

GNf = − 1

24 Λ2
Nf

E2

(
du

da

)2

+
1

3 Λ2
Nf

(
u+

Λ2
3

64
δNf ,3

)
, (5.60)

while for Nf = 4 it is given by [98,174]

GNf=4 = − 1

24 Λ2
4

E2

(
du

da

)2

+
u

3 Λ2
4

E2(τUV) +
1

18 Λ2
4

q
m2

1

y
E4(τUV). (5.61)

A more general scheme to fix the contact terms is proposed in [74]. Contact

terms can also be derived from the corresponding Whitham hierarchies [278,

279]. In the presence of surface observables, there are additional mixed contact

terms ∂2F
∂τ0∂m

for the external fluxes {kj} as encountered in [85] for the N = 2∗

theory.

5.5 The u-plane integral

In this section, we set up the u-plane integral schematically given in (5.2),

and demonstrate that it is well-defined on the integration domain for any µ

with appropriate background fluxes. The case µ = w̄2(X)/2 and kj = 0 was

analysed in [73].

5.5.1 Definition of the integrand

As discussed in the previous sections, the u-plane integral on a closed four-

manifoldX with (b1, b
+
2 ) = (0, 1) depends on many parameters. We summarise:

• The scale ΛNf and masses m = (m1, . . . ,mNf ) of the theory. See section

5.2.

• The magnetic winding numbers nj, j = 1, . . . , Nf . See section 5.2.2.

• The four-manifold X, in particular its signature σ = σ(X), Euler char-

acteristic χ = χ(X), period point J and intersection form Q. See section

5.3.1.

• The ’t Hooft flux µ, and the external fluxes {kj} = (k1, . . . ,kNf ). See

section 5.3.3.
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• The fugacities for the point and surface observables p and x. See section

5.4.3.

In terms of these parameters, the u-plane path integral reduces to the

following finite dimensional integral over FNf (m),

ΦJ
µ,{kj}(p,x,m,ΛNf ) =

KNf
∫
FNf (m)

dτ ∧ dτ̄ ν(τ ; {kj}) ΨJ
µ(τ, τ̄ ,z, z̄) e2pu+x2GNf .

(5.62)

We summarise the different elements on the rhs:

• KNf is an overall normalisation factor. ForNf = 0, it is fixed by matching

to known Donaldson invariants. Due to χ+σ = 4, there is an ambiguity

[82]

(KNf , α, β) ∼ (ζ−4KNf , ζα, ζβ), (5.63)

with α and β the u-independent prefactors in (5.55).

• The integration domain FNf (m) in (5.62) is crucially the fundamental

domain of the effective gauge coupling. As discussed in section 2, this

domain requires new aspects compared to integration domains for earlier

discussions of u-plane integrals. The evaluation of integrals over FNf (m)

will be discussed in more detail in section 5.6.

• ν is the “measure factor” [66,72–74,85]

ν(τ ; {kj}) =
da

dτ
AχBσ

Nf∏
i,j=1

C
B(ki,kj)
ij . (5.64)

It combines the topological couplings (5.55) and the couplings to the

background fluxes (5.50) with the Jacobian da
dτ

of the change of variables

from a to τ .

• The function ΨJ
µ arises from the sum over U(1) fluxes. It is a Siegel-

Narain theta function (5.51) and discussed in detail in section 5.4.2. The

elliptic parameter z of the Siegel-Narain theta function reads

z =
x

2πΛNf

du

da
+

Nf∑
j=1

vjkj,

z̄ =

Nf∑
j=1

v̄jkj.

(5.65)

• Finally, GNf is the contact term, discussed in more detail in section 5.4.3.
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While the path integral set up in section 5.4 integrates the exponentiated

action over the local coordinates a and ā, in (5.62) we have changed variables

to τ and τ̄ . This change of variables (a, ā) → (τ, τ̄) is valid as long as the

Jacobian is nonsingular in the integration region. Since the coordinates a and

ā are holomorphic and anti-holomorphic respectively, the Jacobian is diagonal

and the functional determinant accordingly reads da
dτ

dā
dτ̄

. We thus need to show

that da
dτ

is not singular away from isolated points in FNf (m), which in (5.62)

we remove implicitly from the integration domain.

Using da
du

= da
du

du
dτ

, we can study the singular points in detail. First, it is

shown in section 2 that the singularities of du
dτ

are in one-to-one correspondence

with the branch points. In fact, both du
dτ

= 0 and du
dτ

= ∞ are realised as

branch points in N = 2 SQCD. In the following section 5.6, we remove a small

circle in FNf (m) around the branch points, and show that they do not give

an extra contribution. Furthermore, the solutions to du
da

= 0 are shown to

be the Argyres-Douglas (AD) points. We exclude them from the integration

region, and study their contribution also in section 5.6. Finally, we know that

η24 ∝
(
da
du

)12
∆Nf (2.48), with η the Dedekind eta-function as defined in (A.18).

Since η 6= 0 and ∆Nf does not have poles, we find that da
du

never vanishes. This

agrees with the fact that da
du

is the period of a holomorphic differential and

therefore is never zero.

We conclude that the functional determinant is singular in H precisely at

the branch points and AD points, however with the proper exclusion of those

as done in the following Section, it is non-singular and the change of variables

is well-defined. This furthermore conveniently solves the problem that there

is no natural integration region in (a, ā) space [73].

5.5.2 Monodromy transformations of the integrand

We continue by explicitly verifying that the u-plane integral is single-valued

around the singular points of the moduli space. We find that this puts a

constraint on the magnetic winding numbers nj, in addition to the constraints

on the background fluxes kj discussed in section 5.3.3.

Monodromy around infinity

Let us determine how the u-plane integrand transforms under the monodromy

around infinity. As a function of the effective coupling τ , the measure factor

(5.64) is proportional to da
dτ

(
du
da

)χ
2 ∆

σ
8 times the product over the couplings Cij.

We take the monodromy at infinity to be oriented as u→ e2πiu and a→ eπia,

as in section 5.2.3. Then this path also encircles all singularities uj, which are

the roots of the physical discriminant, ∆ =
∏Nf+2

j=1 (u−uj). We thus have that

∆→ e2πi(Nf+2)∆, and hence

∆
σ
8 → eπi(Nf+2)σ/4∆

σ
8 (5.66)
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Next, since u→ e2πi and a→ eπia we find du
da
→ eπi du

da
, and therefore(

du

da

)χ
2

→ eπiχ/2
(
du

da

)χ
2

. (5.67)

For da
dτ

we have that a→ eπia, while dτ → dτ , and thus

da

dτ
→ −da

dτ
. (5.68)

From (5.16) we recall that wij → wij + δij, such that with the definition (5.50)

we find Cij → e−πiδijCij. The couplings Cij transform in the measure factor as

Nf∏
i,j=1

C
B(ki,kj)
ij → e−πi

∑
j k

2
j

Nf∏
i,j=1

C
B(ki,kj)
ij . (5.69)

Combining (5.66), (5.67), (5.68), (5.69), and using χ = 4− σ, we obtain

ν → −eπiNfσ/4e−πi
∑
j k

2
j ν. (5.70)

This phase for kj = 0 can be checked directly by taking q-expansions from the

SW curves, for generic masses.

From (5.16) we recall that under the monodromy around infinity vj →
−vj − nj, and thus z → −z −∑Nf

j=1 njkj. Recall from (5.33) that c1(Lj) ≡
K − 2µ mod 2L. For the sum over fluxes, in [5] we show that

M∞ : ν(τ ; {kj}) ΨJ
µ(τ, z)→ e2πiµ

∑
j(nj+1)kj ν(τ ; {kj}) ΨJ

µ(τ, z), (5.71)

and the u-plane integrand is invariant under TNf−4 if and only if µ
∑

j(nj +

1)kj ∈ Z. Using the fact that K is a characteristic vector of L, we find

nj ≡ 1 mod 2 (5.72)

for all j = 1, . . . , Nf , which implies the above constraint.

Monodromy Mj

Let us determine how the integrand transforms under the monodromy Mj

around the mass singularity mj/
√

2. Since the mass singularity corresponds

to a singularity uj on the u-plane, we have that (u− uj)→ e2πi(u− uj). This

implies that ∆ = (u− uj)
∏2+Nf

i 6=j (u− ui)→ e2πi∆, such that ∆
σ
8 → eπiσ/4∆

σ
8 .

The transformation of da
du

can be determined from (2.46): While u→ uj, both

g2 and g3 remain finite and nonzero (otherwise uj would be an AD point). This

implies that g3

g2
contains no factors of (u − uj), and thus du

da
→ du

da
. Similarly,

we have that da
dτ
→ da

dτ
. From (5.18) we finally have that wik → wik + δijδik.

We combine

Mj : ν → eπiσ/4e−πik
2
jν. (5.73)
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For the monodromy around the mass singularity mj/
√

2, we find for ΨJ
µ

with (A.58)

ΨJ
µ(τ + 1, z − kj) = e−πiσ/4+πik2

j ΨJ
µ(τ, z). (5.74)

The phases thus cancel precisely,

Mj : ν(τ + 1) ΨJ
µ(τ + 1, z − kj) = ν(τ) ΨJ

µ(τ, z), (5.75)

without any constraints.

Monodromy Mm

For the monopole singularity in Nf = 1 we find a further constraint. Since

ΨJ
µ is required to transform to itself up to an overall factor, we must demand

that (n + 1)k1/2 ∈ L. Therefore for k1 ∈ L/2, we find the requirement that

n = −1 ∈ Z4. This simplifies the transformations considerably, and we find

ΨJ
µ(τ, z)→ (−τ + 1)b2/2(−τ̄ + 1)2e−πiσ/4eπik

2
1

v2

−τ+1 ΨJ
µ(τ, z). (5.76)

The kj-independent part of the measure factor transforms precisely as un-

der Mj (see (5.73)), as the same argument holds. However, due to the trans-

formation τ → τ
−τ+1

, the measure also picks up its modular weight σ
2

+1. From

(5.21) we furthermore find the transformation of C11, such that

ν(τ,k1)→ eπiσ/4e−πik
2
1

v2

−τ+1 (−τ + 1)
σ
2

+1ν(τ,k1), (5.77)

where we have already used n = −1 ∈ Z4. If we multiply (5.76) and (5.77)

with dτ ∧ dτ̄ (which has modular weight (−2,−2)), then

Mm : dτ ∧ dτ̄ν(τ,k1) ΨJ
µ(τ, z)→ dτ ∧ dτ̄ν(τ,k1) ΨJ

µ(τ, z), (5.78)

where we have used σ + b2 = 2. Thus, the u-plane integrand is also invariant

under Mm.

For Nf > 1 we find the same condition, namely that nj = −1 mod 4 for

all j.

Monodromy Md

Given the relation (5.19), it is not necessary to explicitly check single-valuedness

of the integrand under this monodromy, as it is a product of the above mon-

odromies.

To conclude this section, let us stress the constraints for the winding number

nj, such that the u-plane integral is invariant under all monodromies in Nf ≤ 3.

To this end, we need to satisfy the constraints nj = 1 mod 2 (5.72) from M∞,

and nj = −1 mod 4 for Mm. Since the latter is the stronger constraint, we

require

nj = −1 mod 4, (5.79)

for all j = 1, . . . , Nf .
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5.6 Integration over fundamental domains

As discussed in Sections 5.2 and 5.5, u-plane integrals for massive N = 2

theories with fundamental hypermultiplets include new aspects. This section

discusses how to evaluate such integrals (5.62). More concretely, we aim to

define and evaluate integrals of the form

If =

∫
F(m)

dτ ∧ dτ̄ y−s f(τ, τ̄), (5.80)

with s ≤ 1. The domain F(m) is the fundamental domain for the effective

coupling constant as discussed in section 2, and f a non-holomorphic function

of weight (2− s, 2− s) arising from the topologically twisted Yang–Mills the-

ory. For F(m) a fundamental domain of a congruence subgroup, such integrals

(5.80) have been studied in the context of theta lifts of weakly holomorphic

modular forms and harmonic Maass forms [280–282] as well as one-loop am-

plitudes in string theory [283–285].

We assume that the integrand y−s f(τ, τ̄) can be expressed as

∂τ̄ ĥ(τ, τ̄) = y−s f(τ, τ̄), (5.81)

for a suitable function ĥ(τ, τ̄) using mock modular forms. This was indeed the

case in [81, 83, 85], and will be demonstrated for massive N = 2 theories with

fundamental hypermultiplets. The integral If then reads

If = −
∫
∂F(m)

dτ ĥ(τ, τ̄), (5.82)

with ∂F(m) the boundary of F(m). We will carry this out evaluation in Part

II [286].

There are a number of aspects to be addressed in order to evaluate integrals

over F(m):

1. Identifications of boundary components of F(m) due to monodromies

on the u-plane.

2. Contributions from the cusps, that is τ → i∞ or τ → γ(i∞) ∈ Q for an

element γ ∈ PSL(2,Z).

3. Contributions from a singular point in the interior of F(m).

4. Contributions from an elliptic point p ∈ H of PSL(2,Z).

5. Branch points and branch cuts.

We will discuss these aspects 1.–5. in the following.

1. Identifications

The modular transformation induced by monodromies identify components
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of the boundary of the fundamental domain ∂F(m) pairwise. Their contribu-

tions to the integral (5.82) vanish, which is, for example, familiar from deriving

valence formulas for modular forms [287, Fig. 2]. See Fig. 1 for an example.

2. Cusps

Contributions near the cusps require a regularisation [73,83]. Such regularisa-

tions have been developed in the context of string amplitudes [283–285] and

analytic number theory [287–289].

Let us first consider the cusp τ → i∞. To regularise the divergence, one in-

troduces a cut-off Im τ = Y � 1, and takes the limit Y →∞ after evaluation.

