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Abstract

The advances in the manipulation of ultracold atoms trapped by optical lattices has es-
tablished this set-up as a promising analogue simulator of quantum Hamiltonians. The
extended coherence times allow for the monitoring of relaxation processes from non-
equilibrium initial configurations, driven exclusively by intrinsic mechanisms. Fur-
thermore, two-terminal transport measurements analogous to solid state physics are
now routinely performed. This has opened an era of renewed intense activity towards
the topics of non-equilibrium dynamics and transport, and fundamental questions
on localisation and thermalisation in isolated many-body systems. Quasiperiodic
models, long been known, have recently gained relevance due to their realisation in
experiments on the same platform, which fall in this large body of investigations.
Quasiperiodic potentials are incommensurate with the underlying periodicity of the
lattice, neither periodic nor disordered, yet deterministic. This can lead, even in
one-dimension and absence of interactions, to a localisation transition (in the Aubry-
André-Harper or AAH model), an energy-dependent transition or “mobility edge”
(generalised AAH or GAAH model), and critical states yielding anomalous diffusion
(Fibonacci model). The majority of previous studies have been focused on spin or par-
ticle currents, we dedicate most of the thesis to extend the characterisation of their
transport properties, with an emphasis on their thermal features. We first explore
the capability of quasiperiodic models as working mediums in two-terminal quantum
autonomous thermal machines, that convert heat to work through non-equilibrium
steady-state currents of microscopic particles. In particular, we show that the mobil-
ity edge in the GAAH model can function as an energy filter, and demonstrate large
thermoelectric effects, exceeding existing predictions by several orders of magnitude.
We further investigate the interplay with dephasing noise from incoherent scattering.
Heat and electric currents in the Fibonacci model turn from anomalous to standard
diffusive. However, the conductivities exhibit a non-trivial dependence on the de-
phasing strength, which can be exploited to enhance the performance of the device.
These findings open the route to a new class of efficient and versatile quasiperiodic
steady-state thermoelectric engines. Quasiperiodic models further provide a testbed
to investigate the possibility of many-body localisation (MBL). While the AAH model
displays single-particle localisation and signatures of a possible MBL phase have been
observed in presence of interactions, the lack of parallel experiments leaves to de-
bate whether the anomalous diffusion survives in the interacting Fibonacci model.
We contribute by studying real-time spread of density-density correlations at infinite
temperature via dynamical quantum typicality, an approach not previously applied
to quasiperiodic systems. Our findings suggest a possible crossover to MBL preceded
by a regime of anomalous subdiffusive transport. In the last part of the thesis, we
perform a similar numerical study in frequency rather than time domain. Inspired
by further experimental results on ultracold atoms, we probe the transport proper-
ties of the XXZ model in presence of a integrability-breaking term with initial spin
helix states, characterised by a winding magnetisation profile. Within the eigenstate
thermalisation hypothesis framework, we evaluate correlation functions on statistical
ensembles and on single states using the kernel polynomial method.
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1.2 Aubry-André-Harper model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.1 Inverse Participation Ratio . . . . . . . . . . . . . . . . . . . . . . . . . 17
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Introduction

In recent years, the tendency towards miniaturisation and the unprecedented level of

control reached over nanoscale systems has reinvigorated scientific activity in the study

of microscopic thermal machines, for which quantum effects can become relevant [1, 2]

and may even be exploited [3–10]. Thermoelectric engines offer the most practical

application, converting heat into electric power. They do not rely on macroscopic

moving parts, instead, they operate through non-equilibrium steady-state currents

of microscopic particles, e.g. electrons or atoms, flowing between two reservoirs. In

order to explore this mechanism, mesoscopic physics experiments have been extended

beyond the traditional investigation of charge transport, and it is nowadays possible,

on platforms ranging from superconducting circuits [11] and semiconductor quantum

dots [12], to molecular junctions [13], to manipulate and detect heat currents. Fur-

thermore, transport measurements analogous to solid state physics are now routinely

performed on ultracold atom set-ups, where a two-terminal device generating a parti-

cle current from a temperature bias has been realised [14]. The high tunability of the

microscopic details available in all of these systems constitutes a strong motivation

to theoretically explore the capability as working medium of exotic physical models

displaying non-trivial spectral and transport properties, with the ultimate purpose of

inspiring the design of tailored quantum matter that could enhance the performance

of future computers and heat-conversion devices.

In mesoscopic physics the interplay between transport and disorder is well studied

and has been shown to enhance thermoelectric performances in low dimensional sys-

tems [15–19], while bulk thermoelectrics are generally quite inefficient [20]. Disorder

breaks translational symmetry and inevitably modifies the Bloch wave picture [21],

which depicts extended single particle states and periodic energy band structure. The

1
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presence of random disorder gives rise to a metal-insulator transition, a phenomenon

induced by the quantum coherent scattering of the electrons against the impurities,

and known as Anderson localisation. While in three-dimensional systems a critical

energy depending on the disorder strength, the so-called mobility edge, separates lo-

calised from extended states associated with diffusion [22], in one dimension, instead,

all the eigenstates get spatially localised when even an infinitesimal amount of un-

correlated disorder is introduced, and the wires switch from ballistic conductors to

insulators [23].

A wider variety of behaviours, even in one dimension, emerges in quasiperiodic poten-

tials, neither periodic nor disordered, yet deterministic while incommensurate with

the underlying periodicity of the lattice. These systems possess highly non-trivial

singular continuous spectra with fractal or self-similar structure [24], which lead to

the appearance of critical states, neither extended nor localised [25, 26]. Originally,

their properties were appealing to mainly mathematicians and mathematical physi-

cists [27–29], however, they have gathered broader attention in the context of quan-

tum transport with numerous studies, although limited to particle or spin, which have

established them as primary examples of anomalous behaviour [30–32]. The paradig-

matic example is the Aubry-André-Harper (AAH) model, where a cosine potential,

modified by an irrational factor in its argument, induces a transition from a com-

pletely delocalised phase with ballistic currents to a completely localised phase as the

strength of the quasiperiodic potential is increased [33]. At the critical point, trans-

port is subdiffusive. The addition of perturbations, such as beyond-nearest-neighbour

hopping, or modifications to the on-site potential function, leads in many cases to the

occurrence of a mobility edge [34–36]. A closely related model is the Fibonacci chain,

where the lattice energies are generated by a substitution rule. The Fibonacci model

has unusual properties such as a critical energy spectrum across all energy scales [37],

without a localisation transition. This spectral criticality gives rise to anomalous

transport exponents which vary continuously with the potential strength, so that it

is possible to tune the transport regime from superdiffusive to subdiffusive.

In this thesis, we extend the study of quantum transport in one-dimensional quasiperi-

odic models to thermoelectricity, involving the simultaneous appearance of electric

currents coupled to the temperature bias, and heat currents to the voltage bias. We

thus perform the first characterisation of the heat-to-work conversion in quantum
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autonomous thermal machines which employ the models described above as working

medium. We focus mainly on two mechanisms to increase the efficiency of the device:

energy filtering and dephasing enhanced transport.

Energy filtering is a central concept in thermoelectric energy conversion: allowing only

particles in a finite energy window to flow induces a strong thermoelectric response [38,

39]. This effect is generally realised either by engineering the thermodynamic variables

of the reservoirs attached to the system [40] or by tuning the transport characteristics

of the sample so that it displays an energy-dependent transmission probability. We

follow the latter approach by exploiting the spectral characteristics of the central

system; in particular, the mobility edge of a generalised AAH model.

The presence of dephasing noise from the environment, in the form of loss of phase

coherence with possible momentum and energy exchange, has been demonstrated to

assist transport in various contexts. The examples of such environmental-assisted

or dephasing-enhanced transport include natural photosynthetic complexes [41, 42],

molecular junctions [43–45], photonic crystals [46, 47], trapped ions [48], and also

boundary-driven spin chains at infinite temperature [49–51]. However, the implica-

tions of this effect for thermoelectricity — an intrinsically finite-temperature phe-

nomenon — have received comparatively little attention. We further ask in this

thesis if the inevitable presence of dephasing noise due to inelastic scattering can be

used to enhance thermoelectric performance when interplays with the quasidisorder

of quasiperiodic potentials.

Up to this point, we have discussed quasiperiodic models in the non-interacting regime,

and in the context of autonomous thermal machines, where transport is driven by the

temperature and voltage biases between the thermal reservoirs attached to the system.

Quasiperiodic models, however, have also gained relevance in a different configuration,

where the system is isolated from the external environment and evolves according to

its intrinsic unitary dynamics from an initial non-equilibrium state. They have in fact

been realised with tunable interaction strength in a series of experiments on ultracold

atoms trapped by optical lattices [52–56]. In light of recent advances in the degree of

tunability, the ability of manipulating their initial configuration, and in the coherence

times reached, ultracold atoms represent the most promising and versatile platform

to probe dynamical properties of strongly correlated systems [57–59], and investigate

fundamental questions as the possible existence of a localised phase, non-equilibium
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phenomena, and thermalisation [60–64]. A sufficiently-complex many-body system

initially engineered away from equilibrium thermalises when local observables attain,

typically in the long-time limit, an equilibration value that coincides with the expec-

tation value given by the ensembles of statistical mechanics. This mechanism is nowa-

days understood in the framework of the eigenstate thermalisation hypothesis (ETH),

that still lacks a formal proof [65]. In integrable systems, the extensive set of local con-

served quantities prevents them from following this prescription, but they have been

shown to thermalise if subject to integrability-breaking perturbations [66, 67]. In this

case, however, thermalisation is anomalous, meaning that the statistical properties

of the unperturbed integrable model end up embedded in the perturbed one, with a

process still to be completely unraveled [66]. On the other hand, when a generic sys-

tem is perturbed by sufficiently strong disorder, it transitions towards a many-body

localisation (MBL) phase, and remains a perfect insulator at finite temperature, fail-

ing to thermalise. This picture presents many open problems, concerning, among the

others, the conditions for the occurrence of MBL, out-of-equilibrium phenomena and

the related transport behaviour, and the effect of finite temperature [64].

The experiments simulating quasiperiodic models fall in this large body of investi-

gations. In the interacting AAH model, it has been verified that its single particle

localisation gives rise to a possible MBL phase [53–56], however, understanding how it

is different from such a phase induced by random disorder is still under study [68–70].

The complex interplay between interactions, localisation and quasiperiodic order is

largely left to be uncovered. Another natural question emerging is what happens to

the anomalous transport behaviour of the quasiperiodic models in presence of many-

body interactions. Differently from the AAH, the non-interacting Fibonacci model

does not display a delocalisation-localisation transition, and its eigenstates are critical

over the whole parameter diagram. In this case, a localised phase would represent

a purely many-body effect. Different answers have been proposed in the literature,

ranging from a transition towards MBL [71], to metal-insulator transitions at low

energies [72], to persistence of the anomalous diffusion [73]. Motivated by the lack

of experimental results, we characterise quantum dynamics in the isolated interacting

Fibonacci chain with a further approach not previously applied on quasiperiodic sys-

tems. Dynamical quantum typicality allows to extract information on the equilibrium

transport properties of the system from a numerical quench experiment involving pure
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states that can act as “typical” of the statistical ensemble [74].

Quantum quenches are a common protocol adopted on ultracold atom platforms to

probe in the laboratory the dynamical aspects of the simulated Hamiltonians. The

system is prepared in a non-equilibrium state, characterised by a non-uniform pro-

file, and local observables are monitored as it unitarily evolves in time. The same

scheme has been recently followed by Jepsen et al. in an exciting experiment explor-

ing the transport regimes of the quantum XXZ model over an unprecedented range

of anistotropies [75]. Here, initial spin helix states were implemented by imprinting a

winding magnetization profile along the atoms, with adjustable wavelength. Remark-

ably, spin helix states exhibit a dependence of their mean energy on the wavelength,

or helicity, and are described by pure states. Inspired by the experiment, which has

demonstrated a behaviour in striking contrast with the predictions of linear-response

regime, we explore in the last part of the thesis the transport properties of spin helix

states in a XXZ spin chain with an integrability-breaking local perturbation. We

adopt the kernel polynomial method (KPM) [76] to access dynamical properties as

correlation functions in the frequency domain. Within ETH, spin helix states can in

principle operate as energy resolved probes to extract transport exponents at finite

temperature. We investigate this prospect and, furthermore, the applicability of KPM

in the study of far-from-equilibrium dynamics.

We start by introducing in Ch. 1 the notion of quasiperiodic order, and the spectral

properties of the quasiperiodic models that will be studied: the AAH model, one of its

generalisations, and the Fibonacci chain. In Ch. 2, we discuss the theoretical frame-

works which we employ in our investigation. The non-equilibrium steady-state heat

and electric currents arising in the quantum thermal machine are evaluated through

Landauer-Büttiker integrals. In presence of many body interactions, transport will

be studied within the Green-Kubo formalism for isolated systems. In particular, in

both set-ups we focus on the linear response regime, where it is possible to define an

Onsager matrix, which relates the currents to the generalised forces driving transport.

We also provide details on techniques which facilitate our numerical simulations, and,

in particular, we spend the last part of the chapter presenting the KPM and its appli-

cability in the spectral and dynamical study of quantum Hamiltonians. We proceed

then with the electric and heat transport characterisation of quasiperiodic models.

Ch. 3 is dedicated to the construction of a heat engine which exploits the mobility
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edge in the generalised AAH model as energy filter. In Ch. 4, we analyse the per-

formance of a heat engine employing a Fibonacci chain as working medium, and the

effect of introducing dephasing from incoherent scattering events, encoded by Büttiker

probes. In Ch. 5, we focus again on the Fibonacci model, but in the limit of isolated

environment and in presence of many-body interactions. We investigate its dynam-

ics through real-time spread of density-density correlations, in order to understand

whether the anomalous diffusion present in the non-interacting system survives after

introducing interactions. In Ch. 6, we perform a similar numerical experiment, anal-

ysed, however, in the frequency rather than time domain. We reproduce initial spin

helix patterns in a XXZ model with local integrability-breaking, and exploit ETH

to investigate if transport properties can be probed in an energy resolved way from

these exotic states. Finally, we summarise our results in the Conclusions and offer an

outlook on possible future works.



Chapter 1

Quasiperiodic models

In this Chapter, we discuss the notion of quasiperiodicity and, in particular, of

quasiperiodic order in quantum mechanics, which can be dated back to the discovery

of quasicrystals and has been investigated in recent experiments in photonics and

ultracold atom physics. We then introduce the three examples of one-dimensional

quasiperiodic systems mostly studied in the thesis: the Aubry-André-Harper model

with one of its generalised versions and the Fibonacci chain.

1.1 Quasiperiodicity in quantum mechanics

The study of solid state matter has been traditionally based upon the idea of a periodic

arrangement of the atoms in space. The structure of a solid, or crystal, is generated

by repeated translations along the principal axes of a basic building block, the unit

cell, and classified in a finite number of crystallographic groups according to the

symmetries of the pattern. As a consequence of translational invariance, the solutions

to the single-particle Schrödinger equation are extended states known as Bloch waves,

in the form of plane waves modulated by an envelope with the same periodicity of

the atomic lattice. This picture has succeeded since 1929 in explaining and predicting

most of the relevant bulk properties of materials, from optical indexes to electric

conductances, neverthless it has set as standard the correspondence between solid

matter, periodicity and order. The paradigm was first questioned in the context of life

science, in the debate around the structure of DNA. The most common hypothesis was

that the repetition of the four different kinds of nucleotides forming DNA would occur

7
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in a regular fashion. A trivially periodic macromolecule, however, would be unable to

store the amount of information required for cell functions, given the constrains on

the patterns determined by translational symmetry. In his famous series of lectures of

1943 “What Is Life? The Physical Aspect of the Living Cell”, Schrödinger introduced

for the first time the notion of one-dimensional aperiodic crystal, by suggesting that

genetic material could be instead organised in sequences with a well-defined order but

without the appearence of periodic repetitions [77].

Such structures, despite their precursors in medieval Islamic architecture [78] or Ke-

pler’s treatises [79], begun to be sistematically investigated only in the 1960s, when

the first aperiodic pattern was created [80]. Geometry tells us that not all symmetries

under rotation are compatible with translational invariance. In two dimensions, the

square lattice is invariant under rotations of 2π/4, or four-fold rotation, and the tri-

angular lattice under rotations of 2π/3, or three-fold rotation. Other n-fold rotational

symmetries, instead, such as five- or seven-fold, are forbidden. The restriction becomes

evident in Fig. 1.1a when trying to tile a plane with a series of pentagons, invariant

under five-fold rotation, without any gap or overlap. We are forced to introduce new

tiles with shapes that do not posses five-fold symmetry, as in Fig. 1.1b, where two

pentagons and a rhombus can be translated until the whole space is covered in octag-

onal patches, highlighted in red. Other attempts at solving the puzzle can be made

by applying a substitution or inflation rule. The original tile is inflated and divided

in a collection of smaller tiles. We proceed then to enlarge every shape and dissect

it again, in such a way to cover larger and larger portions of space. A special series

of substitutions was designed by Penrose in 1974 [81] and led to the discovery of an

aperiodic or quasiperiodic tiling which is now one of the most commonly represented

examples, known as P1 tiling. In Fig. 1.2a, we show the entire set of substitution

rules. A pentagon can be subdivided into six smaller ones in a flower arrangement,

plus five triangular gaps. The tiles are enlarged and the rule is applied again to each

of the pentagons, leaving gaps in the shape of diamonds. By inflating and adding

a new substitution rule for the diamond shape, in the second row of Fig. 1.2a, star

and “paper-boat” gaps appear, for which other substitutions are defined in the third

and last row. Reiterating the substitutions, we generate a figure as Fig. 1.2b, which

is by construction self-similar, repeating a similar pattern at different length scales.

In the limit of infinite repetitions, we can cover the whole plane. The tiling is de-
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(a) (b)

Figure 1.1: (a) It is impossible to translate a pentagon in such a way to cover the whole plane
without leaving any gap. (b) Here a periodic tiling with octagonal unit cell, highlighted in
red, is created by admitting rhombic tiles, which do not posses five-fold symmetry.

terministic, since given by a precise set of rules, but despite looking almost identical

it does not repeat exactly as we move along a line in any direction, as we shown in

Fig. 1.2c by trying to overlap two copies of the tiling (in red and blue) with different

origins. Several quasiperiodic tilings were devised by Penrose and others [79, 82, 83].

Nevertheless, these structures were believed to be pure mathematical artefacts.

Quasiperiodicity remained in the realm of mathematics until the observation in 1984

of a discrete diffraction pattern which could not be mapped into any of the crystal-

lographic groups [84]. In particular, Shechtman synthesised an AlMn sample which

exhibited the forbidden five-fold rotational symmetry. Later, he and his collabora-

tors understood that the atoms in this alloy are organised in a quasiperiodic fashion,

similarly to the P1 tiling. Since then, other structures with quasiperiodic rather than

periodic order were found in the laboratory [85, 86], and the term quasicrystal was

coined [87]. Nowadays, the study of their properties is an active field in condensed

matter physics [88–91] and the first natural quasicrystal was observed in a meteorite

sample [92, 93].

