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Pathway to Demonstrating Clinical Efficacy of
Microwave Breast Imaging: Qualitative and

Quantitative Performance Assessment
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Abstract—In the last five years alone, there has been an increasing number of operational microwave breast imaging systems used in
clinical trials, with increasingly large and diverse patient populations. However, despite this increased activity and volume of clinical
evidence motivating research in the modality, large differences exist in how studies evaluate and report their findings. In this work,
the qualitative and quantitative metrics used to measure both image quality and clinical effectiveness and efficacy are reviewed in
detail. Image quality, effectiveness and efficacy do not have precise or agreed definitions and the differences between these definitions
are discussed in detail. Finally, based on these understandings, the current evidence for clinical acceptance of microwave breast
imaging is reviewed, with an emphasis on gaps in the trial populations to date.
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I. INTRODUCTION

M ICROWAVE (MW) imaging of the breast has been
proposed for a variety of applications, including for

breast cancer screening, as either a standalone or complemen-
tary modality; for breast health monitoring; and for cancer
treatment tracking. Potential advantages of MW imaging in-
clude cost-effective hardware, use of non-ionizing radiation
with no need for injected contrast agents, safe powers levels
for repeated and frequent breast scans, and the ability to make
prototypes portable, wearable, or personalized. Combined,
these advantages motivate the use of MW imaging instead
of, or alongside, existing breast imaging technologies.

Early clinical pilot studies of MW breast imaging have
included both healthy volunteers and patients with benign and
malignant lesions. In recent years, larger trials have also been
undertaken with several prototypes, with several achieving
more than 100 patient scans [1]–[3], and in one case as
many as 225 patient breast scans were completed [4]. These
studies have demonstrated the promise of MW imaging in
several different ways, including showing that MW image
reconstructions are consistent with breast tissue densities,
typically different for normal versus abnormal tissues, and
often in good alignment with imaging from other technologies,
e.g., x-ray mammography (MG), ultrasound (US), or magnetic
resonance imaging (MRI) [3]–[8]. However, no MW imaging
systems have achieved any widespread clinical acceptance or
clinical usage to date.

Several reviews relevant to the topic of MW breast imaging
have been published in the last five years. Some of these re-
views have been technology-focused, for instance in [9], UWB
antennas for use in MW breast imaging were reviewed, along
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with a summary of existing experimental systems. In [10],
clinical MW breast imaging systems were reviewed in terms
of their patient interfaces and hardware design. In [11], MW
imaging algorithms and experimental and clinical system set-
ups were reviewed. Other works have focused on translation
of MW imaging to the clinic. In [12], MW breast imaging
phantom and clinical studies were discussed in comparison
to existing breast screening methods (x-ray mammography,
3-D mammography, ultrasound, magnetic resonance imaging,
and molecular imaging). Lastly, in [13], MW prototypes were
discussed for various applications, including breast imaging,
along with a historical discussion of the advances and chal-
lenges of clinical MW imaging.

These review studies have provided very useful summaries
and analyses of the current state of MW breast imaging algo-
rithms, hardware, patient prototypes, and early clinical studies.
However, to date, we have not seen any reports reviewing
performance assessment metrics that are inevitably required
for MW breast imaging to succeed in clinical applications.
Qualitative and quantitative performance metrics are vital
for comparing prototypes and imaging approaches, assessing
iterative improvements within systems, and, most importantly,
in establishing clinical efficacy of MW imaging technologies.

Therefore, in this review, we discuss qualitative and quanti-
tative assessment of MW breast imaging through image-based
evaluation metrics and through dataset-based performance
metrics. We believe this is the first review study to report on
these key metrics, and we particularly focus on different ways
various metrics may be defined and the resulting significance
of each. We also review clinical studies of MW breast imaging,
and examine and compare the metrics (and their resulting
values) reported in these works.

The paper is structured as follows. In Section II, image-level
metrics are reported to assess and measure the quality of MW
images. Both contrast-based and localization-based metrics,
and their varied definitions across works, are discussed. In
Section III, performance metrics that quantify dataset-level
clinical efficacy are defined and discussed. Then, in Section
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Fig. 1: Shown is an example of a discretized imaging domain
with an estimated or calculated skin surface as the hemispher-
ical surface. The full set of points, referred to as P in the
text may be divided into points within the breast shown as
the circles, P ′ in the text, and other points shown as asterisks,
P \ P ′ in the text.

IV, approaches for pre-clinical assessment of MW prototypes
are explored. Lastly, in Section V, MW breast imaging clin-
ical studies to date are reviewed in light of their achieved
performance metrics and comparison to standard imaging
technologies. The pressing needs for future clinical studies,
and the expected challenges, are also discussed.