We require that f near i∞ has a Fourier expansion of the form32

f(τ, τ̄) =
∑

m�−∞,n≥0

c(m,n) qm q̄n. (5.83)

Then the function ĥ has the form,

ĥ(τ, τ̄) = h(τ) + 2s
∫ i∞

−τ̄

f(τ,−v)

(−i(v + τ))s
dv, (5.84)

where h(τ) is a weakly holomorphic q-series, with expansion

h(τ) =
∑

m�−∞
d(m) qm. (5.85)

The cusp τ → i∞ then contributes

[If ]∞ = w∞ d(0), (5.86)

with d(0) the constant term of h(τ) (5.85), and w∞ the width of the cusp

F(m) at i∞. For Nf ≤ 3, w∞ is 4−Nf (see section 2).

The other cusps can be treated in a similar fashion using modular trans-

formations. We label the nc cusps in F(m) by j = 1, . . . , nc. If the cusp is on

the horizontal axis at −dj
cj
∈ Q with relative prime (cj, dj) ∈ Z2, we can map

the cusp to i∞ by a modular transformation

γj =

(
aj bj
cj dj

)
. (5.87)

We let τj = γjτ . Then the holomorphic part hj(τj) of (cjτ + dj)
−2 ĥ(γτj, γτ̄j)

can be expanded for τ near −dj
cj

as

hj(τj) =
∑

dj(n) qnj , qj = e2πiτj . (5.88)

As a result, the cusp j contributes

[If ]j = wj dj(0). (5.89)

32Also if f does not satisfy this requirement, the integral can be regularised as explained

in [83,289]. We do not need this regularisation for the correlators in this section.
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3. Singular points in the interior of F(m)

The integrand can be singular at a point τs in the interior of F(m). Such

singularities appear typically for deformations of superconformal theories, such

as the N = 2∗ theory and the Nf = 4 theory, where the UV coupling τUV gives

rise to such a singularity [3, 85]. See Fig. 26 for an example. We require that

the expansion of f near such a singularity reads,

f(τ, τ̄) =
∑

m�−∞,n≥0

cs(m,n) (τ − τs)
m (τ̄ − τ̄s)

n. (5.90)

Then, the anti-derivative ĥ(τ, τ̄) has similar expansion,

ĥ(τ, τ̄) =
∑

m�−∞,n≥0

ds(m,n) (τ − τs)
m (τ̄ − τ̄s)

n. (5.91)

The contour integral for a small contour around τs,

Cε(τs) =
{
τ = τs + ε eiϕ, ϕ ∈ [0, 2π)

}
, (5.92)

is bounded for such a function. Moreover, in the limit ε → 0, the contour

integral is finite. We define the “residue” of a non-holomorphic function g(τ, τ̄)

nRes
τ=τs

[g(τ, τ̄)] =
1

2πi
lim
ε→0

∮
Cε(τs)

g(τ, τ̄) dτ. (5.93)

For the expansion (5.90) this evaluates to

[If ]s = 2πi nRes
τ=τs

[
ĥ(τ, τ̄)

]
= ds(−1, 0), (5.94)

with ds(−1, 0) the coefficient in the expansion (5.91).

4. Elliptic points

For N = 2 QCD, AD points are the elliptic points of the duality group, and

lie on the boundary of F(m). See Fig. 7 for an example. The elliptic points

are α = eπi/3 and i, and their images under PSL(2,Z). Contour integrals

around such points can be regularised using a cut-off ε. We assume that the

anti-derivative ĥ has the following expansion near an elliptic point τe,

ĥ(τ, τ̄) =
∑

m�−∞,n≥0

de(m,n) (τ − τe)
m (τ̄ − τ̄e)

n. (5.95)

As a result, the boundary arc around τAD in H is a fraction of 2π, which

needs to be properly accounted for. These neighbourhoods have an angle 2π
ke

,

with ke = 2 for τe = i, and ke = 6 for τe = α [145]. Furthermore, it is

important how many images of F in F(m) coincide at the elliptic point. We

denote this number by ne. For N = 2 SQCD, we found examples with ne = 2
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and 4 for τe ∼ α, while for τe ∼ i, ne = 1 [2]. The contribution from an elliptic

point is then,

[If ]e = 2πi
ne

ke

nRes
τ=τe

[
ĥ(τ, τ̄)

]
=
ne

ke

de(−1, 0), (5.96)

5. Branch points and cuts

Branch points and cuts are a new aspect compared to previous analyses (see for

instance Fig. 8 and 15). We will demonstrate that their contribution vanishes

for the integrands of interest.

We assume that the integrand f satisfies

ĥ(τ, τ̄) = (τ − τbp)n g(τ, τ̄), (5.97)

with n ∈ Z/2 and n ≥ −1/2, g(τ, τ̄) being a real analytic function near τbp.

This assumption is satisfied for the twisted Yang–Mills theories [286]. To treat

this type of singularity, we remove a δ neighbourhood and analyse the δ → 0

limit. Let Cδ be the contour

Cδ = {τbp + δ eiθ | θ ∈ (0, 2π)} (5.98)

around τbp with radius δ > 0. Therefore, on the contour |y−sf | is bounded by

|ĥ| ≤ δnK (5.99)

for some K > 0. The integral around the branch point therefore vanishes in

the limit,

Ibp
f = lim

δ→0

∫
Cδ

ĥ |dτ | ≤ lim
δ→0

∫ 2π

0

δnK δ dθ

= lim
δ→0

2πKδn+1 = 0.

(5.100)

The branch points necessarily give rise to branch cuts. For the purpose of

integration, we remove a neighbourhood with distance r from the cut, and take

the limit r → 0 after determining the integral. Since the value of the integrand

is finite near the branch cut, the contribution to the integral vanishes.

Summary

Combining all the contributions discussed above, we find

If =
n∑
j=1

wj dj(0) +
∑
s

ds(−1, 0) +
∑
e

ne

ke

de(−1, 0). (5.101)

This formula generalises [73] for the pure Nf = 0 theory on a smooth four-

manifold X that admits a metric of positive scalar curvature, [84, Equation

(5.10)] for the pure SU(2) theory on generic X, [85, Equation (4.88)] for the

N = 2∗ theory on X, and [77] for the massless Nf = 2 and Nf = 3 theories on

X = CP2.
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6 The u-plane integral for non-simply connected

manifolds

In this final section, we study the u-plane integral on compact four-manifolds

X with b1(X) > 0, which are non-simply connected. This section is based

on [4].

6.1 Introduction

Recently, interest in DW theory, and in particular the u-plane integral Zu,

was revived due to observations relating the latter for special four-manifolds

to the theory of mock theta functions and harmonic Maass forms [77, 78].

For more generic, but simply connected, compact four-manifolds, it was later

reformulated in terms of the modular completion of a mock modular form

[81,83,84]. In this series of papers, the possibility of adding Q-exact operators

to the action without affecting the correlation functions was studied in detail.

In particular, a specific new Q-exact operator related to the 2-cycles of the

background geometry was added to the action of the low-energy U(1) theory,

which makes the connection to mock modular forms apparent and elegant [81,

84]. This technique circumvents the cumbersome method of lattice reduction,

and allows to evaluate correlation functions efficiently. Previous results relating

Zu and mock modular forms are restricted to the case where the low-energy

U(1) theory is formulated on simply connected four-manifolds only.

Taking inspiration from [76], we ask the natural question how these recent

results carry over to the case when the four-manifold X has a non-trivial

fundamental group and non-zero first Betti number b1(X). When the four-

manifold is non-simply connected, the theory is more complicated. This is due

to the fact that the manifold now admits more structures, in the form of 1-

form fields and 1- and 3-cycles, which are not present in the simply connected

case. These cycles give rise to further contact terms in the low-energy U(1)

action [74, 76]. As a result, we will consider more general Q-exact operators

related to these cycles.

We present a natural extension of the recent results [81, 84] to the case of

non-simply connected four-manifolds with b+
2 = 1. Specifically, we introduce

a number of new Q-exact operators in the low-energy effective U(1) theory

that allow us to express the integrand of the u-plane integral elegantly as the

non-holomorphic completion of a mock modular form. This further allows us

to derive a closed-form expression for the u-plane integral for any such four-

manifold and for arbitrary period point J , as is evident from the result (6.57).

This solution depends on H1(X), a fact that is easily seen in the case of product

ruled surfaces where it manifests as a genus dependence, while when H1(X) is

trivial, (6.57) reduces to Equation (4.10) of [81].

DW theory on product ruled surfaces X = CP1 × Σg, with Σg a genus g

Riemann surface, in the limit of vanishing volume for Σg has been argued to
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be equivalent to an N = (2, 2) 2d topological A-model on CP1 with target

space the moduli spaceMflat(Σg) of flat SU(2) connections on Σg [74,90,290–

294]. Reference [4] presents a concrete derivation of this equivalence, and in

turn shows that due to the relation between DW theory and its low-energy

U(1) effective theory as given by Eq. (1.39), a connection between Gromov-

Witten (GW) theory (realised physically by the A-model) and mock modular

forms (appearing in the low-energy effective action) exists, such that one can

compute GW invariants using modular data originating from the 4d theory.

The above equivalence is expected to hold in the limit small Σg, since the

twisted N = 2 gauge theory is topological and we are thus free to shrink Σg.

As a consequence, flat SU(2) connections along the directions tangent to Σg

are required to prevent the effective 2d action from blowing up when the limit

of small Σg is taken.

6.2 The effective theory for b1 > 0

DW theory is the topologically twisted formulation of the pure N = 2 super-

symmetric Yang–Mills theory with gauge group G of rank rG = 1 on a smooth

four-manifold X [61]. In the IR, the theory becomes a U(1) gauge theory that

depends on the complexified effective gauge coupling τ = θ
π

+ 8πi
g2 ∈ H, where

H denotes the Poincaré half-plane. DW theory contains a scalar fermionic

BRST operator Q := εȦḂQȦḂ that obeys Q2 = 0.33 The field content of the

theory is a collection of bosonic and fermionic degree 0, 1 and 2 operator val-

ued differential forms on X, where the degree of the differential form is equal

to the ghost number of the physical operator. In Table 2 we summarise the

field content of the DW theory. The BRST transformations on these fields are

Bosons Fermions Form degree

a, ā η 0

A ψ 1

D χ 2

Table 2: Field content of DW theory. The a, ā fields originate from the vacuum expectation

value of the scalar field of the UV theory. The D field is an auxiliary field.

given in (5.43), where the label J can be removed since we are studying a rank

1 theory. The physical observables of the theory belong to the Q-cohomology.

We are interested in computing the path integral of the theory, the u-plane in-

tegral or Coulomb branch integral, when evaluated on a non-simply connected

four-manifold. To this end, let us first introduce some notation.

Let bj := bj(X) = dimHj(X) be the Betti numbers of the smooth, closed

and oriented four-manifold X with b2(X) = b+
2 (X) + b−2 (X), where the first

(second) summand corresponds to the number of positive (negative) eigen-

values of the quadratic form Q of X. For a ∈ H i(X) and b ∈ H4−i(X) we

33Across the literature, this operator is often denoted as Q instead.
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define B(a, b) =
∫
X
a ∧ b. For a ∈ H2(X) the quadratic form Q of X cor-

responds to Q(a) := B(a, a). Furthermore, the signature of X is defined as

σ(X) = b+
2 (X)−b−2 (X). Hereafter we consider four-manifolds with b+

2 (X) = 1.

By Poincaré duality, we have that b0 = b4, b1 = b3. We can assume b1 to be

even, since the correlation function of the theory are known to vanish unless

1− b1 + b+
2 is even [73].

The Coulomb branch integral is the path integral of the low-energy U(1)

theory with the insertion of the observables arising from the descent formalism

as well as contact terms and Q-exact operators. It takes the form

Zu(p, γ, S, Y ) =

∫
[DΦ]ν(τ)e−

∫
X L′+I(S,Y )+IO+I∩ , (6.1)

where Φ = {a, ā, A, η, ψ, χ,D} is the collection of fields of the theory (as in

Table 2).

6.2.1 Ingredients of the u-plane integrand

In this section, we give explicit modular expressions for the ingredients of

the u-plane integrand. The integrand transforms under the duality group

Γ0(4), which is generated by T 4 and S−1T−1S. Let us introduce the shorthand

f = (φ1, φ2)(k,l) if a function f is a non-holomorphic modular form of weight

(k, l) for Γ0(4) with multipliers, i.e. transforms as

f(τ + 4, τ̄ + 4) = φ1f(τ, τ̄),

f

(
τ

τ + 1
,

τ̄

τ̄ + 1

)
= φ2(τ + 1)k(τ̄ + 1)lf(τ, τ̄).

(6.2)

It is clear that

(φ1, φ2)(k1,l1)(ϕ1, ϕ2)(k2,l2) = (φ1ϕ1, φ2ϕ2)(k1+k2,l1+l2),

(φ1, φ2)(k,l) = (φ̄1, φ̄2)(l,k),

1

(φ1, φ2)(k,l)
= (φ̄1, φ̄2)(−k,−l),

(6.3)

since |φi| = 1. The functions34

d2u

da2
= 4

2E2 + ϑ4
2 + ϑ4

3

3ϑ8
4

,
u

Λ2
=
ϑ4

2 + ϑ4
3

2ϑ2
2ϑ

2
3

,
a

Λ
=

2E2 + ϑ4
2 + ϑ4

3

6ϑ2ϑ3

,

du

dτ
=
πΛ2

4i

ϑ8
4

ϑ2
2ϑ

2
3

,
da

du
=

1

2Λ
ϑ2ϑ3,

dτ

da
=

8i

πΛ

ϑ2ϑ3

ϑ8
4

(6.4)

transform as

u = (1, 1)(0,0),
du

dτ
= (1, 1)(2,0),

da

du
= (−1, 1)(1,0),

ρ = (−1, 1)(−1,0),
dτ

da
= (−1, 1)(−3,0), y = (1, 1)(−1,−1)

(6.5)

34In this section, we choose the traditional convention where u
Λ2 → +∞ for τ → i∞.