A function of space g(x) can be expressed in Fourier components as

g(x) =
∑
K

fKe
iK·x, (1.1)

where K indicates the spatial frequency in the Fourier space. When it describes a

physical quantity on a crystal of dimension D, with lattice structure generated by

the basis vectors {aj}Dj=1, g(x) will inherit the same periodicity of the lattice. Every
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(a) (b) (c)

Figure 1.2: (a) The set of substitution rules defining the Penrose P1 tiling. (b) The aperiodic
P1 tiling after iterating the substitution rules 4 times. The pattern is self-similar: the same
kinds of shapes appear at different length scales, zooming in and out of the figure. (c) Two
copies of the P1 tiling with different origins (in red and blue). Despite the pattern seems
to repeat identically in space, it is impossible to find a translation which makes the two
copies overlap completely in purple. Any translation will leave the aperiodic tiling almost
invariant.

spacial frequency or wavevector K is thus given by the following linear combination

K =
d∑
j=1

mjbj, (1.2)

where d equals the spatial dimension D, mj are integers and the set of {bj}dj=1 spans

the reciprocal lattice, related to the direct one via ai · bj = 2πδij. In a diffraction ex-

periment on a crystal, as stated by Bragg’s law, the difference in wavevectors between

incoming and outgoing X-rays must be a vector belonging to the reciprocal lattice.

Therefore, the peaks in the emission are always discrete and can be used to infer the

lattice structure. In a quasicrystal, the atomic distribution can be instead described

by a quasiperiodic function. A function is by definition quasiperiodic when its Fourier

components are not uniformly spaced as in the periodic case, but whose spacing can

still be described by a finite set of lengths [94]. In other words, the spatial frequencyK

in the Fourier components of a quasiperiodic structure will still be given by the same

expression of Eq. (1.2), however the number of reciprocal basis vectors exceeds the

spatial dimension, d > D. Naturally, quasiperiodic functions represent the continuous

description of aperiodic tilings. Almost periodic functions constitute, instead, despite

the confusion in the notation, a larger family which includes also the case where an

infinite set of bj is needed to describe the Fourier frequencies in Eq. (1.2). From the
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formal definition of quasiperiodic function, we derive two consequences. First, the

diffraction from a quasiperiodic structure gives discrete Bragg spots, as first observed

by Shechtman. Then, any quasiperiodic function characterised by d in Eq. (1.2) can

be considered as a D-dimensional cut of a periodic function in d dimensions. The

simplest example to consider is a one-dimensional function, D = 1,

f(x) = cos x+ cos bx. (1.3)

The Fourier transform consists of two delta functions. However, if b = P/Q is rational

with integers P,Q, f(x) has period 2πQ and the frequencies can be expressed by using

a single reciprocal lattice vector b1 = 1/Q. When b is irrational, f(x) is quasiperiodic.

The two frequencies characterising f(x) are uncommensurate, thus in the Fourier

space they need to be expressed by two b1 and b2 with different length, meaning that

d = 2. Nevertheless, the function can be seen as a cut along the axis y = bx of the

periodic two-dimensional f(x, y) = cos(x) + cos(y).

The discovery of quasicrystals spurred the interest in the effects of quasiperiodicity

on the spectral and transport properties of physical models. Given the inapplicability

of the Bloch theorem, most studies were limited to one-dimension and made use of

the tight-binding approximation, considering a discretised version of the Schrödinger

equation as

tn,n+1ψn+1ℓ + tn,n−1ψn−1ℓ + Vnψnℓ = Eℓψnℓ, ℓ = 1, . . . , N (1.4)

where ψnℓ is the ℓ-th single-particle wavefunction, corresponding to the eigenvalue Eℓ,

evaluated at the lattice site n, N the length of the chain, tn,n±1 the hopping terms, and

Vn the on-site potential. Quasiperiodic models are realised with a set of {tn,n±1}n or

{Vn}n either generated by a substitution rule, analogously to the scheme followed for

the aperiodic tilings, as in the case of the Fibonacci and Thue-Morse chains [26, 90],

or by superimposing two or more periodic functions with incommensurate periods as

Eq. (1.4), for example in the case of the Aubry-André-Harper model [33]. This series

of works provided through exact and numerical methods an insight over the properties

of quasiperiodic models, which are now known to exhibit highly fragmented spectra

with self-similar properties [24, 25, 95], and neither extended nor localised critical

states [26, 96, 97], associated to non-trivial transport properties that deviate from
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standard ballistic or diffusive behaviour [30]. These properties were eventually ob-

served on experiments conducted over a wide range of platforms, which have re-ignited

in the last years the interest in the family of one-dimensional quasiperiodic models.

The expected structure of the density of states of the Fibonacci model was studied in a

polariton gas in one-dimensional cavities [98], and following experiments on the same

type of system investigated localisation properties and topological invariants [99, 100].

Topologically protected modes were observed also on another type of set-up, where the

effective potential for the light beam is modulated to be quasiperiodic by tuning the

refraction indexes of optical waveguides [101–103]. On the same platform, the topo-

logical equivalence between the Fibonacci model and a two-dimensional quantum Hall

system was explicitely demonstrated [104]. Quasiperiodic models have further been

realised by trapping ultracold atoms in bichromatical optical lattices with uncommen-

surate wavelengths. On a deep primary lattice, the optical potential can be directly

mapped onto the Aubry-André-Harper model [105, 106]. The localisation transition

characteristic of the model was observed by measures of the imbalance in time [52, 54].

More complex spectral features, as an energy-dependent localisation transition, or

“mobility edge”, were engineered by lowering the depth of the primary lattice in such

a way to allow hopping processes beyond nearest-neighbours [53], by modyfing the

effective potential [35], or introducing many-body interaction terms [55, 56, 107].

1.2 Aubry-André-Harper model

The paradigmatic example of quasiperiodic model is a one-dimensional lattice sub-

ject to a harmonic perturbation incommensurate with the underlying periodicity of

the lattice. The problem was studied by Aubry and André in the tight-binding ap-

proximation [33], considering a single-particle Schrödinger equation as Eq. (1.4) with

constant hopping term th and on-site energies given by V AAH
n ,

th(ψn+1ℓ + ψn−1ℓ) + V AAH
n ψnℓ = Eℓψnℓ V AAH

n = 2λ cos(2πnb+ φ), (1.5)

where λ is the amplitude or strength of the potential, φ an arbitrary global shift in

phase, and b an irrational number that prevents the potential from repeating itself

exactly along the lattice. As we will review in the following, the most striking feature

of the model is a localisation transition, where all the eigenstates are localised at
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Figure 1.3: Construction of the Cantor set: an initial segment is divided into 3 subsegments,
and the middle one removed (here the segments are chosen of equal length). The two steps
are then repeated iteratively for each of the remaining intervals.

potential strengths λ above a certain critical value, and all extended for λ below.

The spectrum of the Aubry-André-Harper (AAH) model displays a rich structure,

which has been the object of numerous studies in mathematical physics [29, 108–

110]. The topic reached such popularity in 1981 that the mathematician Mark Kac

promised ten Martini cocktails as reward to anyone who would prove the spectrum to

be a Cantor set [27]. A Cantor set is the prototype of a fractal, which can be visualised

considering first a segment, for example the points in the interval [0, 1]. The segment

is divided in three parts, and the middle sub-segment removed, leaving in this case the

set of points in [0, 1/3]∪ [2/3, 1]. The same two steps are then repeated for each of the

remaining sub-segments [0, 1/3] and [2/3, 1] separately. The result after few iterations

is illustrated in Fig. 1.3. The Cantor set contains all the points from the initial interval

[0, 1] which were not deleted at any step in the infinite series of iterations. The final

structure is self-similar: it exhibits a similar pattern at increasingly smaller scales.

The spectrum of the AAH model possesses analogous self-similar structure.

The famous “ten Martini problem” was solved by Avila and Jitomirskaya only fourteen

years later, in 2005 [28]. Nevertheless, it is possible to anticipate the fractal nature of

the spectrum via a more intuitive argument which exploits approximants to irrational

numbers by continued fractions of integers. The golden ratio τ = (
√
5 + 1)/2, for

example, can be defined iteratively as

τ = 1 +
1

1 +
1

1 +
1

1 +
1

...

. (1.6)

When we approximate b in Eq. (1.5) with a ratio P/Q between integers P,Q, the
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(a) (b) (c)

Figure 1.4: Eigenspectra of the AAH model at changing irrational parameter b for N = 300
sites, with th = 1, φ = 0, and (a) λ = 0.5th, (b) λ = th, and (c) λ = 1.5th. In (b), the
spectrum reproduces the Hofstadter butterfly fractal.

potential is periodic, thus it defines a unit cell of length Q and a Brillouin zone in the

reciprocal space with size 2π/Q. The band structure of this periodic system will have

Q bands with gaps at the boundaries of the Brillouin zone ±π/Q. When we improve

the approximation by increasing Q, the Brillouin zone becomes smaller, opening more

sub-bands. Therefore, in the incommensurate limit, with Q→ ∞, the bands become

more and more fragmented, separated by an infinite amount of gaps which will not

close in the thermodynamic limit [111].

In Fig. 1.4, we show the spectrum of the AAH model as a function of b, for three

different values of the potential strengths. The plots for λ < th and for λ > th look

similar. At λ = th, instead, the figure reproduces the famous Hofstadter butterfly.

The fractal is well known to describe the energy levels of an electron transversing a

square lattice when subject to a uniform perpendicular magnetic field [112, 113]. The

AAH model, in fact, can also be seen as cut of the Harper model, a one-dimensional

projection along a line of a two-dimensional periodic system. In this picture, the

parameter b corresponds to the ratio between the magnetic flux piercing the unit

cell and the magnetic flux quantum. Beside designating a precise mapping to the

Harper model, the value λ = th marks the point in the parameter space where the

system becomes self-dual under a transformation closely related to a discrete Fourier

transform [33].

In order to clarify the self-duality and gain an insight on the phase diagram of the

model, we follow the seminal work of Aubry and André. In the infinite system limit,
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the solutions to an eigenvalue equation as Eq. (1.4) can either satisfy

∑
n

|ψnℓ|2 <∞, (1.7)

or give a divergence in ∑
n

|ψnℓ|2 = ∞. (1.8)

The former condition physically indicates a localised state, which decays exponentially

at large length scales ψnℓ ∼ e−γL|n−n0|, with γL > 0 a characteristic exponent known

as Lyaponuv exponent and defined as [114]

γL(ψℓ) = − lim
n→∞

ln (|ψn+1ℓ|2 + |ψnℓ|2)
2n

. (1.9)

The latter signals an extended states, such a plane wave ψnℓ ∼ einQ for some wavenum-

ber Q, which would have γL = 0. General solutions to the tight-binding AAH model

in Eq. (1.5) can be expressed as

ψnℓ = einϕ
∑
m

fmℓe
im(2πnb+φ),

fmℓ = eimφ
∑
n

ψnℓe
in(2πm+ϕ). (1.10)

We notice that if fmℓ is localised in the reciprocal space
∑

m|fmℓ|2 < ∞, ψnℓ will be

extended, and viceversa. This statement is true only when b is irrational, otherwise

for b = P/Q the reciprocal space series would have only a finite set of unique terms,

since f(m+Q)ℓ = fmℓe
−iQφ. Therefore, fmℓ would always be localised, and ψnℓ always

extended, as in the periodic case. If we insert Eq. (1.10) in Eq. (1.5), we derive that

the components fmℓ must satisfy

λ(fm+1ℓ + fm−1ℓ) + 2th cos (2πbm+ ϕ)fmℓ = Eℓfmℓ, (1.11)

which exhibits the same structure of Eq. (1.5) in real space, with interchanged λ and

th. The two expressions become dual when λ = th and φ = ϕ. The transformation

in Eq. (1.10) exchanges the localisation properties of the eigenfunctions, thus, if a

localisation transition occurs, it must be at λ = th, the point where the transfor-

mation maps the eigenstate equation into itself. Aubry and André showed that the
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eigenfunctions ψnℓ are extended for all ℓ when λ < th and conjectured the presence of

a localised phase at λ > th, with all the ψnℓ localised. In particular, their conjecture

is based on the positivity of the Lyapanouv exponent and makes use of the Thouless

formula [115], which connects the exponent to the density of states of the system

ρ(E) =
1

N

∑
ℓ

δ(E − Eℓ). (1.12)

For Eq. (1.5), the formula reads

γL(ψℓ) =

∫
dE ln

∣∣∣∣∣Eℓ − E

th

∣∣∣∣∣ρ(E), (1.13)

while for Eq. (1.11), since the energy and thus ρ(E) remain the same, it reads

γL(fℓ) =

∫
dE ln

∣∣∣∣∣Eℓ − E

λ

∣∣∣∣∣ρ(E). (1.14)

The two exponents are thus related by γL(ψℓ) = γL(fℓ) + ln (λ/th). According to

the transformation in Eq. (1.10), if fmℓ is extended (γL(fℓ) = 0), then ψnℓ must be

localised with γL(ψℓ) = ln (λ/th) > 0, implying that this can be verified only at

λ > th. Viceversa, when γL(ψℓ) = 0 we must have γL(fℓ) = − ln (λ/th) > 0, and

this condition is only met when λ < th. This argument indicates that a transition

would occur for all the eigenstates at the same potential strength, independently of

the energy E. A formal proof of the existence of the localised phase was provided

later from the decomposition of the spectrum in the case where the irrational number

b is Diophantine [110], meaning that for every rational number P/Q with Q > 0 there

must exist C, r > 0 such that ∣∣∣∣b− P

Q

∣∣∣∣ ≥ C

Q2+r
. (1.15)

As a consequence, the studies on the AAH model always consider a Diophantine

parameter b, which is a sufficient condition for a sharp localisation transition. In

particular, a conventional choice is the golden ratio τ [111], which will be adopted in

the following. We show examples of eigenfunctions in Fig. 1.5, by plotting their prob-

ability density |ψnℓ|2 over each site n in the three regimes of localisation. In Fig. 1.5a,

where λ < th, the components of the eigenfunction appears roughly equally distributed

along the chain. When λ > th, the eigenfunctions have only one or few components
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Figure 1.5: Examples of AAH model eigenstate probability density over the chain sites for
(a) λ = 0.5th, (b) λ = th, and (c) λ = 1.5th. The remaining parameters are th = 1, b = τ ,
φ = 0, and N = 300.

over close sites which are different from zero, as shown in Fig. 1.5c. At the critical

point λ = th, we observe in Fig. 1.5b the structure of the eigenfunction repeating itself

at smaller energy-scales. This type of states are netiher extended nor localised, and

are called critical or multifractal [26]. They will be formally characterised in the next

section.

Numerical simulations and experiments deal with systems of finite size and numbers

which can only be represented by a finite amount of digits and thus not truly irra-

tional. A truly incommensurate potential is then impossible to realise if not through

an analytical formula. Nevertheless, the AAH model can always be studied on finite

system of size N with b = P/Q a rational number, when Q > N in such a way

that the potential has still a different value on every site and periodic replicas are

avoided [105]. Finally, we mention that the global phase φ is not relevant in deter-

mining the localisation transition. However, it is closely connected to the topological

properties of the model [102, 116], which will not be investigated in the thesis.

1.2.1 Inverse Participation Ratio

The degree of localisation of the eigenstate at energy Eℓ can be well characterised by

its inverse participation ratio (IPR), given by

IPR(Eℓ) =
N∑
n=1

|ψnℓ|4. (1.16)

The expression provides a measure of the portion of lattice sites where the amplitude

of the wavefunction differs from zero. In one-dimensional systems, the IPR of localised
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N
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Figure 1.6: (a) Scaling of the IPR in the AAH model (th = 1, b = τ , φ = 0) for the
eigenstates in the middle of the eigenspectrum ℓ = N/2 at different values of potential
strength λ (markers). The dashed lines indicate the numerical fits fx ∼ N−x which yield
x = 1 for λ < 1, x ∼ 0 for λ > 1, and 0.32 at the critical point λ = 1. (b) IPR as a function
of λ computed at fixed system sizes N . The localisation transition can be observed at λ = 1.

states is finite and does not scale with the system size N , while for extended states

it is of order N−1, thus vanishingly small in the thermodynamic limit. States with

multifractal behaviour, instead, show IPR∼ N−p, with 0 < p < 1 [114].

We analyse the localisation transition in the AAH model by computing the scaling

with system size N of the IPR for various values of λ. In Fig. 1.6a, we look at the

eigenstates with energy lying in the middle of the spectrum, ℓ = N/2, and observe

the three expected types of scaling: N−1 for λ < th, absence of scaling or N0 for

λ > th, and N
−p with p ∼ 0.32 for λ = th, indicating a multifractal state. The same

distinct behaviours persist qualitatively in the three regimes for any general index ℓ.

In particular, the scaling exponent of the multifractal states ranges between ∼ 0.3

and ∼ 0.6. In Fig. 1.6b, we represent the localisation diagram for the system at fixed

sizes N = 100, 1000, 2000, by averaging the IPR over all the eigenstates. For λ < th

all single-particle eigenstates are completely delocalised with vanishing IPR, while for

λ > th, all the single-particle eigenstates are localised with IPR close to the maximum

value of 1. At the critical point λ = th, the IPR assumes intermediate values.

1.3 Generalised Aubry-André-Harper models

The first extension to the AAH model was introduced by Soukoulis and Economou,

who added to the lattice a second harmonic perturbation with incommensurate fre-
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quency [117]. A further generalisation considered tunnelling terms to the next-nearest

neighbours [118]. Such models are not longer self-dual under the transformation de-

fined in Eq. (1.10) by Aubry and André. Nevertheless, the authors collected numerical

evidence of the appearance of a “mobility edge”, a critical energy separating localised

and extended eigenstates in the same spectrum. A mobility edge is present also in the

three-dimensional Anderson model [119, 22]. The appearance of a rich localisation

behaviour in the first experiments with ultracold atoms in incommensurate optical

lattices [53–55] has fuelled again the theoretical study of a series of generalisations of

the AAH model. The first motivation is to model more accurately the experiments

when performed at different reciprocal depth of the potentials [120], out of the deep

lattice regime which can be directly mapped to the original tight-binding model [105].

Secondly, the exploration of such generalisations is driven by the possibility to re-

alise a wide variety of non-trivial localisation properties even in one-dimension and

in absence of many-body interactions. Several works have focused on hopping terms

beyond nearest neighbours [121, 122], decaying with a power law [123, 124] or with

gaussian and exponential envelopes [125, 126]. Other generalisations consider addi-

tional deformations to the harmonic functions in the potential [36, 68, 127–129], or

more complicated geometries, as coupled AAH chains generating a two-dimensional

system [130, 34].

We focus on a particular generalised AAH (GAAH) model, which has been recently

realised in an ultracold atom experiment [35]. The on-site energies V AAH
n in Eq. (1.5)

are replaced by [36]

V GAAH
n =

2λ cos(2πbn+ φ)

1− α cos(2πbn+ φ)
, (1.17)

with α ∈ ] − 1, 1[. At α = 0, the potential recovers the standard AAH model, and

it exhibits a localisation transition at the self-dual point λ = th, independent on the

energy. For α ̸= 0, the perturbation at the denominator breaks the duality symmetry

defined in the previous section. For the specific model, it is possible to identify a new

transformation under which the model can be shown to be self-dual at energies [36]

Ec =
2

α
sign(λ)(|th| − |λ|). (1.18)

We notice that the self-dual point is different at different values of λ. For a single

realisation of the potential we can then observe a transition from localised to extended
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Figure 1.7: Eigenenergy spectra of the GAAH model with b = (
√
5 + 1)/2, λ = −0.8 and

φ = 0 as a function of α, for a chain of N = 987 sites. The IPR of the corresponding
eigenstate is shown by a color map, with green for extended, blue for completely localised
states. The red line represents the mobility edge Ec given by Eq. (1.18), which separates
localised from delocalised states. The dashed black line indicates a single realisation of the
model at α = 0.792.

states now dependent on the energy. The Ec defines the so-called mobility edge, sepa-

rating localised from extended regions. Given the analytical expression in Eq. (1.18),

the position of the mobility edge can be tuned by changing λ and α. In Fig. 1.7, we

show examples of the energy spectra of the GAAH model for various α at a chosen

λ. For each eigenvalue, the corresponding IPR is represented on a blue-green color

map, and the analytical expression for the mobility edge Ec separating the localised

region from the extended region is marked by a continuous red line. The extended

region appears green (IPR = 0), while the localised region mostly blue (IPR = 1).