II. IMAGE METRICS

A number of quantitative metrics have been proposed to
measure the quality of the microwave breast images. Often,
these quantitative metrics are based on typical engineering
metrics such as signal-to-clutter ratios, root mean squared error
and localization error, however, no standard implementations
or naming convention for these metrics exists. In most cases,
the differences are minor relating to exact definitions of signal
areas, clutter areas and how they are processed.

Typically, the entire imaging domain as shown in fig. 1 is
discretized to a set of points, P , based on the geometry of the
system and other system design parameters. The reconstructed
image with imaging algorithm R can be represented as IR[P ′]
where P ′ is set of points in the reconstructed image. In some
cases, the reconstruction set, P ′, is bounded by the geometry
of the system and is the same for all images P ′ = P . However,
in other cases, P ′ is instead determined based on an estimate
of the skin surface (shown as a hemisphere in fig. 1) either
from the microwave signals themselves, a co-mounted laser or
otherwise. i.e. P ′ ⊆ P and P ′ may vary from scene to scene.
In radar-based imaging algorithms, the image magnitude at
each point is typically independent, whereas, in some iterative
or inverse scattering requiring forward solutions, the whole
imaging domain needs to be reconstructed together.

With the exception of quantitative inverse scattering meth-
ods in numerical test cases, the true image, I, is not known

True, I[P ′]

CLUT CLUT CLUT CLUT CLUT

CLUT SIG SIG SIG CLUT

CLUT SIG SIG SIG CLUT

CLUT SIG SIG SIG CLUT

CLUT CLUT CLUT CLUT CLUT

(a)

Reconstructed, IR[P ′]

1.0 1.0 1.0 1.0 1.0
1.0 3.0 3.0 3.0 1.0
1.0 1.0 3.0 3.0 1.0
1.0 1.0 1.0 1.0 1.0
1.0 2.0 2.0 1.0 1.0

(b)

Fig. 2: Shown in (a) is the segmented true image I[P ′] with
P sig shown as SIG. For some metrics, the clutter area, Pclut, is
as shown by CLUT, but in others, all the points in the image,
P ′ are used. Shown in (b) is a simplified image. Where the
true segmented image in (a) is not available, the signal and
clutter regions, P sig and Pclut, are typically estimated from the
image in (b) itself.

(a segmented example is shown in fig. 2a). In these cases,
direct numerical comparisons at all points are possible such
that I[P ′] = IR[P ′]. However, in all other cases, direct
numerical comparisons are not possible, nor do methods exist
to determine the optimal radar-based image based on a priori
knowledge of the scene. In numerical and experimental cases,
it is possible to compare images of the same scene with and
without tumors, and the differences between these images have
been quantified in some work. Similarly, the reconstructed
image of the contralateral breast has occasionally been used
as a reference.

However, for most image based metrics, the imaging domain
is normally segmented into a signal area, P sig, such that:

P sig ⊆ P ′ (1)

based either on a priori knowledge of the dielectric properties
of the imaging domain or based on characteristics of the
reconstructed image alone. From this, a clutter region is
estimated either as the points outside the signal area or the
entire reconstructed image: Pclut = P ′ \ P sig or Pclut = P ′.
From these regions, contrast-based metrics can be calculated
which are discussed in detail in section II-A.

Similarly, in many cases, exact knowledge of location of
the scatterers may not be available, particularly in clinical
scenarios. Furthermore, other images from other modalities
require registration to be directly compared to microwave
breast images, so localization errors are typically based on
breast quadrants and other qualitative descriptions in these
scenarios.

A. Common image-based metrics

A systematic search was performed for journal articles con-
taining experimental evaluations of microwave breast imaging
systems using the terms: “Microwave” or “radar based” and
“breast” and “imaging” or “imaging”. In some cases, papers
were excluded where the exact implementations were not clear.
Two broad categories of metric were analyzed:

• contrast-based metrics;
• localization-based metrics.
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Contrast-based metrics are constructed in the form:

Φf sig

f clut

(
P sig) = f sig(IR[P sig])

f clut(IR[P ′ \ P sig])
(2)

or:

Φ̂f sig

f clut

(
P sig) = f sig(IR[P sig])

f clut(IR[P ′])
(3)

where f sig and f clut typically calculate some summary statistic
of the points in the respective areas such as the mean or
maximum intensity.

In some cases, particularly numerical and experimental
evaluations, IR[P sig] is calculated using a priori knowledge
of the target or signal expected location, however, in many
others, IR[P sig] is instead based on the characteristics of the
reconstructed image alone such as the connected area around
the pixel of maximum intensity.