151



6.2.2 Effective Lagrangian

The low-energy U(1) effective Lagrangian L of the twisted theory is given

in [73, (2.15)]. TheQ-exact terms as well as the kinetic terms do not contribute

since the zero modes are constant in DW theory on a four-manifold X with

b+
2 (X) = 1. For such manifolds there is a useful fact stating that for any

β1, β2, β3, β4 ∈ H1(X,Z), we have [295]

β1 ∧ β2 ∧ β3 ∧ β4 = 0. (6.6)

We will make extensive use of this fact below.

Let us define L′ as the part of the zero-mode low-energy U(1) effective

Lagrangian that contributes to the u-plane integral. It is given by [73]

L′ =πiτ̄k2
+ + πiτk2

− −
y

8π
D ∧ ∗D +

i
√

2

16π

dτ̄

dā
ηχ ∧ (F+ +D)

− i
√

2

27π

dτ

da
ψ ∧ ψ ∧ (F− +D),

(6.7)

where F± = 4πk± and for any two-form x we abbreviate B(x, x) = x2. In L′,
we disregard any summands of L containing Q-exact terms, exact differential

forms and ∧-products of four 1-forms. Here and throughout the rest of the

section we use units where the dynamical scale Λ of the low-energy effective

U(1) theory is equal to one. The gravitational contributions to L′ are described

in the following section.

6.2.3 Measure factors

Assuming X is connected, the (holomorphic) measure factor [52, 73] is35

ν(τ) := −
(
27/2π

) b1
2

2
3σ(X)

4
+1

π
(u2 − 1)

σ(X)
8

(
da

du

)σ(X)
2

+b1−2

. (6.8)

Here we used χ(X) + σ(X) = 4 − 2b1 to eliminate the Euler character of X,

χ(X). This expression reduces to Eq. (2.9) in [81] if we take b1 = 0. For the

simply connected theory one can use the microscopic definition of the theory to

determine the effective gravitational couplings (e.g. by considering expansions

of the Nekrasov partition function) [53,111].

The zero modes of the one-forms ψ live in the tangent space of a b1-

dimensional torus Tb1 = H1(X,R)/H1(X,Z) = H1(X,O∗X) which corresponds

to isomorphism classes of invertible sheaves (for X a smooth complex variety,

that is, holomorphic line bundles) on X which are topologically trivial. We can

expand ψ in zero-modes as ψ =
∑b1

i=1 ciβi with βi an integral basis of harmonic

35Note that this differs from the notation ν used in Section 5, in particular (5.64), by the

factor da
dτ , which we insert later, and we do not consider any external fluxes kj , since we

study the Nf = 0 theory in this section.
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one-forms, and ci Grassmann variables. We then have the measure

b1∏
i=1

dci√
y

= y−
b1
2

b1∏
i=1

dci. (6.9)

The photon partition function will also include an integration over b1 zero

modes of the gauge field corresponding to flat connections [76]. These zero

modes span the tangent space of Tb1 . As a consequence of this, the photon

partition function will have an overall factor of y
1
2

(b1−1) [72]. Combining this

with the measure factor (6.9) we see that in the end there will only be a factor

of y−1/2 surviving.

We can also consider the cj in the expansion of ψ as a basis of one-forms

β#
j ∈ H1(Tb1 ,Z), dual to βj, such that

ψ =

b1∑
j=1

βj ⊗ β#
j . (6.10)

A useful fact about four-manifolds with b+
2 = 1 is that the image of the map

∧ : H1(X,Z)⊗H1(X,Z)→ H2(X,Z) (6.11)

is generated by a single rational cohomology class, which we denote as W

[295].36 This means that we can write βi ∧ βj = aijW , i, j = 1, . . . , b1, where

aij is an anti-symmetric matrix. This further implies that the two-form on Tb1
can be written as

Ω =
∑
i<j

aijβ
#
i ∧ β#

j , (6.12)

where β#
i ∈ H1(Tb1 ,Z), such that

vol(Tb1) =

∫
Tb1

Ωb1/2

(b1/2)!
. (6.13)

Using the analysis above we can now write ψ ∧ψ = 2(W ⊗Ω) [76]. This is

useful when one performs the integral over Tb1 for the product ruled surfaces,

for instance.

6.2.4 Observables

Q-invariant observables can be constructed using the celebrated descent for-

malism. By starting with the zero-form operator O(0) = 2u, we find all k-form

valued observables O(k) for k = 1, 2, 3, 4 that are Q-invariant modulo exact

forms by solving the descent equations

dQ(j) = {Q,O(j+1)} (6.14)

36This class is denoted Σ in [76] and Λ in [90]. However, since we want to reserve Σ for the

Riemann surfaces studied below and Λ for the dynamical scale of the theory we choose to

call the class W .
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inductively. This ensures that for a k-cycle Σ(k) ∈ Hk(X) in X, the integrals∫
Σ(k) O(k) are Q-invariant and only depend on Σ(k). Fortunately, there is a

canonical solution to the descent equations: Due to the fact that the translation

generator is Q-exact, there is the one-form valued descent operator K, which

satisfies d = {Q, K} [73]. This implies that (6.14) can be solved by O(j) =

KjO(0), where the iterated (anti)-commutators are implicit. The action of the

operator K can be inferred from the BRST transformations (5.43) as [73]

[K, a] =
1

4
√

2
ψ, [K, ā] = 0, [K,ψ] = −2(F− +D), [K,A] = −2iχ,

[K, η] = − i√
2

dā, [K,χ] = −3
√

2i

4
∗ dā, [K,D] =

3i

4
(2dχ− ∗dη) .

(6.15)

Let us study the insertion of all possible observables. For ease of notation,

let us denote p = Σ(0) a point class, γ = Σ(1) a 1-cycle, S = Σ(2) a 2-cycle and

Y = Σ(3) a 3-cycle. The cycles γ, S and Y can be expanded in formal sums as

γ =

b1∑
i=1

ζiγi, S =

b2∑
i=1

λiSi Y =

b3∑
i=1

θiYi, (6.16)

where γi, Si and Yi are a basis of one-, two- and three-cycles respectively, λi are

complex numbers, while ζi and θi are Grassmann variables. By the common

abuse of notation, we use the same notation for the 3-, 2-, and 1-forms Poincaré

dual to the cycles, and use the convention∫
γ

ω1 =

∫
X

ω1 ∧ γ,
∫
S

ω2 =

∫
X

ω2 ∧ S,
∫
Y

ω3 =

∫
X

ω3 ∧ Y. (6.17)

The most general Q-invariant observable we can add is then

IO = 2pu+ a1

∫
γ

Ku+ a2

∫
S

K2u+ a3

∫
Y

K3u, (6.18)

where a2 = i√
2π

is fixed from matching with the mathematical literature [73]

and

Ku =
1

4
√

2

du

da
ψ,

K2u =
1

32

d2u

da2
ψ ∧ ψ −

√
2

4

du

da
(F− +D),

K3u =
1

27
√

2

d3u

da3
ψ ∧ ψ ∧ ψ − 3

16

d2u

da2
ψ ∧ (F− +D)− 3

√
2i

16

du

da
(2dχ− ∗dη).

(6.19)

6.2.5 Contact terms

The existence of the canonical solution to the descent equations allows to map

an observable of the UV theory to the low-energy U(1) effective theory on
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the u-plane. For instance, the operator I(S) =
∫
S
K2u of the UV theory is

mapped to the same observable Ĩ(S) =
∫
S
K2u in the IR. This is not quite

true for products I(S1)I(S2) . . . I(Sn) of such operators for distinct Riemann

surfaces Si ∈ H2(X,Z). At the intersection of the surfaces, contact terms

will appear [73, 74]. When mapping a product of surface operators to the IR,

the product is corrected by a sum over the intersection points. Due to the

Q-invariance, the inserted operator is holomorphic and the point at which it

is inserted is irrelevant.

Such contact terms appear for all cycles in X that can intersect. They

have been classified and the corresponding contact terms have been found

in [76, Equations (2.8)-(2.12)],

I∩ =

∫
S∩S

T + a13

∫
Y ∩γ

T + a32

∫
Y ∩S

KT + a33

∫
Y ∩Y

K2T

+ a332

∫
S∩Y ∩Y

∂3F
∂τ 3

0

+ a333

∫
Y ∩Y ∩Y

K
∂3F
∂τ 3

0

+ a3333

∫
Y ∩Y ∩Y ∩Y

∂4F
∂τ 4

0

.

(6.20)

Here τ0 is the deformation parameter of the prepotential, related to the dy-

namical scale by Λ4 = eπiτ0 . The coefficient functions can all be expressed as

quasi-modular functions on the u-plane. For instance, the contact term for

S ∩ S is

T =
u

2
− a

4

du

da
=
ϑ4

2 + ϑ4
3 − E2

6ϑ2
2ϑ

2
3

. (6.21)

In terms of the prepotential F , it is given by T (τ) = 4
πi
∂2F
∂τ2

0
[98]. We can use

the action (6.15) to find

KT =
1

4
√

2

dT

da
ψ,

K2T =
1

32

d2T

da2
ψ ∧ ψ − 1

2
√

2

dT

da
(F− +D).

(6.22)

The intersection constants can be obtained from duality invariance [76]. Due

to the identity (6.6), the two last terms in (6.20) vanish and we can disregard

them. Thus, from (6.20) and (6.22) we see that all terms in I∩ except for

one are only integrated over ψ and τ , which we we do in a later step. The

remaining term

−
√

2a33

4

dT

da
B(F− +D, Y ∧ Y ). (6.23)

is to be integrated over D, χ and η.

6.2.6 Q-exact operators

As we will later see, the photon path integral combines with the insertion of

the surface observable to a Siegel-Narain theta function ΨJ
µ(τ, z). See (6.52)

for the definition. This function can be expressed as a total derivative to a

non-holomorphic modular completion of an indefinite theta function, as has
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been previously shown in the simply connected case [81, 84]. To facilitate

the calculation further the authors of those papers add the Q-exact operator

IS.37 In this section we will generalise this operator insertion to simplify the

calculations also in the case of non-simply connected manifolds. This then

allows us to evaluate correlation functions efficiently using mock modular forms

[81,83,84].

Since our computations should be valid for any b1 ≥ 0 and in particular

b1 = 0, this suggests that it is instructive to add the sameQ-exact operator [81,

(2.11) and (2.12)]

IS = − 1

4π

∫
S

{
Q, dū

dā
χ

}
= −
√

2i

4π

d2ū

dā2

∫
S

ηχ− i

4π

dū

dā

∫
S

(F+ −D).

(6.24)

The u-plane integrand (6.1) with IS inserted can also in the case where b1 6= 0

be written as an anti-holomorphic derivative. However, it does not give the

same kind of Siegel-Narain theta function as in the simply-connected case.

The reason is that the elliptic argument z of ΨJ
µ does not couple to H2

−(X)

symmetrically to how its conjugate z̄ couples to H2
+(X). The insertion of IS in

the case b1 = 0 can be viewed as the unique correction to the path integral that

symmetrises the couplings to H2
±(X). Without such an insertion, the resulting

theta functions are not symmetric, see for instance [73, Equation (3.18)].

As we demonstrate below, for b1 6= 0 this issue can be cured by introducing

additional Q-exact operators. More precisely, the new observables and related

contact terms require three new Q-exact terms. The first two

IY = −3iā3

16

∫
Y

[
Q, d

2ū

dā2
χ ∧ ψ

]
+

√
2

27π

∫
X

{
Q, dτ̄

dā
χ ∧ ψ ∧ ψ

}
=

3
√

2ā3

24

d3ū

dā3
B(ηχ, ψ ∧ Y ) +

3ā3

24

d2ū

dā2
B(F+ −D,ψ ∧ Y )

+
i

26π

d2τ̄

dā2
B(ηχ, ψ ∧ ψ) +

√
2i

27π

dτ̄

dā
B(F+ −D,ψ ∧ ψ)

(6.25)

compensate the observables (6.18). From the collection of contact terms (6.20),

only the one from the intersection Y ∩Y gives a term (6.23) that is integrated

over D, η and χ. This term requires the addition of the Q-exact operator

IY ∩Y = −
√

2iā33

4

∫
Y ∩Y

{
Q, dT̄

dā
χ

}
=
ā33

2

d2T̄

dā2
B(ηχ, Y ∧ Y ) +

√
2ā33

4

dT̄

dā
B(F+ −D, Y ∧ Y ).

(6.26)

We can note that ā33 = −a33 [76]. The sum of these additional Q-exact terms

can be compactly written as

IY + IY ∩Y = −
√

2ηB(χ, ∂ā(yω̄))− yB(F+ −D, ω̄), (6.27)

37This term is called Ĩ+(x) in [81, 83]. For ease of notation, we remove the tilde from such

expressions since we only discuss operators in the IR.
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where we introduced the 2-form

ω :=

√
2i

27πy

dτ

da
ψ ∧ ψ − 3a3

24y

d2u

da2
ψ ∧ Y −

√
2a33

4y

dT

da
Y ∧ Y. (6.28)

This 2-form has the property that yω is holomorphic and thus yω̄ is anti-

holomorphic. The form of (6.25) is derived in Appendix 6.3, where we fur-

thermore show that its one-point function evaluates to zero, such that it is

safe to include it into the path integral, following the analysis in [83, 84]. We

furthermore find it useful to follow [81] and introduce the notation

ρ =
S

2π

du

da
, b =

Im(ρ)

y
. (6.29)

Anticipating the result as a Siegel-Narain theta function, the elliptic variable

will turn out to be z = ρ+2iyω, which is a 2-form with holomorphic coefficients.

In terms of this variable, the sum of all Q-exact insertions (6.24), (6.25) and

(6.26) combine nicely as

I(S, Y ) := IS + IY + IY ∩Y

= − i
2

(√
2B(ηχ, ∂āz̄) +B(F+ −D, z̄)

)
.

(6.30)

It is clear that this is purely anti-holomorphic. The operator I(S, Y ) is then

included into the path integral, as in (6.1).