The eigenstates whose energies lie on the mobility edge are critical in nature [36].

However, the regions in a darker shade of green (0.4 ≲ IPR) visible in Fig. 1.7 away

but below the mobility edge are an effect of the finite system size. The corresponding

eigenstates prove to be localised when studying the IPR scaling at large enough N .

1.4 Fibonacci chain

Following the work of Aubry and André, the spectral and dynamical properties of a

wide range of quasiperiodic potentials begun to be explored in the tight-binding limit.

Another popular example was the Fibonacci chain [96, 97], that more recently has

been used to model different types of synthetic DNA macromolecules [131, 132] and to

implement a topological pump on a photonic waveguide array [102, 104]. Exact and
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perturbative solutions have been obtained to describe its eigenspectra [133, 134]. Here

we provide an overview on how to build the quasiperiodic model, and its localisation

features. There exist a diagonal and a off-diagonal versions of the Fibonacci model,

where the quasiperiodic order is respectively applied on the hopping terms tn,n±1, or on

the on-site energies Vn in Eq. (1.4). We focus on the diagonal Fibonacci chain, where

the hopping terms are constant tn,n±1 = th, and the on-site potential assumes only

two alternating values, Vn ∈ {uA, uB}. The way in which the amplitudes alternate

along the sites of the chain C = [V1 V2 V3 . . . VN ] is determined by the Fibonacci

sequence [37].

The sequence of uA and uB can be built in different but equivalent ways, which have

been extensively studied in combinatorics on binary words, where uA and uB are

interpreted as two symbols forming strings or words when concatenated [135]. We

start from the two basic blocks C0 = [uB] and C1 = [uA]. The next string or word of

the Fibonacci sequence is generated by concatenation of the previous two, thus C2 =

C1C0 = [uA uB], C3 = C2C1 = [uA uB uA], C4 = C3C2 = [uA uB uA uA uB], etc. The

string at them-th iteration is Cm = Cm−1 Cm−2. The length of the string is determined

by the number of symbols it contains and indicated by |Cm|. By construction, the

length of a Fibonacci word always belongs to the Fibonacci number sequence, |Cm| =
Fm, where Fm ∈ {1, 1, 2, 3, 5, . . . }. The complexity function P (m) of the sequence is

instead defined as the total number of factors, prefixes and suffices of Cm. A word

W will be a factor of a longer word Cm, or its prefix or suffix, if there exist other X,

Y such that Cm = XWY , or, respectively, Cm = WX or Cm = XW . The quantity

P (m) measures then the “randomness” of the sequence, since it increases with the

variety of different factors appearing at every iteration with P (m) ≤ P (m + 1), and

1 ≤ P (m) ≤ 2m in case of a binary sequence. Periodic sequences, or sequences that

become periodic after a certain m, have little complexity and bounded complexity

function for m → ∞. The complexity function of the Fibonacci sequence and other

quasiperiodic sequences grows linearly P (m) = m+ 1 [135], thus they are considered

the closest non-periodic structure to periodicity.

The Fibonacci sequence can also be generated by applying the following substitution
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(a) (b)

Figure 1.8: A schematic overview on the construction method for the Fibonacci sequence.
(a) The Fibonacci substitution rules. In order to generate the next string, one replaces each
uB (indicated by the pair of bunnies) with uA (a pair of grown-up rabbits), and each uA by
uAuB. (b) The next iteration of the Fibonacci sequence is built by applying the substitution
rules to each of the elements.

rules on each element of Cm,

uB → uA (1.19)

uA → uAuB, (1.20)

starting again from C0 = [uB]. These substitution rules were first ideated by the

mathematician Lorenzo Pisano alias Fibonacci in the Late Middle Ages, with the

idea of modelling the growth of a population of rabbits. He simplified the problem

by considering that at each generation every pair of baby bunnies, symbolised by uB,

will grow into a pair of adult rabbits, symbolised by uA, and that every pair of rabbits

(uA) will additionally generate a new born pair of bunnies (uAuB). The construction

method is illustrated schematically in Fig. 1.8. At the m-th iteration, the number

of uA is given by the length of the chain in the previous generation, which is the

Fibonacci number Fm−1. The number of uB, instead, will be equal to the previous

number of uA, thus Fm−2. Despite the fact that we cannot generate a larger portion of

a Fibonacci chain by repeating smaller parts of it, as in the periodic case, a long-range

order arises anyway if we consider the ratio between occurrences of uA and uB. In

the limit of infinite repetition C∞, in fact, this ratio will reach convergence to a finite

value,

lim
m→∞

Fm
Fm−1

= 1/τ, (1.21)

an irrational number given by the inverse of the golden ratio.
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Finally, it is possible to derive a closed formula in the case of the indefinitely extended

Fibonacci sequence C∞ = [V1, V2, . . . , Vn, . . . ] as following [37, 32],

Vn = uB + (uA − uB)χn, χn =

[
n+ 1

τ

]
−
[
n

τ

]
, (1.22)

with [ · ] taking the integer part of the argument.

The quasiperiodic order exhibited by the Fibonacci sequence affects the spectral and

transport features of the corresponding model in a non-trivial way. As mentioned

earlier, the Fibonacci chain is built by taking a one-dimensional tight-binding model

with constant hopping terms, and using a string Cm from the sequence to read the on-

site energies. The symbols uA and uB thus represent two different values the potential

can assume at each site, and their alternation in a chain of size N = Fm is determined

by how they are listed in Cm. Applying the same argument used for the AAH model,

it is possible to anticipate that the structure of the spectrum of the Fibonacci chain is

fractal. The two models, in fact, were shown to be connected by a unified characteristic

function [101, 136]. The inverse of the golden ratio 1/τ in Eq. (1.22) can be replaced

with a series of rational approximants, which at the m-th step reads Fm/Fm−1, and

converges correctly for m → ∞, as explicitly shown in Eq. (1.21), or, equivalently,

in Eq. (1.6) as continued fraction. Therefore, the spectrum of the Fibonacci chain

is also a Cantor set, with self-similar properties and dense gaps opening at smaller

and smaller energy scales, even in the limit of a chain of infinite length [24, 137]. A

key difference with respect to the AAH model is that the Fibonacci chain does not

exhibit a localisation transition. Even an infinitesimal amount of potential strength is

enough to make all the eigenfunctions critical or multifractal [134], for every choice of

uA and uB [25]. For such reason, it is generally adopted a single parameter to control

the potential strength,

u = uA = −uB. (1.23)

As we see in Fig. 1.9a, the IPR scaling indicates multifractality at any value of u.

Furthermore, it is known that the scaling exponent p changes continuously as a func-

tion of the potential strength, as we notice in Fig. 1.9b, varying from p = 1 for u = 0

(extended states), to p→ 0 only in the limit u→ ∞. This feature is reflected on the

transport properties of the model, which will be investigated in the next sections.

In Fig. 1.9a, the lengths N belong to the Fibonacci number sequence. However,
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Figure 1.9: (a) Scaling of the IPR with system size for the eigenstates of the Fibonacci
chain in the middle of the spectrum ℓ = N/2, at different values of potential strength u, and
th = 1. Each set of data is fitted by f ∼ N−p, indicated in dashed lines. (b) The scaling
exponent of the IPR extracted from the fits in (a) is plotted as a function of u, showing that
it varies continuously by tuning the potential strength.

as discussed earlier, experiments and more complex numerical simulations can be

strongly limited in system size and usually involve chains of generic length N . In order

to treat the Fibonacci potential within small system sizes and reduce the sample-to-

sample fluctuations, one usually adopts the averaging procedure used in Refs. [134, 32].

The idea is to consider the sequence of infinite length C∞ and cut finite samples of

length N out of it. Physical quantities are calculated as statistical averages over

the different realisations of potential obtained. Given the quasiperiodicity of the

sequence, there is a finite but limited amount of non-equivalent samples of length N

that can be cut out from different sections of C∞. In particular, it can be proved

the existence of N + 1 such realisations, among which one (for even N) or two (for

odd N) are reflection symmetric around the center of the chain, while the others

possess a symmetric partner each [135]. As already noticed in the context of binary

random disorder, reflection symmetry makes difficult to compare the results with

those from the other samples [138], while symmetric partners have same eigenvalues

and eigenstates. Therefore, after discarding these configurations, there are N/2 (if N

is even) or (N − 1)/2 (for N odd), realisations of the potential to average over.



Chapter 2

Methods

In this Chapter, we present a general overview on the theoretical and numerical tools

used to obtain the main results of the thesis. In Sec. 2.1, we review the Landauer-

Büttiker framework to describe coherent transport in a non-interacting open system,

including technical details on how to compute through Green’s function approach

the main ingredient of the formalism, i.e. the transmission function, in the case of a

fermionic chain with arbitrary on-site potential. Moreover, we provide a general treat-

ment of thermoelectric transport in linear response for a system in the two-terminal

configuration and a description of how it can operate as a quantum heat engine, con-

verting heat-to-work through the flowing of non-equilibrium steady-state microscopic

currents. We discuss the quantities relative to the conversion, such as transport co-

efficients, power, and efficiency within the Landauer-Büttiker framework, focusing on

the characteristics that the transmission function of the working medium must exhibit

in order to maximise the performance of the machine. In Sec. 2.2, we move to isolated

many-body systems, in particular, quantum spin chains, and study transport through

their unitary dynamics starting from an initial perturbation. We review the general

framework of linear response theory and provide an expression for the Onsager coeffi-

cients within the Green-Kubo formalism. We consider then the electrical conductivity

and discuss how it dictates the transport regimen of the system. Finally, we show

how we can gather numerical evidence on the transport properties of the system by

connecting the conductivity to the the spread of density correlations, and with the

introduction of the notion of quantum dynamical typicality. This approach allows to

infer thermal equilibrium properties of the system from the dynamics of a single pure

25
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state, which act as “typical” representative of the statistical ensemble. Finally, in

Sec. 2.3, we describe how to derive physical quantities in the energy domain through

an expansion in Chebyshev polynomials via the kernel polynomial method. In par-

ticular, we show how to employ this technique for spectral properties such as local

and global density of states, expectation values in the microcanonical ensemble, and

dynamical quantities such as correlation functions.

2.1 Landauer-Büttiker formalism

The formalism, first elaborated by Landauer [139] and later extended by Büttiker

to set-ups with multiple terminals [140], constitutes a simple and elegant description

of quantum transport. It establishes an explicit connection between the microscopic

scattering probabilities of the particles and the conducting properties of the system

under study. This framework can be applied to non-interacting or effectively non-

interacting particles, as in the case of a mean-field characterisation, and when the

scale of the problem is smaller than the lengths at which the particles relax to local

thermal equilibrium and no longer possess memory of their phase. In these condi-

tions, transport is said to be “coherent”. Due to the simplicity of the picture, and

the possibility to generalise it to arbitrary potentials and complex geometries, the

Landauer-Büttiker framework has been a fundamental tool for interpreting the re-

sults from mesoscopic physics experiments [141–143] and for modelling a wide range

of nanostructures, from molecules to quantum dots [16, 17, 144, 145].

We consider the system of interest as a central scattering region S which receives

spinless electrons from fermionic reservoirs connected through metallic leads. The

reservoirs are large compared to the central system, thus they can at any time be

regarded as in thermal equilibrium with well defined chemical potential µν and tem-

perature Tν . In particular, we focus on a two-terminal set-up, with a left (ν = L),

and a right (ν = R) reservoir. The electrons leave the reservoirs and undergo purely

elastic scattering events, preserving their energy and phase during the collisions, until

they escape again the central region. Any energy dissipation and entropy produc-

tion is then limited to the reservoirs. The Landauer-Büttiker formalism captures the

situation where the system has already reached a non-equilibrium steady state with

constant currents induced by the differences in chemical potential and temperature.
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The particle JN and energy JE currents from the reservoirs to the system can be

defined in terms of the particles dNν and energy dU ν leaving or entering reservoir

ν = L,R per unit of time,

JN = −dN
L

dt
=
dNR

dt
, JE = −dU

L

dt
=
dUR

dt
, (2.1)

where we used the fact that both quantities are conserved in the central system,

meaning dNL+dNR = 0 and dUL+dUR = 0. In particular, with this sign convention

the currents are positive when flowing from the left to the right. The same applies

to the electric current Je = eJN , with e the charge of the electron. Within the

Landauer-Büttiker framework, the currents can be computed as

Je =
2e

h

∫
dE τLR(E)[fL(E)− fR(E)], (2.2)

JE =
2

h

∫
dE E τLR(E)[fL(E)− fR(E)], (2.3)

where the factor 2 is due to the spin degeneracy, and

fν(E) = {1 + exp[(E − µν)/kBTν ]}−1 (2.4)

is the Fermi-Dirac distribution of bath ν, with h and kB the Planck and Boltzmann

constants, respectively. The transmission function τLR(E) encodes the probability for

an electron at energy E to tunnel from the left to the right reservoir through the

central region. The factor [fL(E) − fR(E)] evaluates the number of available states

to be occupied by the tunnelling electrons. While electric and energy currents are

conserved, the heat currents in the two leads might differ if the electrons perform

work while in the central system, as depicted in Fig. 2.1. Making use of the first law

of thermodynamics,

dUν = dQν + dW ν ν = L,R, (2.5)

where dW ν = µνdN
ν is the work done to reservoir ν, and dQν the heat flowing into

it. From the expressions in Eq. (2.1), the heat currents from or into (depending on
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the sign) the reservoirs are [146, 147]

JLq = −dQ
L

dt
= JE − µLJN ,

JRq =
dQR

dt
= JE − µRJN . (2.6)

Therefore, the difference between the heat currents reads

JLq − JRq = −JN∆µ. (2.7)

The entropy production in each reservoir is defined as

Ṡνdt =
dQν

Tν
, ν = L,R, (2.8)

thus the total entropy production rate in the extended system, since it is zero in the

central region, can be related to the heat currents through

JLq = −TLṠL, JRq = TRṠR, (2.9)

Ṡ = ṠL + ṠR = −J
L
q

TL
+
JRq
TR

. (2.10)

We recover the corresponding integral in the Landauer-Büttiker formalism by inserting

Eqs. (2.2) and (2.3) into Eq. (2.6),

Jνq =
2

h

∫
dE(E − µν)τLR(E)[fL(E)− fR(E)]. (2.11)

The fundamental ingredient of the framework is the transmission function τLR(E),

which encodes the microscopic details of the central system and its coupling to the

reservoirs. The original approach is to consider incoming and outgoing modes by

solving a scattering problem, and explicitly extract the transmission coefficients from

the amplitudes of the resulting wavefunction [148]. We focus, instead, on a method

which is more efficient from the numerical point of view, reformulating the situation

in non-equilibrium Green’s function formalism.
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Figure 2.1: Schematic of a typical configuration to study quantum transport. The quantum
system of interest S is connected to two reservoirs at thermal equilibrium. When the system
has reached a non-equilibrium steady state, it is possible to compute the constant particle
JN , electric Je = eJN , and heat currents JLq and JRq , respectively in the left and right lead,
within the Landauer-Büttiker framework.

2.1.1 Green’s function approach to transmission

The class of systems usually studied in the configuration of Fig. 2.1 are typically

well described by a tight-binding approximation, which can be expressed in matrix

representation and gives discrete energy levels. On the other hand, the reservoirs are

assumed to be infinitely large when compared to the central system S, thus their

energy spectrum is effectively continuous. In the Green’s function formalism, the

effect of the reservoirs L and R can be included in the matrix representation of the

discrete-level system S and the transmission function be expressed in a convenient

form for numerical simulations. We focus on one-dimensional models or wires of

non-interacting electrons whose Hamiltonian in second quantisation is given by

ĤS =
N−1∑
n=1

th(â
†
nân+1 + h.c) +

N∑
n=1

Vnâ
†
nân, (2.12)

where th is the tunnelling or hopping constant, Vn is the on-site energy of site n, and

ân is the fermionic annihilation operator of site n. When the system is isolated, it

is straightforward to rewrite the single-particle eigenvalue problem ĤS |ψℓ⟩ = Eℓ |ψℓ⟩
in matrix form on the site basis {|n⟩}n = {â†n |0⟩}n, with |0⟩ the vacuum state. The

matrix takes the form

ĤS =
∑
nm

[HS]nm â
†
nâm. (2.13)

In particular, we recover with
∑

nm [HS]nm ψmℓ = Eℓψnℓ the same set of equations

seen in Eq. (1.4) to study quasiperiodic models, if tn,n−1 = th. In this case, HS is a

N×N symmetric and tridiagonal matrix, with diagonal entries {Vn}n and off-diagonal

entries equal to th. The retarded single-particle Green’s function of the isolated system
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is defined as

Gr
S(E) =

[
E−HS

]−1
, (2.14)

where we indicate E = (E + iη+)1, with η+ = 0+ an infinitesimally small positive

number and 1 the N ×N identity matrix. The advanced Green’s function Ga
S(E) is

defined analogously to Eq. (2.14), with E = (E−iη+)1. In the rest of the dissertation,

however, we consider systems with time-reversal symmetry. As a consequence, the

advanced Green’s function is always equal to the hermitian conjugate of the retarded

Green’s function Ga
S(E) = [Gr

S(E)]
†. Therefore, in the following we refer to Gr

S(E)

simply as Green’s function (GF) and drop the r apex. The local density of states on

site n can be then expressed as

ρn(E) =
∑
ℓ

|ψnℓ|2δ(E − Eℓ), (2.15)

ρn(E) = − 1

π
Im[GS(E)]nn, (2.16)

while the global density of states ρ(E) defined in Eq. (1.12) is obtained by

ρ(E) = − 1

π
Tr
{
ImGS(E)

}
. (2.17)

In the previous section we studied the spectral properties of isolated one-dimensional

systems in the tight-binding approximation. We now connect the tight-binding chain

to the two reservoirs, and consider the following total Hamiltonian

Ĥ = ĤS +
∑
ν=L,R

(
Ĥν + ĤSν

)
, (2.18)

which includes also the Hamiltonian of the reservoirs Ĥν and their coupling to the

system ĤSν . Each of the reservoirs is described by a quadratic fermionic Hamiltonian

with infinitely many degrees of freedom,

Ĥν =
∑
ℓ

EℓνD̂
†
ℓνD̂ℓν , ν = L,R (2.19)

where Eℓν are the single-particle eigenenergies of the leads and D̂ℓν are annihilation

operators for the corresponding eigenmodes. For the moment, we will not make any

assumption on the structure of the system-reservoir coupling. The total Hamiltonian
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can also be represented in matrix form analogously to Eq. (2.13), with the following

block structure [148],

H =


HL HSL 0

H†
SL HS H†

SR

0 HSR HR

 , (2.20)

whose diagonal entries are the hamiltonian matrices of the system and left and right

reservoirs HS, HL, HR, while the off-diagonal entries are the coupling terms HSν .

