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Genetic and Molecular Studies of Virulence Factors of  Staphylococcus aureus  

 

The papers have been divided into sections according to particular themes. Within each section the 

papers are presented in chronological order.  

  

Section 1 

Site-specific mutations in chromosomal genes.  

 

The construction of site-specific mutations by allelic exchange in genes encoding putative virulence 

factors (1) paved the way for testing the role of such factors in pathogenesis using animal infection 

models – called testing Koch’s Postulates at the molecular level. This was dependent on the isolation 

of site-specific mutations in targeted genes and showing that changes in phenotype were due to the 

mutation and not to alterations in expression of other genes.  

After seminal work in Dublin with alpha-toxin and protein A (1) animal infection studies were 

subsequently performed by collaborators eg  alpha-toxin and beta-toxin in mastitis (2), clumping 

factor A (ClfA, section 2) in  endocarditis (3) and septic arthritis (4 and 5).   

Specific mutations were employed in the studying the role of clumping factor B in nasal colonization 

(section 3) and fibronectin binding proteins in host cell invasion (section 4).  Recent advances in 

genetic manipulation are described in section 6.  

 

Section 2.  

Clumping factor A, the  archetypal MSCRAMM of Staphylococcus aureus 

 

Genetic studies showed that clumping factor is distinct from coagulase, an important discovery to 

make at the time (6). Cloning and sequencing the clfA gene revealed the structural organization of 

ClfA and showed that it has features of other cell wall-anchored surface proteins and that the 

fibrinogen binding domain is located in the N-terminal 580 residues (7, 8). In collaboration with 

Magnus Hook biochemical and biophysical analysis investigated the mechanism of ligand binding (9-

11). ClfA is a founder member of the Microbial Surface Components Recognizing Adhesive Matrix 

Molecules (MSCRAMMs) family of surface proteins. The X-ray crystal structure of ClfA prompted 

formulation of the dock-lock-latch mechanism of ligand binding by Hook. This was supported by 

comparative analysis of ClfA and Fbl from S. lugdunensis (12).   A function-blocking monoclonal 

antibody defined a second binding site for fibrinogen on ClfA and revealed a two-step ligand binding 

mechanism that is more complex than the original dock-lock-latch model (13).  The definition of 
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MSCRAMMs was refined (14, 15).  ClfA was also found to be a protective antigen in a rodent 

infection models and a non-fibrinogen binding variant of recombinant ClfA protein was a superior 

protective antigen compared to the wild type (5). This discovery was patented and subsequently 

licensed by GlaxoSmithKline. 

 

Section 3.   

Clumping factor B and nasal colonization 

Southern blot hybridization analysis of chromosomal DNA using a clfA gene probe suggested the 

presence of genes encoding proteins related to ClfA (7).  The first to be cloned, sequenced and 

analysed at the molecular level was clumping factor B (ClfB) (16). This protein had similar structure 

and sequence organization to ClfA and was shown to bind fibrinogen thus contributing to adhesion 

and clumping.  

ClfB was shown to bind to cytokeratin 10 (CK10), a protein that occurs in desquamated epithelial 

cells (squames) in human skin and the anterior nares (17). The binding site in CK10 was localized to 

the C-terminal region. This is composed of omega loops rich in Gly-Ser repeats (18).  The binding site 

in the -chain of fibrinogen is also a Gly-Ser rich sequence. X-ray crystal structure analysis of ClfB in 

the apo form and complexed with fibrinogen and CK10 peptides revealed that ligands bound by the 

dock-lock-latch mechanism (14, 15, 19).   

The ability of ClfB to bind CK10 is important in bacterial adherence to nasal squames (17). Using 

genetically manipulated strains ClfB was found to promote colonization of the nares of mice (20) and 

human volunteers (21).  Active immunization with recombinant ClfB protein and passive 

immunization with a function-blocking monoclonal antibody reduced nasal carriage (20). ClfB also 

bound loricrin, a major protein component of the cornified envelope of squames. This interaction is 

also important in mouse nasal colonization, a conclusion reinforced by studying loricrin knockout 

mice (22). ClfB is also important in bacterial binding to deformed corneocytes in the inflamed skin of 

eczema sufferers (23). 

 

Section 4    

The multifunctional fibronectin-binding proteins  

Binding of S. aureus to fibronectin was shown to be mediated by two related fibronectin binding 

proteins (FnBPs) (24). This is important for adherence to and invasion of host epithelial and 

endothelial cells (25), a process that is now known to occur by endocytosis with fibronectin acting as 

a bridge between the fibronectin-binding repeats of FnBPs and an integrin.  

Staphylococcal binding to elastin was originally thought to be mediated by the elastin binding 

protein EbpS (26). While EpbS promoted binding to soluble elastin peptides, bacterial adherence to 

elastin in the solid phase was found to be a property of FnBPs (27). The N-terminal A domain of 

FnBPs are related to ClfA and ClfB. They promote binding to elastin (as well as fibrinogen). Modelling 

the A domain of FnBP indicated that the same residues interact with both ligands most likely by the 

dock-lock-latch mechanism (14, 15, 28). 

Some S. aureus clinical isolates form biofilm mediated by homophilic interactions between FnBPs. 

For FnBPA homophilic binding occurs at the N2 and N3 subdomains of region A by a mechanism that 
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is distinct from dock-lock-latch (29). Force microscopy studies by Dufrene revealed that cell-cell 

adhesion occurs by multiple low affinity homophilic bonds (30).   

Another FnBPA A domain ligand is plasminogen as shown by Speziale. Bound plasminogen can be 

activated to plasmin which likely helps bacteria survive in the infected host. Binding occurs via 

patches of lysine residues on subdomain N3 and kringle 4 of the host protein (31) 

 

Section 5    

Evasion of innate immunity  promoted by surface proteins  

In the early 2000s there was growing evidence that S. aureus elaborates a plethora of factors that 

promote innate immune evasion (reviewed in reference 32). Early work focussed on secreted 

proteins and apart from protein A there was no known role for surface proteins. Then we showed 

that ClfA contributes to evasion of neutrophil phagocytosis by both fibrinogen-dependent and 

fibrinogen-independent mechanisms (33).  Cunnion suggested that ClfA bound and activated the 

host C3-degrading protease factor I (34). The iron-regulated surface determinant protein IsdH and 

the second immunoglobulin binding protein Sbi both promoted evasion of neutrophil phagocytosis 

and survival in human blood, the former by accelerating C3b degradation (35, 36). Unlike classical 

wall-anchored proteins Sbi was shown to be attached non-covalently by binding to lipoteichoic acid 

and it was also found to be present extracellularly. Both forms contributed to immune evasion (36, 

37).    

 

Section 6.   

Improved genetic manipulation 

The ability to manipulate S. aureus genetically had been limited to a few laboratory strains because 

of extensive restriction barriers. The major barrier to transfer of plasmid DNA from Escherichia  coli  

to S. aureus was found to be  a type I restriction system (SauI) that cleaves cytosine methylated DNA 

(38).  Preparation of plasmid DNA in the E. coli cloning host (DC10B) that lacked the ability to 

methylate cytosine bases allowed SauI to be by-passed. However the efficiency of transformation 

was still impaired by type IV restriction-modification systems. Access to all clinical isolates of S. 

aureus irrespective of the number of or type of type IV system was accomplished by constructing  

DC10B variants that could modify plasmid DNA to carry the type IV adenine methylation profiles of 

key lineages (39). A streamlined method for isolating mutations by allelic exchange was devised (38).  

Advances in staphylococcal genetics were reviewed (40). 
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