6.3 Q-exact operators

In this section, we explain the construction of the Q-exact operator I(S, Y ) in

(6.30), which aids the evaluation of the u-plane integral using mock modular

forms. A constructive approach is to classify all Q-exact operators in DW

theory, add all of them to the path integral, evaluate the path integral and

solve for all coefficient functions that lead to the desired properties. For two

reasons, this is fortunately not necessary. First, it is convenient that most such

operators do not even alter the u-plane integrand after integrating out the

fermions and the auxiliary field. Second, the path integral can be performed

without insertions of any additional operators, or with the insertion of just

IS as was done in the case that b1(X) = 0 [81]. Such calculations lead to

integrands that do not contain the symmetric Siegel-Narain theta function

ΨJ
µ(τ, z) for any z, however only a few terms are missing with an educated

guess of z. Only very specific Q-exact operators can provide the necessary

terms for the new integrands to complete into ΨJ
µ(τ, z).

In section 6.3.1, we classify all possibleQ-exact operators that contribute to

the u-plane integrand. In section 6.3.2 we demonstrate how the correctQ-exact

operators can be selected, for the simplified example where the intersection

Y ∩ Y is empty (such that there is no intersection term for Y ∩ Y ).
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6.3.1 Construction of Q-exact operators

Let us complete the result of [83] by computing the all Q-exact observables on

a four-manifold X with π1(X) 6= 0. Let us first collect

C1 = {ψ},
C2 = {D,F±, χ, ψ ∧ ψ},
C3 = {ψ ∧D,ψ ∧ χ, ψ ∧ F±, ψ ∧ ψ ∧ ψ},
C4 = {ψ ∧ ψ ∧D,ψ ∧ ψ ∧ χ, ψ ∧ ψ ∧ F±, ψ ∧ ψ ∧ ψ ∧ ψ,

D ∧D,D ∧ F+, D ∧ χ, F± ∧ F±, F+ ∧ χ}.

(6.31)

These are all 1 . . . 4-forms that can be constructed out of the field content

in Table 2. Since any operator must be gauge invariant, we do not use the 1-

form A to construct operators but only F = dA. Furthermore, some operators

are identically zero due to fermion saturation. The sets Ck are then generating

sets for the spaces of k-form observables [83],

Ok =
1∑
j=0

∑
X∈Ck

fX,j(a, ā)ηjX. (6.32)

Here, fX,j(a, ā) are real-analytic functions without singularities away from

strong and weak coupling. The most generic 0-form observable is O0 =

f0(a, ā) + f1(a, ā)η. Let us restrict now to the Q-exact k-observables [Q,Ok}
∫

that survive integration. These do in particular either contain ηχ or neither,

since otherwise they would not survive the fermionic integration, and they

do not contain any derivative term dX, as we consider b+
2 (X) = 1 and thus

their zero modes vanish. By the notation [Q,O} we furthermore mean either

{Q,O} or [Q,O], depending on whether O is Grassmann odd or even.

Recall the action (5.43) of the supersymmetry generator Q. It follows that

[Q, F±] = (dψ)±. The action of Q on functions f(a, ā) is given by

[Q, f(a, ā)] = ∂āf(a, ā)[Q, ā] =
√

2i∂āf(a, ā)η. (6.33)

The general Q-exact observable [Q,Ok} from (6.32) is very tedious to com-

pute, luckily in [Q,Ok}
∫

generally not many terms survive. Furthermore,

(6.32) has 2|Ck| terms, however due to (5.43) we have [Q, ηO} = −η[Q,O}
and for the terms with j = 1 it remains to multiply the j = 0 term by −η.

Then only one of [Q,O} and −η[Q,O} is Grassmann even in the variables

η and χ, such that only one of those can contribute to [Q,O}
∫
. Lastly, if

O =
∏

l Õl is a composite operator, its Q-action [Q,O} is an alternating sum

∼ ∑l[Q, Õl}
∏

k 6=l Õk, and so if all such summands do not contribute (which

can be easily checked) then the whole commutator does not either. With

this, it is now slightly less work to extract those summands O
∫
k of (6.32) that
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contribute, [Q,Ok}
∫

= [Q,O
∫
k }. They are

O
∫
2 = f1χ,

O
∫
3 = f2ψ ∧ χ,
O
∫
4 = f3ψ ∧ ψ ∧ χ+ f4D ∧ χ+ f5F+ ∧ χ,

(6.34)

while [Q,O0}
∫

= [Q,O1}
∫

= 0. Their Q-commutators give

{Q,O
∫
2 } = +

√
2i∂āf1ηχ+ if1(F+ −D),

[Q,O
∫
3 ] = −

√
2i∂āf2ηχ ∧ ψ − if2(F+ −D) ∧ ψ,

{Q,O
∫
4 } = +

√
2i∂āf3ηχ ∧ ψ ∧ ψ + if3(F+ −D) ∧ ψ ∧ ψ

+
√

2i∂āf4ηχ ∧D + if4D ∧ (F+ −D)

+
√

2i∂āf5ηχ ∧ F+ + if5F+ ∧ (F+ −D).

(6.35)

These are all Q-exact operators in DW theory. The following Q-exact terms

can then be added to the action

I2 =

∫
S

{Q,O
∫
2 }, I3 =

∫
Y

[Q,O
∫
3 ], I4 =

∫
X

{Q,O
∫
4 }. (6.36)

6.3.2 Solution for IY

By adding only IS as suggested in [81, 83, 86], the u-plane integrand can be

written as a total derivative, however it does not complete to a Siegel-Narain

theta function. Let us construct the operator IY such that this becomes true.

For simplicity, we ignore the contact terms I∩. This is possible since all contact

terms other than the Y ∩ Y are integrated over ψ and τ only and therefore do

not affect the path integral calculation. For simplicity and only in this section,

we take the intersection Y ∩ Y to be empty.

We therefore aim to find the functions f1, . . . f5. In the case π1(X) = 0, the

total integrand must go back to (6.45). If f4 and f5 are nonzero, this is not

the case since they alter the integral. 38 We therefore set f4 = f5 = 0. Thus,

in the simply connected case, we have I2 = IS, which implies f1 = − 1
4π

dū
dā

. We

shall therefore consider adding the correction

IY = −
√

2i∂āf2ηB(χ, ψ ∧ Y )− if2B(F+ −D,ψ ∧ Y )

+
√

2i∂āf3ηB(χ, ψ ∧ ψ) + if3B(F+ −D,ψ ∧ ψ).
(6.37)

to the exponential in (6.45). The terms ψ ∧ Y and ψ ∧ ψ are precisely the

terms that lead to the problems if only IS is added. We can organise h :=

f3ψ ∧ ψ − f2ψ ∧ Y , such that

IY =
√

2iηB(χ, ∂āh) + iB(F+ −D, h). (6.38)

38This is certainly true if f4 and f5 can be varied. It is possible in principle that for specific

functions f4 and f5 the π1(X) = 0 integral does not change.
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Inserting it into the path integral we find

D =

√
2i

4y

dτ̄

dā
ηχ− 4π(b+ + ω+) +

4πi

y
h+. (6.39)

After integrating out D, this produces new terms

4πiB(k+ + b+, h) +

√
2

4y

dτ̄

dā
ηB(χ, h) +

√
2iηB(χ, ∂āh) (6.40)

to (6.48) (notice that ω∧h = h∧h = 0). The first term is only integrated over

ψ and τ , so it will not play a role immediately. The second and third term

yield after the fermionic integration,

dτ̄

dā

(
−
√

2

4y
h−
√

2i∂τ̄h

)
. (6.41)

In view of (6.50) and the above discussion, we can aim this new contribution

to give the missing factor

√
y
dτ̄

dā
∂τ̄
√

2y ω̄ =
dτ̄

dā

(√
2i

4
ω̄ +
√

2y∂τ̄ ω̄

)
, (6.42)

such that the Siegel-Narain theta function has an elliptic variable z = ρ+2iyω

and β = b+ ω + ω̄. 39 Motivated by the computation

∂τ̄y =
i

2
, ∂τ̄

√
2y =

√
2i

4
√
y
, ∂τ̄

1

y
=

1

2iy2
, ∂τ̄b =

b− ∂τ̄ ρ̄
2iy

, ∂τ̄ω =
1

2iy
ω,

(6.43)

we make the ansatz h = icyω̄, with c ∈ C some number. From this it follows

that y∂τ̄ ω̄ = − i
c
∂τ̄h − i

2
ω̄. Notice that h is purely anti-holomorphic, while ω̄

is not. We find that (6.41) equals (6.42) precisely for c = 1. From this, it is

easy to find

f2 =
3ia3

16

d2ū

dā2
, f3 =

√
2

27π

dτ̄

dā
. (6.44)

In the simply connected case, the correction I2 = IS is necessary in order for

the surface observable Ĩ−(S) to combine into a Siegel-Narain function such that

the u-plane integral is a total derivative. In the case π1(X) 6= 0, an analogous

procedure is required for the 3-cycle Y , which combines to a 2-form as ψ ∧ Y .

In the π1(X) 6= 0 Lagrangian (6.7) there is a new term ψ∧ψ that is integrated

over η, χ and D, such that the u-plane integral is a total derivative but does

not contain a SN theta function. After the insertion of an anti-holomorphic

Q-exact 4-form operator, the integrand indeed becomes a Siegel-Narain theta

function.

39Another possibility would be to chose h to be holomorphic and cancelling the ω inside the

derivative. This is possible, however, the ω dependence does not drop from the SN theta

function.
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6.4 The u-plane integral for b1 > 0

The u-plane integral (6.1) can be expressed as

Zu(p, γ, S, Y ) =

∫
[dadādηdχdD]

∫
Pic(X)

dψ ν(τ)
1√
y
e−

∫
X L′+IO+I∩+I(S,Y ),

(6.45)

where
∫

Pic(X)
denotes a sum over isomorphism classes of line bundles, equivalent

to a sum over H2(X,Z), followed by an integration over Tb1 . The ψ zero modes

are tangent to Pic(X), so the integral over these modes is understood as the

integral of a differential form on Pic(X) [73]. At this point let us make a

remark. The Q-exact operator I(S, Y ) is not strictly required in order to

derive our end result (6.57). As a matter of fact, as shown in [84] this operator

can be added freely as αI(S, Y ), with α any number. In particular, we can

have α = 0. However, the case of α = 1 makes the analysis simpler and more

elegant, why we choose to include it.

Let us perform the integrals above in steps, using an economical notation.

We integrate first over the auxiliary field D, and then over the fermionic 0-

and 2-forms, η and χ.

6.4.1 Integration over D, η and χ

Using (6.28) and (6.29), we can expand the terms in the exponential of (6.45)

that are affected by the integrals over D, η and χ as (ignoring the remaining

terms for now)

−
∫
X

(L′ + a2K
2u+ a3K

3u) + I(S, Y )−
√

2a33

4

dT

da
B(F− +D, Y ∧ Y )

= −πiτ̄k2
+ − πiτk2

− +
y

8π
D2 −

√
2i

4

dτ̄

dā
B(ηχ, k+)−

√
2i

16π

dτ̄

dā
B(ηχ,D)

− i√
2
B(ηχ,

dρ̄

dā
)− 2πiB(k−, ρ)− 2πiB(k+, ρ̄) + yB(D, b+) +

√
2i

25
B(ψ ∧ ψ, dρ

da
)

−
√

2ηB(χ, ∂ā(yω̄)) + 4πyB(k−, ω−)− 4πyB(k+, ω̄) + yB(D,ω+) + yB(D, ω̄+).
(6.46)

At any point we discard terms that vanish identically, such as 4-fermion terms

or any instance of (6.6) such as ψ ∧ ψ ∧ ψ ∧ ψ, ψ ∧ ψ ∧ ψ ∧ Y or ω ∧ ω. The

exponential (6.46) is Gaussian in D with saddle point

D =

√
2i

4y

dτ̄

dā
ηχ− 4π(b+ + ω+ + ω̄+). (6.47)
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This can be found by differentiating (6.46) with respect to D and setting it to

zero. Inserting D in (6.46) gives 40

+

√
2i

25
B(ψ ∧ ψ, dρ

da
)− 2πy(b+ + ω+ + ω̄+)2 − πiτ̄k2

+ − πiτk2
−

− 2πiB(k−, ρ)− 2πiB(k+, ρ̄) + 4πyB(k−, ω)− 4πyB(k+, ω̄)

−
√

2i

4

dτ̄

dā
B(ηχ, k+ − b+ − ω+ − ω̄+)− i√

2
B(ηχ, dρ̄+

dā
)−
√

2ηB(χ, ∂ā(yω̄)).

(6.48)

The third line are the only terms involving η and χ, which we will integrate

over next. Before, we can combine those terms in the expression

−
√

2i

4

dτ̄

dā
B (ηχ, k − b− ω + ω̄ − 4iy∂τ̄ ω̄ + 2∂τ̄ ρ̄) . (6.49)

Integrating over η and χ, we can rewrite this in a compact way as a total

anti-holomorphic derivative times an overall factor that, as we discuss below,

cancels with contributions from the rest of the measure,

√
2i

4

dτ̄

dā
B (k − b− ω + ω̄ − 4iy∂τ̄ ω̄ + 2∂τ̄ ρ̄, J) =

√
y
dτ̄

dā
∂τ̄
√

2yB(k+b+ω+ω̄, J),

(6.50)

where ∂τ̄ acts on everything to its right and J = J/
√
Q(J) ∈ H2

+(X) is the

normalised self-dual harmonic form on X. This result follows directly from

the the identities (6.43).

As previously discussed, the photon path integral together with the measure

for the zero modes of ψ contains a sum over all fluxes times a factor of 1/
√
y,

and additionally contributes (−1)B(k,K), where K is the canonical class of

X [72]. The 1/
√
y factor is thus absorbed by the

√
y on the rhs of (6.50).

Using the change of variables u : Γ0(4)\H ∼−→ CP1 provided by (6.4), we

can further integrate over dτ ∧ dτ̄ rather than over da ∧ dā. This motivates

the definition of the transformed measure

ν̃ = ν
da

dτ
, (6.51)

such that da∧ dā ν = dτ ∧ dτ̄ dā
dτ̄
ν̃. The factor dā

dτ̄
cancels with the dτ̄

dā
of (6.50).

