
SCHOOL OF PHYSICS

HEAT TRANSFER IN OPEN QUANTUM
SYSTEMS

MARIA POPOVIC

2023

SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY





Declaration

I declare that this thesis has not been submitted as an exercise for a degree at this or

any other university and it is entirely my own work.

I agree to deposit this thesis in the University’s open access institutional repository

or allow the library to do so on my behalf, subject to Irish Copyright Legislation and

Trinity College Library conditions of use and acknowledgement.

I consent to the examiner retaining a copy of the thesis beyond the examining pe-

riod, should they so wish (EU GDPR May 2018).

Signed: Date:

i





Summary

In most situations of practical interest, quantum systems are not isolated from their

surroundings but are interacting with an environment. The importance of such situ-

ations has been highlighted, for example, in the fields of quantum optics, interacting

many-body systems, quantum computation and, as will be the focus of this thesis,

thermodynamics of quantum systems. Scientific interest in the fabrication and con-

trol of small devices has fuelled attention to nonequilibrium thermodynamics of

open quantum systems, and in particular, to detailed understanding of heat trans-

fer in order to minimize wasteful dissipation.

In Part I of this thesis the theory of open quantum systems is introduced. Cou-

pling with an environment leads to the buildup of correlations and as consequence

the dynamics of the open quantum system can no longer be described with a uni-

tary time evolution operator. In many cases of interest the presence of strong cou-

pling between system and environment and the presence of memory effects make

the dynamics of the system non-Markovian. A numerically exact method based on

the path integral formulation, the time-evolving matrix product operator (TEMPO)

algorithm, has recently been developed for retrieving the system reduced density

matrix in such cases.

In Part II we use the theory presented in Part I to develop a numerically exact

method to compute the full counting statistics of heat transfer in non-Markovian

open quantum systems, based on the TEMPO algorithm. This approach is applied

to the paradigmatic spin-boson model in order to calculate the mean and fluctua-

tions of the heat transferred to the environment during thermal equilibration. We
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show that system-reservoir correlations make a significant contribution to the heat

statistics at low temperature and present a variational theory that quantitatively ex-

plains our numerical results. We also demonstrate a fluctuation-dissipation relation

connecting the mean and variance of the heat distribution at high temperature.

Next, we investigate the nonequilibrium thermodynamics of pure decoherence.

In a pure decoherence process, the system Hamiltonian is in a constant of motion

and there is no direct energy exchange between the system and its surroundings.

Nevertheless, we find the presence of nontrivial heat dissipation as a result of de-

coherence alone. We show that the heat distribution for a pure decoherence process

corresponds to a mixture of work distributions of cyclical processes, each condi-

tioned on a state of the open system. Inspired by recent experiments on impurities

in ultra-cold gases, we demonstrate our general results by studying the heat gener-

ated by the decoherence of a qubit immersed within a degenerate Fermi gas in the

lowest band of a species-selective optical lattice. Finally, we discuss the heat dissi-

pation generated by a single projective measurement performed on the open system

during a pure decoherence process.
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7.1 Ohmic spectral density function of the bath J(ω) for fixed frequency

cutoff ωC = 5, and three different values of the coupling strength α. . 61

7.2 Ohmic spectral density function of the bath J(ω) for fixed coupling

strength α = 1, and three different values of frequency cutoff ωC. . . 61

7.3 Real part of the bath correlation functionA1, for four different values

of bath temperature T, as a function of the memory depth time K∆ as

defined in Eqs. (7.5). Here we have fixed α = 0.1, ωC = 5. . . . . . . . 63

7.4 Real part of the bath correlation functionA1, for four different values

of frequency cutoff ωC, as a function of the memory depth time K∆ as

defined in Eqs. (7.5). Here we have fixed T = 5, α = 0.1 . . . . . . . . 63

7.5 Imaginary part of the bath correlation function A1, for four different

values of frequency cutoff ωC, as a function of the memory depth time

K∆ as defined in Eqs. (7.6). Here we have fixed α = 0.1 . . . . . . . . 63

xiii



7.6 Dynamics of the mean values of the spin operators ⟨Ŝz⟩ (left column)
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Part I

Introduction & motivation
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1 | Introduction

The dynamics of a system interacting with its environment is studied through the

theory of open quantum systems [1]. Examples of open quantum systems include

atoms in a solid [2], spins coupled to thermal baths [3, 4], and excitons involved in

biological processes [5]. More broadly, the relevance of this theory reaches the fields

of quantum biology, quantum Darwinism, quantum computation, construction of

quantum thermal machines and a variety of other diverse topics [6–8]. What makes

the theory of open quantum systems widely applicable is the fact that in realistic,

experimentally relevant settings, no system can truly be isolated from its surround-

ings. The total system composed by the quantum system and its environment is a

closed one, as schematically represented in Fig. 1.1, and therefore its evolution can

be defined by means of an unitary time evolution operator. Due to the coupling with

its surroundings, however, the time evolution of the reduced density matrix of the

open system alone can no longer be described with an unitary time evolution op-

erator. If such an interaction satisfies the conditions of the weak coupling limit and

the Markov approximation, then the dynamics of the system is referred to as mem-

oryless and can be described with a Markovian theory. Specifically, the weak cou-

pling approximation states that the environment is not influenced by its coupling to

the system and therefore its density matrix is time independent. The Markov ap-

proximation states that the changes in the environmental state are cancelled before

influencing the time evolution of the system [1]. In many cases of interest, however,

such conditions are not satisfied and the presence of memory effects makes the dy-

namics of the system non-Markovian. There exist in the literature many different
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Figure 1.1: Representation of a system interacting with its surrounding environment. The
total system composed by open system and environment is a closed one.

definitions of a non-Markovian process [9]. A common case is where the degrees of

freedom of the environment are infinite compared with those of the system, and the

environment can be described as a thermal bath of some constant temperature T.

This allows for the study of thermodynamic properties of open quantum systems.

Non-Markovian behaviour is an important and so far little explored topic in modern

thermodynamics. Its characteristic feature, information back-flow from the environ-

ment to the system, or memory effects, has been studied in the context of different

thermodynamic quantities such as work [10, 11] and entropy production rate [4]. It

is therefore of great interest to study the thermodynamic properties of a quantum

system in regimes that can’t be described by the Markovian theory, or even in the

presence of strong system-environment coupling, where few studies have been so

far conducted.

There exist several techniques for studying the dynamics of an open quantum

system weakly coupled to an environment. The spin-boson model can be solved,

for example, through perturbative calculations in the coupling constant, the Heisen-

berg approach, or the expansion method [12]. Some of these techniques in principle

already allow for a study of the dynamics beyond the Markovian regime. However,

strong coupling between the system and the environment precludes the application
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of perturbative methods and there exists no general method for solving the dynam-

ics. In this case, the system’s reduced density matrix can be retrieved, among other

techniques, with the path integral method [13, 14]. The path integral formulation

has been the basis for a recently developed exact numerical method for modelling

strongly interacting environments [15, 16].

In the following chapters the formalism with which to compute the non-Markovian

dynamics of an open quantum system is introduced, focusing on the path inte-

gral formulation and introducing the TEMPO algorithm, on which we will base

our method for calculating the full counting statistics of heat transfer. Quantum

thermodynamic quantities will be outlined starting from a discussion of classical

thermodynamics [17–19].
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2 | Master equations for open

systems

The dynamics of an open quantum system coupled to an environment is generally

derived from the dynamics of the overall closed system that is comprised of both the

open system and its surroundings [1]. The Hilbert space of such a composite system

is a tensor product of the two components’ Hilbert spaces, H = HS ⊗HB, where

with S and B we denote the degrees of freedom of the open system and environment

respectively. Setting ρ̂ to be the density matrix of the composite system, the reduced

density matrix of the open system ρ̂S is obtained by tracing out the environmental

degrees of freedom,

ρ̂S = TrB[ρ̂], (2.1)

and similarly for the reduced density matrix of the environment, ρ̂B = TrS[ρ̂]. The

total Hamiltonian that governs the overall closed system is

Ĥ = ĤS + ĤB + ĤI , (2.2)

where ĤS is the free Hamiltonian of the open quantum system, ĤB is the free Hamil-

tonian of the environment, and ĤI is the Hamiltonian that describes the interaction

between these two components. In general, Ĥ is time dependent. The dynamics of

the overall closed system is governed by a von Neumann equation whose solution

defines a unitary time evolution operator. From this solution, under a specific set of

assumptions and approximations, a Markovian master equation for the density ma-
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trix Eq. (2.1) can be obtained, as discussed in the literature [1, 20]. In the following,

this derivation will be reviewed.

2.1 Dynamics of a closed quantum system

Let Û(t, t0) be the unitary operator that governs the time evolution of the overall

closed system’s states, defined as |ψ⟩. Then for any time t > t0, the system’s state is

given by |ψ(t)⟩ = Û(t, t0)|ψ(t0)⟩. Inserting the expression for |ψ(t)⟩ into the Schrö-

dinger equation, d|ψ(t)⟩/dt = −iĤ|ψ(t)⟩, gives the equation for the unitary time

evolution operator

i
dÛ(t, t0)

dt
= ĤÛ(t, t0). (2.3)

Units where h̄ = 1 are used throughout. The solution to Eq. (2.3) is given by

Û(t, t0) =
←−
T exp

[
−i

∫ t

t0

dτĤ (τ)

]
, (2.4)

where
←−
T is the chronological time-ordering operator, so that the products of time

dependent operators are ordered in a way such that the operator’s arguments are

increasing from right to left. In the case of a time independent Hamiltonian, such as

the one that will be the focus of this work, Eq. (2.4) becomes

Û(t, t0) = exp[−iĤ(t− t0)]. (2.5)

The dynamics of the composite closed system density matrix is then

ρ̂(t) = Û(t, t0)ρ̂(t0)Û†(t, t0). (2.6)

The von Neumann equation of motion is then obtained by differentiating with re-

spect to time,
dρ̂(t)

dt
= −i[Ĥ, ρ̂(t)]. (2.7)
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In classical mechanics, the equivalent of the von Neumann equation is the classical

Liouville equation,
dρ (t)

dt
= L (t) ρ (t) , (2.8)

where L is the Liouville operator. Defining the dynamics of the system in terms of a

Liouville operator will prove particularly useful when laying out the theory for our

numerically exact computational method for calculating quantum statistics of heat

transfer. In a quantum mechanical context, the Liouville operator corresponds to

the commutator between the density matrix ρ̂ and the total Hamiltonian Ĥ, Lρ →

−i[Ĥ, ρ̂]. The solution to the classical master equation Eq. (2.8) is given by

ρ (t) =
←−
T exp

[∫ t

t0

dτL (τ)
]

ρ (t0) , (2.9)

which in the case of a time-independent Hamiltonian yields

ρ (t) = exp [(t− t0)L] ρ (t0) . (2.10)

The solution to the overall closed system’s dynamics is obtained from the initial state

of the density matrix and the form of the total Hamiltonian, and it is the starting

point for deriving the dynamics of the open quantum system [1].

2.2 CPT dynamical maps

The building up of correlations, both classical and quantum, between the open

quantum system and its environment, leads in general to a non-unitary time evolu-

tion of ρ̂S. The properties of the dynamical map describing the time evolution dis-

tinguish between different possible types of quantum dynamics, namely Markovian

or non-Markovian [1, 20]. A completely positive (CP), trace preserving, and divisi-

ble dynamical map defines a Markovian time evolution for the open system [1, 21].

In this section such a dynamical map will be defined and described. The assump-

tion maintained throughout this work is the absence of correlations between open
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system and surroundings at initial time,

ρ̂(t0) = ρ̂S(t0)⊗ ρ̂B(t0). (2.11)

If the state of the environment ρ̂B at a given time t is fixed, there exists a correspon-

dence between the time evolution of the open quantum system and a map Λt acting

from the Banach space of trace class operators T (HS) onto itself, Λt : T (HS) →

T (HS), such that

ρ̂S(t) = Λt ρ̂S (t0) ≡ TrB

[
Û (t, t0) [ρ̂S (t0)⊗ ρ̂B (t0)] Û† (t, t0)

]
. (2.12)

Eqs. (2.1) and (2.6) were used in Eq. (2.12). In order to be a CP-divisible dynamical

map describing the Markovian physical time evolution of a system, Λt must satisfy

the following properties [1, 21]:

• Be a linear map, that is, Λt(αρ̂1 + βρ̂2) = αΛtρ̂1 + βΛtρ̂2 for any two operators

ρ̂1 and ρ̂2, where α and β are real numbers.

• Be trace preserving, that is, TrS[ρ̂S(t0)] = TrS[Λt ρ̂S (t0)] = 1.

• Be completely positive.

• Fulfill the composition law Λt,v = Λt,sΛs,v, for t ≥ s ≥ v.

A linear map that is trace preserving and completely positive is a CPT map. Com-

plete positivity can be described as follows. The map in Eq. (2.12) is completely

positive if ∀n ∈ N, the extended map (Λt ⊗ In) : T (HS ⊗Cn) 7→ T (HS ⊗Cn)

sends positive operators into positive operators, where an operator ρ̂ is defined as

positive if ⟨ψ|ρ̂|ψ⟩ > 0 for all vectors |ψ⟩ in the domain of ρ̂. In other words, com-

plete positivity requires that the map Λt extends to a space of generic dimension,

through a tensor product with the identity, and remains positive. In the context of

quantum systems, the property of positivity is replaced by the stronger requirement

of complete positivity, in order to guarantee the positivity of the density matrix for
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systems entangled with other systems [21]. By varying the time parameter t of the

map Λt, one obtains a family of dynamical maps {Λt}t≥0 describing the time evolu-

tion of the open quantum system S. If the one-parameter family of dynamical maps

{Λt}t≥0 has, in addition to being a family of CPT maps, the semigroup property

Λt1Λt2 = Λt1+t2 for any t1, t2 ≥ 0, as well as Λt=0 = I, then it is a quantum dynam-

ical one-parameter semigroup. If there exist an inverse map Λ−1
t for any t, then the

dynamical map can be extended to a two-parameter family of dynamical maps de-

fined as Λt,s = ΛtΛ−1
s , with the condition Λt,0 = Λt. If the family {Λt,s}t,s is a family

of linear, CPT maps that satisfy the composition law Λt,sΛs,v = Λt,v ∀t ≥ s ≥ v, then

the dynamics is defined as a CP-divisible process and it is Markovian [21].

The Born approximation, the Markov approximation, and the secular approx-

imation, defined in the next sub-section, are the physical conditions sufficient for

the CPT maps describing the dynamics of the reduced system to form a quantum

dynamical semigroup [1].

2.3 Approximations and Markovian master equation

The assumption of a weak coupling between an open system and its environment is

referred to as the Born approximation [1]. It implies that the environment reduced

density matrix ρ̂B is weakly influenced by its coupling to the open system ρ̂S(t), and

can be approximated to be constant in time, so that the initial condition Eq. (2.11)

is satisfied ∀t. The density matrix of the overall composite system is then always

approximated to a tensor product ρ̂ (t) ≈ ρ̂S (t)⊗ ρ̂B.

In general, the state of the open system S depends upon its past evolution. A sec-

ond relevant approximation can be made in weak coupling regime, referred to as the

Markovian approximation [1]. It assumes that the correlation functions of the envi-

ronment decay quickly with respect to the time scale over which the open system

evolves, therefore not retaining memory of the system’s previous states. In other

words, the changes in the environment that are notwithstanding the constant den-

sity matrix ρ̂B are cancelled before influencing the time evolution of the open system.
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The open system S loses memory of its previous states and the time evolution is re-

ferred to as a memoryless process. Applying both the Born and the Markov approx-

imation (jointly referred to as Born-Markov approximation) leads to the Markovian

quantum master equation for the system’s density matrix [1]. The Markovian mas-

ter equation does not yet, however, imply that the dynamics of system S is described

by a quantum dynamical semigroup. In order to guarantee this, a third approxima-

tion is necessary.

This last approximation is referred to as the secular approximation. It assumes that

in weak coupling regime, the frequencies in the interaction picture that are much

larger than the frequency scale defined by the coupling strength, give rise to fast os-

cillating terms that decay quickly with respect to the time evolution scale, and can

be discarded [1]. These three approximations, together, define a Markovian process

described by a quantum dynamical semigroup of CPT maps. Moreover, the Marko-

vian master equation can be expressed in the well known Lindblad form.

2.3.1 Lindblad form of the Markovian master equation

With the Born, Markov and secular approximations, the one-parameter family of

dynamical maps {Λt}t≥0 is a quantum dynamical semigroup for which a semi-

group generator K can be found [20]. Then, by definition of a generator of a semi-

group,

Λt = exp [(t− t0)K] . (2.13)

Note that K must be time-independent by definition. The Markovian master equa-

tion for the reduced system density matrix is obtained by differentiating Eq. (2.12)

and Eq. (2.13) with respect to the parameter t,

dρ̂S(t)
dt

= Kρ̂S(t). (2.14)

By comparison with the Liouville master equation (2.8) for the composite closed

system, it can be seen that the superoperator K is a generalization of the Liouville
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operator L. By taking the spectral decomposition of the initial environment density

matrix ρ̂B (t0) = ∑α λα|ϕα⟩BB⟨ϕα|, the dynamical map can be written in terms of its

orthonormal eigenvectors {|ϕα⟩B} and non-negative real eigenvalues {λα}, as

ρ̂S(t) = Λtρ̂S(t0) = ∑
α,β

Ŵαβ (t, t0) ρ̂S(t0)Ŵ†
αβ (t, t0) , (2.15)

where we define the operators Ŵαβ (t, t0) =
√

λβ ⟨ϕα| Û (t, t0)
∣∣ϕβ

〉
B that satisfy

∑α,β Ŵ†
αβ (t, t0) Ŵαβ (t, t0) = IS. Setting a complete basis of orthonormal operators

of the Liouville space {F̂i}, i = 1, 2, ...N2, where N = dim(HS), such that the scalar

product between two elements of the basis is defined as
〈

F̂i, F̂j
〉
= TrS[F̂i F̂†

j ] = δij,

the operators Ŵαβ (t, t0) can be expanded as Ŵαβ (t, t0) = ∑N2

i=1 F̂i

〈
F̂i, Ŵ†

αβ (t, t0)
〉

. It

follows that the action of the dynamical map Eq. (2.15) is

ρ̂S(t) = Λtρ̂S(t0) =
N2

∑
i,j=1

cij (t, t0) F̂i ρ̂S(t0)F̂†
j , (2.16)

where the coefficients cij are defined as cij (t, t0) = ∑α,β

〈
F̂i, Ŵ†

αβ (t, t0)
〉

〈
F̂j, Ŵ†

αβ (t, t0)
〉∗

, and form the elements of a positive Hermitian matrix. As an in-

finitesimal generator of a semigroup, K is by definition [1]

Kρ̂S = lim
ϵ→0

1
ϵ
[Λϵ ρ̂S − ρ̂S] . (2.17)

By means of Eq. (2.16), the action of the generator K is then

Kρ̂S = −i[ĤS, ρ̂S] +
N2−1

∑
i,j=1

aij(t0)

(
F̂iρ̂S F̂†

j −
1
2

{
F̂†

j F̂i, ρ̂S

})
. (2.18)
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Here we have defined the coefficients

aij(t0) = lim
ϵ→0

cij(ϵ, t0)

ϵ
, (2.19)

aiN2(t0) = lim
ϵ→0

ciN2(ϵ, t0)

ϵ
, (2.20)

aN2N2(t0) = lim
ϵ→0

(cN2N2(ϵ, t0)− N)

ϵ
, (2.21)

for i, j = 1...N2− 1, and introduced the Hermitian operator ĤS = (F̂†− F̂)/2i, where

F̂ =
(

1/
√

N
)

∑N2−1
i=1 aiN2(t0)F̂i. The coefficients aij(t0) are the elements of a positive

matrix that can be diagonalized by means of an appropriate unitary transformation

u. We define γk(t0) to be the non-negative diagonal elements, k = 1, ..., N2− 1. Then

Eq. (2.18) leads to the most general form for a generator of a quantum dynamical

semigroup, known as the Lindblad equation,

dρ̂S

dt
= −i[ĤS, ρ̂S] +

N2−1

∑
k=1

γk(t0)

(
Âkρ̂S Â†

k −
1
2

{
Â†

k Âk, ρ̂S

})
. (2.22)

The operators Âk are defined by the unitary transformation F̂j = ∑N2−1
k=1 ukj Âk, and

are referred to as the Lindblad operators. The second term in Eq. (2.22) is the dissi-

pator operator D(ρ̂S). The terms γk(t0) are relaxation rates for the decay modes of

the open system.

2.4 Definition and relevance of non-Markovianity

It has been discussed how the time evolution of a quantum system defined by a

quantum dynamical semigroup of CPT, divisible maps is a Markovian process [21].

The Gorini-Kossakowski-Sudarshan-Lindblad theorem states that a process is Marko-

vian if and only if its master equation can be written in the form of Eq. (2.22) [22].

For time-dependent equations, the terms ĤS(t), Âk(t) and γk(t, t0) are generally

time dependent as well. One must then add the condition that, in the Lindblad

master equation, γk(t, t0) ≥ 0 for any time t and every k in order to have a Marko-
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vian dynamics [21, 22]. It follows that a non-Markovian dynamics arises every time

the relaxation rates become negative at any point during the process. If the Born-

Markov approximation is not satisfied, for example because the environmental cor-

relation times are not small in comparison with the open system’s relaxation and

decoherence times, or because the coupling between the open system and the envi-

ronment is strong, the system cannot be described by a dynamical semigroup.

The presence of non-Markovianity in a system can be detected through quan-

tities called witnesses of non-Markovianity [21]. A witness is a quantity that al-

ways vanishes for a Markovian dynamics, but might or might not vanish for a non-

Markovian one. An example of a witness of non-Markovianity is the trace distance,

which measures how much two states are distinguishable from one another. Non-

Markovianity can be interpreted as a growth of distinguishability [23]. Since the

loss of distinguishability is caused by a flow of information from the open system

to the environment, its growth can be interpreted as a flow of information from the

environment back to the open system. Quantum relative entropy can also be used

as a witness of non-Markovianity [21].

While the Lindblad theory introduced here has many applications in the field

of open quantum systems, it presents several limitations when applied to quantum

thermodynamics. In some of the more promising experimental realisations of quan-

tum heat engines, heat transfer is accomplished in strong coupling between systems

of spins and reservoirs. An example is provided by the recent experiment consist-

ing of a single spin heat engine coupled to a harmonic oscillator flywheel, where

the spin polarisation is controlled via optical pumping, implying strong incoher-

ent coupling between spin and reservoirs [24]. Moreover, research has shown that

non-Markovian effects can be used to extract work from a single bath via quantum

measurements [25, 26]. Quantum correlations, whose build up can lead to non-

unitarity and to non-Markovian system dynamics, are linked to the enhancement

of work extraction and the efficiency of quantum heat engines, as has been stud-

ied, for example, in Otto cycles [27]. Non-Markovian information back-flow has
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been linked to quantum thermodynamic quantities, for example, it has been shown

that memory effects lead to revivals of extractable work [10]. Due to its experimen-

tal importance in the development of quantum heat engines, the thermodynamics

of non-Markovian processes will be the main topic of discussion in the following

chapters.
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3 | Numerical methods for quantum

dynamical calculations of open

systems

There exist several techniques for calculating the non-Markovian dynamics of an

open system. However, many of these techniques rely on some form of approxi-

mation. These include the expansion method, the projection-operator method, and

embedding methods, among others [12]. One of the main limitations of these meth-

ods is that they cease to be valid for strong coupling between open system and

environment, or require a truncation in the expansion of a perturbative parameter

to a certain order. Path integral methods, on the other hand, allow for a framework

which does not require any particular assumptions on the coupling. The only nec-

essary assumptions are that of a factorized initial state, and that of an initial thermal

equilibrium state for the environment. Path integral methods are the basis of nu-

merical simulations of non-Markovian quantum dynamics. Here we will focus on

one particular exact numerical method, the TEMPO algorithm.

