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Abstract—Confocal Microwave Imaging algorithms syntheti-
cally focus backscattered radar signals to create an image of
the breast. Spatial focusing is achieved by delaying the received
signals by the round-trip propagation delay to the voxels of
interest. A key component in calculating propagation time is
a good estimate of the average dielectric properties of the
breast, because the accuracy of the reconstructed image varies
significantly with the value of average dielectric properties used.

This paper investigates the use of focal quality metrics to
estimate the optimal average dielectric properties to use to
reconstruct an image of the breast. Focal quality metrics have
long been used to find optimally focused images in microscopy
and camera systems without prior knowledge of the imaged
object’s location or texture. In this paper, five common focusing
algorithms from autofocus and shape-from-focus applications
are compared to investigate whether these focal quality metrics
can be used to estimate the patient-specific average dielectric
properties.

Index Terms—focal quality metrics, microwave imaging, breast
cancer detection, autofocus techniques, biomedical imaging

I. INTRODUCTION

Microwave imaging exploits dielectric contrasts between
cancerous and healthy tissues at microwave frequencies to
detect breast tumours. Confocal Microwave Imaging (CMI) is
one widely used method to convert the microwave reflections
into useful images of the breast [1]–[8]. CMI beamformers
synthetically focus backscattered signals from each voxel in
the imaging area successively to construct an energy profile
of the breast. Regions of high energy in the resultant images
suggest the presence of a significant dielectric scatterer (i.e.
a tumour). This image reconstruction technique is based on a
number of assumptions [9], primarily:

• that sufficient contrast in dielectric properties exists be-
tween healthy tissues and tumours;

• that the dielectric properties of the breast are such that
coherent addition can occur at scatterers;

• and that representative average dielectric properties can
be found which can be used to estimate propagation
delays and synthetically focus signals.

Many different methods have been used to estimate the average
dielectric properties to ensure a clear and focused image
of the breast can be formed. Originally, published dielectric
properties of adipose tissues were used [1], [2], [5], [6],
[8], [10]. Others considered the skin and immersion medium,
but still used published values of dielectric properties of
adipose tissues for the breast interior [3], [7]. However, there

is often a considerable difference between these published
values and the patient-specific average dielectric properties.
This difference in estimated average dielectric properties re-
sults in an incorrect estimation of the average microwave
propagation speed, and therefore a poorly reconstructed CMI
breast image. Improved performance was demonstrated in [11]
where the average dielectric properties of the interior of the
breast were calculated from the backscattered signals using
inverse scattering. Time-of-flight measurements were used to
estimate interior properties in numerical studies [12], while
promising multi-path propagation measurements were used in
some experimental studies [13], [14].

Rather than adding an additional step to the microwave
breast imaging procedure to estimate the microwave prop-
agation speed, the authors propose the use of focal quality
metrics (FQMs) to optimise the assumed average dielectric
properties. The FQMs presented in this paper are analysed to
see if image quality is correlated with a well-focused image.
If good correlation is established, then there is potential to
use the FQM as a method to fine-tune the average dielectric
estimate, and consequently to optimise the microwave breast
image.

The remainder of the paper is structured as follows: Sec-
tion II describes the FQMs used and the rational for their
selection; Section III describes how the chosen FQMs are
evaluated in terms of fitness and the images on which they
are analysed; Section IV describes the results and Section V
concludes the paper.

II. FOCAL QUALITY METRICS

In this paper, five FQMs were described and compared.
FQMs can broadly be divided based on their method of action,
and one metric from each of the families identified in a recent
review of FQMs were chosen in this paper [15]. In general,
FQMs operate by estimating the high-frequency spatial content
of the image [16].

A. Gradient-based focal quality metric (ΦG)

Approximations to the first derivative or gradient of the
image have been widely used as FQMs, [15], [17]–[22].
The first-order difference of the image is commonly used
as a computationally efficient estimation of the first spatial
derivative, and is used in this work. The absolute value of
the gradient is analysed here, which is commonly used as a



metric. All dimensions are considered, the maximum of the
absolute gradient along each direction is used.
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where X and Y are the dimensions of the image and IX
and IY are the first-order differences along the X and Y
dimensions respectively.

B. Laplacian-based focal quality metrics (ΦL)

Similar to ΦG, Laplacian-based methods use second-order
differentiation to reward high-frequency content in the image.
The energy of the Laplacian is a commonly used FQM [15],
[16], [23], [24] and is defined as:
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where L is the discrete approximation to the Laplacian given
by:
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C. Wavelet-based focal quality metric (ΦW)

Statistics of the high-frequency sub-bands of the discrete
wavelet transform (DWT) have also been used as FQMs [15],
[25]–[27]. In this work, the absolute sum of the three detail
sub-bands calculated with a first-level DWT and a db6 filter
(Daubechies filter with six vanishing moments) was used:

ΦW=
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|ILH(x, y)|+|IHL(x, y)|+|IHH(x, y)| (4)

where ILH , IHL and IHH are the first-level detail sub-bands.

D. Fourier-based focal quality metric (ΦF)

Statistics of the coefficients of the Discrete Cosine Trans-
form (DCT) have been investigated as FQMs [15], [28]–[30].
The ratio of the AC energy to the DC energy is used:
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where Fx,y is the DCT of the N ×M sub-block centered at
(x, y). M = N = 8 is used in this work.

E. Statistics-based focal quality metric (ΦS)

Various statistics of the grey-level luminance of the image
have also been used as FQMs. In this paper, a commonly
used statistic — the variance of the grey-level luminance —
is analysed [15], [17]–[20], [22], [31]:

ΦS =
1

XY

∑
x

∑
y

(I(x, y)− Ī)2 (6)

where Ī is the mean of the image.