In the descriptions below, the following definitions are used
for P sig for the maximum intensity of the image Pmax, or
a thresholded region centered around the maximum intensity
Pt(t):

• Pmax = {pmax};
• Pt(t) =

{
p ∈ P ′

∣∣ IR(p) ≥ tIR(pmax)
}

.
where pmax = max

p∈P′
IR(p). Typically, Pt(t) is limited to

the connected region surrounding pmax only and other points
above the threshold not connected to this region are included
in Pclut. Taking the example in fig. 2b, if Pt(t) with t = 1.5,
the two points with magnitude 2.0 would not be included in
that set, but just the four points with magnitude 3.0. In other
cases, a region based on a priori knowledge of the signal
region (typically the center or centroid of the tumor region,
coming from a segmented image such as in fig. 2a) is used:

• Psph(L) =
{
p ∈ P ′

∣∣ p− ptum ≤ L
}

;

• Pcub(L) =

{
p ∈ P ′

∣∣ max
d∈{i,j,k}

|p · d− ptum · d| ≤ L/2

}
;

where ptum is the chosen a priori point. Simply put, Psph(L)
is a sphere of radius L centered as a point ptum and Pcub(L)
is a cuboid with sides of length L centered at the point ptum.

Typically, the summary metric is either:
• the mean: ⟨·⟩;
• the maximum: max;
• or the median: med;

intensity of the set of the points.
Based on the literature search described above, metrics

where the full definition was available are listed below. A
number of common metrics are identifiable, albeit sometimes
under different names and these are summarised in table I.
Although all very similar, several different definitions and
naming conventions have been adopted across the systems. In
most cases, these metrics are only calculated for the designers
and are not part of the information given to the radiologist
for image review, however, the different names and definitions
make it challenging to compare across systems. In most cases,
the final result is given in dB.

The Signal-to-Mean ratio is commonly defined as:

SMR = Φ̂max
⟨·⟩

(
Pmax

)
(4)

and is known as the SMR or sometimes the M2AVG,
MAX/AVG or PEAK/MEAN metric. A similar metric is also
sometimes used with the same name:

SMR = Φ̂
⟨·⟩
⟨·⟩
(
P sig) (5)

although the exact definition of P sig is not always given. The
Signal-to-Mean Ratio (Φ̂max

⟨·⟩
(
Pmax

)
) is used in [1], [14]–[28].

A related metric is the Signal-to-Clutter Ratio (SCR) which
is typically calculated as:

SCR = Φmax
max

(
P sig) (6)

A variety of definitions of P sig are given in these circum-
stances:

• Psph(L) where the radius L is the tumor radius or the
tumor radius plus a margin such as 5mm;

• Pcub(L) where the length of the cube is 1.5 cm or 3 cm;
• Psph(L) but centered at ptum instead of pmax where the

radius L is based on the FWHM or maximum dimension
of the region identified by Pt(t). Typically, 50% is chosen
as the threshold t.

A variant of the SCR metric is used in [14]–[18], [21],
[26], [28]–[31]. under the name of SCR or SMXR. Where
a reference image without the abnormality is available as
described above, a similar metric often called the SCR has
also been used which compares the maximum intensity of the
signal region P sig to the maximum intensity of the same region
in the referent.

Localization Error (LE) is determined in two primary ways
depending on the information available:

• by qualitative descriptions based on breast quadrant or
clock face position in an image slice;

• quantitatively compared to the known tumor location.
In the quantitative cases, the Euclidean distance is used:

LE =
∣∣pmax − ptum

∣∣ (7)

as used in [14]–[18], [21], [28]–[30]. In [23], a fractional
equivalent is used relative to the width of the breast. However,
the LE in this formulation is not a good reflection of imaging
performance. Both the response in the image and the tumor
itself are typically much larger than a point source, and the
location of pmax may be skewed towards one side of the
response. Furthermore, due nature of radar-based imaging, the
image response would not always be expected to overlap the
tumor location exactly, but may be located to one side.

The metrics in this section are typically applied to individual
images as a measure of quality or used in comparison studies
when proposing or comparing new imaging algorithms such
as [26] as one of many. In other cases, these metrics have been
used as part of an optimisation step of the imaging parameters
such as [31]. However, several other metrics have also been
proposed for these use cases such as [32], [33] which do not
directly measure image quality as the metrics in this section
do. Recent work from the literature would suggest that the use
of individual, image-based metrics is not useful for comparing
algorithms in a clinical context, but that database metrics such
as those reviewed in the following section would be more
beneficial [34]–[36].
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TABLE I: Summary of the quantitative image-based metrics reviewed for this work.