3.1 Feynman’s path integral formulation

The path integral formalism [28, 29] was first used by Feynman and Vernon to cal-

culate the dynamics of a system coupled to a second external system, such as a

measuring apparatus [30]. It is based on the consideration that given two space-
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Figure 3.1: Representation of some possible path-integral trajectories between a point A and
a point B.

time points A = (x0, t0) and B = (x f , t f ), the total transition probability amplitude

between a single system’s states |ψ(A)⟩ and |ψ(B)⟩ is given by the sum of the am-

plitudes arising from all the possible trajectories the system can take from point A

to point B. This concept is schematically illustrated in Fig. 3.1. For example, a final

state |ψ(B)⟩, assumed to be an eigenstate of the position operator x̂, is then

∣∣ψ(x f , t f )
〉
=
∫ ∞

−∞

∣∣ψ(x′, t f )
〉〈

ψ(x′, t f )
∣∣ψ(x0, t0)⟩dx′. (3.1)

The term
〈
ψ(x′, t f )

∣∣ψ(x0, t0)⟩ is defined to be the propagator of the quantum sys-

tem [28]. Finding the form of this propagator is the crux of the path integral method.

In order to do so, it is useful to start from classical mechanics.

In classical mechanics, the specific path x(t) followed by a system is determined

through the principle of least action, that is, x(t) is the path for which the action is

minimized. In Lagrangian formalism, the action is defined as

S(x) =
∫ t f

t0

L (ẋ, x, t) dt, (3.2)
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where L (ẋ, x, t) is the Lagrangian of the system. The coordinate x can be generic

and does not necessarily represent a space coordinate. Suppose such a coordinate

deviates from the path x(t) by an amount δx(t), with the condition that at initial and

final times the coordinate remains equal to a fixed value and thus δx(t0) = δx(t f ) =

0. The assumption that x(t) is an extremum of function (3.2) implies that δS = 0,

from which the classical Lagrangian equation of motion is derived,

d
dt

∂L
∂ẋ
− ∂L

∂x
= 0. (3.3)

The followed path x(t) is determined by the solution to Eq. (3.3) [28]. In quan-

tum mechanics, however, all possible paths contribute to the trajectory at different

phases. Such phases are ϕ(x) = C exp [iS(x)], with C a constant, and thus depen-

dent to the action Eq. (3.2). The amplitude for the system to go from coordinate

x(t0) to coordinate x(t f ) is defined as the sum over all the possible paths x(t) in

coordinate space that start in x(t0) and end in x(t f ), K(x f , t f ; x0, t0) = ∑x(t) ϕ(x).

The probability amplitude for the system to transition from the state ψ(x0, t0) to the

state ψ(x f , t f ) is then given by P(x f , t f ; x0, t0) =| K(x f , t f ; x0, t0) |2 [28].

It is possible to approximate the sum K(x f , t f ; x0, t0) to multiple integrals with

the introduction of a normalizing factor, as argued in reference [28]. The sum over

all paths can then be rewritten as

K(x f , t f ; x0, t0) =
∫

exp [iS(x)]Dx (t), (3.4)

where Dx (t) is a measure of the space of all paths. Eq. (3.4) is called a path integral,

also referred to as a kernel.

The basic concept of Eq. (3.1) can be extended to the theory of open quantum

systems coupled to an external environment. Of course, this adds the complica-

tion of a dynamics where the degrees of freedom of the environment need to be

included.
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3.2 Influence functional in quantum mechanics

For an open system coupled to a second system, for example to an environment, the

effects of the interaction are described in the path integral by a functional known

as the influence functional [30]. Let us assume a density matrix ρ̂(t) describing the

composite system, and define s and u the generic coordinates of the open system and

environment respectively. Assuming a total Hamiltonian of the form of Eq. (2.2), the

composite density matrix evolves in time according to Eq. (2.6). The density matrix

element between the coordinate eigenstate
∣∣s f , u f

〉
and the coordinate eigenstate∣∣∣s′f , u′f

〉
at a time t f is [1]

〈
s f , u f

∣∣ρ̂(t f )
∣∣∣s′f , u′f

〉
=
∫

ds0

∫
du0

∫
ds′0

∫
du′0

〈
s f , u f

∣∣ e−iĤ(t f−t0) |s0, u0⟩ ×

⟨s0, u0| ρ̂ (t0)
∣∣s′0, u′0

〉 〈
s′0, u′0

∣∣ eiĤ(t f−t0)
∣∣∣s′f , u′f

〉
, (3.5)

where resolutions of the identity operator have been inserted into the time evolution

of ρ̂. The kernel is by definition K(s f , u f , t f ; s0, u0, t0) =
〈
s f , u f

∣∣ e−iĤ(t f−t0) |s0, u0⟩.

In order to retrieve the time evolution of the reduced density matrix elements from

Eq. (2.6), the environmental coordinate u is traced over,

〈
s f
∣∣ρ̂S(t f )

∣∣∣s′f〉 =
∫

du f

∫
ds0

∫
du0

∫
ds′0

∫
du′0K(s f , u f , t f ; s0, u0, t0)×

⟨s0, u0| ρ̂ (t0)
∣∣s′0, u′0

〉
K∗(s′f , u f , t f ; s′0, u′0, t0). (3.6)

The Lagrangian can be separated into an open system, an environment and an in-

teraction contribution. By virtue of Eq. (3.2), the action can also be separated as

S(s, u) = SS(s) + SB(u) + SI(s, u). Consequently, the kernel can be written as

K(s f , u f , t f ; s0, u0, t0) =
∫

exp [iSS (s) + iSB (u) + iSI(s, u)]Ds (t) (3.7)
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from Eq. (3.4). With the assumption of a factorized initial state as in Eq. (2.6), the

environmental coordinates can be separated from the system ones,

〈
s f
∣∣ρ̂S(t f )

∣∣∣s′f〉 =
∫
Ds (t)

∫
Ds′ (t)

∫
ds0

∫
ds′0 (3.8)

I(s, s′) exp[iSS(s)− iSS(s′)] ⟨s0| ρ̂S (t0)
∣∣s′0〉 ,

where the influence functional is defined to be [30]

I(s, s′) =
∫
Du (t)

∫
Du′ (t)

∫
du0

∫
du′0

∫
du f

∫
du′f δ(u f − u′f )×

exp[iSB(u) + iSI(s, u)− iSB(u′)− iSI(s′, u′)] ⟨u0| ρ̂B (t0)
∣∣u′0〉 . (3.9)

The coordinates of the environment are enclosed into I(s, s′), therefore the influence

functional describes the environmental effects on the open system. It can in general

be written as I(s, s′) = exp[iΦ(s, s′)], where Φ(s, s′) is an influence phase [30]. This

Feynman-Vernon influence functional is well suited to numerically discretized ap-

proaches such as QuAPI [13, 14], upon which the TEMPO algorithm is built [16].

3.3 Quasiadiabatic propagator path integral (QuAPI)

discretization

The QuAPI approach allows for the time evolution of the reduced density matrix to

be calculated through iterative tensor propagation [13, 14]. The construction of a re-

duced density tensor starts with the discretization of the path integral. The total time

t f − t0 of the quantum dynamics is divided into a number N of time-steps of equal

length ∆, such that t f − t0 = N∆. The unitary time evolution operator in Eq. (2.5) is

expressed in terms of the time-step ∆ as Û(N∆) = exp[−iĤ∆]N. In order to obtain

the QuAPI scheme, the degrees of freedom of the open system need to be separated

from those of its surroundings and the coupled degrees of freedom, by defining a

Hamiltonian Ĥenv = Ĥ − ĤS that includes all of the environmental degrees of free-
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dom. The operator exp[−iĤ∆] can be expanded in terms of the Hamiltonians ĤS

and Ĥenv according to the Baker-Campbell-Hausdorff formula [31]. Taking the Tay-

lor expansion of the terms up to an order of ∆2, it is easy to see that the resulting

terms are expansions of exponential functions truncated at order ∆2. This leads to

a symmetrized Trotter splitting, where the error caused by the approximation is of

the order O
(
∆3),

e−iĤ∆ = e−iĤenv∆/2e−iĤS∆e−iĤenv∆/2+O
(

∆3
)

. (3.10)

The Trotter splitting described in Eq. (3.10) is the first of the approximations made

in the QuAPI method. A few assumptions on the initial state of the system are often

added. The first is that of a factorized initial condition. Secondly, as the QuAPI

method is primarily used to describe the dynamics of finite-level systems coupled to

bosonic reservoirs [15], the environment is assumed to be a bosonic bath of harmonic

oscillators of some inverse temperature β. Thus the initial state of the bath is taken

to be the thermal equilibrium state ρ̂B(0) = e−βĤB /ZB, with ZB = TrB[e−βĤB ].

3.3.1 Discretization of the propagators

The discretization of the propagators previously defined as K(s f , u f , t f ; s0, u0, t0) =〈
s f , u f

∣∣ e−iĤ(t f−t0) |s0, u0⟩ follows from the time discretization and the symmetrized

Trotter splitting described in Eq. (3.10). Let us define |sk⟩ the open system coordinate

eigenstate at time tk − t0 = k∆, such that |sk⟩ = |s (tk)⟩ , with k = 0, 1...N. Similarly

we can define the eigenstates of the environment |uk⟩ for any time tk − t0. It follows

that the quasiadiabatic propagator in the time interval tk − tk−1 is

⟨sk, uk|e−iĤ∆|sk−1, uk−1⟩ = (3.11)

⟨sk|e−iĤS∆|sk−1⟩⟨uk|e−iĤenv(sk)∆/2e−iĤenv(sk−1)∆/2|uk−1⟩.

Here we have defined Ĥenv|s, u⟩ = Ĥenv(s)|u⟩. The coordinates of the open system

can then be separated from the coordinates of the environment in the expression for
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the total propagator over the time interval t f − t0,

K(s f , u f , t f ; s0, u0, t0) =
∫

ds1

∫
ds2...

∫
dsN−1

∫
du1

∫
du2...

∫
duN−1

N

∏
k=1
⟨sk|e−iĤS∆|sk−1⟩⟨uk|e−iĤenv(sk)∆/2e−iĤenv(sk−1)∆/2|uk−1⟩.

(3.12)

A similar expression can be found for the complex conjugate propagator K∗(s′f , u f , t f ;

s′0, u′0, t0) in Eq. (3.6). We will adopt the convention, used in the literature, to label s+

the coordinates appearing in the forward-in-time propagator K(s+f , u f , t f ; s+0 , u′0, t0)

and s− the coordinates appearing in its complex conjugate [13, 14].

3.3.2 Discretized influence functional

Following Eq. (3.9), the environmental coordinates from the propagators in the QuA-

PI formalism are enclosed into an influence functional. From Eq. (3.6) and the dis-

cretization obtained in Eq. (3.12), it follows that such Feynman influence functional

is [13]

I(s+0 ...s+N; s−0 ...s−N) =TrB[e−iĤenv(s+N)∆/2e−iĤenv(s+N−1)∆...e−iĤenv(s+0 )∆/2

ρ̂B(0)eiĤenv(s−0 )∆/2...eiĤenv(s−N−1)∆eiĤenv(s−N)∆/2]. (3.13)

The discretized form of Eq. (3.13) can be equivalently written as the exponential of

an influence phase [13, 15], under the assumption of ρ̂B(0) being a thermal equilib-

rium state,

I(s+0 ...s+N; s−0 ...s−N) = exp

[
−

N

∑
k=0

k

∑
k′=0

(s+k − s−k )(ηk−k′s+k′ − η∗k−k′s
−
k′ )

]
, (3.14)

where the coefficients ηk−k′ depend on the bath autocorrelation function and de-

scribe the non-Markovian effects in the open system between time-steps k and k′.
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These coefficients are defined as

ηk−k′ =



∫ tk
tk−1

∫ tk′
tk′−1

C (t′ − t′′) dt′′dt′ k ̸= k′

∫ tk
tk−1

∫ t′

tk−1
C (t′ − t′′) dt′′dt′ k = k′,

(3.15)

where C (t) is the bath autocorrelation function

C (t) =
∫ ∞

0
dω J (ω)

(
coth

( ω

2T

)
cos (ωt)− i sin (ωt)

)
. (3.16)

Here J (ω) is the spectral density function characterizing the bath [13], defined

as

J (ω) = ∑
j

g2
j δ
(
ω−ωj

)
, (3.17)

where gj is a constant associated with the coupling between the system and the j-th

bath mode, and ωj the mode’s angular frequency.

3.3.3 Augmented reduced density tensor (ADT) iterative

propagation

For a bosonic bath of harmonic oscillators, non-local interactions contained in the in-

fluence functional Eq. (3.14) have a finite temporal range for any temperature [13].

Indeed, even in the presence of a non-Markovian dynamics, dissipative effects tend

to erase quantum coherence and correlations decay in finite time. It follows that

memory effects are erased over a long enough time period. This means that long

time-distant interactions can be neglected, and in the discretized form of Eq. (3.14)

one can introduce a maximum number of steps |k− k′| beyond which the coeffi-

cients ηk−k′ defined in Eq. (3.15) decrease rapidly, rendering I(s+0 ...s+N; s−0 ...s−N) effec-

tively equal to an identity operator [13, 14]. Such maximum number of steps, which

is defined as the memory cutoff K, is roughly equivalent to τC/∆, where τC is the

bath correlation time cutoff. Therefore ηk−k′ can be neglected for any |k− k′| > K.
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It follows that the QuAPI method introduces, along with a Trotter splitting error

of the order of O
(
∆3), a finite memory approximation. Such an approximation al-

lows for a description of the quantum system by means of an augmented density

tensor (ADT), and for a description of its dynamics as an iterative tensor contrac-

tion with a propagator tensor derived from the non-local influence functional in

Eq. (3.14) [13, 14]. The use of a propagator tensor resolves the issue of simulating

a non-Markovian and non-unitary dynamics. Furthermore, scaling the ADT with a

finite memory cutoff K allows for high numerical efficiency in the tensor multiplica-

tion scheme [15, 16].

The discretized influence functional subjected to the memory cutoff can be written

as I
(
s+0 , ...s+N; s−0 , ...s−N

)
= ∏K

∆k=0 ∏N−∆k
k=0 I∆k

(
s±k , s±k+∆k

)
, with ∆k = k− k′ and

I∆k

(
s±k , s±k+∆k

)
= exp

[
−
(

s+k+∆k − s−k+∆k

) (
η∆ks+k − η∗∆ks−k

)]
. (3.18)

The ADT at time tk is constructed by building a rank-K tensor whose elements are

the vectorized reduced density matrices ρ̂S at time tk and at the previous K− 1 times.

We will refer to such an ADT as A(K), with initial condition A(K) (s±0 , s±1 ...s±K−1; 0
)
=〈

s+0
∣∣ ρ̂S (0)

∣∣s−0 〉 at t0 = 0. A rank-2K propagator tensor B(2K) is then constructed

as [13, 14, 16]

B(2K)
(

s±k , s±k+1...s±k+2K−1

)
=

k+K−1

∏
n=k

(
G
(
s±n , s±n+1

) K

∏
∆k=0

I∆k

(
s±n , s±n+∆k

))
, (3.19)

where the free propagators for the open system are

G
(
s±n , s±n+1

)
=
〈
s+n+1

∣∣ e−iĤS∆ ∣∣s+n 〉 〈s−n ∣∣ eiĤS∆ ∣∣s−n+1
〉

. (3.20)
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The time evolution of the reduced tensor A(K) up to a time tk = k∆, constructed

through time increments of K∆, is

A(K)(s±k+K, s±k+K+1...s±k+2K−1; (k + K)∆) = (3.21)

∑
s±k ,s±k+1...s±k+K−1

B(2K)
(

s±k , ..s±k+2K−1

)
A(K)

(
s±k , ...s±k+K−1, k∆

)
.

The reduced density matrix element at a final time t f = N∆ is retrieved from the

propagated ADT, by tracing out the s±k system coordinates for k > N,

〈
s+N
∣∣ ρ̂S (t)

∣∣s−N〉 = I0
(
s±N, s±N

)
∑

s±N+1,...,s±N+K−1

A(K) (s±N, s±N+1, ..., s±N+K−1; t f
)

. (3.22)

If the dimension of the system Hilbert space is d, the dimension of the ADT is d2K

and that of the propagator tensor is d4K.

3.4 Time-evolving matrix product operator (TEMPO)

algorithm

Starting from the ADT iterative propagation scheme of the QuAPI method, Strat-

hearn et al. developed a numerically exact technique to model non-Markovian dy-

namics of open quantum systems coupled to harmonic baths, and demonstrated

the efficiency of the approach with an application to the spin-boson model [16].

The algorithm, called TEMPO, represents a significant improvement to the ADT

propagation scheme. The limiting factor for QuAPI is the computational resources

needed to store and perform contractions on K-index tensors. TEMPO circumvents

this limitation by representing the ADT and the propagators as tensor networks,

which can be stored and contracted with drastically reduced resources, enabling

very large values of K to be reached. The tensor-network representation is efficient

due to the finite range of temporal correlations contained in the ADT. This is analo-

gous to the well-known ability of tensor networks to represent many-body quantum
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states exhibiting short-ranged spatial correlations [32]. In the present case, the bond

dimension, i.e. the number of singular values retained during the construction of

the tensor network, quantifies correlations between different time points induced

by the non-Markovian environment. The bond dimension is controlled by retain-

ing only those singular values λ greater than a cutoff λC. The cutoff is defined

as λC = λmax10−p/10, with λmax the highest singular value. The accuracy of the

TEMPO algorithm is therefore controlled by the exponent p as well as the memory

depth K and the numerical time step ∆. In the following, we explain more in de-

tail the construction of the ADT propagation scheme in TEMPO and its parameters.

This approach will be the basis for our modified quantum heat statistics calcula-

tions.

3.4.1 Superoperator algebra

The correlation functions in the influence functional Eq. (3.14) are easily calculated

with superoperator algebra formalism. Let K̂ be a superoperator acting on the space

of bounded operators B (H) on a Hilbert spaceH. Then two superoperators labelled

left, K̂L, and right, K̂R, can be defined by their actions on a density matrix operator

ρ ∈ B (H):

K̂Lρ = K̂ρ, (3.23)

K̂Rρ = ρK̂. (3.24)

Similarly, the superoperators K̂+ and K̂− can be defined as

K̂+ρ = K̂Lρ + K̂Rρ =
{

K̂, ρ
}

, (3.25)

K̂−ρ = K̂Lρ− K̂Rρ =
[
K̂, ρ

]
, (3.26)
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with inverse transformations

K̂Lρ =
1
2
(
K̂+ + K̂−

)
ρ =

1
2
[
K̂, ρ

]
+

1
2
{

K̂, ρ
}

, (3.27)

K̂Rρ =
1
2
(
K̂+ − K̂−

)
ρ =

1
2
{

K̂, ρ
}
− 1

2
[
K̂, ρ

]
. (3.28)

3.4.2 Time evolution of the reduced density matrix in superopera-

tor formalism

With the superoperator formalism, it is possible to express the solution to the Liovil-

lian equation Eq. (2.8) in terms of bath autocorrelation functions that can in turn eas-

ily be applied into the influence functional and discretized [15]. From Eq. (2.9), the

time evolution of the total density matrix in the interaction picture ˜̂ρ(t) = ei(ĤS+ĤB)t

ρ̂(t)e−i(ĤS+ĤB)t is

˜̂ρ(t) =
←−
T exp

[∫ t

t0

dt′LI
(
t′
)] ˜̂ρ (t0) , (3.29)

where LI is the interaction part of the Liouvillian operator. With the assumption

of a factorized initial condition Eq. (2.11), the time evolution of the reduced density

matrix can be written in the convenient notation ˜̂ρS (t) =
←−
T S

〈
exp

[∫ t
t0

dt′LI (t′)
]〉

B
˜̂ρS (t0), where the trace over the bath degrees of freedom is in the average defined

as
〈
Ô
〉

B = TrB

[←−
T BÔ ˜̂ρB (t0)

]
for a generic operator Ô. In this notation we have

chosen the time ordering
←−
T =

←−
T S
←−
T B. For a bath of harmonic modes, the envi-

ronmental coordinates are Gaussian variables [13, 14], that is, variables with nor-

mal probability distribution. The average value of the exponential function exp X =

exp
[∫ t

t0
dt′LI (t′)

]
can be written as an exponential of the cumulants of X, ⟨exp X⟩ =

exp
[
∑j

1
j! ⟨X j⟩

]
[33]. In particular, for Gaussian variables with normal distribution,

cumulants with order higher than second (j > 2) are zero. It follows the identity

⟨exp X⟩ = exp[⟨X⟩+ 1
2

〈
X2〉] [33]. Since it is possible to shift the Gaussian variable

function mean value to centre ⟨X⟩ = 0, it follows that

˜̂ρS (t) =
←−
T S exp

[∫ t

t0

dt′
∫ t

t0

dt′′
〈
LI
(
t′
)
LI
(
t′′
)〉

B

]
˜̂ρS (t0) . (3.30)
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The exponential function term in Eq. (3.30) is the continuous equivalent of the in-

fluence functional described in Eq. (3.14). The terms ⟨LI (t′)LI (t′′)⟩B are the bath

autocorrelation functions, which in the case of a bosonic bath are given by Eq. (3.16).

Indeed C(t) can be calculated by noticing that LI = ĤL
I − ĤR

I and applying the su-

peroperator algebra to the operators of the interaction Hamiltonian.

3.4.3 ADT propagation scheme in the TEMPO algorithm

The memory depth of the environmental effects that can be stored during the calcu-

lation is improved by representing Eq. (3.21) through matrix product states (MPS) [15,

16]. Matrix product states are states whose probability amplitude is defined in terms

of the trace of a product of N square matrices, where N is the number of particles in

the system [34]. In reference [16], the procedure through which the ADT is then de-

composed through singular value decomposition (SVD) and truncated is discussed.

The ADT propagation scheme applied in the TEMPO algorithm is described in ref-

erences [15] and [16], and is here summarized. Consider Aσnσn−1...σ0 the ADT written

in the MPS representation and to which the SVD cutoff λC has been applied. Here

the "superindex" σk = {s+k , s−k } takes d2 possible values, where d is the dimension

of the system. The time evolution is given by successive contractions with a propa-

gation tensor, followed by an SVD and the application of the cutoff λC at each step.