As a consequence, the GF for the total extended system shows an analogous block

structure,

G(E) =
[
E−H

]−1
,


E−HL −HSL 0

−H†
SL E−HS −H†

SR

0 −HSR E−HR




GL(E) GSL(E) 0

GLS(E) GS(E) GRS(E)

0 GSR(E) GR(E)

 = 1. (2.21)

As reviewed in Ref. [148], we derive the GF for the central system GS(E) by using

the two following equations from the above linear system,

(E−HL)GSL(E)−HSLGS(E) = 0, (2.22)

−HSRGS(E) + (E−HR)GSR(E) = 0, (2.23)

in order to replace GSL(E) and GSR(E) in

−H†
SLGSL(E) + (E−HS)GS(E)−H†

SRGSR(E) = 1. (2.24)

With this substitution, we arrive to the definition of retarded single-particle non-

equilibrium Green’s function (NEGF) for the central system,

GS(E) =
[
E−HS −

∑
ν

Σν(E)
]−1

, (2.25)

where we introduce the notion of self-energy,

Σν(E) = H†
Sν(E−Hν)

−1HSν = H†
SνGν(E)HSν . (2.26)
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The self-energy encodes the presence of the reservoirs, thus it depends only on the

GF of the isolated reservoirs Gν(E) = (E − Hν)
−1 and on their coupling to the

central system. We notice that the NEGF in Eq. (2.25) can be rewritten in the

same form as the GF for an isolated system whose effective Hamiltonian H̃S = HS +∑
ν Σν(E) is not hermitian. The eigenvalues of the effective Hamiltonian can thus

be complex: Ẽℓ = Eℓ − ∆ℓ − iγℓ/2, where ∆ℓ translates into a shift for the original

eigenvalues, while the imaginary part γℓ reflects the fact that the electrons injected

into the central scattering region will eventually leave it to re-enter the baths [149].

The time dependence of the eigenvectors of the effective Hamiltonian ψℓ = {ψnℓ}Nn=1

is modified to e−iEℓt/ℏ → e−i(Eℓ−∆ℓ)t/ℏe−γℓt/2ℏ, and the probability density decays as

|ψℓ(t)|2 ∼ e−γℓt/ℏ. The quantity γℓ is then proportional to the inverse average time

spent by the particle in state ℓ inside the central region, or, equivalently, the rate at

which particles escape into the reservoirs.

After introducing the level-width function, or bath spectral density,

Γν(E) = i[Σ†
ν(E)−Σν(E)], (2.27)

the transmission function is given by the Fisher-Lee formula [148–150],

τLR(E) = Tr
{
ΓL(E)G

†
S(E)ΓR(E)GS(E)

}
. (2.28)

The crucial aspect in the derivation of the transmission function is the evaluation

of the self-energies and level-width functions, which are represented by matrices of

infinite dimension. A blunt truncation in the degrees of freedom involves the risk

of describing a closed extended system, instead of the original system of interest

S in open configuration. However, in most relevant cases it is possible to apply

approximations which make the problem tractable. First, we assume in Eq. (2.18) a

bilinear system-reservoir coupling of the form

ĤSL + ĤSR =
∑
ℓℓ′

(tℓLâ
†
1D̂ℓL + tℓ′Râ

†
ND̂ℓ′R + h.c), (2.29)

where tℓL and tℓ′R describe the amplitude for electrons respectively in the ℓ-th mode

of lead L and ℓ′-th of lead R to tunnel onto the wire. Only the first site of the system

is coupled to the left lead L and only the last one is coupled to the right lead R. In
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this case, the level width functions or bath spectral densities have only one non-zero

element each,
[
ΓL(E)

]
11
= JL(E) and

[
ΓR(E)

]
NN

= JR(E), which assumes the form

of a weighted density of states,

Jν(E) = 2π
∑
ℓ

|tℓν |2δ(E − Eℓν). (2.30)

We also make use of the the wide-band limit (WBL) approximation. The typical

energy scales of the reservoirs are considered so large in comparison to those of the

central system that it is effectively possible to take spectral densities independent

of the energy and purely imaginary self-energies. We also consider identical values:

JL(E) = JR(E) = γ, which we indicate in the following as the coupling strength.

Given these approximations, the matrices ΣL(E), ΣR(E) and ΓL(E), ΓR(E) have

the only non-zero element given by

[
ΣL(E)

]
11
=
[
ΣR(E)

]
NN

= −iγ/2,
[
ΓL(E)

]
11
=
[
ΓR(E)

]
NN

= γ. (2.31)

The expression for the transmission function from Eq. (2.28) thus simplifies to

τLR(E) = γ2
∣∣[GS(E)]1N

∣∣2. (2.32)

The most straightforward example to study is transport through a single level system,

with energy ϵ0. In this case, the NEGF in WBL approximation is a scalar,

GS(E) =
1

E − ϵ0 −
∑

ν Σν

=
1

E − ϵ0 − iγ
, (2.33)

and the transmission function can be evaluated analytically,

τLR(E) =
γ2

[E − ϵ0]2 + γ2
. (2.34)

As shown in Fig. 2.2, the result is a Lorentzian centred in E = ϵ0, where it reaches

the maximum value of 1 at every γ. The coupling strength controls the broadening

of the curve, thus the probabilities of transmission on a larger energy window.

When we consider larger system sizes, exact analytical solutions are not accessible even

for trivial potentials, so one resorts to numerical inversion of the NEGF matrix. The

computational cost of most algorithms for matrix inversion, however, has a scaling
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Figure 2.2: The transmission function for a single level model of energy ϵ0 connected to
two reservoirs in WBL approximation, whose analytical expression is given in Eq. (2.34).
The coupling strength γ controls the broadening of the Lorentzian, centred in E = ϵ0 with
maximum value of 1.

of N2.8−3. As a consequence, simulations can become heavy if the energy grid on

which the transmission function needs to be evaluated for the integrals in Eqs. (2.2),

(2.3), and (2.11) is fine, as in the case of the fractal spectrum of quasiperiodic models.

However, given the form of the coupling and the WBL approximation, the NEGF of

Eq. (2.25) is a tridiagonal matrix as the original Hamiltonian. Therefore, it is possible

to exploit iterative algorithms to extract the elements of the inverse of tridiagonal

matrices, which scale linearly with N . In Fig. 2.3, we show example transmission

functions for the Hamiltonian in Eq. (2.12) with constant on-site energies. A clean

wire of N sites exhibits N discrete energy levels lying in E ∈ [−2, 2] when Vn = 0 and

th = 1. For N = 10, we notice in Fig. 2.3a a transmission function τLR(E) that in

the limit of small γ consists of a series of δ-shaped peaks corresponding to the energy

levels. As γ increases, the peaks broaden and eventually merge at the approximately

constant maximum value 1. We observe the same effect for a wire of length N = 100,

increasing the coupling from γ = 0.1 in Fig. 2.3b to γ = 2.5 in Fig. 2.3c. At both

lengths, the transmission drops to zero outside of the energy window containing the

spectrum.

2.1.2 Linear-response regime

The linear response regime is relevant for numerous experimental platforms, ranging

from semiconductor [151, 152] and molecular electronics [144] to ultracold atoms [14],

and, furthermore, permits to derive in a more compact way fundamental consider-

ations about thermoelectric effects and the performance of thermoelectric devices.
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Figure 2.3: Transmission function for the clean one-dimensional tight-binding model when
coupled in WBL approximation to two baths, with coupling strength γ (Vn = 0 and th = 1).
(a) For N = 10 sites, we observe a series of peaks at the eigenergies of the system, which
are δ-functions in the limit γ → 0 and broaden as γ increases. For N = 100 the single peaks
are still distinguishable for (b) γ = 0.1 and look partially merged at (c) γ = 2.5.

In order to reach this regime, the differences between the chemical potentials ∆µ =

µL − µR and temperatures ∆T = TL − TR of the two reservoirs in Fig. 2.1 must

be small |∆T | << T , |∆µ| << kBT [20] compared to the reference thermodynamic

quantities µ = µR and T = TR. The currents can then be expressed as linear combi-

nations of the generalised forces or affinities driving transport [20, 141, 146, 153]. The

affinities are identified by considering the set of independent extensive variables {Xi}
which determine the thermodynamic entropy of the system S = S(X1, X2, . . . ). The

entropy production rate can be then formulated as the product of extensive fluxes or

currents Ji = dXi/dt and the affinities Fi = dS/dXi [146],

Ṡ =
∑
i

dS

dXi

dXi

dt
=
∑
i

JiFi. (2.35)

There is a certain arbitrariness in defining the independent currents, however, in the

study of thermoelectric effects, one usually considers the expression for the entropy

production rate given in Eq. (2.10) to isolate Je and J
L
q , as follows

Ṡ =
1

TR

(
JLq +

Je∆µ

e

)
− JLq
TL

=
Je∆µ

eTR
+JLq

(
1

TR
− 1

TL

)
= Je

∆µ

eT
+JLq ∆

(
− 1

T

)
, (2.36)

where we used Eq. (2.7). The relation between currents and affinities is compactly

represented via the Onsager matrix [154] as

 Je

Jq

 = L

 ∆µ/eT

∆T/T 2

 , L =

L11 L12

L21 L22

 . (2.37)
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As evident from Eq. (2.7), the difference between the heat currents in the left JLq and

right JRq lead is quadratic in the biases ∆µ, ∆T . The relations obtained within linear

response regime are, instead, only accurate to first order in chemical potential and

temperature difference, they thus introduce a conserved heat current Jq = JLq ∼ JRq

irrespective of whether the system is absorbing or producing electrical work, with the

same sign convention of JN and Je.

The Onsager coefficients are constrained by the Onsager reciprocal relations, and by

the second law of thermodynamics. Firstly, Onsager proved that the diagonal coeffi-

cient L12 measured in an external magnetic field B is identical to L21 measured in the

same reversed magnetic field −B: L12(B) = L21(−B). If the system is time-reversal

invariant, as in absence of external magnetic field, L12 = L21 always holds [154]. Sec-

ondly, the non-negativity of the entropy production rate associated to the transport

processes implies that

L11 ≥ 0, L22 ≥
(L12 + L21)

2

4L11

≥ 0. (2.38)

The electrical conductance G, the thermal conductance K, the Seebeck factor (or

thermopower) S and the Peltier coefficient Π are defined as

G =

(
Je
∆V

)∣∣∣∣
∆T=0

=
L11

T
, (2.39)

K =

(
Jh
∆T

)∣∣∣∣
Je=0

=
1

T 2

detL

L11

, (2.40)

S = −
(
∆V

∆T

)∣∣∣∣
Je=0

=
1

T

L12

L11

, (2.41)

Π =

(
Jq
Je

)∣∣∣∣
∆T=0

=
L21

L11

, (2.42)

where we notice that in presence of time-reversal symmetry Π and S differs only by

a factor 1/T . As a consequence of the conditions in Eq. (2.38), the conductances are

always positive

G ≥ 0, K ≥ G(ST − Π)2

4T
≥ 0, (2.43)

while the thermopower S and the Peltier coefficient Π can be negative. The currents
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are then re-written as

Je = G∆µ/e+GS∆T, (2.44)

Jq = G Π∆µ/e+ (K +GS Π)∆T. (2.45)

with the transport coefficients fully characterising the thermoelectric effects in the

non-equilibrium steady state. We explicitly see, in fact, that they couple the elec-

tric current to the temperature bias, and the heat current to the chemical potential

difference. Moreover, G and K give an indication on the quantum heat and electric

transport properties of the central system, as it will be specified in Sec. 2.2.2.

We remark again that the definition of the entropy production rate in Eq. (2.35)

allows some freedom in choosing the independent currents and the related affinities.

The same formulation described above can be built taking the electric and the energy

currents Je and JE, instead of electric and heat Je and Jq. In this case, the affinities

are F̃e = Fe− µFq/e, F̃E = Fq. An analogous Onsager matrix L̃ can then be derived,

with the following relation between the two representations [155, 20],

L11 = L̃11,

L12 = L21 = L̃12 −
µ

e
L̃11,

L22 = L̃22 −
2µ

e
L̃12 +

(
µ

e

)2

L̃11, (2.46)

where the same property under time-reversal symmetry holds L̃12 = L̃21.

Within Landauer-Büttiker framework, we obtain the heat and electric currents in

linear-response regime by Taylor-expanding at first order the Fermi-Dirac distribu-

tions around the reference thermodynamic variables µ = µR and T = TR,

fL(E) ≈ f(E) +
∂f

∂T
∆T +

∂f

∂µ
∆µ = f(E)− f ′(E)

[
(E − µ)

∆T

T
+∆µ

]
, (2.47)

where

f ′(E) =
∂f

∂E
= − 1

4kBT

1

cosh2[(E − µ)/2kBT ]
, (2.48)

is an even function centered around µ with a width of order kBT , which, as shown in

Fig. 2.4a, effectively defines the energy window contributing to transport.
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Figure 2.4: (a) The Fermi-Dirac distribution derivative of Eq. (2.48), with a negative sign.
We notice that it is an even function of (E − µ), different from zero only within an energy
window of order ∼ kBT . It thus defines the effective energy window contributing to the
transport coefficients integrals of Eq. (2.50). (b) Two Fermi-Dirac distributions fν(E) and
fν′(E) intersect only at one energy E∗ (highlighted with black dots in the plotted examples)
unless µν = µν′ and Tν = Tν′ , in which case fν(E) = fν′(E) on the whole energy axis.

Comparing the result with Eq. (2.37), the Onsager coefficients can be expressed as

L11 = e2TI0, L12 = L21 = eTI1, L22 = TI2, (2.49)

where

Ik =
2

h

∫
dE(E − µ)kτLR(E)[−f ′(E)]. (2.50)

Within this framework, it is possible to formally illustrate by Sommerfeld expansion

a result which was first derived phenomenologically, the Wiedemann-Franz (WF) law.

The WF law states that in normal conductors at low temperatures the ratio of the

thermal conductivity over the product of electrical conductivity and temperature L,

K

GT
= L, L0 =

1

3

(
πkB
e

)2

, (2.51)

is a universal constant known as Lorenz number L0. In order to derive the law, we

Taylor-expand the transmission function τLR(E) in (E−µ), with the expectation that

only the first few terms will be important

τLR(E) = τLR(µ) +
∞∑
m=1

(E − µ)

m!

m[dmτLR(E)
dEm

]
E=µ

. (2.52)

As mentioned earlier, f ′(E) is different from zero only within a few kBT around E = µ,

thus the integrals of Eq. (2.50) are effectively computed over this limited range of
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energies, where we can replace τLR(E) with the first terms of its Taylor expansion,

provided that it is not too rapidly varying in this energy interval. Furthermore, since

f ′(E) is an even function and (E − µ)f ′(E) is odd, the leading order term in I0 and

I2 depends on τ(µ), while in I1 it depends on the first derivative dτLR(E)
dE

|E=µ. We

consider then only the leading order in kBT of the Sommerfeld expansion [21], by

assuming low temperature and making use of the known result

∫
dE[−f ′(E)]

(E − µ)

2m!

2m

= am(kBT )
2m, (2.53)

where am = (2−2−2(m−1))ζ(2m), with ζ(m) the Riemann zeta function. We will need

a0 = 1 for I0, and 2a1 = π2/3 for I1 and I2. It follows that

I0 =
2

h
τLR(µ), I1 =

2π2

3h

dτLR(E)

dE

∣∣∣∣
E=µ

(kBT )
2, I2 =

2π2

3h
τLR(µ)(kBT )

2. (2.54)

Given that in the integrals Ik the energy range (E − µ) is contained within few kBT ,

the truncation to the first order m = 1 of the transmission function in Eq. (2.52)

implies also that

(kBT )I0 >> I1, I2/(kBT ) >> I1, (2.55)

such that the expressions for the conductances from Eqs. (2.39) and (2.40) can be

approximated to

G = e2I0, K =
1

T

(
I2 −

I21
I0

)
≃ I2
T
. (2.56)

By inserting the results from Eq. (2.54) in the formulas above, we finally arrive to

the WF law of Eq. (2.51). Beside restricting to low temperature, which allows us to

stop at the first order of the Sommerfeld expansion, in order to derive the WF law

we have made another essential assumption on the transmission function. We have

considered a τLR(E) not singular and not too rapidly varying in the neighbourhood

of E = µ. Only in this case it is possible to consider the first order in Eq. (2.52) and

proceed with the Sommerfeld expansion. As mentioned before, this assumption also

implies Eq. (2.55), which translates directly into the fact that the chemical potential

difference will contribute weakly to the heat current and the same for temperature bias

to the electric current, having L11L22 >> (L12)
2. Therefore, a violation of the WF

law in a non-interacting systems at low temperature and small biases signals a strong

dependence of the transmission function on the energy, determining the presence of
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thermoelectric effects (since the condition in Eq. (2.55) cannot be applied) [156].

2.1.3 Autonomous thermal machines

If thermoelectric effects are present, with simultaneous flows of heat and electric

currents, the two-terminal set-up we have discussed can function as an autonomous

thermal machine, depending on the thermodynamic variables of the reservoirs. A

quantum thermal machine operates without macroscopic elements such pistons, but

through the flows of the non-equilibrium steady-state heat and electric currents. The

machine is said to be autonomous when the “cycle” it performs is entirely induced

by the differences in temperature and chemical potential between the two reservoirs,

without any external drive. In such case, the central system constitutes the working

medium of the device.

We first introduce the heat engine (h) configuration, already represented schematically

in Fig. 2.1, assuming without loss of generality that the left reservoir is hotter than

the right one, i.e. TL > TR, and that it is characterised by a lower chemical potential,

i.e. µL < µR or ∆µ < 0. The temperature difference induces an electrical current Je

from the left reservoir into the right one, against the voltage bias ∆V = ∆µ/e. Per

unit of time, the central system gains heat JLq from the left reservoirs, performs work

P when electrons are moved from a low chemical potential to a higher one, and other

heat JRq is dumped into the right reservoir. The power produced is then

P = −JN∆µ = −Je∆V = JLq − JRq , (2.57)

where in the last equality we used Eq. (2.7). The electrons do not necessarily flow

from the hot to the cold reservoirs, in fact the direction of the currents depends on

µν and Tν of each reservoir ν = L,R. However, the sign convention establishes that

the system behaves as an heat engine when Je is driven against a potential difference

and P > 0 is produced with JLq , J
R
q > 0, in such case the efficiency is given by

η(h) =
P

JLq
= 1− JRq

JLq
, (2.58)

analogously to the cyclic engine [147]. By replacing the heat currents with their

relation to the entropy production rates in Eq. (2.9) and applying again the second
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law of thermodynamics Ṡ > 0, we in fact verify that the definition is consistent with

finite time thermodynamics,

η(h) =
−TLṠL − TRṠR

−TLṠL
≤ 1− TR

TL
= η

(h)
C , (2.59)

since bounded from above by the Carnot efficiency η
(h)
C . A process can reach the limit

of Carnot efficiency only when it is perfectly reversible, such that Ṡ = 0. Within the

Landauer-Büttiker framework, as mentioned in the discussion on the WF law, the

presence of thermoelectric effect and heat-to-work conversion are closely connected

to the behaviour of the transmission function. It is known that the transmission

function maximising the efficiency to the Carnot limit is a δ-function [38]. The result

is general [157, 147] and can be derived by substituting in Eq. (2.10) the integrals for

the heat currents of Eq. (2.11),

Ṡ = kB

∫
dEτLR(E)[fL(E)− fR(E)] ln

fL(E)[1− fR(E)]

fR(E)[1− fL(E)]
, (2.60)

where we used the fact that (E − µν)/kBTν = ({ln [1− fν(E)] − ln fν(E)}. Since

τLR(E) ≥ 0, the integrand is always non-negative. In order to get Ṡ = 0, however,

for each E we either need τLR(E) = 0, or [fL(E)− fR(E)] = 0. We wish a non-trivial

situation with finite transport, where τLR(E) ̸= 0. On the other hand, the term

[fL(E) − fR(E)], as shown in Fig. 2.4b, can be different from zero only on a single

energy E∗, otherwise the two reservoirs would have the same distribution, implying

again the absence of transport. From these considerations, it is evident that the

transmission function determining Ṡ = 0 can only be of the form τLR(E) = δ(E−E∗),

with E∗ given by the further condition

fL(E
∗) = fR(E

∗), E∗ =
TLµR − TRµL
TL − TR

. (2.61)

Equivalently, recasting the expression for E∗, Carnot efficiency is reached if we apply

an optimal chemical potential difference between the reservoirs which depends on the

δ-shaped transmission,

∆µ = E∗(1− TR/TL). (2.62)

We have previously encountered a transmission function of similar nature, when dis-
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(a) (b)

Figure 2.5: (a) A boxcar transmission function, which is known to optimise the efficiency of
the heat engine at a given finite power output. (b) As the required power output increases,
the transmission function must be chosen with larger and larger width ∆. In the limit of a
perfect step transmission function, the power output is maximised.

cussing the single-level model. If we look again at Fig. 2.2, it appears evident that

in the limit of vanishing system-bath coupling γ → 0 and tuning its energy level to

ϵ0 = E∗, the efficiency of a heat engine with a single quantum dot as working medium

approaches the Carnot limit [17, 12]. As mentioned after introducing the self-energies

of Eq. (2.26) in Green’s functions formalism, the broadening of the transmission func-

tion gives an indication of the rate at which the electrons escape the central system

to re-enter the reservoirs. When the transmission function is a Dirac-δ, it takes an

infinite average time for an electron to scatter across the central system, or, equiva-

lently, it takes infinite time to operate the machine. This determines, as in the Carnot

cyclic engine, zero power output. We show it explicitly by modelling the transmission

function with the following boxcar function,

τLR(E) =

 1 for E ∈
[
E∗ − ∆

2
, E∗ + ∆

2

]
,

0 otherwise,

(2.63)

depicted in Fig. 2.5a. The associated power output can be calculated as [39, 158]

P = −2∆µ

h

E∗+∆/2∫
E∗−∆/2

dE[fL(E)− fR(E)] = −d[fL(E)− fR(E)]

dE

∣∣∣∣
E=E∗

∆µ

h
∆2 +O(∆3),

(2.64)

and thus vanishes in the limit of ∆ → 0.