Name Other names Variant Uses

Signal-to-Mean ratio (SMR) M2AVG, MAX/AVG, PEAK/MEAN

Φmax
⟨·⟩

(
Pmax

)
[1], [14]–[21], [24]–[28]

Φ
⟨·⟩
⟨·⟩

(
Psig

)
[22], [23]

Signal-to-Clutter ratio (SCR) SMXR

Φmax
max

(
Psig

)
: sphere tumour radius + 5mm [29]

Φmax
max

(
Psig

)
: cube of side 1.5 cm [17], [31]

Φmax
max

(
Psig

)
: cube of side 3 cm [16]

Φmax
max

(
Psig

)
: twice FWHM of image response [15], [26], [28]

between images with and without target [14], [21]

other or undefined [18]

Localization Error (LE) [14], [15], [17], [18], [21], [23], [28]–[30]

Furthermore, no standardized set of metrics or implemen-
tations for individual image assessment exist, however, a
number of open-source toolboxes and analysis tools have
been proposed with specific implementations [37]–[40]. While
using different data formats, structures and addressing different
use cases, these toolboxes help to publish and standardise
implementations and work flows for tasks such as image
segmentation and analysis.

III. METRICS FOR ESTABLISHING CLINICAL EFFICACY

Performance metrics are needed to assess overall perfor-
mance of MWI across sets of scans. In other words, per-
formance metrics are those which can be established only
from clinical studies and which provide data for clinical
acceptance of the technology. Such assessment could include
the study of image-based metrics across many scans, for
example, by examining the average localization error of tumors
or reporting the mean, worst-case, and best-case SCRs. Study
of these image-based metrics would likely have most value
to the engineering communities in understanding and optimiz-
ing prototypes; however, they do not allow straightforward
comparison to standard or competing technologies such as
mammography [12]. To this end, use of common performance
metrics that quantify clinical efficacy is needed. Therefore,
in this section, various performance metrics are defined and
discussed.

It is important to note that there is no standard quantitative
definition for clinical efficacy. Clinical efficacy is typically
described as the performance of a technology in achieving the
targeted goal, as measured under controlled (ideal) conditions
[41]. Similarly, effectiveness is the performance under real-
world or typical operating conditions [41]. Careful study de-
sign is critical to investigating both efficacy and effectiveness
[41]. No single metric quantifies efficacy or effectiveness, and
the choice of how to study these parameters is study-dependent
and may require investigation of multiple types of metrics.

In the context of a clinical study for MWI, we emphasize
that the choice of metric(s) to be used is highly dependent
on the proposed use-case application - for example, a study
of MWI for breast tumor screening would likely focus on

sensitivity and specificity metrics, while a study of MWI-
based treatment monitoring might examine metrics like 5-year
survival rate and extended life expectancy.

Four terms are used to support the definition of the metrics
reported in this section:

• true positive (TP): when a tumor is detected and the
patient does have a tumor;

• true negative (TN): when no tumor is detected and the
patient does not have a tumor;

• false positive (FP): when a tumor is detected, but in fact
no tumor is present in the breast;

• false negative (FN): when no tumor is detected but a
tumor is actually present in the breast.

(These terms can be applied for any type of disease. The word
‘tumor’ is used here as breast cancer is typically the focus of
MW imaging studies of the breast).

It is clear that in order to define any metrics based on
these four terms, data for each patient is required from: i)
a standard technology as the ground truth, in order to define
true positive and true negative; and ii) the proposed technology
(i.e., microwave imaging prototype) in order to study how
close the results are to the ground truth. The choice of
technology to use as a standard reference ground truth can
itself impact determination of metric values. For example,
if using another imaging technology like mammography for
assessment of sensitivity and specificity of a MW prototype,
it must be kept in mind that mammography has its own
sensitivity and specificity limitations [42], [43]. Therefore, in
the case of breast cancer, the ground truth diagnosis typically
requires a biopsy with tissue histopathology [43], [44].

A. Sensitivity and Specificity
Sensitivity and specificity are two of the most common

metrics used in describing the clinical efficacy of a disease
screening technology [43], [44]. These metrics are calculated
across groups of patients that include those both with and
without breast cancer.