The propagator tensor is represented as a matrix product operator (MPO) and is

constructed from the QuAPI theory tensor Eq. (3.19) as

Bσn···σ0
µn−1···µ0 =

(
n

∏
k=1

δ
σn−k
µn−k

)
G(s±n , s±n−1)

n

∏
∆k=0

I∆k(s±n , s±n−∆k), (3.31)

with δσ
µ the Kronecker delta symbol. The ADT at the nth time step is given by the

contraction Aσn···σ0 = Bσn···σ0
µn−1···µ0 Aµn−1···µ0 , with the Einstein summation convention

assumed, and is built iteratively starting from the initial condition Aσ0 = I0(s±0 , s±0 )〈
s+0
∣∣ρ̂S(0)

∣∣s−0 〉. The reduced density matrix is found by summing over all but the

final index, i.e.,
〈
s+N
∣∣ρ̂S(t)

∣∣s−N〉 = ∑σ0,··· ,σN−1
AσN ···σ0 . Due to the finite memory depth
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K, the propagator (3.31) acts non-trivially on at most K indices of the ADT, since

I∆k(s±n , s±n−∆k) ≈ 1 for ∆k > K. At the n-th time step, therefore, when n > K one

needs only to store the object Aσn···σn−K , with the remaining indices summed over.

(For the first K time steps one stores the full ADT).
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4 | Classical and quantum

thermodynamics

The main topic of research in this thesis is the thermodynamics of open systems,

with a particular focus on the statistics of thermodynamic quantities. Classical ther-

modynamics describes the average properties of a macroscopic system derived from

the statistical mechanics of its microscopic components. A macroscopic system is

a system with a large enough number of particles, in general defined by a finite

number of parameters, or state variables. Some examples of state variables are the

system’s particle number, its pressure, its volume and its temperature. Equations of

state relate these quantities to one another. A macroscopic system’s state is defined

by a set {Xj} of extensive state variables, each being a function of the points of the

system’s phase space (for example, momentum and position coordinates). These

state variables completely define the region of phase space in which the time evo-

lution takes place. For a fixed macroscopic state, we can define Ω as the number of

microscopic configurations accessible to the system, each characterized by a proba-

bility p. The volume of the relevant region in phase space then corresponds to the

measure of the ensemble of Ω microscopic states.

Thermodynamic definitions can only be applied to systems in equilibrium, that

is, systems in which the state variables are constant in time. In this case the system

transforms infinitesimally close to its thermal equilibrium state. These transforma-

tions are reversible, as the system can always be reversed to its previous state with-

out changing the thermodynamic state of the rest of the universe. Nonequilibrium
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thermodynamics, on the other hand, is characterized by irreversible transforma-

tions. The system changes from one equilibrium state to another, and cannot be

brought back to the previous state without causing a change to the thermodynamic

state of the universe. Fluctuations theorems give an insight into the behaviour of

nonequilibrium thermodynamic quantities [35].

4.1 Entropy, work and heat and the laws of

thermodynamics

Thermodynamic state functions are defined through the laws of thermodynamics

and connected to thermodynamic variables. The zero-th law of thermodynamics states

that equilibrium is a transitive property. The first law of thermodynamics is the con-

servation of energy law, and defines the change of the state function of internal

energy ∆U. It states that the change in the system’s internal energy is given by the

work W performed on the system minus the heat energy Q absorbed by the envi-

ronment during the process. W and Q are thermodynamic variables. In differential

form,

dU = δW − δQ, (4.1)

where δW and δQ are infinitesimal changes.

In classical thermodynamics, entropy is an extensive state function conjugate to

the temperature T that defines the spontaneous evolution of a system. For an open

system interacting with an environment, its variation is given by two contributions,

∆S = ∆Se + ∆Si. ∆Se is the external entropy variation cause by entropy flow due

to the interaction with the system’s surroundings. ∆Si is the internal entropy vari-

ation, caused by changes inside the system [36]. To define these two quantities

and the second law of thermodynamics, consider a system in contact with a bath

at inverse temperature β = 1/T undergoing a closed reversible cyclic process. By

approximating the process as a series of adjacent isoentropic and isothermal trans-

formations, each characterized by an infinitesimal exchange in heat−δQ taken in by
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the system from the bath at temperature T, the total heat exchanged in the process

must be null. For every transformation corresponds, due to reversibility, a trans-

formation with opposite sign. This is true whatever the reversible transformation

that occurs, that is, the value of the cyclic integral of the exchanged heat over bath

temperature
∮

rev βδQ = 0 is path independent [37]. The inverse temperature β is the

integrating factor which transforms the inexact differential δQ into an exact differ-

ential [38]. It follows that the integrand function βδQ is an exact differential, which

can be defined as the infinitesimal entropy variation of the system. Because such en-

tropy depends only on the interaction of the system with its external environment,

it can be identified with the external entropy infinitesimal variation, dSe = −βδQ.

It follows that

∆Se = −
∫

rev
βδQ. (4.2)

For an isolated system, ∆Se = 0. The external entropy variation is clearly associ-

ated with reversible entropy production. On the other hand, ∆Si is associated with

irreversible entropy production [39], which we define as

δΣ ≡ δSi = dS + βδQ. (4.3)

The second law of thermodynamics states that the irreversible entropy production of

a system, or equivalently the entropy production in an isolated system, is always

non-negative,

∆Si ≥ 0, (4.4)

where equality holds for reversible processes. Lastly, the third law of thermodynamics

states that it is impossible to reach absolute zero temperature via a finite number of

reversible processes.

4.1.1 Classical ensemble averages

In the continuous limit, rather than a discrete set of probabilities associated with the

system’s microscopic states, the relevant volume in phase space that the system can
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occupy is weighted by a probability density ρ(q, p, t), where (q, p) are the position

and momentum coordinates. For a system of N particles, the probability of finding

the microscopic state of the system in a volume d3Nq d3N p around the point (q, p) at

time t is ρ (q, p, t) d3Nq d3N p. The average of any quantity f (q, p, t) is given by the

ensemble average

⟨ f ⟩ (t) =
∫

f (q, p) ρ (q, p, t) d3Nq d3N p∫
ρ (q, p, t) d3Nq d3N p

, (4.5)

where the integration is taken over all the phase space. In nonequilibrium processes,

thermodynamic variables like exchanged heat and work are in fact averages over an

ensemble of measurements of stochastic variables Q and W, expressed by Eq. (4.5).

In Eq. (4.1) we have given the differential form of the first law of thermodynamics.

In terms of average quantities over the total process, the first law is

∆U = ⟨W⟩ − ⟨Q⟩. (4.6)

Similarly, the average irreversible entropy production is, from Eq. (4.3),

⟨Σ⟩ = ∆S + β⟨Q⟩. (4.7)

Given the inequality in (4.4), the second law can be written as ⟨Σ⟩ ≥ 0, where

∆Si = ⟨Σ⟩ and ∆Se = −β⟨Q⟩. The probability density ρ(q, p, t) depends on the

nature of the ensemble of microscopic states Ω. In the study of open systems cou-

pled to thermal baths, the relevant one is most often the canonical ensemble. The

canonical ensemble is an ensemble at thermal equilibrium with bath of temperature

T, whose number of particles N and volume V are constant. The energy probability

distribution of its microscopic states is given by the Boltzmann distribution.
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4.2 Thermodynamic equilibrium

Canonical ensembles describe by definition systems in thermal equilibrium (at con-

stant temperature). On the other hand, definitions of thermodynamic variables are

only applicable to systems in equilibrium, where conserved quantities define the

macr-oscopic state of the system. The equilibrium state of an isolated system is

defined as the state of maximum entropy [35]. If the Ω microscopic states of the sys-

tem have a discrete set of probabilities {pk}Ω
k=1, the associated entropy is the Gibbs

entropy

S = −kB

Ω

∑
i=1

pi ln pi, (4.8)

which quantifies the amount of information needed to define the microscopic state

of the system. Here kB = 1.3807 · 10−23 J/K is Boltzmann’s constant. Starting from

the fixed average energy of the system, ⟨E⟩ = ∑Ω
n=1 pnEn, where En is the energy

of the n-th microscopic state, and the normalization ∑Ω
n=1 pn = 1, the equilibrium

probability distribution of the energy microscopic states is calculated by maximizing

Eq. (4.8) using Lagrange multipliers. The result is Boltzmann’s probability distribu-

tion for every microscopic state,

peq
n =

exp (−βEn)

Z
, (4.9)

where Z = ∑Ω
n=1 exp(−βEn) is the partition function.

4.3 Nonequilibrium thermodynamics

Nonequilibrium thermodynamics is defined by irreversible transformations. For

open systems coupled to a thermal bath, such transformations are characterized by

heat dissipation into the environment. The main feature of nonequilibrium dissipa-

tion is the production of positive irreversible entropy, as defined by Eq. (4.7). This

entropy production is associated with irreversible work, ⟨Σ⟩ = β⟨Wirr⟩ [39, 40], de-
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fined as the difference between the total work ⟨W⟩ performed on the system during

the process and the change in free energy ∆F,

⟨Wirr⟩ = ⟨W⟩ − ∆F. (4.10)

From Eq. (4.10) and the second law of thermodynamics Eq. (4.4), it follows that

⟨W⟩ ≥ ∆F. The time evolution of the nonequilibrium total entropy production is

governed by a local entropy balance equation, which relates the total entropy rate

to an "internal" entropy production rate and the divergence of an "external" entropy

flow vector [36],
dS
dt

= σ−∇ · −→JS . (4.11)

Here σ = dSi/dt is the internal entropy production per unit time, and ∇ · −→JS =

−dSe/dt is the divergence of entropy flow vector field.

4.3.1 Fluctuation-dissipation relations

Nonequilibrium processes at the nanoscale feature significant and measurable fluc-

tuations. Therefore, thermodynamic process variables such as work, W, and heat, Q,

must be promoted to stochastic quantities described by the corresponding probabil-

ity distributions, P(W) and P(Q). In thermodynamic equilibrium, the fluctuation-

dissipation theorem (FDT) relates fluctuations of thermodynamic observables to the

system’s response to external perturbations, for example dissipative effects [41].

This theorem is derived from linear response theory. However, extensive work is

being done to extend the FDT to nonequilibrium thermodynamics and beyond lin-

ear response regime, through fluctuation-dissipation relations (FDRs) [42, 43]. FDRs

are generically derived in statistical mechanics, but have validity for quantum sys-

tems and quantum thermodynamics. At equilibrium, given a linear perturbation

of the system’s Hamiltonian h(τ) at time τ, and an observable O, the FDT states

that
dC(s)

ds
= −TR(s), (4.12)

34



where C(t, τ) = ⟨O(t)O(τ)⟩ is the autocorrelation function of the observable, s =

t− τ, and R(t, τ) = ∂⟨O(t)⟩/∂h(τ)|h=0 is the linear response function. In the work

of this thesis the nonequilibrium FDR

⟨W⟩ − ∆F =
β⟨⟨W2⟩⟩

2
(4.13)

will be of interest, where ⟨⟨W2⟩⟩ = ⟨W2⟩ − ⟨W⟩2 is the variance of the work variable

W. Eq. (4.13) is derived from the Jarzynski equality ⟨exp(−βW)⟩ = exp(−β∆F) for

Gaussian distributions of work [44].

4.4 Thermodynamics of open quantum systems

The importance of heat management at the nanoscale has grown in tandem with ad-

vances in the fabrication and control of small devices, motivating increasing interest

in the nonequilibrium thermodynamics of open quantum systems [35, 45–47]. For

example, quantum thermal machines have been studied in such diverse experimen-

tal platforms as single-electron transistors [48–50], trapped ions [8, 24, 51], supercon-

ducting circuits [52], and spin ensembles [53, 54]. Numerous technologically or bi-

ologically important systems are also naturally described as quantum heat engines,

including lasers [55], light-emitting diodes [56], and light-harvesting complexes [57–

60]. These minuscule machines all operate far from equilibrium and are significantly

affected by quantum and thermal noise. Strong coupling may blur the boundary

between system and environment [61, 62], potentially leading to non-Markovian ef-

fects [20, 21] with interesting thermodynamic consequences [4, 10, 11, 63, 64]. In ad-

dition, the importance of fluctuations at small scales means that the statistical char-

acter of thermodynamic quantities such as work and heat cannot be ignored [65, 66].

These features together give rise to a rich and varied phenomenology with impor-

tant ramifications for emerging quantum technologies.

The concepts introduced at the beginning of this chapter for classical systems can

be translated in the framework of quantum physics. In analogy to classical nonequi-
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Figure 4.1: Schematic representation of a two-level open quantum system S interacting with
a bath B through an interaction Hamiltonian ĤI .

librium thermodynamics, when quantum fluctuations dominate and quantum cor-

relations build up, thermodynamic variables are promoted to stochastic variables

described by corresponding probability distributions. Instead of being defined by

an ensemble average Eq. (4.5), the mean value at time t is defined as ⟨•⟩t ≡ Tr[•ρ̂(t)].

The system density matrix ρ̂ replaces the classical probability density of the micro-

scopic states. For an open quantum system interacting with a thermal bath at tem-

perature T, thermodynamic quantities like work and exchanged heat are defined in

terms of the total system Hamiltonian Eq. (2.2) [17],

⟨W⟩(t) =
t∫

0

TrS

[
ρ̂S (τ)

dĤ (τ)

dτ

]
dτ, (4.14)

⟨Q⟩(t) =
t∫

0

TrS

[
dρ̂S (τ)

dτ
Ĥ (τ)

]
dτ. (4.15)

Eqs. (4.14)-(4.15) are defined for a generic dynamical process. Fig. 4.1 illustrates a

set-up in which work and exchanged heat are measured at equilibrium. Here ther-

modynamic work is associated with changes in the external conditions defining the

Hamiltonian, while heat is defined to be the change in energy of the bath. Oper-
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ationally, each of these quantities can be extracted from a two-point measurement

of Ĥ (work) or ĤB (heat) at the beginning and end of the evolution, either with di-

rect projective measurements [67] or via ancillary probes [68–71]. Therefore, under

strong-coupling conditions where the commutator [ĤB, ĤI ] is non-negligible, work

and heat are simultaneously measurable only if the system-bath interaction van-

ishes at the beginning and end of the evolution [62]. This is the relevant scenario for

cyclic thermal machines, for example. Considering a relaxation dynamics in which

the initial and final states of the system are in thermal equilibrium, the internal en-

ergy change of the system is

∆U = ⟨ĤS⟩t − ⟨ĤS⟩0. (4.16)

For a Hamiltonian that is time independent during the relaxation process, all energy

transferred during the evolution is in the form of heat exchanged with the bath. The

mean heat absorbed by the bath is given by

⟨Q⟩ = ⟨ĤB⟩t − ⟨ĤB⟩0. (4.17)

From the conservation of the total energy ⟨Ĥ⟩t = ⟨Ĥ⟩0 and the first law of thermo-

dynamics Eq. (4.6), it follows that ⟨W⟩ is the average work performed on the entire

system by switching the system-bath interaction on and off at the endpoints of the

evolution,

⟨W⟩ = ⟨ĤI⟩0 − ⟨ĤI⟩t. (4.18)

The average heat dissipated into the bath therefore comprises two contributions:

the change in the system’s internal energy and the system-bath interaction energy

developed throughout the relaxation process.
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4.4.1 Entropy production in a system interacting with a bath

For a protocol where the initial and final states of the system are equilibrium states,

the total change in entropy of the open system is given by

∆S = S[ρ̂S(t)]− S[ρ̂S(0)], (4.19)

where S[ρ̂] = −Tr[ρ̂ ln ρ̂] is the von Neumann entropy of state ρ̂. For quantum sys-

tems, the positivity of the entropy production ⟨Σ⟩ characterizing irreversible pro-

cesses is due to the entropy contribution arising from correlations between system

and bath [17]. It was shown that the irreversible entropy production can be written

as the sum [72]

⟨Σ⟩ = ISB + D(ρ̂B(t)||ρ̂B(0)) (4.20)

with ρ̂B(0) a thermal state in Gibbs form. Here ISB = S[ρ̂S] + S[ρ̂B] − S[ρ̂] is the

mutual information between system and bath, and D(ρ̂B(t)||ρ̂B(0)) the relative en-

tropy between the bath state at time t and its initial state, defined as D(ρ̂||σ̂) =

Tr[ρ̂(ln ρ̂− ln σ̂)], which is always a non-negative quantity. It has been shown that

in open quantum systems with small Hilbert space dimension, such as a qubit, the

displacement of the environment from equilibrium D(ρ̂B(t)||ρ̂B(0)) dominates the

irreversible entropy production [72]. Furthermore, the relative entropy of the bath

can be divided into two terms, D(ρ̂B(t)||ρ̂B(0)) = Denv + Ienv, where Denv is a sum of

relative entropies of the modes or levels composing the bath, and Ienv is the mutual

information between the degrees of freedom of the bath, arising from the building

of inter-bath correlations. For large baths, it has been shown that Ienv is the dom-

inant contribution to the relative entropy of the environment. Therefore, even in

non-dissipative protocols, it is possible to have a significative contribution to the ir-

reversible entropy production due to the building of correlations between the bath

degrees of freedom.

38



4.4.2 Thermalization of an open quantum system

The thermal equilibrium discrete Boltzmann probabilities Eq. (4.9) corresponds in

quantum mechanics to a thermal equilibrium density matrix in Gibbs form,

ρ̂eq =
exp(−βĤ)

Z
, (4.21)

where Z = Tr[exp(−βĤ)] is the partition function and Ĥ the system Hamiltonian.

Due to the coupling with the bath, the equilibrium state of an open quantum system,

if a state towards which the system evolves to and remains in exists, is not necessar-

ily a thermal state in the form of Eq. (4.21). More generally, the equilibrium state of

the open system is given by ˆ̄ρS = TrB[ ˆ̄ρ], where ˆ̄ρ = limT→∞
1
T

∫ T
0 ρ̂ (t) dt [35]. The

total system equilibrium state is by definition a steady state, that is, a state that is

unchanged by the time evolution

L ˆ̄ρ = 0, (4.22)

from the quantum equivalent of the Liouville equation Eq. (2.8).

4.4.3 Decoherence

In open quantum systems, the interaction between system and environment leads to

the phenomenon of decoherence [7, 73], which destroys the relative phase between

quantum states in superposition so that they can no longer be observed to interfere.

Decoherence is not only a major limiting factor for entanglement-enhanced metrol-

ogy [74] and scalable quantum computation [75, 76], but is also fundamental for

the quantum measurement process and the emergence of classical reality [77, 78].

Moreover, the dynamics of decoherence can now be studied in carefully controlled

experiments [79–84] and harnessed for nondestructive measurements using auxil-

iary probes [68, 69, 85–90].

Decoherence frequently occurs as a byproduct of thermalization, where an open

system equilibrates by exchanging energy with its environment. Even for small
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quantum systems initially far from equilibrium, it is well known that thermaliza-

tion dynamics is tightly constrained by the laws of thermodynamics [17, 91]. Pure

decoherence occurs when the energy of the open quantum system is strictly con-

served and thermalization is inhibited. It arises when [ĤI , ĤS] = 0, so that the

system Hamiltonian ĤS is a constant of motion. The most general interaction that

satisfies this constraint is

ĤI = ∑
n

gnΠ̂n ⊗ V̂n (4.23)

where Π̂n = |n⟩⟨n| is a projector onto the eigenstate of ĤS with eigenvalue εn, V̂n is a

generic operator acting on the bath, and gn is a coupling constant. In the eigenbasis

of ĤS, the reduced state ρ̂S(t) = TrB[ρ̂(t)] has matrix elements ρ̂mn
S (t) = ⟨m|ρ̂S(t)|n⟩

given by [92]

ρ̂mn
S (t) = e−i(εm−εn)t

〈
eiĤnte−iĤmt

〉
B

ρ̂mn
S (0). (4.24)

We defined

Ĥn = ĤB + gnV̂n, (4.25)

which describes the bath dynamics conditioned on state |n⟩. Eq. (4.24) states that

the diagonal matrix elements (m = n) are constant, while the off-diagonal elements

(m ̸= n) are proportional to the overlap ⟨eiĤnte−iĤmt⟩B, which decays in time when-

ever Ĥm ̸= Ĥn so that the bath carries information on the open system’s state.

4.4.4 Distributions of heat and work

As discussed in Sec. 4.3, nonequilibrium dynamics in the quantum regime can give

rise to significant fluctuations of thermodynamic quantities. It is therefore crucial

to go beyond average values and consider the full probability distribution of the

absorbed heat and work. By definition, the heat transfer is the energy change that

would be registered by projective energy measurements on the bath at the beginning

and end of the process. We denote by Π̂B
n = |En⟩⟨En| the projector onto the eigen-
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state |En⟩ of ĤB with eigenvalue En. The heat distribution is then defined by

P(Q) = ∑
m,n

pn pn→mδ(Q + En − Em), (4.26)

where pn = Tr[(I⊗ Π̂B
n)ρ̂(0)] is the probability of measuring initial energy En, and

pn→m = Tr[Π̂B
mÛ(t)(ρ̂S(0)⊗ Π̂B

n)Û†(t)] is the conditional probability for the transi-

tion En → Em [93]. A time evolution as in Eq. (2.6) is here assumed. The fluctuating

heat exchange can be characterised by the statistical moments

⟨Qn⟩ =
∫ ∞

−∞
dQ P(Q)Qn (4.27)

= (−i)n dn

dun χ(u)
∣∣∣∣
u=0

. (4.28)

The characteristic function χ(u) is defined as

χ(u) =
∫ ∞

−∞
dQ P(Q)eiuQ, (4.29)

where u is referred to as the counting field parameter. On the other hand, the work

distribution P(W) has the same form as the distribution in Eq. (4.26), where the

work variable W replaces the heat variable Q. If one considers the work distribu-

tion of the bath independently of the open system, the conditional probability of

the transition En → Em is in this case given by pn→m = Tr[Π̂B
m(I⊗ ÛB(t))(ρ̂S(0)⊗

Π̂B
n)(I⊗ Û†

B(t))], where by ÛB (t) we denote the time evolution operator of the bath

density matrix, ρ̂B(t) = ÛB (t) ρ̂B(0)Û†
B (t) [67].

It is possible to experimentally measure the probability distributions of thermo-

dynamic quantities. The probability distribution of work performed on a system

has been experimentally measured, for example, for the case of a two-dimension

quantum harmonic oscillator with angular momentum [94].
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Part II

Quantum heat statistics
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5 | Introduction

Part I of this thesis introduced the TEMPO algorithm as a method to solve non-

Marko-vian dynamics, and discussed the importance of non-Markovianity in the

context of irreversible thermodynamic processes that involve heat dissipation. The

question that remains unanswered is then: how do we model heat transfer, when

analytical solutions are not available? This question has experimental and practi-

cal importance. A crucial limiting factor for the performance of quantum devices

is the transfer of heat to and from their surroundings. A detailed understanding of

heat transfer is therefore essential to optimise control protocols while minimising

wasteful dissipation [95–97]. More generally, heat flux is a fundamental source of

irreversibility and entropy production in open quantum systems [17, 40]. Entropy

production limits the efficiency of heat engines and refrigerators [98], determines

the energy cost of information erasure [99] and feedback control [100], constrains

current fluctuations far from equilibrium [101–105], and can be directly measured

in well controlled quantum settings [106–108]. However, modelling heat transfer in

strongly coupled systems is a difficult theoretical problem because it requires access

to the energetics of the bath. On the contrary, the majority of techniques for describ-

ing open quantum systems either neglect the environment’s dynamics completely

or treat it via an effective or approximate description [12]. An accurate, tractable

method to predict the fluctuations of heat transfer in generic open quantum sys-

tems is still lacking.