Any practical thermoelectric device, however, should give a finite power output, irre-
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Figure 2.6: An efficient thermoelectric device can be obtained through the use of an energy
filter in the central system, blocking the transport at certain energies. The temperature
bias drives particle (hole) transport above (below) the chemical potential, leading to zero
net electric current in the presence of particle-hole symmetry. Finite electric current and,
consequently, output power are instead obtained by differentiating the dynamics of the
particles at energies above and below the chemical potential. This mechanism can be realised
through transmission functions as in Figs. 2.5a or 2.5b.

spective of its efficiency. This consideration has fuelled numerous studies in irreversible

thermodynamics, investigating the transmission function optimised to generate the

maximum efficiency at a given finite power output [147, 157–160]. While it can be

already seen intuitively in Eq. (2.64), it has been formally proved that such τLR(E)

is the boxcar function with finite width [158]. A finite power output signals that the

engine is not in conditions of perfect reversibility, the efficiency will be thus strictly

less than the Carnot limit. There is in fact a definite threshold between efficiency and

produced power. The power output, as seen in Eq. (2.64), can be increased with the

width of the boxcar transmission function, and it is maximised when the system lets

through all particles above or below a certain energy with probability 1, but none at

other energies, with a transmission function described by a step-function [39] as in

Fig. 2.5b.

When the transmission function can be approximated by a boxcar or a step function,

the central system is said to act as an energy filter. This is a mechanism to break

the particle-hole symmetry that would otherwise impede thermoelectric power gener-

ation. Indeed, in the presence of particle-hole symmetry, heat is transported both by

particles above the chemical potential and by holes below the chemical potential. The

corresponding charge currents of the particles and the holes compensate each other,

leading to zero net power output. As demonstrated in Fig. 2.6, blocking transport in

the working medium within a certain energy range allows charge to flow only in one

direction, i.e., against the voltage gradient.

In linear response regime, the effect of an energy filter can immediately seen mathe-
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matically by using Eq. (2.50) to write the thermopower as

S =
1

eT

∫
dE(E − µ)τLR(E)[−f ′(E)]∫

dEτLR(E)[−f ′(E)]
. (2.65)

Given that f ′(E) is an even function of the energy, it is clear that the Seebeck factor

will vanish whenever the transmission probability is also an even function. Breaking

electron-hole symmetry in the transmission probability is therefore crucial to achieve

a finite thermoelectric response. Linear response regime has the further advantage

of simplifying all the relevant parameters for the characterisation of the heat-to-work

conversion in terms of a single dimensionless parameter [161], the figure of merit

ZT =
GS2T

K
. (2.66)

In particular, the maximum thermodynamic efficiency reachable by the device can be

parametrised as [20]

η(h)max = η
(h)
C

√
ZT + 1− 1√
ZT + 1 + 1

. (2.67)

Larger values of ZT correspond to higher efficiencies or performance, giving the max-

imum theoretical limits for ZT → ∞ The efficiency at maximum power in linear

response regime can instead be expressed as [20]

η(h)(Pmax) =
η
(h)
C

2

ZT

ZT + 2
, (2.68)

which for ZT → ∞ tends to η
(h)
C /2. This value corresponds to the Curzon-Ahlborn

efficiency [162, 163] expanded at the first order,

ηCA = 1−
√
TL
TR

≈ ηC
2

+
η2C
8

+O(η3C). (2.69)

As demonstrated in Fig. 2.7, the figure of merit ZT represents then the fundamental

index to categorise thermoelectrics [151, 164] (even though it may over- or underes-

timate the performance of the engine outside of the linear-response regime). Most

current thermoelectric devices work with ZT ≈ 1 and it is often stated that ZT ≈ 3

would be required in order to compete with alternative technologies [20]. We further

observe that the values of ZT/S2 = 1/L are constrained to 1/L0 unless the WF law

of Eq. (2.51) is violated.
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The power produced by the thermoelectric device, however, does not depend only on

the characteristics of the device itself and its transmission function, but also on the

load powered by it. The attached circuit acts as a resistance Rl, which contributes to

determine Je through the engine at a given applied bias. As a consequence of charge

conservation, and if the load is connected in series, the current can be expressed as

Je = −Gl∆V , where Gl = 1/Rl is the conductance of the load. The current Je, and

thus the power given to the load, is zero if either Rl = 0 (Gl = ∞), since it is then

impossible to apply any potential difference, or Rl = ∞ (Gl = 0), where no electric

current can flow. The voltage building up in the load to stop the current can be found

by imposing Eq. (2.44) equal to zero. As it comes naturally from the definition of

thermopower, the so-called stopping voltage in the load is ∆Vstop = −S∆T [20]. If we

replace this expression in the power output P = −Je∆V , we find a parabolic curve

with maximum power output Pmax reached when we apply

∆µ =
∆Vstop
2e

= −1

2
S∆T, (2.70)

between the two reservoirs.

The same considerations on the transmission function which optimises the engine

at a given power output can be applied when the device functions as a refrigerator

(r) [39, 20]. In this case, the heat current is negative, with heat transported from the

right (colder) to the left (hotter) bath, while power is supplied to the system (P < 0),

Jq < 0, P < 0 (refrigerator regime). (2.71)

The efficiency of the refrigeration is quantified by the coefficient of performance (COP)

η(r) =
Jq
P

≤ η
(r)
C =

T

∆T
, (2.72)

which is characterised by the same figure of merit ZT , and analogous expressions to

Eq. (2.67).
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Figure 2.7: The maximum efficiency reachable by a heat engine in linear response regime

η
(h)
max (Eq. (2.67)) and the efficiency at maximum power output η(Pmax) (Eq. (2.68)), both
as a function of the figure of merit ZT . We notice that until approximately ZT ∼ 3 the

two curves lie on top of each other, however for ZT → ∞, η(h)(Pmax) → η
(h)
C /2, while

η
(h)
max → η

(h)
C with a slower convergence.

2.2 Linear-response theory in isolated systems

Scattering theory and Landauer-Büttiker type formulae are essential to study trans-

port at the mesoscopic scale and to provide an elegant and effective picture to un-

derstand thermoelectric effects on a wide range of experimental platforms. However,

despite the possibility of mimicking some kinds of incoherent mechanisms, in their sim-

plest form they represent tools for single-particle systems. In presence of many-body

interactions, we need other frameworks to probe particle and thermal transport. In

particular, we focus on strongly correlated one-dimensional lattice models in isolated

environment. In linear response regime, the currents arise as a response to a weak

perturbation which brings the system out of equilibrium [165]. The Green-Kubo for-

malism gives a relation between transport coefficients and the dynamical correlation

function of the currents evaluated at thermal equilibrium [166]. Numerical simulations

in this field are computationally heavy, due to the exponential growth in the degrees of

freedom, and to the long scales necessary to perform the unitary time-evolution of the

initial state, usually described by a density matrix. In this section, we first review the

type of Hamiltonians under study in Sec. 2.2.1. Then, we discuss the generalities of

Kubo formalism in Sec. 2.2.2 with the connection to the Onsager matrix, and how to

classify the transport regimen according to the conductivity in Sec. 2.2.3. Finally, we

present in Sec. 2.2.4 a technique to circumvent part of the difficulties in the numerics.

Dynamical quantum typicality prescribes the possibility of using a single pure state

to reproduce the properties of a full ensemble density matrix, and has been exploited
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in numerous studies on quantum spin chains [74, 167–170].

2.2.1 Quantum spin chains

Quantum spin chains, collections of interacting spins embedded on a one-dimensional

lattice, constitute a popular testbed to investigate the statistical mechanics of isolated

systems and the effect of many-body interactions on transport. The prototypical

Hamiltonian presents anisotropic interactions and arbitrary magnetic field {Vl}Nl=1,

and can be written as

Ĥ =
N−1∑
l=1

[Jxy(ŝ
x
l ŝ
x
l+1 + ŝyl ŝ

y
l+1) + ∆ŝzl ŝ

z
l+1] +

N∑
l=1

Vlŝ
z
l , (2.73)

where ŝαl are the spin-1/2 operators on site l, fulfilling the commutation relations

[ŝαl , ŝ
β
p ] = iϵαβγ ŝ

γ
l δlp. As clarified below, Jxy indicates the rate of spin exchange, and

∆ the strength of the interactions. The most famous example of quantum spin chain

is the XXZ model, where Vl = 0. The Hamiltonian is composed only of nearest-

neighbour interactions, thus it can be split in local factors of the form

Ĥ =
N−1∑
l=1

ĥl,l+1,

ĥl,l+1 = Jxy(ŝ
x
l ŝ
x
l+1 + ŝyl ŝ

y
l+1) + ∆ŝzl ŝ

z
l+1 +

1

2
(Vlŝ

z
l + Vl+1ŝ

z
l+1), (2.74)

where the open boundary conditions imply the addition of a factor V1ŝ
z
1/2 to the

first term ĥ1,2, and VN ŝ
z
N/2 to the last one ĥN−1,N . Although not diagonal on this

basis, the Hamiltonian is commonly represented as a matrix operator on the basis

of the eigenstates of
⊗N

i=1 ŝ
z
i . This is given by the complete set of all the D = 2N

possible combinations to allocate up and down spins along the chain {|↑1 ↑2 . . . ↑N⟩ ,
|↓1 ↑2 . . . ↑N⟩ , |↓1 ↓2 . . . ↑N⟩ , . . . }, also called the “computational basis” [171]. The

effects of the Hamiltonian on the states of the computational basis can be shown by

recasting it as

Ĥ =
N−1∑
l=1

[
Jxy
2

(ŝ+l ŝ
−
l+1 + h.c) + ∆ŝzl ŝ

z
l+1

]
+

N∑
l=1

Vlŝ
z
l . (2.75)
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where ŝ±l = ŝxl ± iŝyl are the raising and lowering operators. We observe that the

Hamiltonian introduces attraction or repulsion terms depending if neighbouring spins

are anti-aligned or aligned, for example

∆ŝzl ŝ
z
l+1 |. . . ↑l↓l+1 . . .⟩ = −∆ |. . . ↑l↓l+1 . . .⟩

,∆ŝzl ŝ
z
l+1 |. . . ↑l↑l+1 . . .⟩ = +∆ |. . . ↑l↑l+1 . . .⟩ ,

and it moves neighbouring excitations along the chain, as in

Jxy
2

(ŝ+l ŝ
−
l+1 + ŝ−l ŝ

+
l+1) |. . . ↑l↓l+1 . . .⟩ =

Jxy
2

|. . . ↓l↑l+1 . . .⟩ .

However, excitations are neither created or destroyed, signalling that the total mag-

netisation along z is conserved,

Ŝz =
N∑
l=1

ŝzl , [Ĥ, Ŝz] = 0. (2.76)

This symmetry is known as U(1) symmetry, and allows to divide the Hilbert space in

sectors and write the Hamiltonian as a block diagonal matrix, each block correspond-

ing to a sector at fixed magnetisation ⟨Ŝz⟩. Other operators, such as the generator

of the dynamics Û(t) = exp (−iĤt/ℏ), do not mix different excitation sectors. The

dimension of each of them is given by the number of possible ways to allocate Nup

spin up that preserve ⟨Ŝz⟩,

Ds =

(
N

Nup

)
=

N !

Nup!(N −Nup)!
. (2.77)

Numerical simulations are often performed in the largest subsector rather than in the

full Hilbert space. For chains with even number of spins, this subsector corresponds to

⟨Ŝz⟩ = 0 with Nup = N/2, while for odd number of spins ⟨Ŝz⟩ = ±1, Nup = (N±1)/2.

The quantum spin chain Hamiltonian of Eq. (2.73) can be mapped into a system

of interacting spinless fermions through Jordan-Wigner transformations [172]. In

particular, we obtain the one-dimensional tight-binding Hamiltonian of Eq. (2.12),

with th = Jxy/2 and the addition of a nearest neighbour density-density interaction
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term n̂l = â†l âl,

Ĥ =
N−1∑
l=1

[
Jxy
2

(â†l âl+1 + h.c) + ∆n̂ln̂l+1

]
+

N∑
l=1

Vln̂l + ĥBC . (2.78)

The term ĥBC depends on the boundary conditions used, in case of open boundary

conditions ĥBC = (n̂1 + n̂L)/2 up to a constant term. In this picture, the global

symmetry concerns the total number of particles,

N̂ =
N∑
l=1

n̂l, [Ĥ, N̂ ] = 0, (2.79)

and the Hilbert space is divided in subsectors depending on the number of particles

present ⟨N̂⟩ = Nup.

2.2.2 Green-Kubo formalism

When the quantum system of interest is isolated, its transport properties can be

studied through Kubo formulae, which constitute the core of linear response theory.

We consider the isolated system driven out of equilibrium by a small perturbation,

Ĥ ′(t) = Ĥ − b(t)B̂, (2.80)

where B̂ is a hermitian operator and b(t) a weakly perturbing field with real values,

also called the generalised force or affinity coupled to B̂. We assume that b(t) vanishes

for t → −∞. Therefore, the system is initially at equilibrium with respect to the

original Ĥ, and then coherently evolves in time according to Ĥ ′. Linear-response

theory describes the consequences of the perturbation on the measured quantities, thus

how the expectation value of an observable Ô deviates from the thermal equilibrium

value,

δ ⟨Ô(t)⟩ = ⟨Ô(t)⟩ − ⟨Ô⟩eq . (2.81)

Here, the expectation value ⟨·⟩eq = Tr{·ρ̂eq} is taken on the statistical mechanical

ensemble described by ρ̂eq. When the unperturbed Hamiltonian is invariant under

time-reversal symmetry, the response induced by the weakly perturbing field can be
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expressed in first order through the so-called “Kubo formula” [165],

δ ⟨Ô(t)⟩ =
∫ ∞

−∞
χBO(t− t′)b(t′)dt′ +O(b2), (2.82)

where the linear response function χBO(t − t′), is a property of the unperturbed

system at equilibrium. Due to the stationarity of ρ̂eq, the response function depends

exclusively on t− t′, and is written as [173],

χBO(t− t′) =
i

ℏ
θ(t− t′) ⟨[Ô(t− t′), B̂]⟩eq , (2.83)

where θ(t) indicates the Heaviside step-function, θ(t) = 0 for t < 0 and θ(t) = 1

for t > 0. It is evident that χBO(t − t′) describes the after-effect at time t on the

observable Ô to the impulse that coupled the system to the perturbation B̂ at an

earlier time t′ < t. For this reason, it is also called “causal” response function. One

generally chooses t′ = 0 without loss of generality.

The linear response function is related to the connected correlation function, defined

as

CBO(t) = ⟨Ô(t)B̂⟩eq − ⟨Ô(t)⟩eq ⟨B̂⟩eq . (2.84)

The correlation function can in general assume complex values, with CBO(−t) =

C∗
OB(t). However, when the two observables coincide Ô = B̂, the autocorrelation

COO(t) is separable into a real and symmetric, and an imaginary and antisymmetric

part by virtue of the relation COO(−t) = C∗
OO(t). In order to characterise the correla-

tion between the two observables through a real function, one defines the symmetrised

noise or fluctuation function

SBO(t) := ⟨{Ô(t), B̂}⟩eq − 2 ⟨Ô(t)⟩eq ⟨B̂⟩eq , (2.85)

where {·, ·} indicates the anticommutator. When Ô = B̂, this function is also even,

SOO(t) = 2C+
OO(t) = 2Re{COO(t)}. (2.86)

The symmetric component of the autocorrelation is given by C+
OO(t) = [COO(t) +

COO(−t)]/2. Analogously, the anticommutator determines another quantity, which is
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purely imaginary and related to the linear response function in Eq. (2.83),

χ′′
BO(t) :=

1

2ℏ
⟨[Ô(t)|B̂]⟩eq , χBO(t) = 2iθ(t)χ′′

BO(t). (2.87)

In the case Ô = B̂, it can be related to the imaginary or antisymmetric part of the

autocorrelation C−
BO(t) = [CBO(t)− CBO(−t)]/2, as follows

χ′′
OO(t) =

1

ℏ
C−
OO(t) =

i

ℏ
Im{COO(t)}. (2.88)

The Fourier transform of χ′′
BO(t) is called “spectral density”,

χ′′
BO(ω) =

∫ ∞

−∞
χ′′
BO(t)e

iωtdt. (2.89)

Particular care must be taken when transforming the linear response function to

frequency space, since causality ensures analyticity only on the upper half of the

complex plane. The Fourier transform of the linear response is called generalised

susceptibility,

χBO(ω) = lim
ϵ→0+

∫ ∞

−∞
ei(ωt−iϵt)χBO(t), (2.90)

where the exponential factor is inserted to ensure convergence. Despite the misleading

notation sometimes adopted in the literature, χ′′
BO(t) is not the imaginary part of

χBO(t). The response function χBO(t) is purely real, since it describes the response

of an observable, while the generalised susceptibility χBO(ω) can be complex. In

frequency space, the following relations hold [174],

χBO(ω) =
1

π
lim
ϵ→0+

∫ ∞

−∞

χ′′
BO(ω

′)

ω′ − ω − iϵ
dω′, χ′′

OO(ω) = Im{χOO(ω)}. (2.91)

In his early study [166], Kubo presents a different version of the linear response

function,

χBO(t) = βθ(t)KḂO(t), χBO(ω) = β

∫ ∞

0

KḂO(t)e
iωtdt, (2.92)

where β = 1/kBT is the inverse temperature of the statistical equilibrium ensemble,

and ˆ̇B = [B̂, Ĥ]/(iℏ).
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The Kubo canonical correlation function,

KBO(t) =
1

β

∫ β

0

⟨B̂Ô(t+ iℏβ′)⟩β dβ′, (2.93)

was originally calculated in the canonical ensemble ⟨·⟩β = Tr{·ρ̂βc },

ρ̂βc =
e−βĤ

Zc

(2.94)

with Zc = Tr{e−βĤ} the partition function. Its definition can be extended to other

ensembles, as the grand-canonical ⟨·⟩β,µ = Tr{·ρ̂βµgc }, with ρ̂βµgc = e−β(Ĥ−µN̂)/Zgc.