The sensitivity, Se, and specificity, Sp, are defined as:

sensitivity = Se =
TP

(TP + FN)
, (8)
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specificity = Sp =
TN

(TN + FP)
. (9)

Thus, the sensitivity is the number of patients correctly
identified as having a tumor out of the total that actually do
have a tumor. It can also be referred to as ‘true positive rate’.
Similarly, specificity is the proportion of patients correctly
identified as not having a tumor when they are indeed cancer-
free. Specificity may also be called ‘true negative rate’. In
other words, the sensitivity is a measure of the ability of a
screening technology to identify a positive; while specificity
is the ability to identify a negative. Ideally, FN = 0 and
FP = 0, in which case Se = 1 and Sp = 1 [45]. However,
practically, sensitivity and specificity tend to be inversely
related, and increasing one leads to a decrease in the other
[46]. This relationship is given by the receiver operating
characteristic (ROC) curve, which plots sensitivity vs. 1−Sp,
or, equivalently, true positive rate vs. false positive rate. In an
ideal scenario, the area under this curve (AUC) is 1. The shape
of the ROC and the value of AUC can both be indicators of
the quality of a screening or diagnostic tool [45], [47], [48].

Importantly, in screening applications, it is vital to avoid
false negatives, as then patients will not receive appropri-
ate follow-ups to potentially diagnose and treat the disease.
Whereas, with a false positive, further testing will identify
that there is no tumor. Therefore, high sensitivity is desirable
in screening technologies. However, in diagnostic technologies
the opposite is true, and high specificity is preferred in order
to definitively confirm disease presence [42].

B. Positive and Negative Predictive Value

Positive and negative predictive values (PPV and NPV,
respectively), are measures that provide confidence in the test
results. The PPV is the likelihood of having a tumor given a
positive (+) test result:

PPV = P (tumor |+) =
TP

TP + FP
(10)

Similarly, the NPV is the likelihood of not having a tumor
given a negative (-) result:

NPV = P (healthy | −) =
TN

TN + FN
(11)

An ideal technology will have NPV and PPV of 1 (i.e., no
FN or FP). These values are dependent on the prevalence,
((TP + FN)/total population), of breast cancer within the population
[47], and are particularly informative for screening technolo-
gies as it would be expected that the majority of scans are of
patients without cancer.

C. Diagnostic Odds Ratio

The Diagnostic Odds Ratio (DOR) is a metric used in
assessing the effectiveness of diagnostic tools. The DOR, given
by:

DOR =
TP/FN

FP/TN
=

TP/FP

FN/TN
(12)

quantifies the tool’s performance as a ratio of the odds of the
test showing a positive when the patient has the disease relative

to the odds of showing a positive when the patient does not
have the disease. Unlike PPV and NPV, it does not depend
on prevalence [47]. DOR can also be expressed in terms of
sensitivity and specificity:

DOR =
SeSp

(1− Se)(1− Sp)
(13)

and in terms of PPV and NPVs:

DOR =
PPV × NPV

(1− PPV)(1− NPV)
. (14)

D. Accuracy

Unlike the other metrics, the term ‘accuracy’ may be defined
differently in different contexts. Commonly used definitions
include:

1) ‘Diagnostic accuracy’ may be used as an umbrella term
for other parameters (such as Se, Sp, predictive values,
odds ratios, AUC, etc.) which together are indicators
of the accuracy of a diagnostic tool in differentiating
healthy versus disease cases [46], [47].

2) ‘Diagnostic accuracy’ may be used as a quantitative
metric defined by the proportion of correct results to the
total number of results (i.e., (TP + TN)/(TP + TN + FP + FN))
[43], [47]. In this way, the resulting accuracy is affected
by disease prevalence in the underlying population [47].

3) ‘(Classification) Accuracy’ may be used when machine
learning or binary classification algorithms are applied
to images to classify whether they represent healthy
or diseased breasts. There are two ways accuracy in
classification is commonly defined in this field: i) as
an average of the sensitivity and specificity, and ii) as
the overall proportion of correctly classified outputs to
the total number of outputs [49]–[52]. If the test set is
balanced (equal disease and healthy observations), then
the definitions in i) and ii) are equivalent.

Metrics of accuracy can be extremely sensitive to the study
design, and as a result can be misleading and difficult to
compare. Efforts have been made to standardize reporting of
diagnostic accuracy in order to improve the quality of results,
thereby providing more consistent evidence bases for patient
care [47], [53].

E. Comment on Other Metrics

Further metrics for assessing performance include:
• recall (or call back) rate, when the patient is asked to

return for repeat or further imaging [54]–[56];
• morality reduction rate (e.g., thanks to screening followed

by early intervention) [12], [44], [56];
• survival rate (typically, after 5 or 10 years of diagnosis)

[44], [57];
• life expectancy (i.e., as extended through screening) [56].