The main research work of this thesis, which will be introduced now in Part II,

focuses on this problem. Here, we find a solution by developing an efficient nu-
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merical method to compute heat statistics using the path integral formulation of

dissipative quantum mechanics [30]. Previous research has shown that the prob-

ability distributions of heat and work can be formally derived within this frame-

work [93, 109, 110]. However, a direct evaluation of the corresponding path inte-

gral is only possible for a few exactly solvable models, while numerical approaches

based on the quasi-adiabatic path integral (QuAPI) method [13, 14] require careful

fine-tuning to avoid error accumulation [15, 111]. We solve this problem by gener-

alising the TEMPO algorithm [16] to calculate the characteristic function of energy

changes in the bath, equivalent to the Fourier transform of the heat probability dis-

tribution. This algorithm exploits a tensor-network representation of the QuAPI

propagator to describe complicated non-Markovian evolutions efficiently [112]. As

a result, we obtain a flexible and accurate tool to describe fluctuating heat transfer

in generic, strongly coupled open quantum systems, which can be extended to deal

with time-dependent Hamiltonians [113] or multiple baths [111]. The code we de-

veloped as an extension of the existing algorithm [114] is applied to the simulation

of the spin-boson model, which describes quantum dots [115], ultracold atomic im-

purities [116] and superconducting circuits [117], to name just a few examples.

We demonstrate our approach by applying it to the non-equilibrium quantum

thermodynamics of this important model. We first verify the accuracy of our method

by comparison with the exact solution in the limit of the independent boson model.

Then we compute the time-dependent heat transfer and its fluctuations across a

range of parameters in the unbiased spin-boson model, including the challeng-

ing low-temperatu-re and strong-coupling regimes. We interpret our results us-

ing the notion of generalised equilibration in strong-coupling thermodynamics [62],

and develop analytical models that quantitatively explain the mean heat exchange

in the high-temperature and low-temperature limits. We also show numerically

that the heat distribution obeys a fluctuation-dissipation relation (FDR) in the high-

temperature limit, which is similar to the well-known FDR of the work distribu-

tion [44].
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The second research project presented in this thesis is a study of heat dissipation

in pure decoherence [92]. Following the full counting statistics approach developed

for the extension of the TEMPO algorithm, we apply it to a model consisting of a

single qubit coupled to a fermionic bath, undergoing a pure decoherence process.

At first glance, the lack of direct energy exchange between system and heat bath

seems to render the thermodynamics of pure decoherence trivial, even meaning-

less. We will show that this is not the case: quantum dephasing noise generated

by a thermal environment is generally accompanied by nontrivial heat dissipation.

Indeed, we prove under generic conditions that decoherence without dissipation is

equivalent to static, classical phase noise: a highly restrictive situation that does not

describe most realistic environments. We also demonstrate that the corresponding

heat probability distribution obeys an integral fluctuation relation, and is entirely

distinct from the work distribution associated with the initial system-bath interac-

tion quench [118–120].
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6 | Full counting statistics approach

to heat transfer

This chapter introduces the full counting statistics approach and derives a modified

discretized influence functional, equivalent in the absence of a counting field u to

the one in Eq. (3.14). This result is derived for an open quantum system interacting

with a bath modelled by an infinite collection of harmonic oscillators and coupled

linearly to the system, with generic total Hamiltonian given by

Ĥ =
p̂2

s
2ms

+ V̂ (S) + ∑
j

 P̂2
j

2mj
+

1
2

mjω
2
j

(
Q̂j −

cjŜ
mjω

2
j

)2
 . (6.1)

Here S is the eigenvalue of a quantum particle’s coordinate operator Ŝ, V̂ (S) a

generic nonlinear potential that depends on the particle coordinate only, p̂s the par-

ticle momentum operator and ms its mass. The momentum and position operators

for the bath are P̂j and Q̂j respectively, for each mode j. cj is the coupling constant

between the system and the bath mode j, ωj is the mode’s angular frequency and mj

the mass of the j-th bath particle. The coordinate and momentum operators of the

bath can be written in terms of creation and annihilation operators, â†
j and âj respec-

tively, as P̂j = i
√

mjωj/2
(

â†
j − âj

)
and Q̂j =

√
2mjωj

−1
(

âj + â†
j

)
. The interaction

Hamiltonian ĤI = Ŝ ∑j cjQ̂j and the free bath Hamiltonian can be then written as
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ĤB = ∑
j

ωj â†
j âj, (6.2)

ĤI = Ŝ⊗∑
j

gj

(
âj + â†

j

)
, (6.3)

where gj =
(√

2mjωj
)−1 cj. The bath is characterized by its spectral density func-

tion, defined in Eq. (3.17). The overall Hamiltonian is given by Eq. (2.2). The total

density matrix evolves in time through the time evolution operators in Eq. (2.6), and

we assume the open system and the bath to be initially uncorrelated at the start of

the process t0 = 0, where the initial state of the bath is a Gibbs state.

6.1 Characteristic function of heat and work

The characteristic function of heat is defined by Eq. (4.29) and introduced in Sec. 4.4.4

as the Fourier transform of the probability distribution of heat P(Q). In quan-

tum mechanics, from the definition of the probability distribution Eq. (4.26) one

obtains [65]

χ(u) = Tr
[
eiuĤBÛ(t)e−iuĤB ρ̂(0)Û†(t)

]
. (6.4)

It is convenient to define a modified time evolution operator as

V̂u(t) = eiĤBu/2Û(t)e−iĤBu/2. (6.5)

This allows the rewriting of Eq. (6.4) as χ(u) = Tr [ρ̂(t, u)], with the modified density

matrix

ρ̂(t, u) = V̂u(t)ρ̂(0)V̂†
−u(t). (6.6)

The initial condition we assume is ρ̂(0, u) = ρ̂(0). Defining ρ̂S(t, u) = TrB [ρ̂(t, u)] as

the reduced modified system density matrix, we have

χ(u) = TrS [ρ̂S(t, u)] . (6.7)
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The form in Eq. (6.7) facilitates the calculation of the heat statistics by means of path-

integral techniques. The characteristic function of work done on the overall system,

on the other hand, is given by [67]

ϑ (v) = Tr
[
eivĤ(t)Û (t) e−ivĤ(0)ρ̂(0)Û† (t)

]
, (6.8)

where we have defined v as the work counting field.

6.1.1 Properties of the characteristic function

We can see that the characteristic function of heat presents symmetries that will

prove useful in our numerical calculations. Specifically, from the definition in Eq. (4.29),

it is clear that

χ∗(u) = χ(−u). (6.9)

since the probability distribution P(Q) is a real function. This implies that the real

and imaginary parts of χ(u) have the symmetries

Re(χ(u)) = Re(χ(−u)),

Im(χ(u)) = −Im(χ(−u)). (6.10)

It is also clear from Eq. (6.4) that χ(0) = 1.

6.1.2 First and second moments of the fluctuating heat exchange

From Eq. (4.28), the first moment of exchanged heat is given by

⟨Q⟩ = −i
d

du
χ(u)

∣∣∣∣
u=0

. (6.11)

In our method we perform a numerical differentiation in order to calculate the first

and second moments of the heat distribution. In order to do that, we have to choose

a suitable small value of u which we define to be uϵ. Note however that the counting
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field is not a numerical parameter of the TEMPO algorithm, but a variable of the

characteristic function. Then the average heat can be calculated numerically as

⟨Q⟩ = −i
χ(uϵ)− χ(0)

uϵ
+O(uϵ). (6.12)

with an error of the order O(uϵ). From the symmetries in Eq. (6.10), it is clear that

dRe(χ(u))/du|u=0 = 0 and Im(χ(0)) = 0. Thus the mean heat depends only on the

imaginary part of the characteristic function and is given by its linear slope in an

interval [uϵ, 0],

⟨Q⟩ = Im(χ(uϵ))

uϵ
+O(uϵ). (6.13)

Similarly, we can calculate numerically the second moment of heat as

⟨Q2⟩ = −2
Re(χ(uϵ))− 1

u2
ϵ

+O(u2
ϵ). (6.14)

The variance of the heat is ⟨⟨Q2⟩⟩ = ⟨Q2⟩ − ⟨Q⟩2.

6.2 Reduced modified system density matrix time

evolution

In the following, we construct the time evolution of an open system reduced den-

sity matrix ρ̂S(t, u), modified with the counting field. In the interaction picture, the

modified density matrix Eq. (6.6) is ˆ̃ρ(t, u) = ei(ĤS+ĤB)tρ̂(t, u)e−i(ĤS+ĤB)t. Writ-

ing explicitly the form of the time evolution operators V̂u(t) in Eq. (6.5), and hav-

ing that [ĤS, ĤB] = 0, we can see the only term transformed by the operators

e±iĤBu/2 is e−iĤI t. We can then define a modified interaction Hamiltonian as ĤI(u) =

eiĤBu/2ĤIe−iĤBu/2. For an interaction of the form defined by Eq. (6.3), the annihila-

tion operators âj transform more explicitly as eiĤBu/2 âje−iĤBu/2 = âj + i u
2

[
ĤB, âj

]
+

O
(
u2), where we have expanded the operators up to the second order in the count-

ing field u. In order to calculate the commutator [ĤB, âj], we notice that the bosonic
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bath free Hamiltonian Eq. (6.2) can be written as ĤB = ∑j ωj(â†
j âj + âj â†

j )/2. It is

then easy to see that the commutator is [ĤB, âj] = ∑n ωn
([

â†
n ân, âj

]
+
[
ân â†

n, âj
])

/2.

Applying the commutation rule
[
ÂB̂, Ĉ

]
= Â

[
B̂, Ĉ

]
+
[
Â, Ĉ

]
B̂, it follows that

[
ĤB, âj

]
= −ωj âj and, similarly,

[
ĤB, â†

j

]
= ωj â†

j . In conclusion, we can identify the transfor-

mations of the bath operators âj and â†
j as, respectively, eiĤBu/2 âje−iĤBu/2 = âje−i u

2 ωj

and eiĤBu/2 â†
j e−iĤBu/2 = â†

j ei u
2 ωj . It follows that the explicit form of the modified

interaction Hamiltonian is,

ĤI (u) = Ŝ⊗∑
j

gj

(
âje−i u

2 ωj + â†
j ei u

2 ωj
)

. (6.15)

Eq. (6.15), in the interaction picture ˆ̃HI (t, u) = ei(ĤS+ĤB)tĤI(u)e−i(ĤS+ĤB)t, becomes

ˆ̃HI (t, u) = Ŝ (t)⊗∑
j

gj

(
âje−iωjte−i u

2 ωj + â†
j eiωjtei u

2 ωj
)

. (6.16)

On the other hand, the master equation for the modified density matrix in the in-

teraction picture is (d/dt) ˆ̃ρ(t, u) = LI(t, u) ˆ̃ρ(t, u), similarly to what we discussed

in Sec. 3.4.2. Considering that the time evolution operator Vu(t) can be written in

terms of Eq. (6.15) as Vu(t) = exp[−i
(

ĤS + ĤB + ĤI (u)
)

t], it follows from Eq. (6.6)

that

ˆ̃ρ(t, u) = e−i
(

ˆ̃HL
I (t,u)−

ˆ̃HR
I (t,−u)

)
t ˆ̃ρ(0, u), (6.17)

where we have used the superoperator formalism from Eqs. (3.23)-(3.24). We find

that the interaction Liouvillian superoperator in the presence of counting field is

LI(t, u) = −i
(

ˆ̃HL
I (t, u)− ˆ̃HR

I (t,−u)
)

. (6.18)

As for the unmodified reduced density matrix ρ̂S(t), the solution for the modified

reduced density matrix is

ˆ̃ρS(t, u) = I(t, u)ρ̂S(0), (6.19)
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where I(t, u) is the modified influence functional

I(t, u) =
〈
←−
T
[∫ t

0
dt′LI

(
t′, u

)]〉
B

. (6.20)

The time-ordering symbol
←−
T reorders superoperators such that time increases from

right to left. Since the interaction Hamiltonian ĤI in Eq. (6.3) is linear and the as-

sumed thermal state of the bath is Gaussian, analogously to Eq. (3.30) for the un-

modified reduced density matrix, we can write

I(t, u) =
←−
T exp

[∫ t

0
dt′
∫ t′

0
dt′′
〈
LI(t′, u)LI(t′′, u)

〉
B

]
, (6.21)

using a time-ordered cumulant expansion up to second order [33].

The modified influence functional determines the time evolution of ρ̂S(t, u). In

the following we will focus on the calculation of the correlation function in Eq. (6.21),

using the interaction Liouvillian operator we derived in Eq. (6.18).

6.3 Modified influence functional for a bosonic bath

We analytically evaluate the term ⟨LI(t′, u)LI(t′′, u)⟩B in Eq. (6.21). The discretized

form of this correlation function is coded in our extension of the TEMPO algorithm

in order to implement simulations of heat statistics. We notice that the modified

interaction Hamiltonian ˆ̃HI(t, u) in Eq. (6.16) can be written as the sum of two

terms,

ˆ̃HI(t, u) = Ŝ (t)∑
j

gj cos
(u

2
ωj

) (
âje−iωjt + â†

j eiωjt
)

− iŜ (t)∑
j

gj sin
(u

2
ωj

) (
âje−iωjt − â†

j eiωjt
)

. (6.22)
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We define

B1 (t, u) = ∑
j

gj cos
(u

2
ωj

) (
âje−iωjt + â†

j eiωjt
)

, (6.23)

B2 (t, u) = −i ∑
j

gj sin
(u

2
ωj

) (
âje−iωjt − â†

j eiωjt
)

, (6.24)

so that the modified interaction Hamiltonian can be compactly written as

ˆ̃HI(t, u) = Ŝ (t) B1 (t, u) + Ŝ (t) B2 (t, u) . (6.25)

The interaction Hamiltonian has thus been divided into the sum of the two Hamil-

tonians

HI,1 (t, u) = ŜzB1 (t, u) , (6.26)

HI,2 (t, u) = ŜzB2 (t, u) . (6.27)

We note that, given the cosine and sine functions in the interaction parts dependent

on the counting field, Eqs. (6.23) and (6.24), it holds that HI,1 (t,−u) = HI,1 (t, u)

and HI,2 (t,−u) = −HI,2 (t, u). In light of this new notation, the Liouvillian operator

defined in Eq. (6.18) is

LI (t, u) = −i
(

H−I,1 (t, u) + H+
I,2 (t, u)

)
, (6.28)

where we have used Eq. (3.25) and Eq. (3.26). The exponent of the modified influ-

ence functional in Eq. (6.21) can then be written as

〈
LI
(
t′, u

)
LI
(
t′′, u

)〉
B =

−
〈

H−I,1
(
t′, u

)
H−I,1

(
t′′, u

)〉
B
−
〈

H+
I,2
(
t′, u

)
H+

I,2
(
t′′, u

)〉
B

−
〈

H−I,1
(
t′, u

)
H+

I,2
(
t′′, u

)〉
B
−
〈

H+
I,2
(
t′, u

)
H−I,1

(
t′′, u

)〉
B

. (6.29)
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Using the decomposition defined in Eq. (6.26) and Eq. (6.27), and rules (3.25 - 3.28),

we can write H±I,j (t, u) = (Ŝ(t)Bj (t, u))L ± (Ŝ(t)Bj (t, u))R, with j = 1, 2. Applying

the properties (AB)L = ALBL and (AB)R = ARBR, it is possible to separate the

superoperator acting on the system operators from those acting on the reservoir

operators. Each term in Eq. (6.29) can then be calculated explicitly:

〈
H−I,1

(
t′, u

)
H+

I,2
(
t′′, u

)〉
B
=

1
4

Ŝ−(t)
(
Ŝ+(t)

〈
B+

1
(
t′, u

)
B+

2
(
t′′, u

)〉
B

+Ŝ−(t)
〈

B+
1
(
t′, u

)
B−2
(
t′′, u

)〉
B

)
, (6.30)〈

H+
I,2
(
t′, u

)
H−I,1

(
t′′, u

)〉
B
=

1
4

Ŝ+(t)
(
Ŝ+(t)

〈
B+

2
(
t′, u

)
B−1
(
t′′, u

)〉
B

+Ŝ−(t)
〈

B+
2
(
t′, u

)
B+

1
(
t′′, u

)〉
B

)
, (6.31)〈

H−I,1
(
t′, u

)
H−I,1

(
t′′, u

)〉
B
=

1
4

Ŝ−(t)
(
Ŝ+(t)

〈
B+

1
(
t′, u

)
B−1
(
t′′, u

)〉
B

+Ŝ−(t)
〈

B+
1
(
t′, u

)
B+

1
(
t′′, u

)〉
B

)
, (6.32)〈

H+
I,2
(
t′, u

)
H+

I,2
(
t′′, u

)〉
B
=

1
4

Ŝ+(t)
(
Ŝ+(t)

〈
B+

2
(
t′, u

)
B+

2
(
t′′, u

)〉
B

+Ŝ−(t)
〈

B+
2
(
t′, u

)
B−2
(
t′′, u

)〉
B

)
. (6.33)

Through the rules in Eqs. (3.25 - 3.26) we can calculate all the bath correlation func-

tions appearing in Eqs. (6.30 - 6.33). It can be noted that given the definition ⟨•⟩B ≡

Tr[• ˆ̃ρB(0)] in interaction picture, for any two superoperators α and β, it holds that

⟨α−β±⟩B = TrB
[[

α, β± ˆ̃ρB (0)
]]

= 0. Therefore the superoperators B−1 (t′, u) and

B−2 (t′, u) in Eqs. (6.30 - 6.33) produce null terms, B (t, u) being the only opera-

tor that contains degrees of freedom of the bath B. We then only need to evalu-

ate the non-null correlations ⟨B+
m (t′, u) B+

n (t′′, u)⟩B and ⟨B+
m (t′, u) B−n (t′′, u)⟩B, with

m, n = 1, 2,

〈
B+

m
(
t′, u

)
B±n
(
t′′, u

)〉
B = 2

〈
Bm
(
t′, u

)
Bn
(
t′′, u

)〉
B ± 2

〈
Bn
(
t′′, u

)
Bm
(
t′, u

)〉
B .

(6.34)
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Since ⟨Bn (t′′, u) Bm (t′, u)⟩B = ⟨Bm (t′, u) Bn (t′′, u)⟩∗B, we have that

〈
B+

m
(
t′, u

)
B+

n
(
t′′, u

)〉
B = 4Re

[
TrB

[
Bm
(
t′, u

)
Bn
(
t′′, u

)
ˆ̃ρB (0)

]]
, (6.35)〈

B+
m
(
t′, u

)
B−n
(
t′′, u

)〉
B = 4iIm

[
TrB

[
Bm
(
t′, u

)
Bn
(
t′′, u

)
ˆ̃ρB (0)

]]
. (6.36)

With the definitions of functions B1(t, u) and B2(t, u) in Eqs. (6.23 - 6.24), we can ex-

plicitly calculate the functions in Eqs. (6.35 - 6.36) using the properties of the bosonic

operators. Specifically, we know that TrB
[
â†

k âj ˆ̃ρB (0)
]
=
〈

N̂j
〉

t=0 δkj, where N̂j = â†
k âj

is the bosonic number operator of mode j, whose average at time t = 0, for a Planck

distribution of bosons occupying the energy level h̄ωj, is

〈
N̂j
〉

t=0 =
1

exp
[
β0ωj

]
− 1

=
exp

[
−β0ωj/2

]
2 sinh

[
β0ωj/2

] , (6.37)

where β0 is the inverse temperature of the bath at initial time t = 0.

We find that, for m ̸= n, m, n = 1, 2,

〈
B+

1
(
t′, u

)
B+

2
(
t′′, u

)〉
B = −

〈
B+

2
(
t′, u

)
B+

1
(
t′′, u

)〉
B = −4Re

[
C
(
t′, t′′, u

)]
, (6.38)〈

B+
1
(
t′, u

)
B−2
(
t′′, u

)〉
B = −

〈
B+

2
(
t′, u

)
B−1
(
t′′, u

)〉
B = −4iIm

[
C
(
t′, t′′, u

)]
, (6.39)

where

C
(
t′, t′′, u

)
= i ∑

j
g2

j cos
(u

2
ωj

)
sin
(u

2
ωj

) sinh
[
iωj (t′ − t′′)− β0ωj/2

]
sinh

[
β0ωj/2

] . (6.40)

Similarly, for m = n, m, n = 1, 2, the calculation of Eqs. (6.35 - 6.36) leads to

〈
B+

1
(
t′, u

)
B+

1
(
t′′, u

)〉
B = 4Re

[
A1
(
t′, t′′, u

)]
, (6.41)〈

B+
2
(
t′, u

)
B+

2
(
t′′, u

)〉
B = 4Re

[
A2
(
t′, t′′, u

)]
, (6.42)〈

B+
1
(
t′, u

)
B−1
(
t′′, u

)〉
B = 4iIm

[
A1
(
t′, t′′, u

)]
, (6.43)〈

B+
2
(
t′, u

)
B−2
(
t′′, u

)〉
B = 4iIm

[
A2
(
t′, t′′, u

)]
, (6.44)
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where

A1
(
t′, t′′, u

)
= ∑

j
g2

j cos2
(u

2
ωj

) cosh
[
iωj (t′ − t′′)− β0ωj/2

]
sinh

[
β0ωj/2

] , (6.45)

A2
(
t′, t′′, u

)
= ∑

j
g2

j sin2
(u

2
ωj

) cosh
[
iωj (t′ − t′′)− β0ωj/2

]
sinh

[
β0ωj/2

] . (6.46)

In terms of the spectral density function J(w) defined in Eq. (3.17), functions C(t′, t′′, u),

A1(t′, t′′, u) and A2(t′, t′′, u) can be written as

C
(
t′, t′′, u

)
= i

∫ ∞

0
dω J (ω) cos

(u
2

ω
)

sin
(u

2
ω
) sinh [iω (t′ − t′′)− β0ω/2]

sinh [β0ω/2]
,

(6.47)

A1
(
t′, t′′, u

)
=
∫ ∞

0
dω J (ω) cos2

(u
2

ω
) cosh [iω (t′ − t′′)− β0ω/2]

sinh [β0ω/2]
, (6.48)

A2
(
t′, t′′, u

)
=
∫ ∞

0
dω J (ω) sin2

(u
2

ω
) cosh [iω (t′ − t′′)− β0ω/2]

sinh [β0ω/2]
. (6.49)

Eqs. (6.47 - 6.48) allow for the calculation of the bath correlation terms appearing

in ⟨LI (t′, u)LI (t′′, u)⟩B in Eq. (6.29). The full exponent of the modified influence

functional Eq. (6.21), is then calculated by integrating Eqs. (6.47 - 6.48) and defining

the correlation functions

ηα(t, u) =
∫ t

0
dt′
∫ t′

0
dt′′α

(
t′, t′′, u

)
, (6.50)

where α = C,A1,A2. The three resulting correlation functions are

ηC(t, u) =
∫ ∞

0
dω

J(ω)

2ω2 sin(uω) (6.51)

×
[
coth

( ω

2T

)
[sin(ωt)−ωt]− i [1− cos(ωt)]

]
,

ηA1(t, u) =
∫ ∞

0
dω

J(ω)

ω2 cos2
(uω

2

)
(6.52)

×
[
coth

( ω

2T

)
[1− cos(ωt)] + i [sin(ωt)−ωt]

]
,
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ηA2(t, u) =
∫ ∞

0
dω

J(ω)

ω2 sin2
(uω

2

)
(6.53)

×
[
coth

( ω

2T

)
[1− cos(ωt)] + i [sin(ωt)−ωt]

]
.