6.4.2 Siegel-Narain theta function

Let us demonstrate that the u-plane integrand for π1(X) 6= 0, as in the simply-

connected case [81], evaluates to a Siegel-Narain theta function. To this end,

40If we integrate over D instead of inserting the equations of motion we get an additional

factor of 2πi
√

2
y in front of the integral [83]. The result of the integration does not change

otherwise since both methods agree for Gaußian integrals up to an overall factor of
√

π
a i,

if we integrate eaD
2

over D. It is the same factor as in the simply-connected case because

the quadratic D-term is the same. According to [73, p. 68] the D determinant should be

ignored because it cancels in any case with the fermionic determinants.
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let us define

ΨJ
µ(τ, z) = e−2πyβ2

+

∑
k∈L+µ

∂τ̄

(√
2yB(k + β, J)

)
× (−1)B(k,K)q−k

2
−/2q̄k

2
+/2e−2πiB(z,k−)−2πiB(z̄,k+)

(6.52)

with q = e2πiτ and β = Imz
y
∈ L⊗ R, where L = H2(X,Z).

For the elliptic variable z = ρ+ 2iyω, we have β = b+ ω+ ω̄ (here, we use

that yω is holomorphic). Both variables appear naturally in (6.48) and (6.50).

In fact, we can combine everything to find

Zu(p, γ, S, Y ) =

∫
Γ0(4)\H

dτ ∧ dτ̄
∫
Tb1

[dψ] ν̃ ΨJ
µ(τ, ρ+ 2iyω)eI

′
O+I′∩ . (6.53)

Here,

I ′∩ =

∫
S∩S

T + a13

∫
Y ∩γ

T + a332

∫
S∩Y ∩Y

∂3F
∂τ 3

0

+
a32

4
√

2

dT

da

∫
Y ∩S

ψ (6.54)

and

I ′O = 2pu+

√
2a1

8

du

da

∫
γ

ψ +

√
2i

26π

d2u

da2

∫
S

ψ ∧ ψ, (6.55)

are the (holomorphic) remainders of the collections of 0, . . . , 3-form observ-

ables and their contact terms that has not yet been integrated over, and we

eliminated all terms that do not contribute.

Let us check that (6.53) is indeed true from the computations in section

6.4.1. Aside from the ψ ∧ ψ term, the exponential of the first two lines in

(6.48) immediately combine into the definition (6.52) with said parameters,

z = ρ+ 2iyω and z̄ = ρ̄− 2iyω̄. Everything not exponentiated is given by the

τ̄ derivative term in (6.50), which precisely gives the derivative term in (6.52).

This proves (6.53).

The expression (6.53) generalises the result of the u-plane integral [84,

(4.32)] to four-manifolds X with b1(X) > 0 by giving a decomposition of

the integrand into a holomorphic and metric-independent measure ν̃ eI
′
O+I′∩

and a metric-dependent, non-holomorphic component ΨJ
µ(τ, z). Therefore, the

evaluation techniques of [84] apply. Namely, we can express the integrand of

the u-plane integral as an anti-holomorphic derivative,

d

dτ̄
ĤJ
µ(τ, τ̄) = ν̃ ΨJ

µ(τ, z)eI
′
O+I′∩ . (6.56)

The holomorphic exponential eI
′
O+I′∩ does not affect the anti-holomorphic deriva-

tive, and thus the extension to π1(X) 6= 0 is simply through the elliptic argu-

ment z = ρ+ 2iyω.

Once ĤJ
µ(τ, τ̄) is found, we can use coset representatives of SL(2,Z)/Γ0(4)

to map the six images of F = SL(2,Z)\H back to F (see Fig. 2). The

regularisation and renormalisation of such integrals originating from insertions

163



of Q-exact operators has been rigorously established in [83]. This then allows

to evaluate the partition function as

Zu(p, γ, S, Y ) = 4 Iµ(τ)
∣∣
q0 + Iµ(− 1

τ
)
∣∣
q0 + Iµ

(
2τ−1
τ

) ∣∣
q0 , (6.57)

where by |q0 we denote the q0 coefficient of the resulting Fourier expansion,

and the τ -integrand of (6.53) is given by 41

Iµ(τ) =

∫
Tb1

[dψ]ĤJ
µ(τ, τ̄). (6.58)

The prefactors in (6.57) can be recognised as the widths of the cusps i∞, 0

and 1 of the modular curve Γ0(4)\H.

To derive a suitable anti-derivative ĤJ
µ(τ, τ̄), it is auxiliary to choose a

convenient period point J . The u-plane integral for a different choice J ′ is then

related to the one for J by a wall-crossing formula, given explicitly in [76]. It is

shown in [84] that for convenient choices of J , ΨJ
µ(τ, z) factors into holomorphic

and anti-holomorphic terms, and the anti-derivative ĤJ
µ can be found for both

L even and odd. Furthermore, the u-plane integral can be evaluated using

mock modular forms for point observables p ∈ H0(X) and Appell-Lerch sums

for surface observables z ∈ H2(X) [84].

In [83] it is furthermore shown that in the above mentioned renormalisation,

any Q-exact operator (such as I(S, Y )) decouples in DW theory. However, it

is clear that the insertion of I(S, Y ) crucially changes the integrand, making

the Siegel-Narain theta function symmetric. Instead of inserting I(S, Y ), we

can contemplate adding αI(S, Y ) for an arbitrary constant α. It was noticed

in [84] that the Siegel-Narain theta function ΨJ
µ,α for b1 = 0 with the insertion

αIS remains finite at weak coupling (Imτ →∞) if and only if α = 1. This can

be seen from the exponential prefactor in (6.52), whose exponent is negative

definite if and only if z̄ (which we suppress in the notation) is the complex

conjugate of z.

6.4.3 Single-valuedness of the integrand

An essential requirement, for the consistency of the theory, is that the path

integral (6.53) is single-valued. For this it is advantageous to first change

variables in the ψ-integral as

ψ′ = ψ +
12πia3√

2

da

dτ

d2u

da2
Y. (6.59)

This is because the coefficient function of ψ ∧ ψ in yω is modular, while the

ψ ∧ Y and Y ∧ Y coefficients of yω are only quasi-modular. Such shifts (6.59)

41One could also contemplate switching the order of integration, and integrate over ψ first.

This would however not necessarily result in a similar function to (6.57), and it might not

be possible to use the results of [84].
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leave the measure of
∫

[dψ] invariant, as dψ = dψ′. Due to the order of inte-

gration in (6.53), the change of variables (6.59) is well-defined. Since Y is also

Grassmann-odd, ψ and Y ∧-commute. This gives

ω =

√
2i

27πy

dτ

da
ψ′ ∧ ψ′ + 9

√
2π2a2

3

16y

du

da
Y ∧ Y. (6.60)

Let us use the notation of section 6.2.1. It is argued in [76] that ψ′ transforms

as (−1, 1)(1,0). Using (6.5), one then finds that yω = (−1, 1)(−1,0) transforms

precisely as ρ = (−1, 1)(−1,0), such that z = ρ + 2iyω = (−1, 1)(−1,0) is a

modular form and transforms exactly as in the π1(X) = 0 case.

Furthermore, it is auxiliary to define [76, (2.14)]

S ′ = S + 4πiy
da

du
ω. (6.61)

It is well-defined, as S ′ = (1, 1)(0,0) is fully invariant. In contrast to (6.59),

this is not a change of variables or a redefinition, but rather a substitution to

simplify some expressions. For instance, the elliptic variable now reads

z =
S ′

2π

du

da
, (6.62)

which takes the same form (6.29) as in the simply-connected case.

By incorporating the shift of ψ → ψ′ together with (6.61) we find that the

contact terms and observables in (6.54) and (6.55) can be written as

IO+∩ = 2pu+ S ′2T +

√
2a1

8

du

da

∫
γ

ψ′ − 3π2a1a3u

∫
γ

Y +

√
2

32

dτ

du
u

∫
S′
ψ′ ∧ ψ′

− 3πi

8
a3
du

da

∫
Y

S ′ ∧ ψ′ + 3
√

2

4
iπ3a2

3 u

∫
S′
Y ∧ Y.

(6.63)

All terms but S ′2T are modular functions with trivial multipliers. Due to

(6.62), the quasi-modular shift of T combines precisely with the one of Ψ(τ, z).

Measure factor

Since ∆ ∝ ϑ8
4

ϑ4
2ϑ

4
3
, da
dτ

= π
8i

ϑ8
4

ϑ2ϑ3
and da

du
= 1

2
ϑ2ϑ3, from (6.8) we have that ν ∝

ϑσ4
(ϑ2ϑ3)2−b1 and therefore

ν̃ ∝ ϑ8+σ
4

(ϑ2ϑ3)3−b1 . (6.64)

We find that under the generators of Γ0(4), ν̃ = (−1, e−πiσ/4)(2− b2
2

+b1,0). For

this we have used that σ + b2 = 2 and that b1 is even.

We also need to consider the fermion measure. As we have discussed earlier,

this comes with an overall factor of y−
b1
2 which gets absorbed by a similar factor

coming from the photon partition function. This leaves us with
∏b1

i=1 dci, which

has weight (−b1, 0), since ψ has weight (1, 0) [72]. So after the integration over
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D, η and χ, and after changing integration variables from da ∧ dā to dτ ∧ dτ̄
the measure of the integral will have weight (−2 − b1,−2), and we thus need

the rest of the integrand to have weight (2+b1, 2). Finally, the transformations

of the Siegel-Narain theta function ΨJ
µ(τ, z) can be found in Appendix A.7.

The integrand of the u-plane integral (6.53) reads

J J
µ = dτ ∧ dτ̄

∫
Tb1

[dψ] ν̃ ΨJ
µ(τ, z)eI

′
O+I′∩ . (6.65)

Since it is integrated over the fundamental domain of Γ0(4), in order to check

whether the integral is well-defined J J
µ must transform as a modular function

for Γ0(4) with no phases. In Table 3 we collect the phases and weights of the

individual factors as discussed above. This shows that the integral is indeed

well-defined.

object dτ ∧ dτ̄
∫
Tb1[dψ] ν̃ ΨJ

µ(τ, z) eI
′
O+I∩ J J

µ

weight (−2,−2) (−b1, 0) (2− b2
2

+ b1, 0) ( b2
2
, 2) (0, 0) (0, 0)

T 4 1 1 −1 −1 1 1

S−1T−1S 1 1 e−
πiσ
4 e

πiσ
4 e−

πiz2

τ+1 e
πiz2

τ+1 1

Table 3: Modular weights and phases of the u-plane integrand (6.65) under Γ0(4) transfor-

mations. This proves that J Jµ (γτ) = J Jµ (τ) for any γ ∈ Γ0(4).
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7 Discussion and conclusion

In this thesis, we have studied in detail the modularity of a class of N = 2

supersymmetric field theories. Being a manifestation of duality, modularity

gives a precise description of duality and thus provides nontrivial insight into

the dynamics. For the asymptotically free SU(2) theories with fundamental

matter, we have found that the modularity is mildly obstructed by branch

points, which give rise to the superconformal Argyres-Douglas points. In the

superconformal Nf = 4 theory, for specific masses the order parameters are

enhanced to bimodular forms, as they are modular in two parameters. For

more general mass configurations however, branch points will also appear.

When the gauge group is enlarged to SU(3), we rather found that there

exist elliptic loci which allow a modular parametrisation. With the inclusion of

fundamental matter, such elliptic loci become more complicated, but in certain

examples can be found explicitly.

These results vastly generalise earlier work by Seiberg and Witten [45,46],

Nahm [101], Malmendier and Ono [77], Klemm, Lerche, Theisen [96] and others

on the modularity of the Coulomb branch for N = 2 supersymmetric Yang-

Mills theory and N = 2 supersymmetric QCD. They open up several new

directions for further research, as will be discussed in the following.

The fundamental domains obtained in this thesis are used as integration

domains for topological correlation functions, when the theory is formulated on

a four-manifold. We found that by coupling the theory to background fluxes,

the constraint on the gauge bundle can be lifted. This allows to study a larger

class of topological correlation functions. We investigated the definition, anal-

ysis and evaluation of such u-plane integrals for SU(2) N = 2 supersymmetric

QCD with Nf ≤ 4 arbitrary masses on a compact four-manifold. The change

of variables from the u-plane to fundamental domains for the effective coupling

allows to express the integrands as generalisations of mock modular forms.

Another application of the fundamental domains is the study of BPS spec-

tra. Many four-dimensional N = 2 theories have the property that their

spectrum of BPS states can be encoded in a quiver, the BPS quiver [296,297].

Recently, it has been proposed that BPS quivers can be obtained from the

fundamental domain of a particular 4d N = 2 theory through a simple map

[1,129,298]. This is due to the fact that fundamental domains encode the mon-

odromy matrices, whose eigenvectors are the charge vectors of BPS states. It

would be interesting to expand these ideas to non-modular configurations.

As mentioned in section 4.7, it would be interesting to extend our work

on SU(3) to higher rank gauge groups, such as SU(N). While the elliptic loci

are more subtle in this case, an approach similar to the one for the rank one

theories could be worth exploring. In rank one, we match the J -invariant of

the elliptic curve with the modular j-invariant. When J is a rational function

of the order parameter, then this relation can be equivalently expressed as

a polynomial equation (such as in Sections 2 and 3). For rank two, genus
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two curves are isomorphic if and only if their absolute invariants x1, x2 and

x3 (as defined in (4.97)) coincide. The absolute invariants themselves are

rational functions of Siegel modular forms of weight 0, which are meromorphic

on the genus two Siegel upper-half plane H2 3 Ω. Thus from xi = xi(Ω),

i = 1, 2, 3 we find three equations for the two variables u and v. For pure SU(3)

for example, these equations are necessarily equivalent to the system (4.36).