However, in such case it is necessary a connected correlation in the integrand

⟨B̂Ô(t+ iℏβ′)⟩eq − ⟨B̂⟩ ⟨Ô(t+ iℏβ′)⟩eq [175]. If we consider the canonical ensemble,

the following relation holds in frequency space [174],

KBO(ω) =
1− e−βωℏ

βωℏ
CBO(ω). (2.95)

Moreover, we notice that KBO(t) is always real, and even when B̂ = Ô. In this case,

then, its Fourier transform is given simply by

KOO(ω) = 2

∫ ∞

0

cosωtKOO(t)dt. (2.96)

The general framework we have introduced helps building a formal parallelism between

the two pictures in which we have seen transport in linear response regime: the open

setting, where non-equilibrium steady-state currents are established after the system

has been attached to reservoirs, or the closed environment, where a perturbation

induces correlation in the isolated system initially at equilibrium. While in the former

case, treated in Sec. 2.1.2, we focus on extensive current Ja = ⟨Ĵa⟩ associated to the

conserved quantity or charge Xa, in the isolated system one assumes local equilibrium

and a continuity equation between the current and the charge densities ja and ϱa,

dϱ̂a(t)

dt
=
i

ℏ
[Ĥ, ϱ̂a] = −∇ĵa(t), (2.97)

where the variation in the charge density is induced by a local affinity fa, expressed

also in terms of a gradient. Analogously to Eq. (2.37), independent current densities
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can be written as linear combination of the corresponding local affinities. Fermionic

Hamiltonians as Eq. (2.78), irrespective of ∆ = 0 or ∆ ̸= 0 (or, equivalently, spin

Hamiltonians as Eq. (2.73) by Jordan-Wigner transformation), allow to express the

global conserved quantity N̂ =
∑

l n̂l, charge or total number of particles, and the

total energy Ĥ =
∑

l ĥl,l+1 as sums of local operators on different sections (as seen

explicitly in Eq. (2.74) for the spin chain). It is then possible to define a continuity

equation at each section’s edge. Formally, up to boundary terms, one has respectively

for the particle/charge current and the energy current

e
dn̂l
dt

=
ie

h
[Ĥ, n̂l] = ĵe,l−1 − ĵe,l, Ĵe =

∑
l

ĵe,l (2.98)

dĥl,l+1

dt
=
i

h
[Ĥ, ĥl,l+1] = ĵE,l − ĵE,l+1, ĴE =

∑
l

ĵE,l. (2.99)

Their related affinities can be shown to be f̃e = −∇(µ/eT ), and f̃E = ∇(1/T ) [175],

thus

ja =
∑
b

λ̃abf̃b, a, b = e, E. (2.100)

The coefficients λ̃ab form an Onsager matrix λ̃ equivalent to L̃ in Eq. (2.46), and in

the thermodynamic limit can be computed in terms of the Kubo correlation function

introduced in Eq. (2.93), as follows [20, 155, 175]

λ̃ab = lim
ω→0

Re
{
λ̃ab(ω)

}
, λ̃ab(ω) = β lim

t→∞
lim
N→∞

1

N

∫ t

0

dt′eiωt
′
KJaḂb

(t′). (2.101)

We notice that the above expression has a similar form to Eq. (2.92), with B̂b the oper-

ator coupling the affinity f̃b to the system, in this case ˆ̇Be = T Ĵq and
ˆ̇BE = T ĴE [175].

The Onsager coefficients λ̃ab determine the corresponding transport coefficients, ac-

cording to relations analogous to Eqs. (2.39) - (2.42), involving conductivities instead

of conductances. In absence of direct coupling between energy and electric current

density (λ̃12 = λ̃21 = 0), the electrical and thermal conductivities are given by the

generalised Green-Kubo formulae,

σGK =
λ̃ee
T

(2.102)

κ̃GK =
λ̃EE
T 2

. (2.103)
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The order of the limits in Eq. (2.101) is crucial to obtain the closed-system conduc-

tivities. First, one takes the limit of infinite system size N , and only then the limit of

infinite time, to avoid probing finite size effects instead of targeting the bulk. In this

way, the system can be considered effectively isolated, with no effect from any bath.

In an open environment, the system first reaches the non-equilibrium steady state

in the infinite time limit, and then the currents are evaluated Je = ⟨Ĵe⟩, JE = ⟨ĴE⟩
at finite size (as we noticed in the prescription of the Landauer-Büttiker integrals in

Eq. (2.50) for non-interacting systems). In case of diffusion, the macroscopic current

in the open system obeys the phenomenological laws,

Je = σ∆µ/eN, (2.104)

with open system conductivity σ (equivalent considerations can be made for κ and K

in heat representation, or κ̃ and K̃ in energy representation). In the thermodynamic

limit, we have the equivalence

σ = lim
N→∞

NG. (2.105)

In case of diffusive transport, the conductivity σ is constant and independent of N ,

hence the corresponding conductance scales as

G ∼ N−αG , (2.106)

with αG = 1. For ballistic transport, the current is independent of system size, thus

αG = 0. Anomalous behaviours emerge when 0 < αG < 1, when transport is said to

be superdiffusive, or αG > 1, when transport is said subdiffusive. We notice that in

the ballistic and superdiffusive case, the conductivity diverges, while it is zero in case

of subdiffusion or in absence of transport, where G ∼ e−N . The same classification

can be applied to heat transport according to the scaling exponent of the thermal

conductance,

K ∼ N−αK . (2.107)

The classification of transport in the open system setting is generally expected to agree

with what we will extract from the Kubo formulae in the case of isolated system.

However, there can be situations in which the effect of the boundary between the

system and the bath leads to different predictions [176].
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2.2.3 Classification of transport

We focus again in this section on the electrical conductivity from the Green-Kubo for-

mula. In order to procede with the discussion, we re-write Eq. (2.101) and Eq. (2.102)

at finite ω as [175],

σGK(ω) = lim
t→∞

lim
N→∞

1

N
Re

{∫ t

0

dt′eiωt
′
KJeJe(t

′)

}

=
1− e−βωℏ

ωℏ
lim
t→∞

lim
N→∞

1

N
Re

{∫ t

0

dt′eiωt
′
CJeJe(t

′)

}
, (2.108)

where we have exploited the symmetry property of the Kubo correlation function from

Eq. (2.96), and its relation with the connected correlation in Eq. (2.95). In order to

classify transport, we want to evaluate the real conductivity at small frequencies,

σGK(ω → 0). The conductivity is usually decomposed into a singular and a regular

part,

σGK(ω) = 2πDW
ee δ(ω) + σregGK(ω), (2.109)

where the Drude weight is given by

DW
ee =

β

2
lim
t→∞

lim
N→∞

1

t

∫ t

0

dt′Re{CJeJe(t′)}. (2.110)

A finite Drude weight implies a correlation function that does not decay to zero

in the limit of infinite time, but reaches a plateau and gives a conductivity which

diverges linearly with system size in the thermodynamic limit, physically translating

into ballistic transport. The non-zero plateau is typically an indication of the existence

of an extensive number of conserved local quantities in the system [177, 178], which is

then said “integrable”. A vanishing Drude weight, instead, is associated with diffusive

or anomalous behaviour. If DW
ee = 0, we distinguish then three possibilities:

(i) if σregGK(0)/β is finite, it is possible to write a phenomenological law Je = −De∇n,
where D is the diffusion coefficient and ∇n the gradient in the particle density,

and in such case, transport is diffusive,

(ii) if σregGK(ω → 0)/β → ∞ (with a slower divergence than |ω|−1, since the Drude

weight is zero), then transport is superdiffusive,

(iii) if σregGK(0)/β = 0, transport is subdiffusive.
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If DW
ee /β ̸= 0, then the transport regimes listed in (i)-(iii) should be interpreted as

subleading corrections to ballistic transport [175].

Taking the limit ω → 0 in Eq. (2.109), we finally arrive to

σGK(ω → 0) = β lim
t→∞

lim
N→∞

1

N
Re

{∫ t

0

dt′CJeJe(t
′)

}
. (2.111)

If the Hamiltonian of the system has time translation and time-reversal symmetry,

the electrical conductivity at zero frequency ω → 0 can be related to the spread of

density-density correlations, or density spatial variance

Σ2(t) = 4
N∑

p,q=1

(p− q)2Cpq(t) (2.112)

where we define the density-density correlation,

Cpq(t) = ⟨n̂p(t)n̂q⟩eq − ⟨n̂p(t)⟩eq⟨n̂q⟩eq, (2.113)

evaluated on the thermal statistical ensemble, which encodes macroscopic thermody-

namic variables as T and µ. Since we consider systems in open boundary conditions,

the position operator x̂ is well-defined [179], and can be used to write the total particle

current Ĵ = Ĵe/e,

x̂ =
N∑
p=1

pn̂p, Ĵ =
dx̂

dt
. (2.114)

Then, starting from the equivalence

⟨Ĵ(t1)Ĵ(t2)⟩eq =
d

dt1

d

dt2

(
N∑

p,q=1

pq⟨n̂p(t1)n̂q(t2)⟩eq
)
, (2.115)

and using time translational invariance of the equilibrium state to change variable to

t = t1 − t2, we obtain

⟨Ĵ(t)Ĵ⟩eq = − d2

dt2

(
N∑

p,q=1

pq⟨n̂p(t)n̂q⟩eq
)
. (2.116)

Now, we apply the substitution 2pq = p2+ q2− (p− q)2, considering the fact that the
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Hamiltonian is number conserving
d(

∑N
p=1 n̂p(t))
dt

= 0, hence

⟨Ĵ(t)Ĵ⟩eq =
1

2

d2

dt2

(
N∑

p,q=1

(p− q)2⟨n̂p(t)n̂q⟩eq
)
,

∫ t

0

dt′⟨Ĵ(t′)Ĵ⟩eq =
1

2

d

dt

(
N∑

p,q=1

(p− q)2⟨n̂p(t)n̂q⟩eq
)
. (2.117)

Therefore Eq. (2.111) becomes,

σGK(ω → 0) =
β

2
lim
t→∞

lim
N→∞

1

N

d

dt
Re

{
N∑

p,q=1

(p− q)2Cpq(t)

}
. (2.118)

Further simplification are possible if the system exhibits translational invariance in

the thermodynamic limit. In such case, Cpq(t) becomes almost independent on q for

large enough system sizes, N → ∞. Therefore, we can fix q = N/2. Furthermore,

we take the limit of infinite temperature, where the correlation function and thus the

spatial variance in Eq. (2.112) are real,

lim
β→0

1

β
σGK(ω → 0) =

e2

8
lim
t→∞

lim
N→∞

1

N

d

dt
Σ2(t), (2.119)

where now the spread of correlation is evaluated on the thermal statistical ensemble

at infinite temperature,

Σ2(t) = 4
∑
p=1

(
p− N

2

)2

Cp(t), (2.120)

Cp(t) = ⟨n̂p(t)n̂N/2⟩∞ − ⟨n̂p(t)⟩ ⟨n̂N/2⟩∞ . (2.121)

The scaling with time of Σ2(t) gives an indication of the nature of high-temperature

transport in the system. It captures the influence of a finite Drude weight, implying

ballistic transport, when Σ(t) ∼ tν , with ν = 2. Otherwise, once defined the time-

dependent diffusion coefficient at high temperature,

D(t) = lim
β→0

lim
N→∞

1

N

∫ t

0

dt′CJJ(t
′), (2.122)
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we can further derive the following relation,

dΣ2(t)

dt
= 8D(t). (2.123)

When transport is diffusive, the diffusion coefficient must be constant, D(t) = D

and hence Σ2(t) = 8Dt. If D(t) diverges with a power less than 1, then transport is

superdiffusive. If, instead, D(t) decreases with time, it points to subdiffusion, while

D(t) = 0 determines lack of transport. Therefore, the spatial variance is assumed to

grow with a power law, whose exponent depends in general on the transport regime,

Σ2(t) ∼ tν



ν = 2 ballistic transport,

1 < ν < 2 superdiffusion,

ν = 1 diffusion,

0 < ν < 1 subdiffusion,

ν = 0 no transport.

(2.124)

Although ν = 1 is a necessary condition for diffusion, the spatial variance yields no

information on the width of the profile, while the presence of diffusive transport can

be strictly verified only when the full spatial dependence of the profile is described

by the diffusion equation [175]. Furthermore, despite the crucial order in taking the

limits, first infinite system size and only then infinite time, in numerics the system

size will always be finite. In order to compute the exponent ν numerically, one usually

evaluates the scaling of Σ2(t) at finite system sizes, up to times before finite-size effects

become substantial. In the next section, we further introduce a notion that will allow

us to replace the ensemble average in Σ2(t) with a single pure state, the dynamical

quantum typicality.

We conclude this section by mentioning a simple scaling analysis [50] to connect

quantitatively the exponent ν linked to the Green-Kubo conductivity in the isolated

system, with the scaling exponent of the conductance αG in the open system setting,

seen in Eq. (2.106). The argument leads to a relation which holds in general, but

not necessarily in cases where the effect of the boundary between the baths and

the system invalidates the exchange of infinite time and infinite system size limits

in computing open and isolated system conductivities, as in presence of multifractal
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states [176, 32]. Given the power law growth in time of the spread of correlation,

the time taken by a single exciton to go across the system scales as tN ∼ N2/ν . The

current at fixed density can be written then as Je ∼ N/tN ∼ N−αG , determining the

following relation [180, 175]

ν =
2

αG + 1
. (2.125)

In particular, for a non-interacting chain of fermions as in Eq. (2.78) with ∆ = 0,

the exponent αG can be extracted within the Landauer-Büttiker framework. The

exponent ν, instead, can be more simply evaluated from the scaling of the mean

square displacement of an initially localised wavepacket,

∆x2(t) =
∑
l

[
(l −N/2)2 |Ψl(t)|2

]
∼ tν , (2.126)

with |Ψ(0)⟩ =∑lΨl(0)â
†
l |0⟩, |0⟩ the vacuum state, and Ψl(0) = δlN/2. The spread of

correlation Σ2(t) can in fact be shown (in Appendix A) to reduce to the mean square

displacement ∆x2(t) in non-interacting systems. However, there can be situations in

which the effect of the boundary between the system and the bath leads to different

predictions, which diverge from the relation in Eq. (2.125).

2.2.4 Typicality and density correlations

When the Hamiltonian includes many-body interactions, the evaluation of its dynam-

ics is arduous to compute numerically due to the exponential increase of the Hilbert

space dimension D = dimH with the number of degrees of freedom in the system,

and remains challenging even when it can be restricted to symmetry sectors. Pop-

ular techniques, such as the time-dependent density matrix renormalisation group

(tDMRG) [181] can push the simulations to large spin chains of sizes N ∼ 200, but

are limited to short times due to the growth of entanglement, and cannot generally

reach the time scales required to study equilibrium properties. However, it is pos-

sible to exploit the concept of dynamical quantum typicality (DQT) to circumvent

part of these difficulties. The approximation tells that it is possible to infer the dy-

namics of the system from a single pure state |ψ⟩ drawn at random on an arbitrary

basis {|ϕk⟩}Dk=1, which is considered a “typical” representative of the statistical ensem-

ble [182, 183]. We discuss below the idea of DQT and how it can be used to calculate
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spread of density correlations following a perturbation over a thermal state, follow-

ing the approach originally presented in Refs. [74, 168–170, 184]. As we discussed

in the previous section, the spread of density correlation is often used to classify the

transport regimes of isolated systems.

We write explicitly the typical state on an arbitrary basis {|ϕk⟩}k as

|ψ⟩ = R̂

D∑
k=1

ξk |ϕk⟩ , ξk = ak + ibk, (2.127)

with R̂ an arbitrary linear operator, and ak and bk mutually independent random

variables from Gaussian distributions with zero mean and variance 1/2. Therefore,

performing the statistical ensemble average, indicated henceforth by the overline, gives

as result,

ak = bk = 0, a2k = b2k =
1

2
, (2.128)

and, exploiting the mutual independence of the two variables,

ξ∗kξj = δkj, ξ∗kξjξ
∗
mξn = δkjδmn + δmjδkn. (2.129)

It can be shown from the properties of the coefficients that the statistical averaged ex-

pectation value of an arbitrary Hermitian operator Ô in the typical state is equivalent

to the expectation value taken with respect to a density matrix ρ̂, as follows

O = ⟨ψ|Ô|ψ⟩ =
D∑

k,j=1

ξ∗kξj ⟨ϕk|R̂†ÔR̂|ϕj⟩ =
D∑
k=1

⟨ϕk|R̂†ÔR̂|ϕk⟩

= Tr{R̂†ÔR̂} = Tr{R̂R̂†Ô} = Tr{ρ̂Ô}, (2.130)

where the density matrix is then defined as

ρ̂ = R̂R̂†. (2.131)

Since the density matrix is positive semi-definite, it can always be written in the

above form. Thus, any mixed state ρ̂ can be represented in terms of an ensemble of

typical pure states, once found the appropriate R̂. The variance of sample to sample
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fluctuations in taking the statistical average over the distribution

σ2
O =

(
⟨ψ|Ô|ψ⟩

)2 − (O)2, (2.132)

can be shown to assume a simple expression using again the properties of the coeffi-

cients in Eq. (2.129). The first term in the variance becomes

(
⟨ψ|Ô|ψ⟩

)2
=

D∑
k,j,m,n=1

ξ∗kξjξ
∗
mξn ⟨ϕk|R̂†ÔR̂|ϕj⟩ ⟨ϕm|R̂†ÔR̂|ϕn⟩

=
D∑

k,j,m,n=1

(δkjδmn + δmjδkn) ⟨ϕk|R̂†ÔR̂|ϕj⟩ ⟨ϕm|R̂†ÔR̂|ϕn⟩

= (O)2 + Tr{(ρ̂Ô)2}. (2.133)

The variance is thus given by

σ2
O = Tr{(ρ̂Ô)2}, (2.134)

and can be bounded from above by applying the triangle inequality to the two oper-

ators Ô1 = Ôρ̂ and Ô2 = ρ̂Ô,

|Tr{Ô†
1Ô2}|2 ≤ Tr{Ô†

1Ô1}Tr{Ô†
2Ô2},

|Tr{(ρ̂Ô)2}|2 ≤
(
Tr{ρ̂2Ô2}

)2
=⇒ σ2

O ≤ Tr{ρ̂2Ô2}. (2.135)

We can further bound the variance by carrying out the trace on the eigenbasis of the

operator Ô |ok⟩ = ok |ok⟩,

σ2
O ≤ Tr{ρ̂2Ô2} =

D∑
k=1

⟨on|ρ̂2|ok⟩

≤
(
max{ok}

)2 D∑
k=1

o2k ⟨on|ρ̂2|ok⟩ = ∥Ô∥2Tr{ρ̂2}, (2.136)

with ∥Ô∥2 =
(
max{ok}

)2
, and Tr{ρ̂2} the purity of the state ρ̂. For highly mixed state

in a high dimensional Hilbert space Tr{ρ̂2} ≪ 1. In such cases, the sample to sample

fluctuations in doing the ensemble average also become small, so that, for a large

enough system size, a small number of realisations is enough to calculate expectation

values of operators [185].