In order to obtain a discretized modified influence functional in the form of Eq. (3.14)

for the original TEMPO algorithm, we discretize the correlation functions Eqs. (6.51

- 6.53), and define, equivalently to Eq. (3.15),

ηα
k−k′(u) =



∫ tk
tk−1

∫ tk′
tk′−1

α (t′ − t′′, u) dt′′dt′ k ̸= k′

∫ tk
tk−1

∫ t′

tk−1
α (t′ − t′′, u) dt′′dt′ k = k′,

(6.54)

where ηα
k−k′(u) = ηα(tk − tk′ , u), and ηα (t, u) = ∑N

k=0 ∑k
k′=0 ηα

k−k′ (u). Following the

method illustrated in Sec. 3.3 and developed in Ref. [15], we simply discretize time

in N intervals of equal length ∆, so that tk = k∆. We again use the notation
∣∣s±k 〉

for the eigenstates of Ŝ, where the superscript +(−) is used to label eigenvectors

inserted on the left (right) of the reduced system density matrix.

The path integral for ρ̂S(t, u) is constructed by inserting resolutions of the identity

Î = ∑s±k

∣∣s±k 〉〈s±k ∣∣ in the eigenbasis of the system operator Ŝ at each time step in

Eq. (6.19). In the interaction picture, the free propagators do not appear and we

obtain the modified influence functional in the form

I
({

s±k
}

, u
)
=

N

∏
k=0

k

∏
k′=0

I∆k(s±k , s±k′ , u), (6.55)

I∆k
(
s±k , s±k′ , u

)
= exp

[
− ∑

q,q′=±
sq

kη
qq′

k−k′(u)s
q′

k′

]
. (6.56)
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Here, ∆k = k− k′ and η
qq′

k−k′(u) are the discretized correlation functions

η++
k−k′(u) = ηA1

k−k′(u) + ηA2
k−k′(u) =

[
η−−k−k′(u)

]∗
(6.57)

η−+k−k′(u) = ηA2
k−k′(u)− ηA1

k−k′(u) + 2ηCk−k′(u) (6.58)

η+−
k−k′(u) =

[
ηA2

k−k′(u)− ηA1
k−k′(u)− 2ηCk−k′(u)

]∗
. (6.59)

Our expression for I
({

s±k
}

, u
)

matches the one recently derived in Ref. [111] and

it is straightforward to verify that, for u = 0, it reduces to the original influence

functional described in Ref. [13]. From Eq. (3.22), the reduced modified density

matrix element at final time tN is

〈
s+N
∣∣ ρ̂S(t, u)

∣∣s−N〉 = ∑
s±0 ,s±1 ...s±N−1

F
({

s±k
})

I
({

s±k
}

, u
) 〈

s+0
∣∣ρ̂′S(0)∣∣s−0 〉. (6.60)

Here, ρ̂′S(0) = e−iĤS∆/2ρ̂S(0)eiĤS∆/2 is a modified initial condition, and

F
({

s±k
})

=
N

∏
k=1

G(s±k , s±k−1) (6.61)

is a product of free propagators for the system, with

G(s±k , s±k−1) =
〈
s+k
∣∣e−iĤS∆k

∣∣∣s+k−1

〉〈
s−k−1

∣∣∣eiĤS∆k
∣∣s−k 〉, (6.62)

where ∆k = ∆ for k < N and ∆N = ∆/2.

The form of Eq. (6.55) emphasises that the environment introduces memory into

the evolution by coupling the system coordinate to itself at different times. Cru-

cially, however, the correlation functions ηα(t, u) decay to zero for sufficiently large

t and therefore the memory time of the environment is finite. We are therefore able

to implement the modified influence functional Eq. (6.56) into TEMPO, and calcu-

late the time evolution of ρ̂S(t, u) for any given time t in the presence of counting

field. Through Eq. (6.7) our modified algorithm is able to numerically calculate the

characteristic function of heat. The ADT iterative propagation scheme described in
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Sec. 3.3.3 remains unchanged, with the essential replacement of the original influ-

ence functional with the modified one in the propagator tensor Eq. (3.19).
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7 | Simulation of the non-Markovian

spin-boson model dynamics

In the original work by Strathearn et al. in Ref. [16], the TEMPO algorithm is ap-

plied to the paradigmatic spin-boson model. Aside from setting the environmental

parameters, the TEMPO algorithm requires the input of three additional parame-

ters: the discretization time-step ∆, the memory cutoff length K, and the precision

parameter p for performing singular value decompositions of the system’s ADT,

such that λC = λmax10−p/10 is the cut-off value (see Sec. 3.4). For the spin-boson

model, Ref. [16] finds that it is sufficient to set ∆ = 0.06, K = 200, and p = 60 in

the original TEMPO algorithm in order to achieve convergence in the dynamics of

a single spin-1/2 coupled to a bosonic bath with Ohmic spectral density, at temper-

ature T = 0 and up to the strong coupling regime. When setting the counting field

parameter u = 0 in the modified influence functional we derived in Eq. (6.56), it is

easy to verify from Eqs. (6.51 - 6.53) that ηC(t, 0) = 0, ηA2(t, 0) = 0 and ηA1(t, 0) is

equal to the autocorrelation function C(t) in Eq. (3.16) for the unmodified TEMPO.

The first step in our analysis of the heat statistics of the spin-boson model is to verify

that our modified code reproduces the results shown in Ref. [16], as a general check,

when we set u = 0. Since we will be simulating heat statistics for a bath with tem-

peratures up to T = 5Ω, where Ω is a unit we will define in terms of the parameters

of the system Hamiltonian, we verify the TEMPO parameter ranges that allow for

the convergence of the system observables for temperatures T > 0.
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7.1 The spin-boson model

In the spin-boson model, the terms in the total Hamiltonian Ĥ Eq. (2.2) take the

form

ĤS = ω0Ŝz + ΩŜx, (7.1)

ĤB = ∑
j

ωj â†
j âj, (7.2)

ĤI = Ŝz ∑
j

gj

(
âj + â†

j

)
. (7.3)

Above, Ŝz and Ŝx are the spin operators for the system. We focus on an Ohmic

spectral density function of the form

J (ω) = 2αωe−ω/ωC , (7.4)

where α is a dimensionless system-environment coupling constant and ωC is a cut-

off frequency. The bath is characterised by a correlation time τC = 2π/ωC. The

frequency and temperature are both defined in units of Ω, which for simplicity we

will here set to Ω = 1. This model presents a quantum phase transition at zero bath

temperature at the critical value of the coupling constant αcritical. As in Ref. [16], in

the following we set the initial state of the spin to be the eigenstate |↑⟩ of the spin

operator Ŝz, such that Ŝz|↑⟩ = 1/2|↑⟩, and ρ̂S(0) = |↑⟩⟨↑|. Fig. 7.1 and Fig. 7.2 show

the Ohmic spectral density in Eq. (7.4) for fixed frequency cutoff ωC = 5 and fixed

coupling strength α = 1 respectively. From Fig. 7.1 it is clear that the frequency at

which J(ω) presents a peak remains unchanged by the coupling strength, while the

magnitude of the peak is proportional to α. Changing the cutoff frequency, on the

other hand, affects the frequency range at which J(ω) becomes negligible, which

happens at lower ω for smaller ωC. This means the correlation functions Eqs. (6.51 -

6.53) decay after a timescale set by 1/ωC, and the bath no longer affects the dynam-

ics of the spin. The spectral density function has in all cases a peak at ω = ωC.
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Figure 7.1: Ohmic spectral density function of the bath J(ω) for fixed frequency cutoff ωC =
5, and three different values of the coupling strength α.
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Figure 7.2: Ohmic spectral density function of the bath J(ω) for fixed coupling strength
α = 1, and three different values of frequency cutoff ωC.
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7.2 Correlation function and memory depth

In order to fix the correct memory length that has to be taken into account during the

unmodified system dynamics, it is important to evaluate at what time the correlation

function decays and the effects of the environment are no longer relevant and can

be ignored. We rewrite the correlation function A1(t′, t′′, , 0) as a function of the

memory depth time K∆, by setting (t′ − t′′) = K∆ in Eq. (6.48). Separating the real

and imaginary part of the correlation function, we have

Re[A1](K∆) =


2α
∫ ∞

0 ωe−
ω

ωC coth
(

β0ω
2

)
cos (K∆ω) T ̸= 0

2α
∫ ∞

0 ωe−
ω

ωC cos (K∆ω) T = 0,

(7.5)

where we have used limβ0→∞ coth(β0ω/2) = 1, and

Im[A1](K∆) = −2α
∫ ∞

0
ωe−

ω
ωC sin (K∆ω), (7.6)

independent of temperature. Figs. (7.3-7.4) show the real part ofA1, for fixed system-

environment coupling strength and for fixed bath temperature respectively. It can

be noted that the memory depth time K∆ at which function Re[A1] goes to zero does

not have a strong dependence on temperature. It does, however, have a dependence

on the frequency cutoff ωC. Re[A1] becomes negligible faster for higher values of the

cutoff. In Fig. 7.4, for example, the orange curve (ωC = 1) has a value of Re[A1] = 0.2

for K∆ = 3, while the green curve (ωC = 20) has a value of Re[A1] = 0.01 for the

same memory depth. Identical observations can the made for the temperature in-

dependent imaginary part the correlation function, Im[A1], shown in Fig. 7.5 for

different values of ωC and a fixed value of α. We notice that for a fixed frequency

cutoff value ωC = 5, we would need a memory depth time K∆ > 3 in order to

achieve a negligible correlation function for the coupling value of α = 0.1 in the

range of temperatures 0 ≤ T ≤ 5, within an approximation < 0.04.
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Figure 7.3: Real part of the bath correlation function A1, for four different values of bath
temperature T, as a function of the memory depth time K∆ as defined in Eqs. (7.5). Here we
have fixed α = 0.1, ωC = 5.
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Figure 7.4: Real part of the bath correlation function A1, for four different values of fre-
quency cutoff ωC, as a function of the memory depth time K∆ as defined in Eqs. (7.5). Here
we have fixed T = 5, α = 0.1
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Figure 7.5: Imaginary part of the bath correlation function A1, for four different values of
frequency cutoff ωC, as a function of the memory depth time K∆ as defined in Eqs. (7.6).
Here we have fixed α = 0.1
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7.3 Spin observables and TEMPO parameters

For u = 0, we use TEMPO to compute the dynamics of the spin observables ⟨Ŝz⟩

and ⟨Ŝx⟩ for different values of the algorithm parameters. We first consider the zero

temperature case. In order to see how the Trotter error, introduced in the QuAPI

method and shown in Eq. (3.10), affects the convergence of the observables, we fix

the length of the memory propagated at each time-step K∆ to a constant value, and

vary ∆. The first row in Fig. 7.6 shows different behaviour between ⟨Ŝz⟩, where

convergence arises for ∆ > 0.01, and ⟨Ŝx⟩, where convergence arises for ∆ < 0.1,

signalling the existence of a suitable range for the time-step value for fixed K∆.

Secondly, in order to check how the finite memory time affects the convergence

of the observables, we fix the time-step ∆ and increase K until the results converge.

Fig. 7.6 shows that, for zero bath temperature, the average spin functions converge

reasonably for K > 200, while lower values of the memory cutoff lead to an inaccu-

rate dynamics (see second row, K = 10, blue line). The dynamics of ⟨Ŝz⟩ calculated

here at value K = 200 (red line, second row) matches the result obtained in Ref. [16]

by Strathearn et al. with the original TEMPO algorithm, for the same values of K, α

and ωC.

Lastly, in order to check how the cutoff in the singular value decomposition af-

fects the convergence of the observables, we fix K and ∆ and increase p until conver-

gence is achieved. The third row in Fig. 7.6 shows that best convergence is obtained

for values of p ≥ 80. Fig. 7.7 shows that a similar behaviour in the convergence of

the spin observables is observed for finite temperature T = 5. Convergence of the

spin dynamics is here obtained for ∆ ∼ 0.01, K ≥ 200 and p ≥ 80.
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Figure 7.6: Dynamics of the mean values of the spin operators ⟨Ŝz⟩ (left column) and ⟨Ŝx⟩
(right column) for zero bath temperature, calculated with TEMPO for u = 0. The initial spin
state is |ψ(0)⟩ = |↑⟩. Here ωC = 5 and α = 1. First row: behaviour for different values of
∆, with fixed product K∆ = 3 and p = 80. Second row: behaviour for different values of K,
for fixed p = 80, ∆ = 0.01. Third row: behaviour for different values of p, for fixed K = 400,
∆ = 0.01.
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Figure 7.7: Dynamics of the mean values of the spin operators ⟨Ŝz⟩ (left column) and ⟨Ŝx⟩
(right column) for finite bath temperature T = 5, calculated with TEMPO for u = 0. The
initial spin state is |ψ(0)⟩ = |↑⟩. Here ωC = 5 and α = 1. First row: behaviour for different
values of ∆, with fixed product K∆ = 3 and p = 80. Second row: behaviour for different
values of K, for fixed p = 80, ∆ = 0.01. Third row: behaviour for different values of p, for
fixed K = 400, ∆ = 0.01.
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8 | An application: Heat statistics of

the spin-boson model

Although our method for the calculation of heat statistics is general, in the following

we specialize to the spin-boson model describing a single spin one-half interacting

with a bosonic bath of harmonic oscillators. We have presented this model and its

characteristics in Chap. 7, where we defined the Hamiltonians of the overall system

and bath in Eqs. (7.1 - 7.3). We have verified that in the absence of counting field,

our modified TEMPO algorithm reproduces the correct dynamics of the spin ob-

servables and studied the convergence of such dynamics in relation to the TEMPO

parameters. We now consider two different limits of the spin-boson model: the

independent-boson model with Ω = 0 and the unbiased spin-boson model with

ω0 = 0 and Ω ̸= 0, with a focus on heat statistics. The independent-boson model

is exactly solvable, allowing us to verify the accuracy of our numerical method.

We then turn to the unbiased spin-boson model, an archetypal example of a non-

integrable open quantum system. The experimental reasons that make the spin-

boson model relevant have been discussed in the introduction Chap. 5. Another

practical motivation for our focus on this model is that it represents a general set-

ting known to be amenable to efficient tensor-network descriptions [121, 122]. Fur-

thermore, the canonical open quantum system comprises a small, few-state system

coupled to a bosonic bath, and the spin-boson model is the simplest case.

We start by studying the mean heat exchanged with the bath in the Markovian

limit, for which an analytical solution is easily obtainable. We then apply our numer-
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ical method for the calculation of heat statistics in non-Markovian regimes, where

analytical solutions do not exist, after having verified the efficiency of the modified

algorithm and TEMPO parameter ranges necessary for convergence through the

solvable independent-boson model. Interestingly, our results show that the system-

bath interaction energy makes a considerable contribution to the heat statistics, even

in the weak-coupling and high-temperature regime where a Markovian description

of the system dynamics alone is accurate. This underlines the need to interpret with

care the standard Markovian description of quantum thermodynamics [123], which

is based on properties of the open system alone.

In the following we choose a bosonic bath characterized by an Ohmic spectral

density Eq. (7.4).

8.1 Exchanged heat in the Markovian limit

In order to gather a better understanding of the expected behaviour of the mean

exchanged heat ⟨Q⟩ defined in Eq. (4.17), we study the Lindblad master equation

for the reduced modified density matrix ρ̂S (t, u) describing the Markovian limit for

an unbiased spin-boson model. For the total Hamiltonian defined by Eqs. (7.1 - 7.3),

the Lindblad master equation is [95]

∂ρ̂S (t, u)
∂t

= −i
[
ĤS, ρ̂S (t, u)

]
(8.1)

− γe

2

[
{r̂+r̂−, ρ̂S (t, u)} − 2eiuΩr̂−ρ̂S (t, u) r̂+

]
− γa

2

[
{r̂−r̂+, ρ̂S (t, u)} − 2e−iuΩr̂+ρ̂S (t, u) r̂−

]
,

where we have set ω0 = 0, r̂+ = Ŝz + iŜy and r̂− = Ŝz − iŜy. Here γe and γa are the

emission and absorption rates respectively, given by

γe = πα
(
1 +

〈
N̂Ω
〉

t=0

)
Ωe−Ω/ωC , (8.2)

γa = πα
〈

N̂Ω
〉

t=0 Ωe−Ω/ωC , (8.3)
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with
〈

N̂Ω
〉

t=0 being the Planck distribution as defined by Eq. (6.37) for ωj = Ω.

From the Lindblad equation we can calculate the time derivative of the mean heat

transferred between bath and system,

d⟨Q⟩ (t)
dt

= Ω
[
γeρ
↑
S (t, 0)− γaρ↓S (t, 0)

]
. (8.4)

ρ↑S (t, 0) and ρ↓S (t, 0) are the diagonal elements of matrix ρ̂S (t, 0) in the eigenba-

sis of ĤS; that is, in the basis of eigenstates of operator Ŝx. Setting an initial state

for the spin, the Lindblad master equation Eq. (8.1) can be solved for ρ̂S(t, u) for a

fixed value of the counting field u. The characteristic function of heat is calculated

through Eq. (6.7). This allows us to find the average heat exchanged through a nu-

merical derivative, as in Eq. (6.13). Preliminary checks show that for a counting field

parameter u ≤ 0.01, the obtained results for ⟨Q⟩(t) converge to one unique function

of time. One could alternatively solve the Lindblad master equation and integrate

Eq. (8.4) in time in order to find ⟨Q⟩(t).

8.1.1 Asymptotic exchanged heat

In the following, we set the initial state of the spin to be |ψ(0)⟩ = |↑⟩, with |↑⟩ an

eigenstate of Ŝz. Fig. 8.1 shows the average heat exchanged in the Markovian limit,

for a spin splitting fixed to Ω = 1, and comparatively high temperature T = 5.

It is clear that the system-bath coupling strength α does not affect the asymptotic

value ⟨Q⟩∞ at which the exchanged heat equilibrates, but only affects the time frame

at which this equilibration happens. Stronger coupling leads to a faster equilibra-

tion time. The Markovian solution is however of interest because in a generic non-

Markovian, weak coupling limit, we expect the dynamics defined by the modified

influence functional Eq. (6.21) to lead to an asymptotic solution ⟨Q⟩∞ that includes

the average heat transfer described by the Markovian result, among other possible

effects. We will see this is indeed the case. Fig. 8.2 shows that the spin splitting Ω,

on the other hand, affects the asymptotic heat value, which increases, although not
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function of time, for three different values of the spin splitting. Here we have set T = 5,
ωC = 5, α = 0.1. The initial state of the system is |ψ(0)⟩ = |↑⟩. The numerical derivative is
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linearly, with increasing value of Ω.

In the Markovian weak-damping limit, the spin evolves in time to a thermal

steady-state in Gibbs form, ρ̂S(∞) = exp[−βĤS]/ZS, with ZS = TrS[exp(−βĤS)].

The asymptotic value of its energy ⟨ĤS⟩∞ = TrS[ρ̂S(∞)ĤS] is then easily calcu-

lated. The only contribution to the average heat change in the spin system ⟨QS⟩∞ =

⟨ĤS⟩∞ − ⟨ĤS⟩0, is the heat transferred as it relaxes to a thermal state, which, in the

absence of external work, is equal to the change in its internal energy. We therefore

have

⟨QS⟩∞ = −

√
Ω2 + ω2

0

2
tanh


√

Ω2 + ω2
0

2T

− ⟨ψ(0)|ĤS|ψ(0)⟩. (8.5)

For an initial spin state |ψ(0)⟩ = |↑⟩, and parameters ω0 = 0, Ω = 1 and T = 5 as

in Fig. 8.1, we can calculate from Eq. (8.5) ⟨QS⟩∞ = −0.04983. On the other hand,

the numerical asymptotic solution for the average heat exchanged by the bath can

be extrapolated from the data collected in Fig. 8.1, and amounts to ⟨Q⟩∞ = 0.04983.

We can see that in the Markovian limit, the only change in energy that occurs in the

bath is caused by the transfer of heat from the system, ⟨Q⟩∞ = −∆U∞. For an initial

spin state |↑⟩, this amounts to

⟨Q⟩∞ =
Ω
2

tanh
[

Ω
2T

]
. (8.6)

We can verify that this conclusion holds true for different initial states of the spin.

Fig. 8.3 shows ⟨Q⟩(t) for an initial state of the spin |←⟩ = (−1, 1) and |→⟩ = (1, 1),

both eigenstates of the spin operator Ŝx with eigenvalues ±1/2 respectively. The

asymptotic heat exchanged by the bath is drastically different. Again, the data from

Fig. 8.3 shows it is equal to −⟨QS⟩∞. From Eq. (8.5), it amounts to

⟨Q⟩∞ =
Ω
2

tanh
[

Ω
2T

]
− Ω

2
(8.7)
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for initial state |ψ(0)⟩ = |←⟩, and

⟨Q⟩∞ =
Ω
2

tanh
[

Ω
2T

]
+

Ω
2

(8.8)

for initial state |ψ(0)⟩ = |→⟩. From both the data and the analytical prediction of

Eqs. (8.7 - 8.8), the asymptotic values are ⟨Q⟩∞ = −0.45016 and ⟨Q⟩∞ = 0.54983

respectively, for Ω = 1 and T = 5. Fig. 8.3, in particular, reveals that in a Markovian

set up with a system Hamiltonian as in Eq. (7.1), the total heat exchanged by the

bath equals the sum of the energies that it takes for the initial system state to reach

the energy level of the state |↑⟩ and the heat transferred from the system to the bath

as it equilibrates to a thermal state Eq. (8.6). An initial system state |←⟩ has an en-

ergy lower than that of state |↑⟩ by an amount equal to Ω/2, and therefore the bath

transfers to the system a quantity of heat equal to Ω/2. On the other hand, an initial

system state |→⟩ has an energy higher than that of state |↑⟩ by an amount Ω/2, and

therefore the bath receives from the system a quantity of heat equal to Ω/2.

These predictions derived from the Markovian limit will be useful in the expla-

nation of the phenomena that drive non-Markovian heat transfers.
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8.2 Independent boson model

The independent-boson (IB) model is described by Eqs. (7.1 - 7.3) with Ω = 0. This

model, for which we derive an analytical solution for the characteristic function of

heat, will serve us as a way to verify the accuracy of our method.

The Hamiltonian can be diagonalised by a polaron transformation, which takes

the general form

P̂ = exp

[
Ŝz ∑

j

f j

ωj

(
âj − â†

j

)]
. (8.9)

This describes a spin-dependent displacement of each bath oscillator by an amount

proportional to f j. The choice f j = gj diagonalises the IB Hamiltonian as P̂†ĤP̂ =

Ĥ0 − 1
2 Er, where Ĥ0 = ĤS + ĤB is the free Hamiltonian and we have defined the

reorganisation energy

Er =
1
2

∫ ∞

0
dω

J(ω)

ω
= αωC, (8.10)

for an Ohmic spectral density, which determines the shift in ground-state energy

due to the system-bath interaction. In the IB model, [Ĥ, ĤS] = 0, meaning that the

local energy of the spin is conserved and ∆U = 0. Therefore, the heat dissipated

into the bath is associated purely with the system-bath interaction.