By multiplying with the denominators of xi(Ω), we obtain three two-variable

polynomial equations over the field of meromorphic Siegel modular forms of

weight 0. Such a reformulation however likely runs into the same problem

as the map to Rosenhain form, essentially since it does not circumvent the

Schottky problem [299,300]. It would be interesting to find a general solution

to this problem.

It would furthermore be very interesting and challenging to extend our

techniques and results to other N = 2 supersymmetric theories. Many N = 2

field theories in four dimensions can be obtained from geometric engineering

[20, 21] in Type IIA string theory on local Calabi-Yau threefold singularities

[22,23]. They are also closely related to five-dimensional theories compactified

on a circle, as a consequence of the Type-IIA/M-theory duality [301, 302].

Arguably the simplest such five-dimensional theories are the rank one theories

with En flavour symmetry [129, 166, 298, 303]. Their circle compactification

gives a class of four-dimensional N = 2 supersymmetric theories, which are

related by mass deformations, starting from E8 to En with n < 8. The E8

theory itself can be obtained from the E-string theory [304].

Another motivation to study N = 2 theories in four dimensions is to ex-

plore indirectly the non-trivial six-dimensional N = (2, 0) superconformal the-

ories [305–307]. It can be realised as the worldvolume theory of a stack of N

parallel M5-branes [308]. By a twisted compactification of the 6d supercon-

formal theory on a Riemann surface, the so-called class S of 4d N = 2 super-

symmetric theories are obtained [20,21,112,113]. The class S theories include

the rank 1 SCFTs [155,309,310], general non-Lagrangian theories [64,82,109]

and the above mentioned circle compactifications of 5d SCFTs. This six-

dimensional construction gives a geometric perspective on the S-duality of

Seiberg-Witten theory. It furthermore gives rise to the AGT correspondence,

which is a conjectured equality of many class S observables with 2d CFT

correlation functions [172,311,312].

It would be interesting to generalise our results on the topologically twisted

theories and study the Coulomb branch integrals of other N = 2 theories, such

as those of class S. While the topological twist of Donaldson-Witten theory

can be implemented in any such theory, the formulation and evaluation of

correlation functions as integrals over fundamental domains has been achieved

to date only for a selection of N = 2 theories and four-manifolds [73, 74, 77–

80,84,85]. It would further be fruitful to study the relations to 2d N = (0, 2)

theories [63], vertex operator algebras [65], topological modular forms [62], and

investigate the possibility to establish new four-manifold invariants [63,85].
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In view of the arguments given in section 1.1 on the complexity for the

dynamics of supersymmetric quantum field theory with decreasing N , it would

be interesting to explore whether our results can be used to learn about the

dynamics of theories with less supersymmetry, for instance N = 1. Such

supersymmetry breaking has already been studied in the 1990s [45,149,150,251,

313,314], with revived interest due to relations to integrable systems [121,315]

as well as line defects and ’t Hooft anomalies [276,316].

169



A Automorphic forms and elliptic curves

In this Appendix, we collect some properties of modular and automorphic

forms, as well as elliptic curves. For further reading see for example [59, 145,

154,217,224,225,287,317–321].

A.1 Elliptic modular forms

We make use of modular forms for the congruence subgroups Γ0(n) and Γ0(n)

of SL(2,Z). They are defined as

Γ0(n) =

{(
a b

c d

)
∈ SL(2,Z)

∣∣ c ≡ 0 mod n

}
,

Γ0(n) =

{(
a b

c d

)
∈ SL(2,Z)

∣∣ b ≡ 0 mod n

}
,

(A.1)

and are related by conjugation with the matrix diag(n, 1). We furthermore

define the principal congruence subgroup Γ(n) as the subgroup of SL(2,Z) 3 A
with A ≡ 1 mod n. A subgroup Γ of SL(2,Z) is called a congruence subgroup

if there exists an integer n ∈ N such that it contains Γ(n). The smallest such

n is then called the level of Γ.

We furthermore make use of the theta group [322]

Γθ := 〈T 2, S〉 ⊆ SL(2,Z). (A.2)

It is a congruence subgroup of SL(2,Z), as [321,323]42

Γθ = {A ∈ SL(2,Z) |A ≡ 1 or S mod 2} . (A.3)

Eisenstein series

We let τ ∈ H and define q = e2πiτ . Then the Eisenstein series Ek : H→ C for

even k ≥ 2 are defined as the q-series

Ek(τ) = 1− 2k

Bk

∞∑
n=1

σk−1(n) qn, (A.4)

with σk(n) =
∑

d|n d
k the divisor sum. For k ≥ 4 even, Ek is a modular form

of weight k for SL(2,Z). On the other hand E2 is a quasi-modular form, which

means that the SL(2,Z) transformation of E2 includes a shift in addition to

the weight,

E2

(
aτ + b

cτ + d

)
= (cτ + d)2E2(τ)− 6i

π
c(cτ + d). (A.5)

From the S-transformation, we find that

E4(eπi/3) = 0, E6(i) = 0, (A.6)

42It can also be written as the group of matrices
(
a b
c d

)
with a + b + c + d ≡ 0 mod 2, or

ab ≡ cd ≡ 0 mod 2.
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and the zeros are unique in SL(2,Z)\H according to the valence formula for

modular forms on SL(2,Z). Any modular form for SL(2,Z) can be related to

the Jacobi theta functions (1.14) by

E4 =
1

2
(ϑ8

2 + ϑ8
3 + ϑ8

4), E6 =
1

2
(ϑ4

2 + ϑ4
3)(ϑ4

3 + ϑ4
4)(ϑ4

4 − ϑ4
2). (A.7)

All quasi-modular forms for SL(2,Z) can be expressed as polynomials in E2,

E4 and E6. The derivatives of the Eisenstein series are quasi-modular,

E ′2 =
2πi

12
(E2

2 − E4), E ′4 =
2πi

3
(E2E4 − E6), E ′6 =

2πi

2
(E2E6 − E2

4).

(A.8)

These equations give the differential ring structure of quasi-modular forms on

PSL(2,Z). With our normalisation (1.7) the j-invariant can be written as

j = 1728
E3

4

E3
4 − E2

6

= 256
(ϑ8

3 − ϑ4
3ϑ

4
4 + ϑ8

4)3

ϑ8
2ϑ

8
3ϑ

8
4

. (A.9)

Theta functions

The Jacobi theta functions ϑj : H→ C, j = 2, 3, 4, are defined as

ϑ2(τ) =
∑
r∈Z+ 1

2

qr
2/2, ϑ3(τ) =

∑
n∈Z

qn
2/2, ϑ4(τ) =

∑
n∈Z

(−1)nqn
2/2,

(A.10)

with q = e2πiτ . These functions transform under T, S ∈ SL(2,Z) as

S : ϑ2(−1/τ) =
√
−iτϑ4(τ), ϑ3(−1/τ) =

√
−iτϑ3(τ), ϑ4(−1/τ) =

√
−iτϑ2(τ)

T : ϑ2(τ + 1) = e
πi
4 ϑ2(τ), ϑ3(τ + 1) = ϑ4(τ), ϑ4(τ + 1) = ϑ3(τ).

(A.11)

They furthermore satisfy the Jacobi abstruse identity

ϑ4
2 + ϑ4

4 = ϑ4
3. (A.12)

Derivatives of modular functions are described by Ramanujan’s differential

operator. It increases the holomorphic weight by 2 and it can be explicitly

constructed using the theory of Hecke operators. For the derivatives of the

Jacobi theta functions, one finds

Dϑ4
2 = 1

6
ϑ4

2

(
E2 + ϑ4

3 + ϑ4
4

)
,

Dϑ4
3 = 1

6
ϑ4

3

(
E2 + ϑ4

2 − ϑ4
4

)
,

Dϑ4
4 = 1

6
ϑ4

4

(
E2 − ϑ4

2 − ϑ4
3

)
,

(A.13)

where D := 1
2πi

d
dτ

= q d
dq

and E2 is the quasi-modular Eisenstein series (1.7) of

weight 2, transforming as (A.5).

The modular lambda function is defined as λ =
ϑ4

2

ϑ4
3
, and is a Hauptmodul

for Γ(2).
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Another class of theta series is provided by the one of the A2 root lattice,

b3,j : H→ C,

b3,j(τ) =
∑

k1,k2∈Z+ j
3

qk
2
1+k2

2+k1k2 , j ∈ {−1, 0, 1}. (A.14)

It is clear that b3,−1 = b3,1. The transformation properties under SL(2,Z) are

S : b3,j

(
−1

τ

)
= − iτ√

3

∑
l mod 3

ω2jl
3 b3,l(τ),

T : b3,j(τ + 1) = ωj
2

3 b3,j(τ),

(A.15)

with ω3 = e2πi/3. The b3,j series can be expressed through the Dedekind eta

function (A.19) as

b3,0(τ) =
η( τ

3
)3 + 3η(3τ)3

η(τ)
, b3,1(τ) = 3

η(3τ)3

η(τ)
. (A.16)

A relation to the Jacobi theta functions is given by

b3,0(τ) = ϑ3(2τ)ϑ3(6τ) + ϑ2(2τ)ϑ2(6τ). (A.17)

Dedekind eta function

The Dedekind eta function η : H→ C is defined as the infinite product

η(τ) = q
1
24

∞∏
n=1

(1− qn), q = e2πiτ . (A.18)

It transforms under the generators of SL(2,Z) as

S : η(−1/τ) =
√
−iτ η(τ),

T : η(τ + 1) = e
πi
12 η(τ),

(A.19)

and relates to the Jacobi theta series as η3 = 1
2
ϑ2ϑ3ϑ4. The derivative of η is

given by η′ = πi
12
η E2.

Quotients of η-functions are frequently used to generate bases for the spaces

of modular functions for congruence subgroups of SL(2,Z). We use the follow-

ing

Theorem 1 ( [224, 225]). Let f(τ) =
∏

δ|N η(δτ)rδ be an η-quotient with k =
1
2

∑
δ|N rδ ∈ Z and

∑
δ|N δrδ ≡

∑
δ|N

N
δ
rδ ≡ 0 mod 24. Then, f is a weakly

holomorphic modular form for Γ0(N) with weight k.

Atkin-Lehner involutions

The modular groups of n|h-type are defined in the following way [58]. Consider

matrices of the form (
ae b/h

cn de

)
(A.20)
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with determinant e, where a, b, c, d, e, h, n ∈ Z, and h is the largest integer for

which h2|N and h|24 with n = N/h. These matrices are also referred to as

Atkin-Lehner involutions.

In the case that n is a positive integer and h|n, we define Γ0(n|h) as the set

of above matrices with e = 1. For any positive integer e which satisfies e|n/h
and (e, n/eh) = 1 (e is called an exact divisor of n/h), one can include also

matrices of the above form with e > 1, forming a group denoted by Γ0(n|h)+e.

In fact, this construction works for any choice {e1, e2, . . . } of exact divisors of

n/h, resulting in the group Γ0(n|h) + e1, e2, . . . . If h = 1, the |h is omitted

in the notation, and in case that all the possible ei are included, the group is

simply denoted by Γ0(n|h)+.

In the Γ0 convention the notation simplifies, since Γ0(n|h) = Γ0(n
h
). This

can be checked by conjugating (A.20) with diag(n, 1). The extension by non-

unity determinant matrices follows by analogy.

Fundamental domains

A key concept of the theory of modular forms is the fundamental domain. A

fundamental domain for a group Γ ⊂ SL(2,R) is an open subset F ⊂ H with

the property that no two distinct points of F are equivalent under the action

of Γ and every point in H is mapped to some point in the closure of F by the

action of an element in Γ. The quotient Γ\H can be compactified by adding

finitely many points called cusps. Cusps are Γ-equivalence classes of Q∪{i∞}.
Special points in the fundamental domain are the elliptic fixed points, which

are points in H that have a non-trivial Γ-stabiliser. There, the quotient Γ\H
becomes singular. Elliptic points can always be mapped to the boundary of

the fundamental domain. They furthermore contribute non-trivially to the

order of vanishing, which determines the dimension of the spaces of modular

forms for fixed weight.

A.2 Siegel modular forms

Ordinary modular forms are constructed by the action of an SL(2,Z) Möbius

transformation on the upper half-plane H. Siegel modular forms [287,319,324]

generalise this notion by introducing an action of Sp(2g,Z) on the so-called

Siegel upper half-plane Hg, which works for any genus g ∈ N.

Define the Siegel modular group of genus g as

Sp(2g,Z) = {M ∈ Mat(2g;Z) |MTJM = J} with J =
(

0 1g

−1g 0

)
. (A.21)

The group Sp(4,Z) can be generated [287] by the elements J and T =
(
1g s
0 1g

)
with s = sT. The Siegel upper half-plane

Hg = {Ω ∈ Mat(g;C) |ΩT = Ω, ImΩ > 0} (A.22)
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consists of complex symmetric g×g matrices whose (componentwise) imaginary

part is positive definite. This generalises the ordinary upper half-plane H = H1.

For example, for g = 2 this means that

Ω =

(
τ11 τ12

τ12 τ22

)
, Imτ11 > 0, Imτ11Imτ22 − (Imτ12)2 > 0. (A.23)

An element γ = ( A B
C D ) ∈ Sp(2g,Z) acts on the Siegel upper half-plane by

Ω 7−→ γ(Ω) = (AΩ +B)(CΩ +D)−1. (A.24)

A (classical) Siegel modular form of weight k and genus g is then a holomorphic

function f : Hg → C satisfying

f(γ(Ω)) = det(CΩ +D)kf(Ω) ∀γ =

(
A B

C D

)
∈ Sp(2g,Z), (A.25)

where for g = 1 holomorphicity at i∞ is required in addition.