Canonical ensemble averages ⟨Ô⟩β = Tr{Ôρ̂βc }, introduced in Eq. (2.94), can be then
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evaluated as

⟨Ô⟩β = ⟨ψβ|Ô|ψβ⟩, (2.137)

where the so-called “canonical thermal pure quantum state” [186] is taken as

|ψβ⟩ =
e−βĤ/2√

Zc

D∑
k=1

ξk |ϕk⟩ . (2.138)

In particular, in the infinite temperature limit, the partition function Zc is known,

and, since the state is completely mixed, essentially one typical state realisation can

be used as representative of the whole ensemble:

ρ̂∞c =
11

D
, |ψ∞⟩ = 1√

D

D∑
k=1

ξk |ϕk⟩ . (2.139)

The formulation described above does not depend on any specific property of the op-

erator Ô, that can also be constituted by a combination of operators in the Heisenberg

picture, so that both the dynamics, as well as correlation functions can be obtained.

For these reasons, it is referred to as “dynamical quantum typicality” (DQT).

Here, we focus on the density-density correlations, defined in Eq. (2.113), evaluated

in the thermal statistical ensemble at infinite temperature for a system of interacting

fermions as in the Hamiltonian of Eq. (2.78). In the framework of linear response

theory, in fact, correlation functions can be connected to the transport properties

of the isolated system in the thermodynamic limit. At infinite temperature, the

correlation function is real, and it reads

Cpq(t) = ⟨n̂p(t)n̂q⟩∞ − ⟨n̂p⟩∞ ⟨n̂q⟩∞ =
Tr{n̂p(t)n̂q}

2N
− Tr{n̂p}

2N
Tr{n̂q}
2N

=
Tr{n̂p(t)n̂q}

2N
− 1

4
, (2.140)

where we have used D = 2N , and Tr{n̂l} = 2N−1. We can further simplify by using

n̂2
q = n̂q,

Cpq(t) =
Tr{n̂p(t)n̂qn̂q}

2N
− 1

4
=

Tr{n̂qn̂p(t)n̂p}
2N

− 1

4

= ⟨ψq|n̂l(t)|ψq⟩ −
1

4
≈ ⟨ψq|n̂l(t)|ψq⟩ −

1

4
. (2.141)
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In the last line, we have exploited typicality with [168–170]

|ψq⟩ = n̂q |ψ∞⟩ , (2.142)

and considered that, at large system sizes, one single realisation of |ψ∞⟩ is enough

to guarantee negligible sample to sample fluctuations. After we normalise the above

state,

|ψ̃q⟩ =
1√
C

|ψq⟩ , C = ⟨ψ∞|n̂q|ψ∞⟩ ≈ ⟨ψ∞|n̂q|ψ∞⟩ = Tr{n̂q}
2N

=
1

2

=⇒ |ψ̃q⟩ =
√
2ψ̃q, (2.143)

the density-density correlation in the typicality approximation is given by

Ctyp
pq (t) =

1

2

(
⟨ψ̃q|n̂p(t)|ψ̃q⟩ −

1

2

)
. (2.144)

We observe then that the density-density correlation Cpq(t) can be inferred from the

dynamics of the expectation value of n̂p after a quench induced by the normalised

projection of a typical state onto the subspace where the site q is occupied [168–170].

The subtraction of 1/2 within the parentheses amounts to subtracting the background

initial occupation of sites away from q, where |ψ̃q⟩ is initially localised. We notice, in

fact, that for p ̸= q

⟨ψ̃q|n̂p|ψ̃q⟩ ≈ 2 ⟨ψq|n̂p|ψq⟩ = 2 ⟨ψ|n̂qn̂pn̂q|ψ⟩ = 2 ⟨ψ|n̂pn̂q|ψ⟩

≈ 2⟨ψ|n̂pn̂q|ψ⟩ = 2
Tr{n̂pn̂q}

2N
=

1

2
, (2.145)

where in the last equality we use that Tr{n̂pn̂q} = 2N−2. The density-density correla-

tion can finally be computed as

Ctyp
pq (t) =

1

2

(
⟨ψ̃q|n̂p(t)− n̂p(0)|ψ̃q⟩

)
. (2.146)

When we fix q = N/2, as we will do in the computation of the Σ2(t) in Eq. (2.120),

the initial density profile {⟨ψ̃N/2|n̂p(0)|ψ̃N/2⟩}Np=1 is a non-equilibrium configuration

that sees a peak at the center of the chain over a uniform background, which spreads
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Figure 2.8: The correlation function Cp(t) can be mapped via typicality to the evolution
in time of a density profile {np(t)}Np=1 initially localised at the center of the chain over a
uniform background which corresponds to the thermal expectation value.

along the chain over time, as depicted schematically in Fig. 2.8. The quantity

Ctyp
p (t) =

1

2

(
np(t)− np(0)

)
, q ̸= 0, (2.147)

where np(t) = ⟨ψ̃N/2|n̂p(t)|ψ̃N/2⟩, is thus used to derive the spread of correlations at

infinite temperature,

Σ2(t) = 4
N∑
p=1

(
p− N

2

)2

Ctyp
p (t). (2.148)

Another mean of characterising transport that can be computed via DQT is the decay

of density autocorrelation with time. The infinite temperature density autocorrelation

at site N/2 is given by

CN/2(t) = ⟨n̂N/2(t)n̂N/2⟩∞ − ⟨n̂N/2(t)⟩∞ ⟨n̂N/2⟩∞

=
Tr[n̂N/2(t)n̂N/2]

2N
− Tr[n̂l]

2N
≈ Ctyp

N/2(t) =
1

2

(
nN/2(t)−

1

2

)
. (2.149)

Via typicality, it corresponds to how the occupation at the middle site approaches

its thermal value following the quench. The classification of transport according to

the exponent in the time scaling of autocorrelation functions originates from the spin

diffusion theory proposed to describe inelastic neutron scattering in magnetic systems

at elevated temperature. However, the same phenomenology has been proved to have
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some degree of universality for a large class of quantum Hamiltonians [170, 187]. The

autocorrelation is assumed to exhibit a power-law decay,

CN/2(t) ∼ t−ν
′
, (2.150)

where ν ′ = 1/2 in case of diffusion. For a superdiffusive system 1/2 < ν ′ < 1, while

0 < ν ′ < 1/2 points to subdiffusive transport, and ν ′ = 0 to absence of transport. In

case of standard diffusion, this exponent ν ′ is related to the exponent ν in Eq. (2.124)

as ν = 2ν ′. However, for anomalous transport, these two exponents may not be

directly related.

2.3 Kernel polynomial method

In discussing the DQT approach, we have already acquired a feeling of how demanding

is the numerical analysis of strongly correlated quantum systems and the emergence of

macroscopic features from their dynamics. In particular, the required computational

resources scale exponentially with the system size. The kernel polynomial method

(KPM) is a numerical technique to efficiently expand any function on a truncated se-

ries of Chebyshev polynomials. It can then be used to approximate spectral functions

of Hamiltonians such as densities of states, but also expectation values and correla-

tion functions in the microcanonical ensemble, without the use of exact diagonalisation

(ED). As the expansion is carried out in the energy or frequency space and can be

formulated iteratively, the KPM can compute results relative to the dynamics at large

or infinite time with a high control on the accuracy. The method, already popular

in condensed matter physics [188–191], has seen a sparse but increasing use in the

quantum system community [192–194]. In this section, we introduce its generalities,

following mainly Ref. [76], and apply it to the physical quantities of interest.

A regular function f(x) : [−1, 1] → R can be expanded in series of Chebyshev poly-

nomials Tn(x) = cos [n arccos (x)] as,

f(x) =
1

π
√
1− x2

[
µ0 + 2

∞∑
n=1

µnTn(x)

]
, (2.151)



2.3. KERNEL POLYNOMIAL METHOD 66

where the µn indicate the coefficients or moments of the expansion,

µn =

∫ 1

−1

f(x)Tn(x)dx. (2.152)

The expansion above can be performed with any series of polynomials forming an

orthonormal basis. However, the method is focused on the Chebyshev ones as they

show good convergence properties, and can conveniently be defined in an iterative

way,

T0(x) = 1, T−1(x) = T1(x) = x,

Tn+1(x) = 2xTn(x)− Tn−1(x). (2.153)

Moreover, they possess simple expressions for kernels preventing the arising of fluctu-

ations near points where the functions is not continuous, known as Gibbs oscillations,

when the expansion is truncated at finite order [76]. The usual procedure is to modify

the moments with factors gn depending on the order of expansion NC ,

fKPM(x) =
1

π
√
1− x2

[
µ0g0 + 2

NC−1∑
n=1

µngnTn(x)

]
, (2.154)

which is formally equivalent to taking the convolution of f(x) with a kernel of the

following form,

KNC
(x, y) =

1

π2
√
1− x2

1√
1− y2

[
g0T0(x)T0(y) + 2

NC−1∑
n=1

gnTn(x)Tn(y)

]
,

fKPM(x) =

∫ 1

−1

π
√

1− y2KNC
(x, y)f(y)dy. (2.155)

A drastic truncation of the series corresponds to assuming every gn equal to 1 (Dirich-

let kernel). More sophisticated forms which guarantee uniform convergence of the

approximation, meaning mathematically maxx|f(x) − fKPM(x)| NC→∞−−−−→ 0, can be

found by requiring that the kernel is positive, normalised to 1, and that its sec-

ond coefficient g1 approaches 1 as NC → 1. The Jackson kernel is usually the best

choice for the applications we will discuss below. Its explicit expression gJn , which

can be found in Ref. [76], comes from the additional request of having optimal res-

olution, in the sense that it minimises the spread of the kernel over the xy plane,
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or its squared width, to 1/(NC)
2. Applying the KPM with the Jackson kernel to a

Dirac-δ function δ(x− x0) with x0 ∈]− 1, 1[ will result in a broadened gaussian peak

δKPM(x − x0) ≈ 1√
2πσ2

x

exp [−(x− x0)
2/(2σ2

x)] with σx = π/NC . It is evident then

that the features of the function f(x) on scale smaller than 1/NC will appear undis-

tinguishable in fKPM(x). As a further consequence, smoother functions will require

less moments to be approximated.

Having introduced the core ideas of the KPM from a mathematical perspective, we fo-

cus now on its practical applications for the physics of quantum systems. We consider

a generic Hamiltonian Ĥ, which can include or not include many-body interaction

terms. Normally, we would need to know the entire set of eigenvalues {Ek}Dk=1 and

eigenstates {|k⟩}Dk=1 in order to compute the spectral or dynamical properties of in-

terest. We can now instead treat these quantities as functions of the energy and

approximate them with the KPM. As a first step, however, we need to rescale the

underlying Hamiltonian and energy axis to the domain of the Chebyshev polynomial,

according to

ˆ̃H = (Ĥ − b)/a, Ẽ = (E − b)/a

a =
Emax − Emin

2− ϵ
, b =

Emax + Emin
2

, (2.156)

with Emax and Emin respectively the largest and smallest eigenvalues, and ϵ a small

cut-off parameter introduced to avoid instabilities in case the spectrum includes the

boundaries of the interval [−1, 1]. Henceforth, all the rescaled quantities will be

denoted with a tilde. Once computed up to NC moments, the approximation to

NC-th order of the function can be built as in Eq. (2.154), and then rescaled back

to its original domain. The form of the moments µn will depend on the specific

quantity considered. We proceed listing some recipes for relevant physical properties

of the Hamiltonian. In the following, essential details will be provided to understand

the computation of the quantities studied in Ch. 6, where the KPM proves crucial

to evaluate transport properties from equilibrium and out-of-equilibrium correlation

functions. However, the physical results can be interpreted also without the support

of the remaining sections of this chapter.
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2.3.1 Densities of states

The most basic application of the KPM for quantum system is the construction of

the density of states (DOS), that reads

ρ(E) =
1

D

D∑
k=1

δ(E − Ek). (2.157)

The moments of its KPM approximation ρ̃(Ẽ), evaluated according to Eq. (2.152),

assume the following form

µn =

∫ 1

−1

ρ̃(Ẽ) Tn(Ẽ) dẼ =
1

D

D∑
k=1

Tn(Ẽk)

=
1

D

D∑
k=1

⟨k|Tn( ˆ̃H)|k⟩ = Tr[Tn(H̃)]. (2.158)

Despite the presence in this formula of the trace over the whole Hilbert space of

the Hamiltonian, the KPM maintains its advantage over ED techniques, since the

moments can be approximated with high accuracy through a stochastic evaluation of

trace [76].

An estimate of the trace can be provided by the average over a number R ≪ D of

random states |r⟩,

µn = Tr[Tn(
ˆ̃H)] ≈ 1

R

R∑
r=1

⟨r|Tn( ˜̂H)|r⟩ . (2.159)

The states are drawn over an arbitrary basis {|ϕk⟩}, |r⟩ =
∑D

k=1 ξrk |ϕk⟩, with coeffi-

cients that are independent random variables whose statistical distribution ensures

ξrk = 0, ξrkξr′k′ = 0, ξ∗rkξr′k′ = δrr′δkk′ . (2.160)

These conditions are a reminiscence of the typicality discussed in Sec. 2.2.4, and,

indeed, if we assume a gaussian distribution of the coefficients, it is possible to show

with analogous considerations to Eq. (2.130) and Eq. (2.133) (for details, see Ref. [76])

that the sample-to-sample fluctuation in the estimation can be reduced to the following

σ2
µn =

1

R
Tr[Tn(H̃)2]. (2.161)
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Therefore, the relative error σµn/µn scales as O(1/
√
RD). Typically, DOS for the

quantum spin chain Hamiltonians of Eq. (2.73) exhibit a smooth structure. As a

consequence, few moments are in general required for this calculation.

The moments for the local DOS (LDOS) associated to the general state |ψ⟩,

ρψ(E) =
D∑
k=1

|⟨k|ψ⟩|2δ(E − Ek), (2.162)

have instead a simpler expression, given by

µn =

∫ 1

−1

ρ̃ψ(Ẽ)Tn(Ẽ)dẼ =
∑
k

Tn(Ẽk)|⟨ψ|k⟩|2

=
∑
k

⟨k|Tn( ˆ̃H)|k⟩ ⟨k|ψ⟩ ⟨ψ|k⟩ = ⟨ψ|Tn( ˆ̃H)|ψ⟩ . (2.163)

The evaluation of the expectation value of the n-th order polynomial on a single state

can be further simplified by using the iterative definition of Eq. (2.153),

|t0⟩ = |ψ⟩ ,

|t1⟩ = H̃ |t0⟩ ,

|tn+1⟩ = 2H̃ |tn⟩ − |tn−1⟩ . (2.164)

As a result, µn = ⟨t0|tn⟩, which implies only matrix-vector multiplications. The same

simplification can be used when considering a random state |r⟩.

2.3.2 Ensemble expectation values

The evaluation of expectation value of an observable Ô in the microcanonical ensem-

ble,

Omc(E) = ⟨Ô⟩E = Tr{Ôρ̂Emc}, (2.165)

where

ρ̂Emc =
1

ρ(E)

D∑
k=1

δ(E − Ek) |k⟩ ⟨k| , (2.166)

is relevant for the study of thermalisation in the isolated system, as we will see later

through the dissertation. Within the KPM, the moments to derive Omc(E) up to the
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normalising factor ρ(E) are given by

µn =
∑
k

∫ 1

−1

δ(Ẽ − Ẽk) ⟨k|Ô|k⟩Tn(Ẽ)dẼ

=
∑
k

⟨k|Ô|k⟩ ⟨k|Tn( ˆ̃H)|k⟩ = Tr{ÔTn( ˆ̃H)}. (2.167)

Another fundamental ensemble for the study of thermalisation is the diagonal ensem-

ble associated to |ψ⟩,

ρ̂DE =
D∑
k=1

|⟨k|ψ⟩|2 |k⟩ ⟨k| . (2.168)

The expectation value of the observable ODE(ψ) = Tr
{
Ôρ̂DE

}
can be computed, as

a result of operations analogous to those above, through

µn = ⟨ψ|ÔTn( ˆ̃H)|ψ⟩ . (2.169)

2.3.3 Correlation functions

As verified throughout Sec. 2.2, correlation functions are fundamental objects to eval-

uate the dynamical properties of isolated systems. We consider in the following how

to evaluate expressions as in Eq. (2.84) in the microcanonical ensemble, and on a sin-

gle pure state. The KPM, however, provides an approximation in the energy domain,

thus we first need to expand the functions in the energy eigenbasis. Moreover, we

consider the case in which a single observable is present in the expression.

The microcanonical ensemble average of the correlation function for the arbitrary

operator Ô can thus be written as

Cmc(t, E) = ⟨Ô(t)Ô⟩E − ⟨Ô(t)⟩ ⟨Ô⟩E , (2.170)

where ⟨·⟩E = Tr{·ρ̂Emc}. We consider how to construct the approximation only for the

first therm, since we have already treated terms as the second in the previous section.
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We write an expansion on the energy eigenbasis, and obtain

C ′
mc(t, E) = ⟨Ô(t)Ô⟩E =

1

ρ(E)

∑
k

δ(E − Ek) ⟨k|Ô(t)Ô|k⟩

=
1

ρ(E)

∑
kj

δ(E − Ek) ⟨k|Ô(t)|j⟩ ⟨j|Ô|k⟩

=
1

ρ(E)

∑
kj

δ(E − Ek)e
−i(Ej−Ek)t/ℏ|Okj|2, (2.171)

where henceforth we indicate Okj = ⟨k|Ô|j⟩. If we perform a Fourier transform of

this expression,

C ′
mc(ω,E) =

∫
dtC ′

mc(t, E)e
iωt, (2.172)

we realise that it gives, as result,

C ′
mc(ω,E) =

1

ρ(E)

∑
kj

δ(E − Ek)δ(ω − (Ej − Ek))|Okj|2

=
1

ρ(E)
K(E,E + ω), (2.173)

where we identify a suitable function to approximate with the KPM,

K(x, y) =
∑
kj

δ(x− Ek)δ(y − Ej)|Okj|2. (2.174)

Since it is a function of two variables, we need to generalise the KPM to multiple

Chebyshev expansions,

K̃(x, y) =
1

π
√

1− y2
1

π
√
1− x2

NC ,MC∑
n,m=0

µnmhnmgngmTn(x)Tm(y), (2.175)

where the factor hnm = 4/[(1 + δn0)(1 + δm0)] takes care of the normalisation, and

gn, gm are the corrections given by the kernels [76]. The moments of the Chebyshev

expansion are given by,

µnm =
∑
kj

∫
dx

∫
dy Tn(x)Tm(y)δ(x− Ẽk)δ(y − Ẽj)|Okj|2

=
∑
kj

Tn(Ẽk)Tm(Ẽj)|Okj|2 = Tr
{
Tn(

ˆ̃H)ÔTm(
ˆ̃H)Ô

}
, (2.176)

where we need to apply again the stochastic evaluation of trace. After plugging the
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moments in Eq. (2.175), and rescaling back to the original energy range, we obtain

a grid which represent the values of K(x, y) on the xy plane. Schematically, if we

evaluate K(x, y) on a symmetric grid of P × P equally spaced points, with positive

interval ∆ = xp − xp−1, we get



K(x1, x1) K(x1, x1 +∆) K(x1, x1 + 2∆) . . . . . .

K(x2, x2 −∆) K(x2, x2) K(x2, x2 +∆) . . .

K(x3, x3 − 2∆) K(x3, x3 −∆) K(x3, x3) . . . . . .

. . . . . . . . .

K(xP , xP − P∆) . . . . . . K(xP , xP )


(2.177)

Comparing with Eq. (2.173), we see on the diagonal K(xp, y = xp), or K(E,E)

evaluated for ω = 0. In order to compute C ′
mc(Ej, ω) as a function of ω and fixed

E = Ej, we extract the j-th row corresponding to xj = Ej. Viceversa, for C
′
mc(E,ωj)

as a function of the energy at fixed frequency ωj = j × ∆, we need to consider the

values on the j-th diagonal.