8.2.1 Average heat and variance for the independent boson model

Using the transformation defined by Eq. (8.9), we write the unitary time evolution

operator as

Û(t) = P̂e−iĤ0tP̂† (8.11)

= e−iĤ0t
(

eiĤ0t/2P̃(t/2)P̃†(−t/2)e−iĤ0t/2
)

, (8.12)
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where the tilde denotes an operator in the interaction picture with respect to Ĥ0,

i.e.,

P̃(t) = eiĤ0tP̂e−iĤ0t

= exp

[
Ŝz ∑

j

gj

ωj

(
e−iωjt âj − eiωjt â†

j

)]
. (8.13)

Using the Baker-Campbell-Hausdorff formula, eAeB = exp(A + B + 1
2 [A, B] + . . .),

and neglecting an irrelevant phase factor, we obtain Û(t) = Û0(t)ÛI(t), where

Û0(t) = e−iĤ0t is the free propagator and

ÛI(t) = exp

[
2Ŝz ∑

j

(
αj(t)â†

j − α∗j (t)âj

)]
(8.14)

is the interaction-picture propagator, which describes a spin-dependent displace-

ment for each mode of magnitude

αj(t) =
gj

2ωj

(
1− eiωjt

)
. (8.15)

The time evolution of the bath density matrix ρ̂B(t) is

ρ̂B (t) = TrS

[
ÛI (t) ρ̂S (0)⊗ ρ̂B (0) Û†

I (t)
]

. (8.16)

Expanding the trace over the spin degrees of freedom in the basis of eigenstates of

Ŝz, {|↑⟩, |↓⟩}, we see that the action of the time evolution operator ÛI(t) is

Û†
I (t) |↓⟩ = exp

[
∑

i

(
αi (t) â†

i − α∗i (t) âi

)]
|↓⟩ (8.17)

Û†
I (t) |↑⟩ = exp

[
−∑

i

(
αi (t) â†

i − α∗i (t) âi

)]
|↑⟩ , (8.18)
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which is the action of a product of displacement operators D̂(xi) = exi â†−x∗i â for each

bosonic mode, where in this case xi = αi (t). We can define the bath operator

D̂B(t) = exp

[
∑

i

(
αi (t) â†

i − α∗i (t) âi

)]
, (8.19)

and write the time evolution of ρ̂B(t) as

ρ̂B(t) =
(

D̂†
B (t) ρ̂B (0) D̂B (t)− D̂B (t) ρ̂B (0) D̂†

B (t)
)
⟨↓| ρ̂S (0) |↓⟩ (8.20)

+ D̂B (t) ρ̂B (0) D̂†
B (t) .

It is easy to see that the action of the bath displacement operator D̂B(t) on the bath

free Hamiltonian ĤB is given by

D̂B (t) ĤBD̂†
B (t) = ĤB −∑

i
ωi

(
αi (t) â†

i + α∗i (t) âi

)
+O

(
g2

i

)
, (8.21)

D̂†
B (t) ĤBD̂B (t) = ĤB + ∑

i
ωi

(
αi (t) â†

i + α∗i (t) âi

)
+O

(
g2

i

)
. (8.22)

Here we have expanded the operator D̂B(t) up the the second order in the coupling

strength constant gi, and used the commutation rules [ĤB, â†
i ] = ωi â†

i and [ĤB, âi] =

−ωi âi. The coefficients of any given even power of gi in the further Taylor series

expansion of Eqs. (8.21-8.22) are the same function, with same sign. The coefficients

of any given odd power of gi are the same function, but appear with opposite sign.

However the odd power coefficients consist of an odd number of annihilation and

creation operators, and therefore their mean value ⟨•⟩B is zero. On the other hand

the terms with an even power of gi in the Taylor series expansion cancel each other

when subtracted, and it follows that

〈
D̂B (t) ĤBD̂†

B (t)
〉

B
−
〈

D̂†
B (t) ĤBD̂B (t)

〉
B
= 0. (8.23)
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Using this result and the time evolution of ρ̂B(t) Eq. (8.20), it is easy to calculate the

mean heat exchanged by the bath ⟨Q⟩(t) = ⟨ĤB⟩t − ⟨ĤB⟩0,

⟨Q⟩(t) =
〈

D̂†
B (t) ĤBD̂B (t)

〉
B
− ⟨ĤB⟩0. (8.24)

This is not surprising, as one would expect the heat exchanged by the bosonic bath

to be independent of the initial state of the system, in a pure dephasing, independent

boson model. We expand the first term, noting that the displacement operator D̂B(t)

acts on the bosonic modes as

D̂†
B (t) âiD̂B (t) = âi + αi (t) , (8.25)

D̂†
B (t) â†

i D̂B (t) = â†
i + α∗i (t) . (8.26)

It follows that
〈

D̂†
B (t) ĤBD̂B (t)

〉
B = ∑i ωi |αi (t)|2 + ⟨ĤB⟩0. Eq. (8.24) leads then to

⟨Q⟩(t) = ∑i ωi |αi (t)|2. Using the definition of the displacement coefficients αi(t)

Eq. (8.15), and the definition of the spectral density function Eq. (3.17), we find the

mean heat for the independent boson model to be

⟨Q⟩ = 1
2

∫ ∞

0
dω

J(ω)

ω
[1− cos(ωt)] , (8.27)

which is strictly positive and independent of temperature. Interestingly, these prop-

erties are shared by all odd cumulants of the heat distribution in the IB model. For

an Ohmic spectral density, we have ⟨Q⟩ = αω3
Ct2/(1 + ω2

Ct2), which monotonically

approaches the reorganisation energy in the long-time limit:

⟨Q⟩∞ = αωC = Er. (8.28)
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The same passages that lead to the calculation of Eq. (8.27), lead to the exact analyt-

ical expression for the heat variance

⟨⟨Q2⟩⟩ = 1
2

∫ ∞

0
dω J(ω) [1− cos(ωt)] coth

(
βω

2

)
. (8.29)

Unlike the mean heat in Eq. (8.27), which is independent of temperature, the vari-

ance in Eq. (8.29) depends on the inverse temperature of the bath β.

8.2.2 Characteristic function for the independent boson model

We show that the heat characteristic function is independent of the state of the spin

and given explicitly by

ln χ(u) = −1
2

∫ ∞

0
dω

J(ω)

ω2 [1− cos(ωt)] (8.30)

×
{
[1− cos(ωu)] coth

( ω

2T

)
− i sin(ωu)

}
.

To do this we use the expression for the interaction-picture propagator ÛI(t) from

Eq. (8.14), in the definition of quantum characteristic function Eq. (6.4), where Û(t) =

Û0(t)ÛI(t), obtaining χ(u) = ⟨V̄†
−u(t)V̄u(t)⟩0. Here V̄u(t) = eiuĤB/2ÛI(t)e−iuĤB/2 is

the modified interaction-picture evolution operator, given explicitly by

V̄u(t) = |↑⟩⟨↑| ⊗∏
j

D̂B

(
αjeiωju/2

)
+ |↓⟩⟨↓| ⊗∏

j
D̂†

B

(
αjeiωju/2

)
, (8.31)

where we have expanded the operator Ŝz into its eigenbasis. D̂B(x) is the displace-

ment operator for each bosonic mode. We can therefore divide the characteris-

tic function into the sum of two terms, χ(u) = p↑χ↑(u) + p↓χ↓(u), where p↑ =

⟨↑|ρ̂S(0)|↑⟩ and p↓ = ⟨↓|ρ̂S(0)|↓⟩ denote the initial spin occupations and

χ↑(u) = ∏
j

〈
D̂†

B

(
αje−iωju/2

)
D̂B

(
αjeiωju/2

)〉
0

, (8.32)

χ↓(u) = ∏
j

〈
D̂B

(
αje−iωju/2

)
D̂†

B

(
αjeiωju/2

)〉
0

. (8.33)
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These can be evaluated using the property D̂B(x)D̂B(y) = eiIm(xy∗)D̂B(x + y) [124]

and the thermal average ⟨D̂(x)⟩ = exp[−1
2 |x|2 coth(βω/2)]. We find that χ↑(u) =

χ↓(u) and therefore χ(u) is independent of the spin populations. The final result for

χ(u) is quoted in Eq. (8.30), from which the n-th cumulant of the heat distribution

can be derived via the formula

⟨⟨Qn⟩⟩ = (−i)n dn

dun ln χ(u)
∣∣∣∣
u=0

. (8.34)

Through Eq. (8.34) we equivalently find Eq. (8.27) and Eq. (8.29) calculated before.

Explicitly, we obtain

⟨⟨Q2l−1⟩⟩ = 1
2

∫ ∞

0
dω J(ω)ω2l−3 [1− cos(ωt)] , (8.35)

⟨⟨Q2l⟩⟩ = 1
2

∫ ∞

0
dω J(ω)ω2l−2 [1− cos(ωt)] coth

(
βω

2

)
, (8.36)

for integers l > 0. We see that all cumulants are positive and only the even cumu-

lants depend on temperature.

8.2.3 Numerical and analytical solution: a comparison

For an Ohmic spectral density function, Eq. (8.27) depends on only two parameters,

the coupling strength and the frequency cutoff. While ωC sets the timescale of the

heat transfer process, the mean exchanged heat scales linearly with α. At first glance,

it is not obvious that for strong coupling our method will be able to give the correct

prediction, as this regime is often difficult to reach numerically. It is therefore of

interest to demonstrate the validity of the numerical method for different values of

α. The mean heat is plotted as a function of evolution time for several different cou-

pling strengths in Fig. 8.4. We use these results to validate the numerical modified

TEMPO algorithm, the results of which are shown in the same plot. We find excel-

lent agreement between our simulations and the exact solution for each value of α

considered. A simple estimate of the accuracy of our approach is obtained by com-
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Figure 8.4: Mean heat dissipated into the bath as a function of time in the independent boson
model, as given by Eq. (8.27) (triangles) and as calculated numerically (solid lines), for four
different values of the coupling strength α. The spin splitting is ω0 = 1, the temperature is
T = 5, and the bath cutoff is ωC = 5. The parameters controlling the numerical accuracy are
K∆ = 5, ∆ = 0.01, p = 100, and the derivative is taken at u = 0.01.

paring the asymptotic heat values to the exact result in Eq. (8.28). For the conver-

gence parameters we have used, we find a relative discrepancy of δQ/Q = 0.04%

in the case of α = 0.1, which increases to δQ/Q = 0.67% in the case of α = 1.5.

These discrepancies could be further reduced by increasing the accuracy of TEMPO

through changing the convergence parameters ∆, p and K.

To quantify the fluctuations of the exchanged heat, we consider the variance

⟨⟨Q2⟩⟩ = ⟨Q2⟩ − ⟨Q⟩2, given by Eq. (8.29). Unlike the mean heat in Eq. (8.27), which

is independent of temperature, the variance in Eq. (8.29) depends on the inverse

temperature of the bath β. We show that our method is accurate for both a lower

and a comparable temperature kBT with respect to the energy scale of the system

ω0. Fig. 8.5 shows the variance as a function of time, for different values of temper-

ature and coupling strength. The numerical predictions again match the analytical

solutions given by Eq. (8.29). Note that in order to get a better match between the

solutions for high coupling, α = 1.5, the value of the counting field at which the nu-

merical derivative of χ(u) is taken has been set to u = 0.005, compared to the value

of u = 0.01 in the case of α = 0.1. This suggests that high coupling strength cases

require in general more computational precision than low coupling cases, although
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Figure 8.5: Variance of the heat dissipated into the bath as a function of time in the inde-
pendent boson model. The solid lines are the second cumulant calculated numerically for
the values of temperature and coupling strength indicated. The triangular markers are the
corresponding analytical results given by Eq. (8.29). The spin splitting is set to ω0 = 1 and
the bath cutoff is ωC = 5. The parameters controlling the numerical accuracy are K∆ = 5,
∆ = 0.01, and p = 100. The derivative is taken at u = 0.01 for α = 0.1 and at u = 0.005 for
α = 1.5.

not higher precision in the singular-value decomposition cutoff or time-step. The

relative discrepancy in the asymptotic values between analytical and numerical so-

lutions for ⟨⟨Q2⟩⟩ in the case of T = 1 are found to be δQ2/Q2 = 0.12% for α = 0.1,

and δQ2/Q2 = 0.06% for α = 1.5. In the case of T = 0.1, α = 0.1, the relative dis-

crepancy is δQ2/Q2 = 0.13%.

Overall we can conclude that, within the discussed discrepancies, our numerical

method matches the analytical solution with great accuracy.

8.2.4 TEMPO memory depth

In Sec. 3.4 we have discussed the finite memory depth K of the TEMPO algorithm

that allows it to efficiently propagate the ADT. We have also discussed in Sec. 7.2

how the correlation function in the absence of counting field vanishes with a mem-

ory depth time K∆ which depends on the bath parameters. We will now show how

the memory depth affects the convergence of the mean heat and the variance of the

heat distribution studied throughout this thesis.
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Figure 8.6: Upper figure: asymptotic mean heat for the independent-boson model as a func-
tion of K. Lower figure: asymptotic variance of the heat distribution for the independent-
boson model as a function of K. Triangles represent the analytical solution given by Eq. (8.27)
(upper figure) and Eq. (8.29) (lower figure) in the long time limit. The figures are plotted for
different values of the temperature and coupling strength. The remaining parameters are
set to ωC = 5, ∆ = 0.01, p = 100 and u = 0.01.
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The form of the correlation functions in Eq. (6.51-6.53) sets the minimum value of

K∆ needed. Indeed, K∆ has to be large enough to so that the discretized correlation

functions are negligible. Preliminary calculations have shown that, for the values

of temperature and coupling strength we will consider, this requirement is satisfied

around the value K∆ = 5. Fig. 8.6 shows that in the independent-boson model, for a

fixed value of ∆, both the mean heat and the variance of the heat distribution reach

the predicted asymptotic value for K > 300, for all the values of T and α depicted.

For values K < 100, however, the asymptotic TEMPO result diverges greatly from

the predicted one. This clearly shows how our method, which is able to operate at

high values of the memory depth, has a much greater accuracy than other methods

which operate in the region K < 100.

8.3 Unbiased spin-boson model

We now turn to the spin-boson model with Ω ̸= 0 in the Hamiltonian Eq. (7.1),

focusing on the unbiased case where ω0 = 0. In this context, TEMPO has pre-

viously been used to pinpoint the localisation phase transition [16], which occurs

when T = 0 and at a critical value of the coupling α [125, 126], and to study non-

Markovian dynamics induced by spatially correlated environments [112]. Here we

use our numerical method based on TEMPO to investigate the non-equilibrium ther-

modynamics of relaxation over a range of temperatures and coupling strengths. In

the following, we take Ω = 1, which defines our unit of energy.

8.3.1 Numerical derivative and counting field value

It has been discussed in Sec. 6.1.2 that in order to evaluate the statistical moments

of the heat exchange, one needs to evaluate the derivative of the characteristic func-

tion at the point u = 0. The symmetries of χ(u) have been shown in Eq. (6.10) and

are illustrated in Fig. 8.7, for both the independent-boson and spin-boson model.

Note that in Fig. 8.7 it was not computationally possible to evaluate the character-
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Figure 8.7: Upper figure: independent-boson model. Lower figure: spin-boson model. Real
(dashed line) and imaginary (solid line) parts of the characteristic function, as a function of
the counting field parameter u. χ(u) is evaluated for both a small time t = 1 (blue) and
equilibrium times t = 10 for the IB model and t = 9.53 for the SB model (purple). The
temperature is set to T = 1 and the coupling strength to α = 0.1. The parameters controlling
the numerical accuracy are ωC = 5, K∆ = 5, ∆ = 0.01, and p = 100. The sampling of the
function is taken at intervals of δu = 0.2.
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istic function up to equilibrium time for values of u higher than those represented.

In the case of the spin-boson model, t = 9.53 was the maximum time the TEMPO

algorithm was able to reach for u = 3.

In our method we perform a numerical differentiation in order to calculate the

first and second moments of the heat distribution, as shown in Eq. (6.13) and Eq. (6.14).

In order to do that, we have to choose a suitable value of u. Note however that the

counting field is not a numerical parameter of the TEMPO algorithm, but a variable

of the characteristic function. The value uϵ of the counting field at which the nu-

merical derivative has to be taken must be such that, within the interval [0, uϵ], the

real part of the characteristic function can still be approximated by a constant func-

tion, and the slope of the imaginary part is linear. uϵ will depend on the model, as

shown by comparing the two figures in Fig. 8.7, and on the physical parameters α, T

and ωC. Indeed, Fig. 8.5 shows an example where for α = 0.1 it is sufficient to take

u = 0.01, but for stronger coupling such as α = 1.5 it is necessary to set u = 0.005 to

achieve the same precision.

We have found that in order to achieve a function ⟨Q⟩ that is constant in the long

time limit, for the parameters considered in this thesis the value of uϵ cannot be

greater than uϵ = 0.01. In general, decreasing the value of uϵ below uϵ = 0.005 will

increase the computational time but not improve significantly the precision of the

result.

8.3.2 High temperature and weak coupling

We begin by studying the regime of weak coupling and relatively high tempera-

ture, with α = 0.1 and T = 5. The mean heat transfer is plotted in Fig. 8.8 as a

function of time, starting from a pure initial state, ρ̂S(0) = |ψ(0)⟩⟨ψ(0)|. Specifi-

cally, we consider three different initial conditions: |ψ(0)⟩ ∈ {|←⟩, |→⟩, |↑⟩}, where

Ŝx|→⟩ = 1
2 |→⟩, Ŝx|←⟩ = −1

2 |←⟩ and Ŝz|↑⟩ = 1
2 |↑⟩. We also consider two values of

the cutoff, ωC = 5 and ωC = 50.

Inspection of these results suggests that the heat transfer, ⟨Q⟩ is a sum of two
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Figure 8.8: Heat transfer for the spin boson model in the high-temperature weak-coupling
regime, with bath cut-off ωC = 5 (upper panel) and ωC = 50 (lower panel). Solid lines:
numerical results for the mean heat ⟨Q⟩ (t) transferred to the bath as a function of time,
for three different initial states of the system. Dashed lines: asymptotic approximation for
⟨Q⟩∞ given by Eq. (8.37). The environment parameters are set to T = 5 and α = 0.1. The
parameters controlling the numerical accuracy are K∆ = 5, ∆ = 0.01, p = 100 and the
derivative is taken at u = 0.01 for ωC = 5 and u = 0.001 for ωC = 50.
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contributions. The first contribution is the heat transferred directly from the system

as it relaxes to a thermal state ρ̂S(∞) ∝ e−βĤS . This is the contribution we discussed

for the asymptotic Markovian limit in Sec. 8.1.1, whose corresponding change in in-

ternal energy ∆U∞ is defined in Eq. (8.5). The second contribution to the mean heat

transfer is associated with switching on the system-bath interaction, and is equiva-

lent to the work done in a cyclic process. If we assume this contribution to be the

reorganization energy Er defined in Eq (8.10) as the asymptotic value of ⟨Q⟩ in the

independent-boson model, we have the prediction

⟨Q⟩∞ = Er +
Ω
2

tanh
(

βΩ
2

)
+ ⟨ĤS⟩0. (8.37)

This approximation shows near-perfect agreement with the long-time limit of the

numerical results, as demonstrated by the dashed lines in Fig. 8.8. Notice that

Eq. (8.5) is independent of the details of the bath spectral density (i.e. α and ωC),

while Er does not depend in any way on the spin degrees of freedom. This indicates

that, at high temperature and weak coupling, the displacement of the bath modes is

not affected by the thermalization of the spin. Instead, these two processes give rise

to independent and additive contributions to the mean heat transfer.

These distinct modes of heat transfer take place on different time scales. This is

illustrated by the blue lines in both the ωC = 5 and ωC = 50 case of Fig. 8.8, cor-

responding to the low-energy initial state |ψ(0)⟩ = |←⟩. First, heat is transferred

to the environment as the system-bath interaction forces the bath modes to rapidly

adjust to their new equilibrium. This takes place over a time set by the inverse cut-

off, ω−1
C ≈ 0.2 for ωC = 5 and ω−1

C ≈ 0.02 for ωC = 50. Then, the direction of

heat flow reverses as the bath gives up energy in order to bring the spin to thermal

equilibrium, which occurs on a slower timescale fixed by the inverse of the thermal-

ization rate, which can be estimated as γ ≈ (π/4)J(Ω) coth(βΩ/2) from standard

weak-coupling theories, e.g., the secular Born-Markov master equation discussed in

Sec. 2.3, giving γ−1 ≈ 0.8 for ωC = 5 and γ−1 ≈ 0.65 for ωC = 50. A comparison

between the two different values of ωC in Fig. 8.8 shows how a larger frequency cut-
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Figure 8.9: Expectation value ⟨Ŝx⟩(t) for the spin boson model at weak coupling and high
temperature, for three different initial states of the system. The figure shows a comparison
between the numerical results (solid lines) and the results obtained in the Born-Markov
and weak-coupling approximation with the same parameters (dash-dotted lines of the same
color as the corresponding initial states). The environment parameters are set to T = 5,
α = 0.1 and ωC = 5. The parameters controlling the numerical accuracy are K∆ = 5,
∆ = 0.01, and p = 100.

off determines a shorter timescale for the heat transfer process, for fixed T and α. (Er

is ten times larger in the ωC = 50 case, so that the energy due to the displacement

of the bath modes dominates over that due to the spin thermalization.) It is worth

emphasising that the system-bath interaction energy gives a significant contribu-

tion to the heat transfer, even though the system dynamics is very well captured by

a Markovian, weak-coupling description. Indeed, for the parameters considered in

Fig. 8.8 and ωC = 5, the reorganisation energy is comparable to the natural energy

scale of the spin, since Er = Ω/2. Nevertheless, Fig. 8.9 shows that in this regime the

calculated spin dynamics (solid curves) matches the corresponding Born-Markov

and weak-coupling approximated problem (dash-dotted curves), within the limits

of such an approximation, the coupling strength being set to α = 0.1. The dis-

crepancy shown in Fig. 8.9 is ≲ 10%. We calculated the spin dynamics in the Born-

Markov theory by solving the Lindblad master equation (8.1) for u = 0, and plotting

⟨Ŝx⟩(t) = TrS[Ŝxρ̂S(t)].
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Figure 8.10: Mean heat ⟨Q⟩ (t) exchanged by the bath for the spin boson model in weak
coupling at temperature T = 1 (solid line) and T = 0.1 (dash-dotted line), as a function of
time, for an initial state of the system set to |↑⟩. Dashed lines: sum of the energy change
in the system and the reorganisation energy of the bath for the corresponding temperatures
and coupling strengths. Inset: same plot for temperature T = 1 and strong coupling. The
parameters controlling the numerical accuracy are K∆ = 5, ∆ = 0.01, p = 100 and the
derivative is taken at u = 0.01. ωC = 5 for all the plots.

8.3.3 Lower temperature and stronger coupling

We now consider the heat transfer at intermediate and low temperatures. In Fig. 8.10

we show the mean heat transfer for temperatures T = 1 and T = 0.1, starting from

the state |ψ(0)⟩ = |↑⟩. We see the same monotonic relaxation behaviour as was

observed at high temperature (the orange curve in Fig. 8.8), albeit proceeding on a

slower timescale as the temperature is reduced.