However, in clinical studies for microwave imaging, we be-
lieve that these types of metrics are likely to be of secondary
concern, with primary study endpoints more likely to focus on
the key metrics in subsections A-D—as high-quality outcomes
in relation to those metrics are unquestionably vital to a new
technologies success.
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Additionally, the evaluation of some metrics can be signifi-
cantly impacted by the technology’s usage (e.g., the screening
protocols and guidelines) and not just the technology itself
[57]: for instance, mortality reduction rate may be affected by
how often patients are recommended to submit to screening,
as well as the therapy that follows diagnosis. Furthermore,
assessment of mortality reduction, survival rate, and life ex-
pectancy requires a longer-term study than one that might aim
solely to quantify sensitivity and specificity, presenting another
challenge for clinical studies examining these metrics with new
technologies.

IV. PRE-CLINICAL ASSESSMENT

Pre-clinical testing, assessment, and validation of mi-
crowave systems are vital steps required prior to testing with
human subjects, as confirmation of safety and some evidence
of efficacy of a prototype is necessary for ethical human-based
clinical studies.

MWI systems are still highly varied in design and imple-
mentation (e.g., number/type of antennas, array layout) and
further research is needed to identify the optimal configura-
tion(s) prior to large clinical trials, or else clinical trials for
each design type may be needed before they can be com-
mercialized. As clinical trials are often time-consuming and
costly, consolidation of designs into optimal configuration(s)
at the experimental testing phase may be beneficial.

A tool that may help identify optimal configuration(s) and
establish clinically reliable prototype systems is the devel-
opment and acceptance of a standard phantom or set of
phantoms that provide a ‘ground truth’ for measurements and
images. Standard phantoms have been developed for other
well-established imaging technologies, including magnetic res-
onance imaging (MRI), computed tomography (CT), Positron
Emission Tomography (PET), and Single-Photon Emission
Computed Tomography (SPECT) [64]–[67]. The standardiza-
tion efforts, primarily led by the National Institute of Standards
and Technology (NIST, U.S. Department of Commerce), have
lead to traceable phantoms that are now used with, and often
sold with, common imaging systems [64]–[67]. These standard
phantoms provide a basis for ensuring image data is consistent
and reliable, and importantly, that the information from images
is meaningfully quantitative regardless of the specific piece of
imaging equipment that collected the data. They can be useful
for measuring and calibrating for drift over time, evaluation
of parameters such as resolution and contrast, and comparison
between multi-site studies [64], [67].

In microwave breast imaging, use of standard phantoms may
prove useful for optimizing prototypes, comparing between
prototypes especially with image-level metrics, calibrating and
quantifying measurement data, and achieving consistent and
repeatable data over time and place. Several numerical and
experimental breast phantoms sets have been created and
proposed as standards for microwave breast imaging [68]–[71],
although none have achieved widespread adoption.

A leading standard phantom, the GeePs-L2S (Supelec)
phantom, an anthropomorphic breast phantom fabricated from
MRI-derived 3-D prints filled with dielectric tissue-mimicking

liquids, was proposed and made available for other laboratories
to use to test their prototypes [70], several of which have
reported the associated results [72]–[74]. However, with the
diversity in MWI prototypes as mentioned above, it is still
a significant challenge to develop a phantom or series of
phantoms that can be used with all prototypes, and that cover
all relevant patient-based parameters (e.g., breast density, size,
etc.). Therefore further work is needed for the community to
achieve a consensus on the design and usage of such phantoms.

V. CLINICAL ASSESSMENT: STUDIES, NEEDS, AND
CHALLENGES

A systematic search was done for reports of MW imaging
used in clinical studies. Search terms were: “Microwave” and
“breast” and (“patient” or “clinical” or “human”) and only
journal papers that included MW imaging (as opposed to data-
driven analyses without imaging) were included. Additionally,
we focus on the largest and most recent clinical study to date
for each prototype, unless earlier studies investigated different
clinical questions. The results are summarized in table II.

As seen from the table, only four studies have reported
performance metrics that quantitatively assess MW imaging
on patients. These studies include four that report measures of
sensitivity [1], [2], [4], [7] and only one that reports specificity
[1]—all published since 2019.

A. Sensitivity and Specificity of Microwave Imaging Systems

In these works, sensitivity is broadly quantified as the
correct detection rate, i.e., ratio of positive detection to total
number of abnormal scans. In [2], an overall sensitivity of
63% was found for the SAFE system, with 64% for benign
lesions, 59% for malignant lesions and 88% for high-risk
(uncertain malignant potential) lesions. In [4], overall sen-
sitivity was found to be 76% for the MARIA system, with
76% for benign and 74% for malignant. For the Mammowave
system, empirically chosen decision thresholds were chosen to
establish sensitivity (and specificity) [1]. The sensitivity was
found to be 74% overall (70% for benign, 71% for malignant).
In [7], the overall sensitivity for the Wavelia system was
found to be 87.5% (21/24 patients; 12/13 benign and 9/11
malignant) with 17 of these also being approximately correctly
localized (7/11 malignant and 10/13 benign). To summarize,
the overall sensitivity across all of these MW imaging clinic
studies ranges from 63–87.5%, with 64–93% for benign lesion
detection and 59–81.8% for malignant lesion detection.