Theta series provide an explicit class of classical Siegel modular forms. For

a, b ∈ Q2 and Ω ∈ H2, define

Θ

[
a

b

]
(Ω) =

∑
k∈Z2

exp
(
πi(k + a)TΩ(k + a) + 2πi(k + a)T b

)
. (A.26)

We are especially interested in the case where the entries of these column
vectors take values in the set {0, 1

2
}. The corresponding theta functions are

usually referred to as the theta characteristics. We call γ = [ ab ] an even (odd)
characteristic if 4aTb is even (odd). In the case of genus two there are ten even
theta constants [318],

Θ1 = Θ

[
0 0

0 0

]
, Θ2 = Θ

[
0 0
1
2

1
2

]
, Θ3 = Θ

[
0 0
1
2

0

]
, Θ4 = Θ

[
0 0

0 1
2

]
, Θ5 = Θ

[ 1
2

0

0 0

]
,

Θ6 = Θ

[ 1
2

0

0 1
2

]
, Θ7 = Θ

[
0 1

2
0 0

]
, Θ8 = Θ

[ 1
2

1
2

0 0

]
, Θ9 = Θ

[
0 1

2
1
2

0

]
, Θ10 = Θ

[ 1
2

1
2

1
2

1
2

]
.

(A.27)

All even theta constants can be related through algebraic identities to four

fundamental ones, Θ1, Θ2, Θ3, Θ4 [318].

The above theta functions are weight 1
2

Siegel modular forms for a subgroup

of Sp(4,Z). Their transformation properties under the Siegel modular group

can be found in [319].

A.3 Fundamental domains

Here we present an algorithm to draw fundamental domains for discrete groups

G ⊂ SL(2,R) acting on H by τ 7→ aτ+b
cτ+d

, based on [58]. Let us assume that G

contains T s for some s ∈ Q, and define O(T s) = {τ ∈ H |Re τ < s
2
}. For all

other elements X where c 6= 0, define

O(X) = O
(
a
c
,
√

detX
c

)
(A.28)
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where O(c, r) = {τ ∈ H | |τ−c| > r} is the exterior of a half-circle in H around

c with radius r > 0. A fundamental domain for G is then given by

R =
⋂

X∈G\1
O(X). (A.29)

If a set of generators of G is known, (A.29) is an intersection of finitely many

regions: for products of generators the circles becomes smaller. In practise it

is enough to run (A.29) over the generators and their inverses. We denote by

Cr(c) = ∂O(c, r) = {τ ∈ H | |τ − c| = r} (A.30)

the half-circles around c with radius r. For any X ∈ G they are given anal-

ogously to (A.28). Then by (A.29), the boundary of R which does not have

constant real part (generated by ∂O(T s)) are piecewise arcs of circles Cr(c).
A simple Mathematica code to draw fundamental domains from a set of

generators is the following:

1 g1 = MatrixPower[T, 4]; g2 = S.T.S; g3 = g1; g4 = g2;

2 w = 4; (*width at infinity*)

3 left = -1/2; (*left boundary*)

4 p = 2; (*depth of algorithm*)

5 prod = 4; (*number of generators*)

6 T = {{1,1}, {0,1}}; S = {{0,-1}, {1,0}};

7 Flatten[Table[MatrixPower[g1, k1].MatrixPower[g2, k2].MatrixPower[g3, k3].

8 MatrixPower[g4, k4], {k1,-p,p}, {k2,-p,p}, {k3,-p,p}, {k4,-p,p}], prod-1];

9 list = DeleteCases[%, x_ /; x[[2, 1]] == 0];

10 t = DeleteDuplicates[Flatten[{list, Inverse /@ list}, 1]];

11 circ[x_?MatrixQ] := {x[[1, 1]]/x[[2, 1]], 1/Abs[x[[2, 1]]]};

12 CR = Thread[circ[t]];

13 lines = ContourPlot[Product[(x - (left+k)), {k, 0, w}] == 0,{x, left-0.01,

14 left+w+0.01}, {y, 0, w}, ContourStyle -> {Orange}, ImageSize -> Large];

15 Table[pl[k]=ContourPlot[(x-CR[[k,1]])^2+y^2==CR[[k,2]]^2,{x,left,left+w},{y,0,w},

16 Axes->True, ImageSize->Large, AspectRatio->Automatic], {k,1, Length[CR]}];

17 Show[{Table[pl[k], {k, 1, Length[CR]}], lines}]

For standard subgroups, fundamental domains can be drawn using Verrill’s

Java applet [325] or the FareySymbol class in Sage [326].

Modular curves

A subgroup Γ of SL(2,Z) is a congruence subgroup if Γ ⊃ Γ(N) for some

N ∈ N, which is called the level of Γ. The (projective) index of a congruence

subgroup Γ is defined as

ind Γ = [PSL(2,Z) : Γ], (A.31)

and it is finite for all N . By SL(2,Z) we strictly mean PSL(2,Z) in the

following. In fact, one can prove [145]

ind Γ(N) = N3
∏
p|N

(
1− 1

p2

)
, ind Γ0(N) = N

∏
p|N

(
1 + 1

p

)
, (A.32)
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where the sum is over all prime divisors of N . It can also be computed in the

following way. The volume of the curve Γ\H is defined as

vol(Γ\H) =

∫
Γ\H

dµ, (A.33)

where dµ = y−2 dxdy is the hyperbolic metric on H, with τ = x+ Imy. Since

vol(SL(2,Z)\H) = π
3

can easily be computed, the index of any Γ ⊆ SL(2,Z) is

then given by

ind Γ =
3

π
vol(Γ\H). (A.34)

Let Γ be a congruence subgroup of SL(2,Z). Cusps of Γ are Γ-equivalence

classes of Q∪{∞}. Adjoining coordinate charts to the cusps and compactifying

gives the modular curve X(Γ) := Γ\(H∪Q∪ {i∞}). The isotropy (stabiliser)

group of ∞ in SL(2,Z) is the abelian group of translations,

SL(2,Z)∞ = {( 1 m
0 1 ) : m ∈ Z} . (A.35)

For each cusp s ∈ Q ∪ {i∞} some δs ∈ SL(2,Z) maps s 7→ ∞. The width of s

is defined as

hΓ(s) =
∣∣SL(2,Z)∞/(δsΓδ

−1
s )∞

∣∣ . (A.36)

It can be proven that this definition is independent of δs. For a fixed group Γ it

can be viewed as a well-defined function Q∪{i∞} → N0. It is straightforward

to show that the sum over the widths of all inequivalent cusps C is equal to

the index [327] ∑
s∈CΓ

hΓ(s) = ind Γ. (A.37)

The width of 0 (which is the level) is the lcm of all widths, and the width of

∞ is the gcd of all widths.

Other invariants of modular curves are the elliptic fixed points. A point

τ ∈ H is an elliptic point for Γ if its isotropy (stabiliser) group is nontrivial.

The period of τ is defined as the order of the isotropy group. It can be shown

that any congruence subgroup of SL(2,Z) has only finitely many elliptic points,

and the period for any point τ ∈ H is 1, 2 or 3.

Riemann-Hurwitz formula

Let f : X → Y be a nonconstant holomorphic map between compact Riemann

surfaces X, Y . It has a degree n ∈ N, such that |f−1(y)| = n for all but

finitely many y ∈ Y . More precisely, for each point x ∈ X let ex ∈ N be the

ramification degree of f at x, i.e. the multiplicity with which f takes 0 to 0

as a map in local coordinates, making f an ex-to-1 map around x. Then there

exists a positive integer n such that∑
x∈f−1(y)

ex = n (A.38)
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for all y ∈ Y . If gX and gY are the genera of X and Y , the Riemann-Hurwitz

formula

2gX − 2 = n(2gY − 2) +
∑
x∈X

(ex − 1) (A.39)

states that the Euler characteristic of X is that of Y multiplied by the degree

n of the cover, corrected by contributions from the ramification points. It is

obvious that gX ≥ gY , otherwise f is not holomorphic.

This allows to compute the genus of a modular curve X(Γ) for any con-

gruence subgroup Γ ⊆ SL(2,Z). For this, let X = X(Γ) and Y = X(1). Let

y2 = SL(2,Z) · i, y3 = SL(2,Z) · eπi3 and ε2 and ε3 be the number of elliptic

fixed points of period 2 and 3 for X(Γ), and finally y∞ = SL(2,Z) ·∞ and ε∞
be the number of cusps X(Γ). Then ex − 1 is only nonzero when x ∈ f−1(yh)

for h = 2, 3,∞. Since gX(1) = 0, it follows from (A.39) that

g = 1 +
n

12
− ε2

4
− ε3

3
− ε∞

2
, (A.40)

where g = gX(Γ) and n = ind Γ. See, for example, [145] for a more detailed

derivation of this formula.

Conjugacy classes of subgroups of SL(2,Z) can be classified by the data

(n, ε∞, ε2, ε3) together with the set of widths of the ε∞ cusps. For instance, the

subgroups of SL(2,Z) of index n = 6 have been completely classified [154,328].

There are precisely 22 subgroups that fall into 8 conjugacy classes, and they

are listed in Table 4. It has been shown in [329] that every subgroup of SL(2,Z)

with index n ≤ 6 is a congruence subgroup. Examples of noncongruence sub-

groups of SL(2,Z) of index 7 have been constructed already in the 19th century

by Fricke. Hauptmoduln for low index subgroups of SL(2,Z) are studied in

more detail in [115,330].

A.4 McKay-Thompson series

For discrete genus 0 subgroups of PSL(2,R), Hauptmoduln corresponding to

174 Atkin-Lehner groups are known [331]. Conway and Norton [36] conjectured

a natural Z-graded representation Vn of the Fischer-Griess monster group M.

For every element g ∈M, we can collect the characters in a q-series

Tg(τ) =
∞∑

n=−1

χVn(g)qn, (A.41)

which are called the McKay-Thompson series (see also [240,332–336]). For the

identitiy element g = 1 ∈ M, the character counts the dimension χVn(1) =

dimVn,

T1(τ) =
∞∑

n=−1

dimVnq
n = J(τ), (A.42)

which famously gives the Klein j-function J = j−744. Since the character of a

representation is a class function, there are as many distinct McKay-Thompson
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(ε∞, ε2, ε3) cusps Hauptmodul |conj|
(1, 0, 0) 6 g = 1 1

(1, 0, 3) 6 j = −27x3(x3 + 16) 2

(1, 4, 0) 6 j = 27(x2 + 4)3 3

(2, 2, 0) 3 + 3 j = x3(x+12)3

(x+9)3 3

(2, 2, 0) 4 + 2 j = x3(x+8)3

(x+4)2 3

(2, 2, 0) 5 + 1 j = (x2+10x+5)3

x
6

(3, 0, 0) 2 + 2 + 2 j = (x2+192)3

(x2−64)2 1

(3, 0, 0) 4 + 1 + 1 j = (x2+48)3

x2+64
3

Table 4: Classification of conjugacy classes of index 6 subgroups of SL(2,Z) [154]. The first

column gives the number of cusps and elliptic fixed points of order 2 and 3. According

to the Riemann-Hurwitz formula (A.40) all but the (1, 0, 0) one induce genus 0 modular

curves, whose Hauptmodul x is expressed in terms of the j-invariant. In fact the group with

signature (1, 0, 0) is the only subgroup of SL(2,Z) of nonzero genus and index ≤ 7. The

second column gives the indices of the ε∞ number of cusps, and the last column counts the

number of conjugate groups with the same data. From the expression of j = p(x)
q(x) as a rational

function in x we learn that deg p = n gives the index and the difference deg p−deg q = h(∞)

gives the width of ∞. The roots of q(x) = 0 then give the cusps in Q with widths provided

by their corresponding multiplicity.

series as there are conjugacy classes of the Monster, namely 194. If g is not the

identity element, the series (A.41) are not modular for PSL(2,Z) but rather

for a discrete subgroup Γg of PSL(2,R). In fact, the Γg are all genus 0 groups

and Tg is a Hauptmodul on Γg\H [280]. It turns out that all but 3 of the 174

Atkin-Lehner groups of genus zero correspond to McKay-Thompson series.

The series (A.41) are all examples of replicable functions [56–58,337–339]

Let f be a q-series

f(q) =
1

q
+
∞∑
n=1

anq
n (A.43)

with vanishing constant term. For every n ∈ N0 there exists a unique monic

polynomial Fn such that

Fn(f(q)) =
1

qn
+O(q) (A.44)

as q → 0. The Fn are called Faber polynomials. For any f as in (A.43), they

can be defined as Fn(z) = det(z1− An), where

An =



a0 1

2a1 a0 1
...

...
...

. . .

(n− 2)an−3 an−4 an−5 · · · 1

(n− 1)an−2 an−3 an−4 · · · a0 1

nan−1 an−2 an−3 · · · a1 a0


. (A.45)
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This allows to write

Fn(f(q)) =
1

qn
+ n

∞∑
m=1

hm,nq
m. (A.46)

The q-series f is then said to be replicable if hm,n = hr,s whenever mn = rs

and gcd(m,n) = gcd(r, s). This gives a relatively sparse list of equivalences

between the entries of the infinite matrix (hm,n)m,n∈N. In practise one can

truncate the matrix and compare hm,n and hr,s for pairs with the given con-

straints. They can be worked out before. For instance, if all series Fn(f(q))

are computed up to q14, there are 8 constraints

h1,6 = h2,3, h1,10 = h2,5, h1,12 = h3,4, h1,14 = h2,7,

h2,12 = h4,6, h3,10 = h5,6, h3,14 = h6,7, h5,14 = h7,10.
(A.47)

A.5 Algebraic modular functions

In this Appendix, we discuss aspects of roots of polynomials over the field

of modular functions for PSL(2,Z), which describe order parameters found

throughout this thesis. In the following, by Γ we mean PSL(2,Z), unless

specified otherwise. We begin with a

Lemma 1 (Proposition 18 of [59]). Let f ∈ M0(Γ′) be a modular form of

weight 0 for a congruence subgroup Γ′ ⊂ Γ. Then f is constant.