Outside of the high-temperature limit, the asymptotic value of ⟨Q⟩ can no longer

be well approximated by Eq. (8.37), shown by the dashed lines in Fig. 8.10. We find

that the the spin’s internal energy change and the total heat transfer are smaller in

magnitude than Eqs. (8.5) and (8.37) predict, as Fig. 8.10 and Fig. 8.11 both show,

leading to

⟨Q⟩∞ < Er +
Ω
2

tanh
(

βΩ
2

)
+ ⟨ĤS⟩0. (8.38)

This demonstrates that the tendency of the spin to minimise its local free energy

defined by ĤS competes with the displacing effect of ĤI on the bath modes. As a
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Figure 8.11: Variation of internal energy of the system ∆U (t) as a function of time for tem-
perature T = 1, where the solid blue line is for α = 1.5 and the solid orange line for α = 0.1,
and temperature T = 0.1, where the dash-dotted line is for α = 0.1. Dashed lines: total in-
ternal energy change of system in the Markovian regime, −Ω

2 tanh
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)
, for T = 1 (dashed

orange line) and T = 0.1 (dashed magenta line). The parameters controlling the numerical
accuracy are K∆ = 5, ∆ = 0.01 and p = 100. ωC = 5 for all the plots.

consequence of this interplay, both ∆U and ⟨W⟩ depend non-trivially on system-

bath correlations generated during the relaxation process.

The effect of the correlations with the bath is indeed to decrease the magnitude of

∆U with respect to the value −Ω
2 tanh

(
Ω
2T

)
predicted by Eq. (8.5), and represented

in Fig. 8.11 by the dashed lines. Such discrepancy is starkly greater for stronger cou-

pling.

In order to understand this, we note that at strong system-bath coupling the equi-

librium state must be generalised to [62]

ρ̂
eq
S =

TrB

[
e−βĤ

]
Tr
[
e−βĤ

] , (8.39)

i.e. the reduction of a global thermal state. This takes into account correlations with

the bath and reduces to the standard form ρ̂
eq
S ∝ e−βĤS in the weak-coupling limit.

Assuming that the open quantum system couples to the bath locally in space, the

interaction Hamiltonian is a local degree of freedom that is also expected to ther-
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malise, in the sense that

⟨ĤI⟩∞ =
Tr
[

ĤIe−βĤ
]

Tr
[
e−βĤ

] . (8.40)

We emphasise that these thermalization conditions hold only for local subsystems:

they do not imply that the system as a whole attains thermal equilibrium in the

long-time limit.

8.3.4 System-bath correlations and variational theory of heat

transfer

We estimate the effect of system-bath correlations on heat transfer using the vari-

ational approach pioneered by Silbey and Harris [127], which has been success-

fully applied to understand various static and dynamic properties of the spin-boson

model [128–130]. The basic idea is to express the Hamiltonian in a different basis by

applying a unitary transformation that mixes the system and bath degrees of free-

dom. Specifically, the Hamiltonian is diagonalized approximately using the polaron

transformation in Eq. (8.9), with the displacements { f j} interpreted as variational

parameters. Applying the transformation P̂, we arrive at P̂†ĤP̂ = Ĥ′0 + Ĥ′I , where

it has been found in [127] that

Ĥ′0 = Ω′Ŝx + ∑
j

ωj â†
j âj + ∑

j

f j( f j − 2gj)

4ωj
, (8.41)

Ĥ′I = Ω
[(

B̂− B
)

Ŝ+ + h.c.
]
+ Ŝz ∑

j
(gj − f j)(âj + â†

j ). (8.42)

Here B̂ = ∏k D̂( fk/ωk), or explicitly,

B̂ = ∏
j

exp

[
f j

ωj

(
â†

j − âj

)]
, (8.43)
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and B = ⟨B̂⟩0, and using the displacement operator thermal average ⟨D̂(x)⟩0 =

exp[−1
2 |x|2 coth(βω/2)], one can write

B = exp

[
−1

2 ∑
j

f 2
j

ω2
j

coth
(

βωj

2

)]
. (8.44)

The average defined here is relative to the variational Hamiltonian Ĥ′0,

⟨•⟩0 =
Tr[•e−βĤ′0 ]

Z0
, (8.45)

where Z0 = Tr[e−βĤ′0 ]. We have defined Ŝ+ = (Ŝx + iŜy)/2 the spin raising operator,

and Ω′ = BΩ is a renormalized tunneling amplitude.

We need to choose the set { f j} such that the Feynman-Bogoliubov upper bound

on the free energy, F = −T ln Tr[e−βĤ], is minimized, under the key assumption

that the variational interaction Hamiltonian Ĥ′I is small enough. The Feynman-

Bogoliubov upper bound is defined as [127]

F ≤ FB = −T ln Z′0 + ⟨Ĥ′I⟩0 +O(⟨Ĥ′2I ⟩0), (8.46)

where ⟨Ĥ′I⟩0 = 0 by construction. This procedure is designed to give the optimal

approximation with the free thermal state, exp[−βĤ′0]/Z′0 ≈ exp[−βĤ′]/Z′, where

Ĥ′ = P̂†ĤP̂, Z′ = Tr[e−βĤ′ ], within the class of variational states defined by { f j}.

Writing explicitly Eq. (8.46), one can find that [127]

FB = ∑
j

f j( f j − 2gj)

4ωj
− T ln

[
2 cosh

(
βΩ′

2

)]
. (8.47)

All terms O(⟨Ĥ′2I ⟩0) are dropped since they are small by assumption.

The minimum of Eq. (8.47) is defined by ∂FB/∂ f j = 0, with solution f j = gjϕ(ωj),
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where

ϕ(ω) =

[
1 +

Ω′

ω
tanh

(
βΩ′

2

)
coth

(
βω

2

)]−1

, (8.48)

Ω′ = Ω exp
[
−1

2

∫ ∞

0
dω

J(ω)

ω2 ϕ2(ω) coth
(

βω

2

)]
, (8.49)

which must be solved self-consistently for Ω′. Using these results in Eq. (8.42) also

shows self-consistently that Ĥ′I = O(Ω). Eq. (8.46) can thus be interpreted as a

formal expansion in powers of Ω/ωc. That is, the variational approach treats the

spin Hamiltonian ĤS as a small perturbation with respect to the independent-boson

Hamiltonian ĤB + ĤI , and becomes exact in the limit Ω→ 0.

This equilibrium theory is not useful for the evaluation of the dynamics of the

bath, which is far from equilibrium at all times. However, we find it useful in the

evaluation of ⟨ĤB⟩. As discussed in Eq. (8.39) and Eq. (8.40), we can assume sub-

system equilibration, which is known to be a correct assumption for exactly solvable

models and expected for relatively weak coupling. If Eq. (8.39) holds true, then

⟨ĤS⟩∞ =
Tr
[

ĤSe−βĤ
]

Tr
[
e−βĤ

] . (8.50)

If the system is locally coupled to one part of an infinite bath, then the same as-

sumption holds for the interaction Hamiltonian mean value, and Eq. (8.40) holds

true. Then ĤS and ĤI can be considered operators on some augmented system S′

which should approximately thermalize, with the assumption that the residual bath

B′ is approximately thermal at the same temperature. It follows from such reason-

ing and Eq. (8.50), under the assumption that we can approximate P̂†ĤP̂ ≈ Ĥ′0 and

therefore e−βĤ ≈ P̂e−βĤ′0 P̂†, that

⟨ĤS⟩∞ ≈
Tr
[

ĤSP̂e−βĤ′0 P̂†
]

Tr
[

P̂e−βĤ′0 P̂†
] =

Tr
[

P̂†ĤSP̂e−βĤ′0
]

Z′0
(8.51)

= −Ω′

2
tanh

(
βΩ′

2

)
. (8.52)
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Similarly, from Eq. (8.40),

⟨ĤI⟩∞ ≈
Tr
[

P̂†ĤI P̂e−βĤ′0
]

Z′0
= −1

2

∫ ∞

0
dω

J(ω)

ω
ϕ(ω). (8.53)

Here Ω′ is the renormalized tunneling matrix element defined in Eq. (8.49), and

E′r =
1
2

∫
dω J(ω)ϕ(ω)/ω the renormalized reorganization energy. From the conser-

vation of the total energy ⟨Ĥ⟩∞ = ⟨Ĥ⟩0, we have that the asymptotic average heat

exchanged by the bath ⟨Q⟩∞ = ⟨ĤB⟩∞ − ⟨ĤB⟩0 is

⟨Q⟩∞ = ⟨ĤS⟩0 − ⟨ĤS⟩∞ + ⟨ĤI⟩0 − ⟨ĤI⟩∞ =

= E′r +
Ω′

2
tanh

(
βΩ′

2

)
+ ⟨ĤS⟩0, (8.54)

where ⟨ĤI⟩0 = 0 for initial product states. This has the same form as Eq. (8.37).

The variational theory predicts that both the spin tunnelling matrix element and

the reorganisation energy are reduced relative to their bare values, since Ω′/Ω ≤ 1

and ϕ(ωj) ≤ 1. Physically, this occurs because the tunnelling between spin states

|↑⟩ ↔ |↓⟩ induced by ĤS is suppressed by the spin-dependent mode displacements

generated by ĤI , which reduce the effective overlap between the two spin states.

The equilibrium state emerges from a balance of these two competing effects, which

explains why both ∆U and ⟨Q⟩ are reduced at low temperature relative to Eqs. (8.5)

and (8.37). We show in Fig. 8.12 that the variational theory gives a good quantitative

approximation to the mean heat transfer at low temperature, T = 0.1, with the best

agreement at weak coupling. At higher temperatures on the order of T = 1 and

above, we find that the approximation breaks down completely because the renor-

malisation of the tunnelling amplitude is overestimated, leading to values Ω′ ≪ Ω.

This failure is presumably due to the neglect of thermally activated transitions gen-

erated by Ĥ′I , which become relevant at temperatures βΩ′ ≲ 1. On the other hand

Fig. 8.12 shows that the additive ansatz given by Eq. (8.37) performs worse than the

variational theory across all the coupling range.
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Figure 8.12: Long-time limit of the heat transfer for the spin boson model as a function
of coupling strength, calculated using the path integral (circles), the additive theory (dash-
dotted) and the variational method (line), for T = 0.1.

At very strong coupling, the variational theory performs well at all temperatures.

In this regime, strong correlations with the bath lead to an almost maximally mixed

equilibrium state of the spin, corresponding to a vanishing tunnelling rate in the

variational frame, Ω′ → 0. As a result, the heat transfer for an initial state |ψ(0)⟩ =

|↑⟩ reduces to the bare reorganisation energy, Er. This behaviour is shown in the

inset of Fig. 8.10, where the solid curve converges to ⟨Q⟩ ≈ Er to a good approxima-

tion. The dynamics of the heat transfer is correspondingly fast in this regime since

it depends only on the bath cutoff scale, ωC.

8.3.5 Heat fluctuation-dissipation relation in the spin-boson model

As a final demonstration of our method, we study the temperature dependence of

the heat fluctuations in the spin-boson model. Fig. 8.13 shows the asymptotic vari-

ance of the heat distribution at long times, starting from the initial state |ψ(0)⟩ = |↑⟩.

We see that the fluctuations increase with temperature, and grow approximately lin-

early with T at high temperature.

This linear behaviour of ⟨⟨Q2⟩⟩∞ can be understood as a manifestation of the

fluctuation-dissipation relation (FDR) that is well known in the context of non-

equilibrium work distributions. FDRs have been discussed in Sec. 4.3.1, and in
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Figure 8.13: Variance of the heat distribution as a function of temperature in the spin-boson
model, for both weak (α = 0.1) and strong (α = 1.5) coupling starting from the initial state
|ψ(0)⟩ = |↑⟩. The parameters are ωC = 5, K∆ = 5 and ∆ = 0.01, with p = 100 and u = 0.005
for α = 1.5, and p = 120 and u = 0.01 for α = 0.1.

particular Eq. (4.13) holds for Gaussian distributions of work W. In the case of

the independent-boson model, ĤS is a conserved quantity, which implies ∆U = 0.

From the first law of thermodynamics Eq. (4.6), it follows that ⟨Q⟩ = ⟨W⟩ and heat

is identical to work. The process is cyclic because the initial and final states of the

open system are equilibrium states where ρ̂S(t f ) = ρ̂S(0). Then from the definition

of system entropy change Eq. (4.19), ∆S = 0. The equilibrium free energy change is

defined as ∆F = ∆U − T∆S, and therefore ∆F = 0. It follows that we can write an

equivalent FDR for the heat distribution from Eq. (4.13):

⟨⟨Q2⟩⟩ = 2T⟨Q⟩. (8.55)

At high temperature, this relation holds at all times in the independent-boson model,

as can be seen by comparing Eqs. (8.27) and (8.29) in the limit βωC ≪ 1. At low

temperatures, the relation might fail at times too small for the open system to equi-

librate.

In the spin-boson model, we no longer have equality between work and heat since

∆U ̸= 0. Nevertheless, we find numerically that the FDR (8.55) approximately holds

at high temperatures, βωC ≲ 1, as shown in Fig. 8.14. This behaviour stems from the
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Figure 8.14: Asymptotic ratio of the variance to the mean heat as a function of temperature,
showing the validity of the FDR for T ≫ ωC. Dash-dotted and solid lines are the numerical
results for the spin boson model, for the values of α indicated. The figure shows a compari-
son with the analytical solution for the independent boson model, which is independent of
α (triangles). The FDR value of ⟨⟨Q2⟩⟩∞/T⟨Q⟩∞ = 2 is shown by the black dashed line. The
parameters are the same as in Fig. 8.13.

fact that the spin’s contribution to the heat fluctuations is limited by its finite energy

splitting Ω, whereas the contribution of the spin-boson interaction energy can grow

arbitrarily large. The heat fluctuations are thus dominated by independent-boson

physics at high temperature. For strong coupling, where the spin energy scale Ω

is negligible compared to the reorganisation energy Er, we show in Fig. 8.14 that

the heat fluctuations are essentially identical in the spin-boson and independent-

boson models at all temperatures. One limitation encountered in the calculation of

the data shown in Fig. 8.14, is that the TEMPO algorithm was not able to compute

the variance up to equilibrium time for very low temperatures. Indeed, the lowest

temperature shown is T = 0.4. Exploring the validity of the heat FDR in other sce-

narios, e.g. multipartite open quantum systems, is an interesting avenue for future

work.
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9 | Thermodynamics of decoherence

During any open dynamical process, correlations (both classical and non-classical)

build between the environment and the quantum system, whether the environment

is a measuring apparatus or a second quantum system, or both. The dynamics se-

lects a set of preferred states in the Hilbert space of the quantum system, namely

the eigenstates of an observable that is a constant of motion. In this process, the

environment acts as a measurer of the conserved observable, destroying quantum

coherence. Loss of quantum coherence means loss of phase information in the quan-

tum system. In general, the probability density of a local measurement on the sys-

tem will contain an interference or phase term, which depends on the overlap of the

environment energy eigenstates [131]. For a large environment, interaction events

between many degrees of freedom lead the overlap terms to decay in a time frame

defined by a characteristic decoherence timescale τd. Consequently, the phase term

decays and quantum coherence between different system eigenstates can no longer

be measured. If the system is represented by a reduced density matrix in its en-

ergy eigenbasis, the diagonal elements are conserved, while off-diagonal elements,

which depend on the phase information, are erased by decoherence. This process

is also referred to as the quantum-to-classical transition, as information about quan-

tum correlations is lost and quantum probability distributions approach classical

probability distributions.

Decoherence as a phenomenon arising from the coupling of an open quantum

system to a thermal bath is discussed in Sec. 4.4.3. This coupling leads a displaced

system back to its thermal equilibrium during a thermalization process (see Sec. 4.4.2).
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Thermalization is fundamental in thermodynamic protocols, making environment-

induced decoherence an important aspect. While the study of heat transfer from an

open system to a bath intuitively assumes an exchange of energy, in a pure deco-

herence process the system energy is conserved in the absence of dissipative phe-

nomena. It could then seem that no heat is generated during a pure decoherence

protocol. In the following, we show how, surprisingly, non-zero heat exchange is

generated in this context [92].

9.1 Pure decoherence

We consider a pure dephasing (or pure decoherence) process, so that its effects on

heat statistics can be distinguished from those arising from dissipation or stochastic

fluctuations. The conservation of the open system energy ∆U = 0 implies, from

Eq. (4.6), that the heat exchanged is solely in the form of work performed on the

system, ⟨Q⟩ = ⟨W⟩. As there is no external force assumed to be acting on the open

system, it could seem that ⟨Q⟩ = 0 for a pure dephasing process. However, we

show that this is not the case. Contrary to expectations, decoherence can lead to

generation of heat. While the conservation of ĤS does not imply ⟨Q⟩ = 0 , in order

to have decoherence and heat exchange it is necessary that
[
ĤB, ĤI

]
̸= 0. We show

that the origin of non-null heat exchange in pure dephasing processes arises from

the interaction between system and bath. Decoherence is generated during the cou-

pling process, which requires work to switch on and maintain the interaction. Such

average work is then absorbed into the bath as heat when the system is decoupled

from it at the end of the protocol.

98



9.2 Characteristic function of heat in pure decoherence

processes

Following the standard two-point measurement scheme [65–67], the work W and

heat Q of a quantum process are defined by a difference in energy obtained by pro-

jective measurements at the initial time, t = 0, and final time, t = t f . Specifically, W

pertains to measurements of the total Hamiltonian, Ĥ, while Q corresponds to mea-

surements of the bath Hamiltonian, ĤB, as already discussed in Sec. 4.4. In order for

work and heat to be simultaneously measurable, therefore, the interaction energy

must be negligible at the beginning and end of the evolution [62]. Here, we assume

that the coupling is suddenly switched on at t = 0 and switched off at t f , but other

switching protocols yield similar results.

We write a very general equation for the characteristic function of heat of a bath

interacting with an open quantum system, with overall Hamiltonian described by

Eq. (2.2). Here the only assumptions are that
[
ĤS, ĤI

]
= 0, and that the initial state

of the system is the product state Eq. (2.11). We show that the characteristic function

of heat is a weighted sum of characteristic functions of work.

From Eq. (6.4) with Û(t f ) = exp[−it f Ĥ], we use [ĤS, ĤI ] = 0 to cancel the terms

e±it f ĤS and write

χ(u) =Tr
[
eiĤBt f +i ∑k gkΠ̂k⊗V̂kt f eiuĤB e−iĤBt f−i ∑k gkΠ̂k⊗V̂kt f e−iuĤB ρ̂S (0)⊗ ρ̂B (0)

]
. (9.1)

Here we used the most generic form of the interaction Hamiltonian defined in

Eq. (4.23) for a process where ∆U = 0. The generic open quantum system ini-

tial state can be written in the orthonormal eigenbasis of ĤS, {|n⟩}, as ρ̂S (0) =

∑i,j ρ
ij
S (0) |i⟩ ⟨j|, where ρ

ij
S (0) = ⟨i|ρ̂S (0) |j⟩. Inserting a resolution of the identity

in the eigenbasis of the quantum system energy in Eq. (9.1), and tracing over its
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degrees of freedom S, it is straightforward to calculate

χ (u) = ∑
n

TrB

[
∑
m

∑
i

δnmeit f ĤB+it f gnV̂n eiuĤB×

δmie
−it f ĤB−it f gmV̂m e−iuĤB ρin

S (0) ρ̂B (0)
]

, (9.2)

where we have used ⟨n|Π̂k|m⟩ = δnkδkm and ⟨n|m⟩ = δnm. Using the Kronecker

delta properties, Eq. (9.2) simplifies to

χ (u) =∑
n

pnTrB

[
eit f ĤB+it f gnV̂n eiuĤB e−it f ĤB−it f gnV̂n e−iuĤB ρ̂B (0)

]
, (9.3)

with pn = ρnn
S (0). It is straightforward to see from the definition of Ĥn Eq. (4.25)

that

χ (u) = ∑
n

pnTrB

[
eit f Ĥn eiuĤ0e−it f Ĥn e−iuĤ0 ρ̂B (0)

]
. (9.4)

We obtain

χ(u) = ∑
n

pnχn(u), (9.5)

where we have defined

χn(u) = ⟨eiĤnt f eiuĤB e−iĤnt f e−iuĤB⟩B. (9.6)

A very similar calculation to the one leading to Eq. (9.4), leads to the expression

for the time evolution of ρ̂B(t f ). From ρ̂B(t f ) = TrS
[
Û
(
t f
)

ρ̂ (0) Û† (t f
)]

, it follows

that

ρ̂B(t f ) = ∑
n
⟨n|e−it f ĤB−it f ∑k gkΠ̂k⊗V̂k

×∑
i,j

ρ
i,j
S (0) |i⟩ ⟨j| ρ̂B(0)eit f ĤB+it f ∑k gkΠ̂k⊗V̂k |n⟩, (9.7)

where we have again used the assumption [ĤS, ĤSB] = 0 and the decomposition of

the system operator into the eigenbasis of ĤS. Using the orthonormality of the open
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system energy eigenbasis, it follows that

ρ̂B(t f ) =∑
n

pne−it f Ĥn ρ̂B (0) eit f Ĥn (9.8)

from which it is clear that ÛB(t f ) = e−it f Ĥn is the operator that defines the time evo-

lution of the bath density matrix.

We recognise then χn(u) as the characteristic function of the work, as defined in

Eq. (6.8), done on the bath in the following (fictitious) cyclic unitary process. The

bath is initialised in the equilibrium state ρ̂B(0) with Hamiltonian ĤB. The Hamilto-

nian is then suddenly perturbed as ĤB → Ĥn = ĤB + gnV̂n and the bath is allowed

to evolve for a time t f before the perturbation is switched off again.

9.3 Dissipated heat and work arising from interaction

switching

The work done during the described cyclic process, w, is determined by the differ-

ence in energy that would be obtained by projective measurements of ĤB at the start

and finish of the evolution. This work is distributed according to the probability dis-

tribution (see Sec. 4.4.4)

Pn(w) = ∑
j,k

e−βEk

ZB
|⟨Ej|e−iĤnt f |Ek⟩|2δ

(
w− (Ej − Ek)

)
, (9.9)

where |Ej⟩ is an eigenvector of ĤB with eigenvalue Ej. Taking the Fourier transform

of Pn(w) in Eq. (9.9), we can verify that it results in Eq. (9.6) according to the def-

inition of characteristic function Eq. (4.29). The heat probability distribution P(Q),

defined as the inverse Fourier transform of Eq. (9.4), is given by

P(Q) = ∑
n

pnPn(w = Q). (9.10)
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The results shown in Eq. (9.5) and Eq. (9.10) express the dissipated heat as a sum

over the work done in independent cyclic processes, each one conditioned on a state

|n⟩ of the open system and weighted by the probability pn = ⟨n|ρ̂S(0)|n⟩ that the

system is initially in that state. Accordingly, the bath dynamics is described by the

unital map ρ̂B(t f ) = ∑n pne−iĤnt f ρ̂B(0)eiĤnt f , with e−iĤnt f the physical time evolu-

tion operator for the bath conditional on the state |n⟩. The average heat exchanged

by the bath is the first moment of Eq. (9.10),

⟨Q⟩ = ∑
n

pn⟨w⟩n, (9.11)

where ⟨w⟩n is the mean work associated to the conditional distribution Pn. Since the

average work done in any thermodynamic cyclic process is non-negative, we con-

clude that ⟨Q⟩ ≥ 0. The free energy change vanishes for cyclic processes, ∆F = 0, so

that the Jarzynski equality discussed in Sec. 4.3.1 in this case becomes the integral

fluctuation relation ⟨exp (−βQ)⟩ = 1. This also follows from Eq. (9.10) because each

Pn(w) obeys the Jarzynski equality,
∫

dwe−βwPn(w) = 1 [44, 67].