Some studies have also examined sensitivity in relation to
patient age, breast size, and breast density. In [2], it was
found that sensitivity was lower in smaller breasts than larger
ones (51% vs. 74%). In [4], higher sensitivity was found for
ages 51–80 than ages 31–50 (benign: 84%, malign: 78%, vs.
75% and 66%, respectively). Interestingly, two studies have
shown increased sensitivity with denser breasts; while a third
study found the opposite. In [1], overall sensitivity increased
to 82% (from 74%) when considering only dense breasts
(benign sensitivity 78% for dense only, as compared to 70%
overall; malignant sensitivity 85% for dense only, compared to
71% overall). Similarly, in [4], sensitivity of 79% was found
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TABLE II: Summary of MW Breast Imaging Clinical Studies.
Note: DC = Dartmouth College; MARIA = Multistatic Array Processing for Radiowave Image Acquisition; TSAR = Tissue
Sensing Adaptive Radar;SUST = Southern University of Science and Technology; HU = Hiroshima University; MU = McGill
University; SU = Shizuoka University; SAFE = Scan and Find Early; GU = Goethe University of Frankfurt. Norm. = normal,
Ben. = benign, Mal. = malignant. MG = mammogram; MR = magnetic resonance imaging; US = ultrasound; RR = radiologist
review.

MW Prototype Application Patient Group(s) Size Performance Metrics Reference Diagnosis
Norm. Ben. Mal.

DC [58] non-specific ✗ 43 - RR (MG)
DC [3] non-specific ✗ ✗ ✗ 130 - Pathology
DC [6] therapy monitoring ✗ 8 - MR

MARIA® M5 [4] non-specific ✗ ✗ 225 diagnostic sensitivity RR (MR, MG, US)
TSAR [59] complementary breast imaging ✗ ✗ ✗ 8 - MG, MR, Pathology

HU [8] screening, detection ✗ 5 - Histopathology
SUST [60] complementary screening, detection ✗ 11 - -

MU [61] health monitoring ✗ 13 - -
SU [62] early detection ✗ 2 - MR

Wavelia [7] non-specific ✗ ✗ 24 sensitivity Pathology, MG
MammoWave [1] screening ✗ ✗ ✗ 103 sensitivity, specificity RR (MG, US, MR, Pathology)

SAFE [2] screening, early detection ✗ ✗ 115 sensitivity Pathology
GU [63] complementary diagnosis ✗ 2 - MG

for dense breasts for both benign and malignant detection,
with only 71% for malignant and 62% for benign for low-
density breasts. Lastly, in [2], sensitivity was found to decrease
with increasing density: fatty breast (86% sensitivity), normal
fibroglandular tissue (75%), heterogeneously dense (65%), and
dense (48%). In all cases, the densities were defined by their
BI-RADS (Breast Imaging-Reporting and Data System) value:
A (non-dense, mostly fatty), B (scattered fibroglandular tis-
sue), C (heterogeneously dense), D (extremely dense); where
“dense” includes groups C and D [1], [2], [4].

For specificity, it was found in [1] that the specificity (true
negative rate) for the Mammowave system was approximately
62% (32/52 correctly identified as negative). Additionally,
in [51], the results from the same Wavelia clinical study as [7]
were further analyzed using Quadratic Discriminant Analysis
(QDA) to differentiate benign and malignant lesions. Accurate
discrimination was achieved in 88.5% cases, and accurate
lesion size estimate in 76.5% of cases. Although specificity
typically refers to differentiating normal (healthy) cases from
diseased cases, it is also valuable for a screening or diagnostic
tool to be able to discriminate between types of lesions.

B. MW Imaging and Standard Technologies in Clinical Use

While the large-scale clinical trials of MW imaging in recent
years have certainly resulted in valuable data, clinical efficacy
data is still limited and the potential of MW imaging to meet or
exceed performance of established breast imaging technologies
(MG, MR, US) is yet to be concretely demonstrated. In order
to achieve widespread clinical usage, MW technologies will
need to demonstrate an aspect of superiority over standard care
competitors. This may be in terms of low-cost, or increased
sensitivity or specificity for at least a subset of the population,
or it may fill a clinical gap where no imaging is currently part
of the standard patient pathway. Therefore, this will highly
depend on the proposed use-case application for the MW
imaging prototype.