Proof. Let a = f(τ0) for some fixed τ0 ∈ H. Let Γ =
⋃
j αjΓ

′, where the

disjoint union is over j = 1, . . . , ind Γ′ = [Γ : Γ′]. Consider the function

g : H→ C, τ 7−→
ind Γ′∏
j=1

(f(α−1
j τ)− a), (A.48)

where α−1
j τ is the usual action of Γ on H. One finds that g(γ−1τ) =

∏
j

(f((γαj)
−1τ)−a) for γ ∈ Γ. This however only permutes the cosets, such that

the terms in the product (A.48) are merely rearranged. Therefore, g(γτ) =

g(τ) and g is a holomorphic modular form for Γ and thus constant. As g(τ0) =

0, we have g = 0 identically. This means that one of the factors f(α−1
j τ) − a

in (A.48) is zero, such that f(τ) = a for all τ ∈ H.

Lemma 2 (Exercise III §3 7(a) of [59]). Let f be a modular function for a

congruence subgroup Γ′ ⊂ Γ. Then f satisfies a polynomial of degree ind Γ′ =

[Γ : Γ′] over the field C(Γ) of modular functions on Γ.

Proof. We can recycle most parts of the proof of Lemma 1. Let X ∈ C be a

constant, and let f be a modular function for Γ′ ⊂ Γ, which can be written as

Γ =
⋃
j αjΓ

′. The function

g̃ : H→ C, τ 7−→
ind Γ′∏
j=1

(f(α−1
j τ)−X) (A.49)

179



is meromorphic on H and admits a Fourier series, since f does. For the same

reason as before, one finds that g̃(γτ) = g̃(τ) for all γ ∈ Γ and τ ∈ H.

Therefore, g̃ is a modular function for Γ. The coefficients of the polynomial g̃ in

X are the elementary symmetric polynomials in {f ◦α−1
1 , . . . , f ◦α−1

ind Γ′}. Since

X is arbitrary, the coefficients are also modular functions for Γ. Therefore,

P (X) =
ind Γ′∏
j=1

(f ◦ α−1
j −X) ∈ C(Γ)[X] (A.50)

is a polynomial of degree ind Γ′ in X over C(Γ) with f as a solution, as de-

manded.

It is clear from the above proof that some properties of the coefficients of

the modular polynomial are inherited from those of f . For instance, instead of

Γ = PSL(2,Z) we can take Γ = PSL(2,R) and Γ′ to be an arithmetic (i.e. finite

index) Fuchsian group. Another possibility is to study modular polynomials

for weakly holomorphic functions f on PSL(2,Z), for which the coefficients of

P are polynomials in j. This motivates the following

Definition 7 (Algebraic modular form). Let Γ′ be an arithmetic Fuchsian

group, i.e. a discrete finite index subgroup of PSL(2,R). An algebraic modular

form of degree d for Γ′ is a root of a polynomial of degree d over the field of

automorphic functions on Γ′. The degree is taken to be minimal in the obvious

sense.

According to Lemma 2, every congruence subgroup Γ′ of PSL(2,Z) is an

algebraic modular form for PSL(2,Z) of degree ind Γ′. This is because con-

gruence subgroups of PSL(2,Z) have finite index. In some cases, algebraic

modular forms form Galois extensions of the field over which the polynomial

is defined:

Lemma 3 (Section 2.1 in [118]). Let Γ be a Fuchsian group of the first kind,

and let Γ′ be a subgroup of Γ of finite index. Identify A0(Γ) (resp. A0(Γ′)) with

the field of all meromorphic functions on Γ\H (resp. Γ′\H). Then, Γ′\H is a

covering of Γ\H of degree [Γ : Γ′]. If Γ′ is a normal subgroup of Γ, one can

consider the automorphisms of Γ′\H, or equivalently of A0(Γ′). Then A0(Γ′)

is a Galois extension of A0(Γ), and Gal(A0(Γ′)/A0(Γ)) is isomorphic to Γ/Γ′.

The principal congruence subgroup Γ(N) is normal in PSL(2,Z), however

neither Γ0(N) nor Γ1(N) are for N ≥ 2. The extension C(X(N))/C(X(1))

of the modular curve Γ(N) is Galois with Galois group SL(2,Z/NZ){±1}.
Modular function field extensions are further studied in [340] and [145, Section

7.5].

Application to the SW curves

The above allows us to find a general algebraic description of the Nf =

0, 1, 2, 3, 4 SW curves. From section 2 it is clear that g2 and g3 are poly-

nomials in u of degree 2 and 3. In Nf ≤ 3, the coefficients of u contain the
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massesm and the dynamical scale ΛNf . In Nf = 4, they contain the massesm

and the UV-coupling τUV. We can consider them to be fixed complex numbers.

Consider now the polynomial P (X) (2.13) of degree 6 in X with coefficients

in the field C(Γ) of modular functions on Γ\H. Any solution to

P (X) = 0 (A.51)

is called an order parameter for the SW curve. It is important to note that

the polynomial (2.13) is not an invariant of the SW curve. However, since it

is a relative invariant, its roots (A.51) are absolute invariants.

Examples

It is instructive to study some examples. For the pure SU(2) case, up to

C-proportionality one finds43

P (X) = (−1728 + j) + (6912− j)X2 − 9216X4 + 4096X6. (A.52)

Such a relation also gives a recurrence relation on the coefficients of the Fourier

expansion of any solution u = X. The fact that the coefficients of P (X) can

be normalised to be in Z does however not imply an integer q-expansion of u

(it can for instance also be done for some m ∈ QNf in Nf > 0).

Another example is Nf = 2 with m = (m,m) and m = mAD = 1
2
. The

polynomial factors over C(Γ) as

P (X) = (X − 3
8
)3
(
(1728− 5j) + 8(1728− j)X + 36864X2 + 32768X3

)
.

(A.53)

Three solutions are X = 3
8
, which is a constant function in C(Γ). If we as-

sume that any solution to above equation has index 6, then Lemma 2 gives

a contradiction since if f ◦ α−1
j is constant for some coset representative αj,

then since αj is a bijection on H also f is constant. But j ∈ C(Γ) is tran-

scendental and therefore does not satisfy a polynomial equation over Q such

as (A.53). This is true in general, any linear factor of P (X) over C needs to

be divided from P (X). Such constant solutions signal the appearance of an

AD point. The remaining degree 3 polynomial in (A.53) does not factor over

C(Γ). However, it does factor over C(Γ0(2)), which is genus 0 and generated

by C(Γ0(2)) 3 h : τ 7→ f2B( τ
2
) (as demonstrated in section 2.5.3). In order to

see this, let us use (2.92) to write j = (h+16)3

h
. Then one solution to the degree

equation in (A.53) is X = −(h + 40)/64, which is precisely what is found in

(2.89). The other solutions are related by SL(2,Z) images of h.

One also finds the following

Fact 1. For Nf = 0, 1, 2, the sum over all 6 solutions to (2.13) is zero.

43We set ΛNf
= 1 in this subsection.
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Proof. The relative invariants g2 and g3 are polynomials of degree 2 and 3 in u.

For Nf = 0, 1, 2, by direct inspection one finds that the coefficients of u in g2

and the coefficient of u2 in g3 are zero. Therefore, the coefficient of u5 in (2.13)

is zero. By Vieta’s theorem, the sum over the roots of a polynomial
∑n

k=0 akx
k

is −an−1

an
. Since the u6 coefficient is never zero, the claim follows.

This does not hold for any mass in Nf = 3, 4. Field extensions have been

studied in the context of SW theory in [121–123].

Geometric description

The above algebraic construction has a geometric description in terms of Rie-

mann surfaces. We again first lay out the mathematical structure and then

apply it to the family of SW curves.

Let Y be a Riemann surface, i.e. a connected complex one-dimensional

manifold. Furthermore, let

T = yn + a1y
n−1 + · · ·+ an ∈ K(Y )[y] (A.54)

be a polynomial in y of degree n over the field K(Y ) of meromorphic func-

tions Y → P1(C). In case that in the factorisation of T every irreducible

factor occurs with multiplicity one, the discriminant D of T is nonzero. This

does however not need to be the true. Denote by O the discrete subset of

Y containing all poles of the coefficients ai ∈ K(Y ) and all zeros of the

discriminant D. Then, for every point x0 ∈ Y \O the polynomial Tx0 =

yn + a1(x0)qn−1 + . . . an(x0) has exactly n distinct roots over C. We have

the

Theorem 2 (Thm. 2.2.12 in [119]). The Riemann surface of the equation

T = 0 is an n-fold ramified covering π : M → Y together with a meromorphic

function y : M → P1(C), such that for every point x0 ∈ Y \O the set of roots

of the polynomial Tx0 coincides with the set of values of the function y on the

preimage π−1(x0) of the point x0 under the projection π.

The set Õ of critical values of the ramified covering π : M → Y associated

with the Riemann surface of the equation T = 0 is strictly contained in O. It

is called the ramification set of the equation T = 0. In the field of germs of

meromorphic functions at a point a ∈ Y \Õ, the equation T = 0 has only roots

of multiplicity 1, and their number is equal to the degree of the polynomial T .

Each of the meromorphic germs at a satisfying the equation T = 0 corresponds

to a point over a in the Riemann surface of the equation.

A.6 Kodaira classification

Let us consider an elliptic curve in Weierstraß form,

y2 = 4x3 − g2x− g3, (A.55)
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Fv τ ord(g2) ord(g3) ord(∆) M g

Ik i∞ 0 0 k T k su(k)

I∗k i∞ 2 3 k + 6 PT k so(2k + 8)

I∗0 τ0 ≥ 2 ≥ 3 6 P so(8)

II e
2πi
3 ≥ 1 1 2 (ST )−1 -

II∗ e
2πi
3 ≥ 4 5 10 (ST ) e8

III i 1 ≥ 2 3 S−1 su(2)

III∗ i 3 ≥ 5 9 S e7

IV e
2πi
3 ≥ 2 2 4 (ST )−2 su(3)

IV ∗ e
2πi
3 ≥ 3 4 8 (ST )2 e6

Table 5: Kodaira classification of singular fibers based on the orders of vanishing of g2, g3

and ∆ in the Weierstraß model. The value of the complex structure is denoted by τ , while

M is the monodromy and g the associated flavour algebra.

where g2 and g3 are functions of some parameter u. This is the case for all

SW curves (2.3), where g2 and g3 are polynomials of degree 2 and 3 in u. The

discriminant of the Weierstraß curve is ∆ = g3
2−27g2

3. The study of the elliptic

curves on the discriminant divisor Σ = {u |∆(u) = 0} is the famous Kodaira

classification. At a generic point in Σ, g2 and g3 do not vanish simultaneously.

If we denote by ord f the order of vanishing (order of zero) of a polynomial

or power series f at a given point, then on a generic point in Σ we have

ord(g2, g3,∆) = (0, 0, 1). The various combinations of orders of vanishing of

the invariants g2 and g3 are classified [41,42], see for a review [341]. At special

points in Σ both g2 = g3 = 0. From (A.55) we see that the curve becomes

cuspidal, y2 = x3. However the shape of the curve depends on the orders of

vanishing of the respective quantities. The full classification is given in Table

5. The singular fibres of the Kodaira classification are all realised as curves of

physical theories [245,246].

A.7 Siegel-Narain theta function

Let L be an n-dimensional uni-modular lattice with signature (1, n−1). For the

application to the u-plane integral, n = b2(X). Let K be a characteristic vector

of L. Its defining property is l2 = l ·K mod 2 for every l ∈ L. Furthermore,

we have that µ ∈ L/2.

We consider the Siegel-Narain theta function ΨJ
µ : H × C → C defined in

the main text in (5.51). We repeat it here for convenience,

ΨJ
µ(τ, τ̄ ,z, z̄) = e−2πyb2

+

∑
k∈L+µ

∂τ̄ (4πi
√
yB(k + b, J))

× (−1)B(k,K)q−k
2
−/2q̄k

2
+/2e−2πiB(z,k−)−2πiB(z̄,k+),

(A.56)

where b = Im(z)/y. The transformations under the generators S and T of

PSL(2,Z) are most easily determined if we shift µ → µ + K/2. One finds
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[81, 84]

S : ΨJ
µ+K/2(−1/τ,−1/τ̄ ,z/τ, z̄/τ̄) = −i(−iτ)n/2(iτ̄)2

× e−πiz
2/τ+πiK2/2 (−1)B(µ,K) ΨJ

K/2(τ, τ̄ ,z − µ, z̄ − µ),

T : ΨJ
µ+K/2(τ + 1, τ̄ + 1, z, z̄) =

eπi(µ
2−K2/4) ΨJ

µ+K/2(τ, τ̄ ,z + µ, z̄ + µ).

(A.57)

Using these transformations, one finds for the periodicity in τ ,

ΨJ
µ(τ + 1, τ̄ + 1, z, z̄) = eπi(µ

2−B(µ,K))ΨJ
µ(τ, τ̄ ,z + µ−K/2, z̄ + µ−K/2)

(A.58)

and for S−1T−kS = ( 1 0
k 1 ),

ΨJ
µ

(
τ

kτ+1
, τ̄
kτ̄+1

, z
kτ+1

, z̄
kτ̄+1

)
= (kτ + 1)

n
2 (kτ̄ + 1)2e−

πikz2

kτ+1 e
πi
4
kK2

ΨJ
µ(τ, τ̄ ,z, z̄).

(A.59)

We furthermore list the following transformations for z:

• For the reflection z → −z,

ΨJ
µ(τ, τ̄ ,−z,−z̄) = −e2πiB(µ,K) ΨJ

µ(τ, τ̄ ,z, z̄). (A.60)

• For shifting z → z + ν with ν ∈ L,

ΨJ
µ(τ, τ̄ ,z + ν, z̄ + ν) = e−2πiB(ν,µ) ΨJ

µ(τ, τ̄ ,z, z̄). (A.61)

• For shifting z → z + ντ with ν ∈ L⊗ R,

ΨJ
µ(τ, z + ντ) = e2πiB(z,ν)qν

2/2(−1)−B(ν,K) ΨJ
µ+ν(τ, τ̄ ,z, z̄). (A.62)

We can restrict to ν ∈ L/2, if the characteristic µ+ ν is required to be

in L/2.
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