We also have that ∆S ≥ 0 because the evolution of the system density matrix

in Eq. (4.24) is manifestly unital [132]. Therefore, pure decoherence processes obey

a stronger bound on entropy production than the second law, since both terms in

Eq. (4.7) are separately non-negative. We also note that the system entropy change

∆S is nonzero only when the system density matrix has initial coherences, while

the entropy flux β⟨Q⟩ depends only on the populations pn. Therefore, the stan-

dard expression Eq. (4.7) represents a decomposition of the entropy production into

contributions from initial coherences and populations in the energy eigenbasis, re-

spectively [133–135].
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9.4 Decoherence without heat dissipation and its

connection to static phase noise

The evolution of the system coherences in time is intimately connected to the pres-

ence of non-trivial heat dissipation. Indeed, our results show that finite heat dissi-

pation generically occurs in a pure decoherence process, unless [Ĥn, ĤB] = 0 for all

n. We show that decoherence processes that do not involve heat absorption by the

bath are generically equivalent to classical, static phase noise.

From Eqs. (9.5) and (9.6) we see that a sufficient condition for vanishing heat

dissipation is that [Ĥn, ĤB] = [V̂n, ĤB] = 0 for all n. If the Hamiltonian ĤB is non-

degenerate, this further implies that [V̂n, V̂m] = 0 for all m, n. That is, the interaction

operators {V̂n} share a common eigenbasis with ĤB, i.e., V̂n|Ej⟩ = Vn(Ej)|Ej⟩, with

Vn(Ej) denoting the eigenvalue of V̂n corresponding to the energy eigenvector |Ej⟩ of

ĤB. Under these conditions, the overlap function ⟨eiĤnte−iĤmt⟩B entering Eq. (4.24)

can be written as

〈
eiĤnte−iĤmt

〉
B
= ∑

j
p(Ej)e

i(Vn(Ej)−Vm(Ej))t, (9.12)

which describes the average of a random phase shift that takes the value Vn(Ej)−

Vm(Ej) with probability p(Ej) = e−βEj /ZB. This result can be reproduced by a

simple noise model in which the dynamical bath is replaced by a random, time-

independent Hamiltonian

ĤS = ∑
n
(εn + δn)|n⟩⟨n|, (9.13)
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where the energy shift δn is a stochastic variable that takes the possible values Vn(Ej)

with corresponding probabilities p(Ej). We can define a state

ρ̂S(t) = ⟨e−itĤS ρ̂S(0)eitĤS⟩ =

= ∑
j

p(Ej)e−it ∑n(εn+Vn(Ej))|n⟩⟨n|ρ̂S(0)eit ∑n(εn+Vn(Ej))|n⟩⟨n|, (9.14)

which is an average over the noise distribution p(Em), whose matrix elements ρ̂mn
S (t)

= ⟨m|ρ̂S(t)|n⟩ are given exactly by Eq. (4.24), with Eq. (9.12). We have therefore

shown that the absence of heat dissipation implies that the dephasing noise is equiv-

alent to a static, classical, random phase shift for each eigenstate of the open quan-

tum system. This contrasts sharply with naturally occurring quantum dephasing

noise, which is typically characterised by a nontrivial frequency spectrum [136–138].

Such time-dependent noise is a consequence of dynamical fluctuations of the bath,

which arise when the absorption of energy drives it out of equilibrium.

We note that, since [V̂n, ĤB] = 0 for all n is only a sufficient condition, we can-

not rule out the absence of heat dissipation when [V̂n, ĤB] ̸= 0 for certain initial

environment states, e.g., infinite-temperature states. Furthermore, the arguments

above have assumed that ĤB is nondegenerate. If we allow ĤB to be degenerate,

it is possible to construct models in which [V̂n, ĤB] = 0 for all n yet [V̂n, V̂m] ̸= 0

for some m, n. Remarkably, such models can feature nontrivial decoherence for the

open system despite the state of the bath being completely invariant under the dy-

namics.

9.5 An application: Qubit decoherence in a fermionic

lattice environment

To exemplify the thermodynamics of decoherence, we now focus on a specific sys-

tem comprising a qubit coupled to a noninteracting fermionic bath. Our setup is

motivated by recent experiments that monitored the decoherence of two-level impu-
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rity atoms embedded in a single-component atomic gas of ultracold fermions [81].

At low temperatures, the atoms interact via s-wave scattering. The fermions there-

fore do not interact with each other due to wavefunction antisymmetry, while the

impurity-fermion interaction strength is proportional to the scattering length, which

is generally different for each internal state of the impurity. For simplicity, we as-

sume that the host Fermi gas is confined to the lowest band of a one-dimensional

lattice potential, e.g., a species-selective optical lattice [139]. The Hamiltonian takes

the form

ĤS =
ϵ

2
σ̂z, (9.15)

ĤB = −Ω
2

L

∑
j=1

(
ĉ†

j ĉj+1 + ĉ†
j+1ĉj

)
, (9.16)

ĤI = g |1⟩ ⟨1| ⊗ ĉ†
1 ĉ1. (9.17)

Here, σ̂z is the Pauli spin operator for the qubit, with ϵ the energy level splitting, and

ĉj (ĉ†
j ) is the fermionic annihilation (creation) operator for site j, with anticommuta-

tion relation {cj, c†
k} = δjk. ĤB describes the tunnelling of fermions on the lattice,

where Ω is the hopping amplitude and we impose periodic boundary conditions,

ĉL+1 ≡ ĉ1. We take the thermodynamic limit by choosing the number of lattice sites

L = 500 to be large enough so that all results are independent of L. We also fix the

average fermion number N = 250 to half-filling, so that the Fermi energy equals Ω.

Finally, ĤI describes a collisional energy shift for the fermion localised on site j = 1,

with coupling strength g to qubit state |1⟩ and vanishing coupling when the qubit

is in state |0⟩. In the context of ultracold atoms, this can be achieved by tuning the

corresponding scattering length to the zero crossing of a Feshbach resonance [140].

We consider a standard Ramsey interferometry protocol, following Refs. [88, 90,

141, 142]. The bath is initialised in thermal equilibrium with the qubit in its nonin-

teracting state |0⟩. At t = 0, a π/2-pulse prepares the qubit state ρ̂S(0) = |+⟩ ⟨+|,

with |+⟩ = (|1⟩ + |0⟩)/
√

2 a superposition of the impurity eigenstates. Accord-

ing to Eq. (4.24), the qubit coherence evolves as ρ̂10
S (t) = e−iϵtν(t)ρ̂10

S (0), where
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Figure 9.1: Decoherence functions for a qubit impurity in a 1D fermionic lattice. The value
of the coupling is g = 0.1Ω (black lines), g = 0.5Ω (red lines) and g = Ω (blue lines), with
temperature T = 0 (dotted lines), T = 0.01Ω (solid lines), and T = 0.1Ω (dashed lines). Axes
are in logarithmic scale. Inset: Regular part of the heat distribution P(Q) = 1

2 δ(Q) + 1
2 P1(Q)

for T = 0.1Ω, and g = Ω (blue, dashed), g = 0.5Ω (red, dashed).

ν(t) = ⟨eiĤ0te−iĤ1t⟩B is the decoherence function with

Ĥ0 = ĤB, (9.18)

Ĥ1 = ĤB + gĉ†
1 ĉ1. (9.19)

This complex function may be experimentally extracted by applying a second π/2-

pulse with a variable phase and measuring the final qubit populations [81, 84, 89].

9.5.1 Functional determinant approach and decoherence function

The decoherence function ν(t) = ⟨eiĤ0te−iĤ1t⟩B for a bath of fermionic modes can be

computed exactly through the functional determinant approach [143–145], which

expresses the average of a product of many-body exponential operators in terms of

single-particle quantities through the Levitov formula [143],

〈
eŶ1eŶ2 ...eŶN

〉
B
= det

[
1− n̂ + n̂eŷ1eŷ2 ...eŷN

]
, (9.20)
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where Ŷi are bilinear many-body fermionic operators, ŷi are their corresponding

single-particle operators, and n̂ is the single-particle occupation number operator.

In particular, the decoherence function is found from

ν(t) = det
[
1− n̂ + n̂eiĥ0te−iĥ1t

]
, (9.21)

where n̂ =
(

eβ(ĥ0−µ) + 1
)−1

is the single-particle occupation number operator, µ

is the chemical potential and ĥ0 and ĥ1 are the single-particle counterparts of the

Hamiltonians Ĥ0 and Ĥ1. The absolute value of ν(t) is shown in Fig. 9.1 for differ-

ent temperatures and coupling constants.

The decoherence function crosses over from power-law to exponential decay after

the thermal timescale β. This behavior is a manifestation of the Fermi-edge singu-

larity [146, 147] associated with Anderson’s orthogonality catastrophe [148]. Deco-

herence arises because collisions with the impurity excite particle-hole pairs in the

gas, gradually reducing the overlap between the perturbed and unperturbed states

of the environment. These excitations are initially restricted to the vicinity of the

Fermi surface due to the Pauli exclusion principle, generating the slow power-law

decoherence seen in Fig. 9.1 for t ≪ β. Thermal broadening of the Fermi surface

eventually leads to the onset of exponential decay when t ≳ β. At stronger cou-

pling, we also observe oscillations of the qubit coherence (blue curves in Fig. 9.1),

indicating a highly non-Markovian (nondivisible) evolution [20]. We therefore see

that nontrivial decoherence emerges here as a direct consequence of the dissipation

of energy into the fermionic bath.

9.5.2 Heat dissipation in pure decoherence

The characteristic function of heat follows from Eqs. (9.5) and (9.6) as

χ(u) =
1
2
+

1
2

〈
eit f Ĥ1eiuĤ0e−it f Ĥ1e−iuĤ0

〉
B

. (9.22)
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The first, constant term χ0 = 1 pertains to the |0⟩ component of the qubit’s initial

superposition state, which leads to exactly zero heat dissipation, i.e., P0(Q) = δ(Q).

The second term χ1(u) =
〈

eit f Ĥ1eiuĤ0e−it f Ĥ1e−iuĤ0
〉

B
in Eq. (9.22) corresponds to

the interacting state |1⟩ and can be expressed as a functional determinant. We show

how the identity in Eq. (9.20) can be used to exactly compute χ1(u).

The unperturbed energy eigenbasis {|En⟩}L
n=1 of Ĥ0 and the perturbed energy

eigenbasis
{∣∣∣E′j〉}L′

j=1
of Ĥ1 have in general size L and L′ respectively. We define

M̂ = ∑m |Em⟩ ⟨E′m| an unitary operator represented by an L× L′ matrix whose ele-

ments are mkj =
〈

E′k
∣∣Ej
〉
. The operator M̂ transforms between the perturbed and

unperturbed basis. When applying Eq. (9.20) to function χ1 (u), we consider that

the determinant is evaluated in the unperturbed basis, and transform ĥ1 from its

diagonal basis to the basis of eigenvalues of ĥ0. Therefore we have

χ1 (u) = det
[
1− n̂ + n̂

(
M̂†eiĥ1t f M̂

)
eiuĥ0

(
M̂†e−iĥ1t f M̂

)
e−iuĥ0

]
. (9.23)

The probability distribution P1(Q) associated to this second term is shown in the

inset of Fig. 9.1, for a fixed temperature and two different values of the coupling

constant. The divergence near Q = 0 is a hallmark of the Fermi edge singularity,

which is centred around zero energy as a consequence of the cyclic nature of the

process. For stronger coupling, there is also a feature near the Fermi energy Q = Ω,

which can be attributed to the creation of particle-hole excitations at the bottom of

the band [142]. The mean heat ⟨Q⟩ is shown in Fig. 9.2 as a function of time for

the same parameters as Fig. 9.1. We observe that ⟨Q⟩ grows with protocol time for

short evolutions, Ωt f ≲ 1, and then executes long-lasting oscillations around a finite

value for relatively long protocols Ωt f ≫ 1 before eventually settling to a constant.

These intermediate-time oscillations can be understood as a consequence of the fi-

nite bandwidth of the fermionic lattice, and are more prominent for strong coupling,

g ≳ Ω. The temperature dependence of the mean heat absorbed at asymptotically

long times is shown in Fig. 9.3, for two different values of the coupling constant.

As its temperature increases, the bath absorbs less heat during the decoherence pro-
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Figure 9.2: Heat transfer as a function of time for a qubit in a 1D fermionic lattice. The values
of the coupling are g = 0.1Ω (black lines), g = 0.5Ω (red lines) and g = Ω (blue lines), with
temperatures T = 0 (dotted lines), T = 0.01Ω (solid lines), and T = 0.1Ω (dashed lines).
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Figure 9.3: Long-time limit of the heat transfer as a function of temperature for a qubit in a
1D fermionic lattice, with couplings g = Ω (blue lines) and g = 0.1Ω (inset, red lines).
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cess, which reflects the reduced disturbance of the high-temperature Fermi sea by

the impurity perturbation.

9.6 Energy costs of projective measurements in pure

decoherence processes

After investigating the heat dissipation due to a pure decoherence process in which

a system relaxes to a thermal state, we study the thermodynamic cost of performing

a measurement on the system at a given time of its relaxation evolution. Quantum

feedback control exploits protocols of this kind, where measurements on the system

are performed in order to retrieve information and determine its consequent evolu-

tion [149]. In this context, the maximum work that can be extracted from the thermal

bath by the feedback control procedure has been studied [100]. Work extraction due

to information gain is shown to be consistent with the second law of thermodynam-

ics, which can be generalized to include quantum feedback control [132]. Here we

are interested specifically in pure decoherence processes, and how measurements

affect the average heat dissipated by the bath. In the following, we only lay out the

theoretical framework for calculating the characteristic function of heat in the pres-

ence of feedback, but further, in-depth study will be the subject of future work.

9.6.1 One measurement on the open system

We define
{

P̂v
}

a set of linear operators acting on the Hilbert space of the open

system and satisfying the completeness condition ∑v P̂†
v P̂v = 1S. Such a set defines

a measurement on the system S. We assume ρ̂(t) evolves in time through Eq. (2.6)

and a factorized initial state. We perform an instantaneous measurement on the

open system at a certain time 0 < t1 < t f of the evolution, so that the overall density
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matrix ρ̂(t) becomes

ρ̂ (t1)→ ρ̂′ (t1) =

(
P̂v ⊗ 1B

)
ρ̂ (t1)

(
P̂v ⊗ 1B

)†

p1 (v)

=

(
P̂v ⊗ 1B

)
Û (t1) (ρ̂S (0)⊗ ρ̂B (0)) Û† (t1)

(
P̂v ⊗ 1B

)†

p1 (v)
, (9.24)

where

p1 (v) = Tr
[(

P̂v ⊗ 1B
)

Û (t1) (ρ̂S (0)⊗ ρ̂B (0)) Û† (t1)
(

P̂v ⊗ 1B
)†
]

(9.25)

is the probability of the outcome v. After a time t > t1,

ρ̂
(
t f
)
= Û

(
t f − t1

)
ρ̂′(t1)Û† (t f − t1

)
. (9.26)

The characteristic function of heat after one measurement, χ1(u), is defined by Eq. (6.4),

where the unitary time evolution operator is replaced by the operator V̂v(t f , t1) =

Û
(
t f − t1

) (
P̂v ⊗ 1B

)
Û (t1), so that

χ1(u) =
1

p1 (v)
Tr
[
eiuĤBV̂v(t f , t1)e−iuĤB (ρ̂S (0)⊗ ρ̂B (0)) V̂†

v (t f , t1)
]

. (9.27)

For a pure decoherence process, [ĤS, ĤI ] = 0, so that expanding the operators

V̂v(t f , t1) in Eq. (9.27) the terms e±it1ĤS and e±i(t f−t1)ĤS cancel each other inside

the trace. We expand the initial state of the open system in the eigenbasis of ĤS,

ρ̂S (0) = ∑i,j ρ
i,j
S (0) |i⟩ ⟨j|, and expand the trace over the degrees of freedom of the

system. Writing ĤI as the most general interaction Hamiltonian for a pure decoher-

ence process as defined in Eq. (4.23), the calculations that follow from Eq. (9.27) are

identical to the ones discussed in Sec. 9.2 leading to Eq. (9.4). Using the orthonormal-

ity of the energy eigenbasis of the open system ⟨j| m⟩ = δjm, and ⟨n| Π̂l |m⟩ = δnlδlm,
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we have the final result for the characteristic function of heat

χ1 (u) =
1

p1 (v)
∑

m,n,t
⟨m| P̂†

v |n⟩ ⟨n| P̂v |t⟩ ρt,m
S (0)

×
〈

eit1Ĥm ei(t f−t1)Ĥn eiuĤ0e−i(t f−t1)Ĥn e−it1Ĥt e−iuĤ0
〉

B
, (9.28)

with

p1 (v) = ∑
m,n,t
⟨m| P̂†

v |n⟩ ⟨n| P̂v |t⟩ ρt,m
S (0)

〈
eit1Ĥm e−it1Ĥt

〉
B

. (9.29)

Here we have used the definitions Ĥ0 = ĤB and Ĥn = ĤB + gnV̂n.

Eqs (9.28 - 9.29) define a general characteristic function of heat where the oper-

ator P̂v can be replaced with any measurement. The averages ⟨•⟩B can easily be

numerically computed with the functional determinant approach used in Sec. 9.5.1.

Calculations of average heat ⟨Q⟩ can be derived, for example, for the qubit in a

fermionic lattice environment model introduced in Eqs. (9.15 - 9.17).

9.6.2 N measurements on the open system

The result in Eqs (9.28 - 9.29) can be extended to an arbitrary number N of mea-

surements taken on the system respectively at times t1 < t2 < ... < tN. The overall

density matrix at the N-th measurement is calculated iteratively as

ρ̂′ (tN) =

(
∏1

j=N V̂vj(tj, tj−1)
)

ρ̂ (0)
(

∏N
j=1 V̂†

vj
(tj, tj−1)

)
pN (vN | v1, v2...vN−1)

, (9.30)

where V̂vj(tj, tj−1) =
(

P̂vj ⊗ 1B

)
Û
(
tj − tj−1

)
, and we set t0 = 0. The probability of

outcome vN of the N-th measurement, conditioned to the previous N − 1 outcomes

v1, v2...vN−1, is

pN (vN | v1, v2...vN−1) =
1

pN−1 (vN−1 | v1, v2...vN−2)

× Tr

[(
1

∏
j=N

V̂vj(tj, tj−1)

)
ρ̂ (0)

(
N

∏
j=1

V̂†
vj
(tj, tj−1)

)]
. (9.31)
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At the final time t f , the density matrix is

ρ̂
(
t f
)
= Û

(
t f − tN

)
ρ̂′(tN)Û† (t f − tN

)
, (9.32)

from which it follows, after calculations similar to the ones leading to Eq. (9.28), that

the characteristic function of heat is

χN(u) =
1

pN (vN | v1, ...vN−1)
∑

n0,n1...nN

∑
kN−1...k0

ρk0,n0
S (0)× (9.33)(

N

∏
j=1

〈
nj−1

∣∣ P̂†
vj

∣∣nj
〉)
⟨nN| P̂vN |kN−1⟩

(
1

∏
j=N−1>0

〈
k j
∣∣ P̂vj

∣∣k j−1
〉)
×〈

N

∏
j=1

(
ei(tj−tj−1)Ĥnj−1

)
ei(t f−tN)ĤnN eiuĤ0e−i(t f−tN)ĤnN

1

∏
j=N

(
e
−i(tj−tj−1)Ĥkj−1

)
e−iuĤ0

〉
B

.

The expanded conditional probability outcome is

pN (vN | v1, ...vN−1) =
1

pN−1 (vN−1 | v1, ...vN−2)
∑

n0,n1...nN

∑
kN−1...k0

ρk0,n0
S (0)

×
(

N

∏
j=1

〈
nj−1

∣∣ P̂†
vj

∣∣nj
〉)
⟨nN| P̂vN |kN−1⟩

(
1

∏
j=N−1>0

〈
k j
∣∣ P̂vj

∣∣k j−1
〉)

×
〈

N

∏
j=1

(
ei(tj−tj−1)Ĥnj−1

) 1

∏
j=N

(
e
−i(tj−tj−1)Ĥkj−1

)〉
B

, (9.34)

which can be calculated recursively starting from Eq. (9.29).
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10 | Conclusions and Future Work

Part I of this thesis described the known theory of open quantum systems and its

connection to quantum thermodynamics. It introduced a methodology to numeri-

cally simulate non-Markovian dynamics and described the TEMPO algorithm.

In Part II, we showed our research work and its results. We discussed how a bet-

ter understanding of dissipation in open quantum systems is a fundamental goal of

quantum thermodynamics as well as being crucial for quantum device engineering.

We have shown that this goal can be successfully addressed by an extension of the

TEMPO algorithm [114] to evaluate the characteristic function of the heat distribu-

tion. We have demonstrated the validity and flexibility of our approach by calculat-

ing the mean and variance of the heat transfer in the spin-boson model over a range

of temperatures and system-bath coupling strengths. Our results clearly demon-

strate the importance of system-environment correlations at low temperatures. Even

at high temperature and weak coupling, we find significant contributions to the heat

statistics from the system-environment interaction energy that are not captured by

the standard weak-coupling master equation. This indicates that system-reservoir

interactions are an important source of dissipation that must be accounted for when

designing thermodynamic protocols [150–155], even in the weak-coupling regime.

Our approach to calculating heat statistics can be extended in several promis-

ing directions. It is straightforward to adapt the method to situations with a time-

dependent system Hamiltonian, which would enable the characterisation of heat

statistics for driven open systems. This problem, which is theoretically challeng-

ing even for Markovian environments outside of the slow-driving regime, has nu-
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merous applications in quantum control, such as quantum information process-

ing [156] and erasure [157], enhanced engine cycles through thermodynamic short-

cuts [97, 158], and tailored quantum light sources [95, 159]. It is also possible to

incorporate multiple baths within our framework by combining the corresponding

influence functionals together [160]. This would allow the study of the full counting

statistics of quantum heat transport in non-equilibrium steady states [111], includ-

ing highly non-Markovian regimes. In general, we expect that the method presented

here will facilitate further research into the non-equilibrium quantum thermody-

namics of strongly coupled open systems.

Secondly, we discussed the importance of heat dissipation in a pure decoherence

process. Decoherence and heat dissipation are commonly considered to be com-

plementary manifestations of irreversibility in open quantum systems. Our results

show that these two processes are in fact inextricably linked: environment-induced

decoherence comes at a fundamental energetic cost. This heat dissipation is a sub-

tle aspect of decoherence that, to our knowledge, has not yet been investigated in

the literature on quantum thermodynamics. Beyond their foundational implica-

tions, our findings are directly relevant for current efforts to harness decoherence for

nondestructive measurements of noise in quantum devices. The unavoidable dissi-

pation of energy implies an intrinsic disturbance due to such measurements [161],

which can be quantitatively assessed using the general framework developed here.

The experimentally relevant example of an impurity immersed in an ultra-cold

Fermi gas [81] highlights the rich physics which is unveiled by considering the ther-

modynamics of decoherence. However, our framework can equally well be applied

to a range of other situations, such as ultracold bosonic environments where dephas-

ing impurities have recently been realized [84, 89], as well as strongly interacting

systems. Starting from this work, further investigations of the peculiar thermody-

namic features of decoherence and associated properties in diverse physical settings

are possible.
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