III. EVALUATION OF FOCAL QUALITY METRICS

This section describes how FQMs are traditionally evalu-
ated, and how these qualities can be analysed in the context
of CMI.

A. Characteristics of an effective focal quality metric

This section describes some commonly identified character-
istics currently used to evaluate FQMs in other applications
and identifies similar characteristics important in CMI. Three
important characteristics are:

• independence from image content; [20], [32]
• the extremum is located at the correct value (accuracy);

[19], [22], [32].
• monotonic with respect to blur [20].

In the context of CMI, independence from the contents of the
image is measured by repeating the results for a number of
tumour locations. Accuracy is measured by estimating the pa-
rameters using the FQM and comparing this to the parameters
of the best-case image generated using a priori knowledge of
the average dielectric properties of the breast. Monotonicity
is measured by correlating the FQM using Spearman’s rank
correlation coefficient, ρ, against an estimation of the similar-
ity of the images to the best-case image, a similarity curve.
The similarity curve is generated by comparing each image
to the image generated using the best-case average dielectric
properties. SSIM is used to compute the similarity of the
images [33].

B. Experimental Evaluation

This section describes the models used in Finite-Difference
Time-Domain simulations of the breast used to evaluate the
FQMs. A homogenous breast with a realistic skin layer is
considered when evaluating the performance of the FQMs. The
in-breast relative permittivity value and that of the matching
medium in which the breast is immersed were chosen to be
similar to adipose tissues, εr = 3.74. The skin layer has a
relative permittivity of, εr = 35.14, and the tumour has a
relative permittivity of, εr = 60.33. Twenty different models
were created, each with a spherical tumour of radius between
3mm and 5mm randomly placed within the breast.

The breast phantom is illuminated with a single-cycle sine
wave modulated by a Gaussian pulse. The excitation pulse
has a centre frequency of 6GHz and a bandwidth of 6GHz.
Twenty equally spaced antennas arranged in a cylindrical
configuration successively illuminate the breast and monostatic
signals are recorded. Ideal skin subtraction is used to isolate
the tumour response. Although unrealistic, ideal skin subtrac-
tion algorithm is used because the paper is solely focused on
image sharpness and focus.

A monostatic Delay-and-Sum beamformer is used to gen-
erate the images [9] with a window length equal to the width
of the pulse in the time-domain. Two hundred and one images
were generated for each model, using an average value of
relative permittivity varying from between 3 to 23 in steps of
0.1.



TABLE I
ACCURACY AND CORRELATION TO THE SIMILARITY CURVE RESULTS.

RANKING INDICATED IN PARENTHESES (LOWER IS BETTER). BEST-CASE
AVERAGE RELATIVE PERMITTIVITY, εr = 5.2.

Metric
Accuracy Correlation (ρ)
µ σ µ σ

ΦL 5.01 (4) 0.38 -0.83 (4) 0.15
ΦG 5.05 (3) 0.27 -0.93 (1) 0.07
ΦS 5.30 (2) 0.66 -0.89 (2) 0.10
ΦW 5.20 (1) 0.49 -0.88 (3) 0.14
ΦD 3.03 (5) 0.09 -0.32 (5) 0.31

IV. RESULTS

This section details the results of evaluating the FQMs listed
in Section II by the method explained in Section III.

The results are structured as follows:
• Figure 1 compares the images generated with different

average relative permittivities along with a cross-section
of the breast model;

• Figure 1a shows the breast coronal cross-section at the
tumour location;

• Figures 1b to 1h show the images generated with average
relative permittivities, εr = 3, 4, . . . , 9 respectively.

A. Quantative evaluation

Table I shows the accuracy and monotonicity with respect to
blur of each of the five FQMs. For each criterion, the average,
µ, and the standard deviation, σ, across the twenty models is
calculated. The FQMs are then ranked by each criterion. The
best-case average relative permittivity is 5.2. ΦL, ΦS, ΦG and
ΦW all accurately predict the best average relative permittivity
to within ∆εr = 0.2. On average, ΦW is the most accurate. ΦG
has the highest value of ρ, with the smallest standard deviation.
ΦD fails to accurately predict the relative permittivity, and also
shows poor values of ρ. ΦD estimates a value of 3 each time
which is the lowest of the range of permittivities analysed.

B. Focal Quality Metric curves

Figure 2 shows the FQM curves for the five FQMs. Also
shown is the similarity curve as described in III-A. The best-
case image is chosen by calculating the exact average dielectric
properties of the imaging area. Visually, ΦL, ΦS, ΦG and ΦW
all correctly identify the correct speed to use which is indicated
by an SSIM of 1 (identical to the best-case image). ΦG, ΦW
and ΦS are equally sharp at the extremum, that is, the width
of the peaks is similar. In contrast, ΦL exhibits a considerably
broader peak. However, any accurate FQM can be artifically
sharpened by raising it to a power [17]. This means that a
broad peak is not a good criterion on which to judge an FQM.
ΦD does not correctly identify the average relative permittivity.
Although some peaks are exhibited in the correct locations, the
value of the metric at the start of the curve (the lowest average
relative permittivity), is greater than at any of the subsequent
peaks.

V. CONCLUSIONS

These results show that FQMs could potentially be used to
estimate the dielectric properties of a breast used when gen-
erating a CMI image. This is necessary for realistic screening
scenarios when estimating the average dielectric properties of
the breast in advance could be difficult. FQMs could be used
to adaptively estimate the average dielectric properties and
generate an image of higher quality.

Further work will focus on choosing the best FQM for CMI
applications, testing the FQMs in more complex heterogenous
scenarios, and expanding the two-dimensional FQMs used
in shape-from-focus and auto-focus applications to three-
dimensional volumes.
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