Breast screening is a popular use-case, and most clinical
studies to date have focused on this application. X-ray mam-
mography is typically referred to as the ‘gold standard’ for
breast cancer screening. For mammography, sensitivity and
specificity estimates have broad ranges, approximately 44-
86% and 90-94%, respectively [12], [44], [75]–[77], with
significantly lower sensitivity values typically found for dense
breasts, as high density tissues may mask the appearance of
tumors [12], [44], [78], [79]. Ultrasound (US) and MRI may
also be used in screening, typically at a secondary screening
stage. The sensitivity and specificity of US are estimated at
80% and 88%, respectively [80]. MRI, which can image
vascularity and peritumoral inflammation is therefore highly
sensitive (near to 100%); however specificity is less clear with
studies reporting values ranging from 37-97% [44], [81].

MW imaging is on dielectric contrasts between tumor and
healthy tissues, which are predominantly based on tissue
water content across the MW frequency range [12]. Therefore,
like mammography, MW imaging may struggle to in scenar-
ios where background tissues are highly dense. With dense
background tissues, the expected contrast between tumor and
tissue may be marginal, and moreover, MW propagation losses
are high - therefore, both sensitivity and specificity of MW
imaging may be limited in imaging high density breasts.

For MW imaging, we note significant differences in the
sensitivity of MW imaging reported across systems, suggesting
that, as well as being impacted by the study design (i.e.,
patients recruited), the sensitivity might be system- (i.e., pro-
totype design: frequency range, antennas, array layout, etc) or
post-processing- (i.e., filtering, noise correction, reconstruction
or detection algorithm) dependent. One notable difference is
also in how ‘sensitivity’ is defined: in [7], sensitivity values
are given for correct detection with lower sensitivity values
identified for combined correct detection and localization; in
[4], detection in the correct location is considered; in [2],
position, size, and shape are examined; and in [1], an ap-
proach based on identifying and scoring features followed by
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thresholding to identify positive vs. negative findings enables
calculation of sensitivity and specificity. It is very likely that
calculation of sensitivity with these different approaches would
lead to different values. However, importantly, these studies
have been too small and too varied to assess with certainty
the reasons behind the different sensitivity values. Further,
only one study has addressed specificity. Therefore, from the
achieved MW data to date, it is inconclusive if MW imaging
will be advantageous for this application.

It is additionally important to note that studies of mam-
mography screening examining sensitivity, specificity, and
mortality reduction, have included study groups commonly
including tens and hundreds of thousands of people, all the
way up to millions, and have spanned across many years [56],
[78], [82]. Therefore, demonstrating MW as screening tool or
a complementary screening tool will require large trials which
in turn will likely be costly and long-term efforts.

However, for other applications like breast health monitor-
ing or treatment monitoring, there may not be any current
standard approach so the burden of proof for efficacy of MW
imaging may be more feasible to achieve in the near-term.
However, regardless of proposed clinical application, it is
apparent that in order to assess and quantitatively demonstrate
clinical efficacy of MW imaging, there is still a significant
need for clinical studies of MW breast imaging that are
sufficiently powered and included large-scale patient groups.

VI. CONCLUSION

In recent years, microwave breast imaging has seen an
increase in the number of systems trialled with patients,
demonstrating the safety of the technique and helping increase
understanding of the potential clinical applications of the
modality. However, despite the substantial body of experimen-
tal and clinical studies, there is little consistency in reporting
of results of either the image quality or of the overall efficacy
observed. In this work, methods of assessing both image
quality and overall trial efficacy are assessed.

Although very similar, many quantitative metrics have been
proposed for analysing microwave breast imaging, both requir-
ing a priori information and not. Although mostly standard
and easy to understand, the multitude of definitions makes
it both difficult to compare between studies and also to
identify a set of useful metrics or features which may be
helpful in evaluating efficacy in clinical trials. Additionally, the
majority of imaging studies and comparative studies use these
types of metrics alone for quality assessment and comparison,
however, recent work would suggest that image-based metrics
in isolation are not sufficient. Further evaluation of a set
of objective quantitative metrics which are not sensitive to
imaging resolution or other system-specific parameters may
be useful.

Furthermore, despite the substantial increase in the both the
amount and the size of clinical trials in the last five years, some
key questions remain unanswered. Different trials use different
definitions of common terms such as sensitivity, making it
challenging to synthesise or compare trials. Furthermore, few
trials have recruited from asymptomatic populations, limiting

the understanding of the potential specificity which could be
expected. In many cases, the expected clinical indication is
not clear, and very large trials would be needed to establish
enough clinical evidence to complement or replace existing
modalities.

Due to these factors, further work is needed to establish a
clear clinical need and route to proving efficacy.
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