We examine now the correlation function evaluated on an arbitrary state |ψ⟩,

Cψ(t) = ⟨ψ|Ô(t)Ô|ψ⟩ − ⟨ψ|Ô(t)|ψ⟩ ⟨ψ|Ô|ψ⟩ . (2.178)

As above, before using the KPM it is necessary to apply some manipulations, starting

from the expansion of the first term on the eigenbasis,

C ′
ψ(t) = ⟨ψ|Ô(t)Ô|ψ⟩ =

∑
klj

⟨ψ|k⟩ ⟨k|Ô(t)|l⟩ ⟨l|Ô|j⟩ ⟨j|ψ⟩

=
∑
klj

c∗kcjOklOlje
−i(El−Ek)t/ℏ, (2.179)

with coefficients given by ck = ⟨k|ψ⟩. We derive then the Fourier transform,

C ′
ψ(ω) =

∑
klj

δ(ω − (El − Ek)) c
∗
kcjOklOlj. (2.180)



2.3. KERNEL POLYNOMIAL METHOD 73

We further need to decouple the δ-function,

C ′
ψ(ω) =

∑
klj

∫ ∞

−∞
dω′δ(ω′ − El)δ(ω

′ − (ω + Ek))c
∗
kcjOklOlj

=

∫ ∞

−∞
dω′A(ω′ − ω, ω′), (2.181)

before identifying a suitable function for the KPM, i.e.

A(ω′ − ω, ω′) =
∑
klj

δ(ω′ − El)δ(ω
′ − (ω + Ek))c

∗
kcjOklOlj. (2.182)

Analogously to the case of the microcanonical ensemble, after rescaling frequency

domain and Hamiltonian, we double Chebyshev-expand the expression

Ã(x, y) =
∑
klj

δ(x− Ẽk)δ(y − Ẽl)c
∗
kcjOklOlj, (2.183)

using the following moments,

µnm =
∑
klj

∫
dx

∫
dy Tn(x)Tm(y)δ(x− Ẽk)δ(y − Ẽl)c

∗
kcjOklOlj

=
∑
klj

Tn(Ẽk)Tm(Ẽl) c
∗
kcjOklOlj

=
∑
klj

⟨ψ|k⟩Tn(Ẽk) ⟨k|Ô|l⟩Tm(Ẽl) ⟨l|Ô|j⟩ ⟨j|ψ⟩

= ⟨ψ|Tn( ˆ̃H)ÔTm(
ˆ̃H)Ô|ψ⟩ . (2.184)

If we evaluate the function on a symmetric grid of P ×P equally spaced points, with

interval ∆ = xp−xp−1, we can write a structure analogous to Eq. (2.177). Comparing

the variables in Eq. (2.182) and Eq. (2.183), we realise that to compute the correlation

function, we need to perform the numerical integral in Eq. (2.181) for each ω. The

correlation function Cψ(ωj) at ωj = j × ∆ is thus given by the integration of the

values on the j-th diagonal starting from the center, in the upper part of the matrix

for positive j, in the lower part for negative j.





Chapter 3

Quasiperiodic heat engine with mobility

edge

In this and in the following chapters, we finally employ the theoretical frameworks and

numerical techniques examined in Ch. 2 in order to investigate the electric and heat

non-equilibrium transport properties of quasiperiodic potentials. We initially focus on

the tight-binding GAAH model, whose spectral and localisation characteristics were

already described in Sec. 1.3. After reviewing the known literature on the behaviour

of its particle current at high temperature, we argue how the mobility edge displayed

by the model can operate as an energy filter in a heat engine, according to the mech-

anism discussed in detail in Sec. 2.1.3. Motivated by this possibility, we study the

thermoelectric response of the quasiperiodic chain when put into contact with two

reservoirs at different finite temperature and chemical potential. We compute the

transport coefficients in linear-response regime using the Landauer-Büttiker approach

of Sec. 2.1.2 and quantify through them the performance of a GAAH heat engine as

a function of temperature. We show in Sec. 3.1 how the remarkable properties of

the model give rise to a versatile and efficient quantum thermal machine. Finally, we

prove that the physics described here is not only limited to our chosen potential, but

is also expected to hold true in more general cases. In particular, we model the mobil-

ity edge through a purely phenomenological transmission function in Sec. 3.2, while

in Sec. 3.3 we obtain a qualitatively similar behaviour in the weak-coupling regime,

where the scaling with system size of the wavefunctions can explicitly be encoded

in the expressions for the currents. This chapter is based on the results originally

presented in Ref. [195].
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We write again for completeness the on-site potential of the GAAH tight-binding

model, previously seen in Eq. (1.17),

V GAAH
n =

2λ cos(2πbn+ φ)

1− α cos(2πbn+ φ)
, (3.1)

where λ indicates the strength of the potential, φ a phase with no effect on the localisa-

tion properties, b the irrational Diophantine number establishing the quasiperiodicity,

and α ∈ ] − 1, 1[. For α = 0, the GAAH model reduces to the AAH model, treated

instead in Sec. 1.2. In the AAH model, the quasiperiodic nature of the potential

leads to a delocalisation-localisation transition depending just on λ, which has been

detected experimentally on a wide range of experimental platforms [55, 56, 105, 196].

The critical point of the transition in the AAH model occurs at λ = th, with th the

first neighbour hopping constant. For λ = th, the multifractal states lead to anoma-

lous transport behavior [31, 32, 176]. In these works, the exponent in the scaling

of the particle current, calculated in an open environment either through a NEGF

approach to the Landauer-Büttiker integrals or a phenomenological Lindblad master

equation, is subdiffusive but assumes a different value depending on the set of finite

system sizes chosen, generic or from the rational approximants to b. This feature is

related to the number theoretic properties of the system size N , and it is extensively

discussed in Ref. [32]. In the open setting, as we will see explicitly in Sec. 3.3 for

weak coupling, the current scaling is entirely determined by that of the components

of the eigenfunctions at the sites where the reservoirs are attached. At the critical

point, these exhibit a different scaling than those in the bulk of the chain, because of

their multifractal nature [197]. As a consequence, there is a mismatch with respect

to Eq. (2.125) against the results from the isolated system, obtained by the authors

of Ref. [31] using the spatial spread of a localised wavepacket. We have discussed in

Sec. 2.2.3 and Appendix A how to link this quantity to the Kubo conductivity. The

proof relies on the space-translational invariance of the system, which is not present

in the AAH or GAAH models, but can be restored for quantities averaged over φ.

The calculations in the closed environment for the AAH model at critical point give,

instead of subdiffusion, an exponent pointing to diffusion, but an anomalous density

profile, hinting to superdiffusion [31]. We emphasise again that the disagreement is

due to the different behaviours of the components of the eigenfunctions in the bulk
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and in the boundaries. In this case, the interchange in the limit of infinite time and

infinite system size discussed in Sec. 2.2.2 for the conductivities in open and closed

environment leads to drastic different results [176].

For α ̸= 0, the GAAH model features a mobility edge in energy, separating the

regions of completely delocalised and localised states in the same spectrum, which

can be found analytically to be [36]

Ec =
1

α
sign(λ)(|th| − |λ|). (3.2)

The richer phase diagram of the GAAH model has been originally explored in the

linear response regime through Landauer-Büttiker approach with NEGF in Ref. [198],

and schematically depicted in Fig. 3.1. We notice that, since the study has been

conducted at high temperatures, there is no dependence on the chemical potential

or the energy in the diagram. A possible thermodynamic application of the model

was first studied in Ref. [199], where the different statistics of the bosonic baths

induces large energy current rectification. However, the heat and electric transport

properties of the model had not been explored yet at finite low temperatures, where

the possibility of tuning the position of the mobility edge can become relevant in the

context of quantum thermal machines.

As previously discussed in Sec. 2.1.3 and depicted in Fig. 2.6, energy filtering is

a central concept in thermoelectric energy conversion: in order to obtain a strong

thermoelectric response, it is necessary to allow only particles in a finite energy window

to flow [38, 39]. The opportunity of realising an extremely efficient energy filter

through a mobility edge has been considered for the first time for the mobility edge

associated with the metal-insulator transition of the Anderson model [119, 200, 201].

Here, random disorder localises only the low-energy part of the spectrum, while high-

energy states remain extended. This leads to an asymmetric transmission function and

hence a diverging thermopower in the vicinity of the mobility edge, which separates

the localised, insulating states from the extended, conducting ones. The Anderson

metal-insulator transition occurs in three spatial dimensions [119], while in lower

dimensions, and in the absence of interparticle interactions, all states are localised

in the thermodynamic limit [23]. Remarkably, the GAAH model exhibits a mobility

edge even in one spatial dimension, whose position in energy can be known precisely.
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Figure 3.1: Phase diagram of the high temperature non-equilibrium electric transport prop-
erties of the GAAH model. The ballistic region is separated from the localised region by a
subdiffusive line with αG = 2, and αG = 1.4 at α = 0 (AAH model). The results are ob-
tained within Landauer’s framework and averaged over different realisations, by integrating
φ from 0 to 2π. Adapted from Ref. [198]

Furthermore, conducting states in the case of the GAAH model support ballistic

transport, whereas those in the three-dimensional Anderson model support diffusive

transport. For these reasons, we have decided to investigate the low temperature

thermoelectric properties of the model, exploring its capability as working medium in

a quantum thermal machine.

3.1 Thermoelectric effects in the GAAH model

As described in Sec. 2.1.1, we consider a tight-binding model with GAAH on-site

potential, and a bilinear system-bath coupling between the first site of the chain and

the left L bath, at temperature and chemical potential T+∆T, µ+∆µ, and between the

last site and the right R bath, at T, µ. We assume bath spectral densities independent

on the energy in WBL approximation, in such a way that the only relevant parameter

relative to the baths in the calculation of the transmission function in NEGF matrix

representation is the system-bath coupling strength γ.

The pivotal calculation for our results is in fact the transmission function τLR(E),

which is independent of the temperature and the chemical potential of the reservoirs.

In Fig. 3.2 we display the spectrum of the system and the corresponding transmission

function for two different pairs of values of λ and α, choosing b = τ throughout the

dissertation, where τ = (
√
5 + 1)/2 is the golden ratio. We see that the mobility

edge and the clusters of ballistic states lying above it generally give rise to a highly

asymmetric transmission profile, which is conducive to a large thermoelectric response.
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(a) (b)

(c) (d)

Figure 3.2: Spectra for single GAAH wires of length N = 987, generated with (a) λ =
−0.8 th, α = 0.792, φ = 0 (dashed vertical line in Fig. 1.7), and (c) λ = −1.4 t, α =
0.330, φ = 0. The mobility edge is shown by the red line. (b)-(d) The transmission
functions associated respectively to the first and second configuration, averaged at every
energy over 40 values of the phase φ, as described in the main text. Conduction is clearly
possible only at energies that support extended eigenstates.

The choice of the two parameters in the model, moreover, gives control over the

structure of the spectrum, determining the position of the mobility edge and the

number of ballistic states above it.

At this point, a note on terminology is in order. For simplicity, henceworth we refer

to the clusters of ballistic states lying above the mobility edges as “bands”. Strictly

speaking, these groups of states do not satisfy the usual definition of a band, because

they do not tend to a continuum in the thermodynamic limit in the rigorous math-

ematical sense, due to their fractal structure. Nevertheless, as discussed above and

shown in Sec. 3.2, this structure has little effect on thermodynamic properties such

as efficiency, thus we make no strict distinction in terminology.

Since the GAAH model has a large parameter space, we focus on a single, representa-

tive example rather than performing an exhaustive study. In what follows, we consider
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the particular configuration displayed in Fig. 3.2a, corresponding to the dashed verti-

cal slice we saw in Fig. 1.7 with α = 0.792, for a chain of 987 sites. The mobility edge

Ec sits within a group of closely packed eigenvalues, with several other ballistic bands.

We work in a regime of intermediate system-bath coupling, γ = th. As shown later

in Sec. 3.1.3, modifying γ merely rescales the currents without qualitatively affecting

the transport behaviour. In the following, we use this transmission function to anal-

yse the thermoelectric properties of the GAAH wire in different temperature regimes,

via the transport coefficients given by Eqs. (2.39)–(2.41). All quantities shown in

this section are obtained numerically and ultimately averaged over the phase φ by

integrating between 0 and 2π and dividing by 2π. The averaging procedure reduces

the sample-to-sample fluctuations in the finite size realisations of the model, and it

restores translational symmetry.

3.1.1 Low-temperature performance

We begin by studying the low-temperature behavior, choosing T = 0.1 (th/kB). This

temperature regime is relevant for experiments involving ultracold atoms in optical

lattices [14] and allows to clearly distinguish the non-trivial spectral structures re-

flected in the behaviour of the transport coefficients. We observe in Fig. 3.3 that

the electrical and thermal conductances closely follow the structure of the transmis-

sion function, with significant transport occurring only within the conducting bands

around and above the mobility edge. Furthermore, we notice that the Wiedemann-

Franz law does not hold here. This is due to the highly discontinuous transmission

function of the system, determined by the fractal properties of its spectrum. We

conjecture this violation to be a general feature of quasiperiodic systems, which we

will observe also in the case of the Fibonacci model in Ch. 4. This structure of the

transmission function is also responsible for the relatively small values of the electric

conductance compared to the peak values of τLR(E) plotted in Fig. 3.2b.

The most dramatic effect due to the energy filter is evident in the Seebeck coefficient

S plotted in Fig. 3.4a, which assumes finite values around the mobility edge. We

also notice the magnitude of S rising when the chemical potential is tuned far below

or above the mobility edge. Even when µ lies on the insulating side, some of the

delocalised states participate in transport because of the non-zero temperature, gen-

erating a small but finite conductance. As the mobility of the electrons decreases, the
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(a) (b)

Figure 3.3: (a) Electric conductance and (b) thermal conductance as a function of chemical
potential at fixed temperature T = 0.1(th/kB). The mobility edge is shown by the red line.

voltage necessary to stop their flux increases, leading to a large Seebeck factor accord-

ing to Eq. (2.41). In the region far above Ec, the charge carriers flow in the opposite

direction to the heat carriers, leading to negative values for S. The figure of merit

ZT also exhibits a divergence below the mobility edge, as shown in Fig. 3.4b. This

yields an extremely efficient thermal machine, yet in a region of negligible electrical

conductance and thus vanishing power. Features more interesting for the realisation

of a useful device are instead visible when the chemical potential is tuned above the

mobility edge. In this region, the engine has finite conductance, while the asymmetry

of the transmission function gives rise to a figure of merit ZT ≈ 10 just above the

mobility edge. We observe, moreover, two higher peaks of ZT ≈ 60 and ZT ≈ 40

corresponding respectively to the upper and lower edges of the first and second bal-

listic bands above the mobility edge. Such values of ZT correspond to efficiencies far

exceeding those recorded in recent experiments [12]. This is, however, also due to the

presence of phonons in the mesoscopic systems, where they behave as heat carrier in

parallel with electrons. As they are uncharged, they do not contribute to the charge

conductance or to the thermopower, but do contribute to the total thermal conduc-

tance, which appears in the denominator of ZT , reducing in such a way the values of

the thermoelectric figure of merit.

From the study of low-temperature transport, it is clear that by tuning the chemical

potential it is possible to obtain an extremely efficient autonomous thermal machine at

finite power output. In order to study the machine’s performance more systematically,

we now focus on the conditions for generating the maximum power, seen already in

Eq. (2.70). In the linear-response regime with fixed ∆T , the power is maximised
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(a) (b)

Figure 3.4: (a) Seebeck factor and (b) thermoelectric figure of merit as a function of chemical
potential at fixed temperature T = 0.1(th/kB). The mobility edge is shown by the red line.

when ∆µ = −eS∆T/2. Since this value depends on the chemical potential through

S, our goal is to find the best thermal machine, or, equivalently, the optimal µ in

order to obtain the maximum power output. In Fig. 3.5, we plot the maximum power

and corresponding efficiency Eq. (2.68) as a function of µ, at the fixed temperature

T = 0.1 and bias ∆T = 0.01 (th/kB). We distinguish two cases according to whether

the charge current is positive (left to right) or negative (right to left) according to our

conventions. In the former case, the temperature gradient drives particle transport

above the chemical potential, leading to power extraction for µL < µR, (since S > 0,

∆µ < 0). In the latter case, the thermal gradient causes holes below the chemical

potential to migrate from left to right, which generates power so long as µL > µR (S <

0, ∆µ > 0). Two points that are particularly suitable for the realisation of the thermal

machine are marked with blue circles in Fig. 3.5: one in the region of positive JN ,

the other for negative JN . Here, the machine produces the highest values of electric

power, with an efficiency reaching η(h) ≈ 0.4η
(h)
C . The strong thermoelectric response

of the system at these two points is due to the lowermost and uppermost edges of

the ballistic bands, respectively. Indeed, at low temperatures, it seems preferable to

exploit the band edges rather than the mobility edge, since the power is significantly

lower in the vicinity of Ec.

3.1.2 Effect of increasing temperature

In this section, we explore the performance of the quasiperiodic machine at higher

temperatures. As displayed in Fig. 2.4a, in the linear-response regime the temperature
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(a) (b)

Figure 3.5: (a) Maximum power and (b) efficiency at maximum power as a function of
chemical potential at fixed temperature T = 0.1 and bias ∆T = 0.01(th/kB). Blue circles
mark the points of absolute maximum power. The mobility edge is shown by the red line.
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Figure 3.6: (a) Electric conductance and (b) thermal conductance as a function of chemical
potential at fixed temperature T = 2.0(th/kB). The mobility edge is shown by the red line.

fixes the width of f ′(E), which determines the energy window centred on µ within

which transport takes place. As T increases, the gaps between the bands are no

longer resolved and the sharp features of G and K displayed in Fig. 3.3 are broadened

and reduced in magnitude, as we see in Fig. 3.6 for T = 2.0(th/kB). As a result of

this thermal broadening, the conductance is non-vanishing even for µ < Ec and the

thermopower exhibits a weaker slope.

In order to meaningfully compare the thermoelectric performance of the GAAH wire

at different temperatures, we vary T while fixing the ratio ∆T/T = 0.1, thus also

ensuring that we remain in the linear-response regime. For each value of T and ∆T ,

we find the chemical potential, µ∗, and bias, ∆µ = −eS(µ∗)∆T/2, that maximise

power output. As before, we distinguish situations where JN > 0 and JN < 0 —

corresponding to heat transport by particles or holes, respectively — performing a
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separate maximisation for each case. In Fig. 3.7, we show the maximum power and

the corresponding efficiency as a function of temperature. We first focus on cases

where JN > 0. The power grows linearly at high temperature, while µ∗ decreases,

as shown in the inset of Fig. 3.7. The drop in efficiency visible around T ≲ th/kB

is due to the particular structure of the spectrum: here, the transport window in-

cludes both ballistic bands, leading to a more symmetric transmission function. The

thermodynamic coefficients related to this point, which occurs for T = 0.5th/kB, are

reported in Fig. 3.8. At even higher temperature, µ∗ lies below Ec on the localised

side, and the whole structure of the spectrum is exploited. All ballistic bands are

included in the transport window (giving high power), but the transmission profile re-

mains asymmetric and enhances the thermoelectric response (giving high efficiency).

Therefore, the properties of the GAAH model are here essential to obtain an efficient

thermal machine with finite power output at high temperature. We repeat this study

of maximum power for chemical potentials where JN < 0, shown by the dashed blue

lines in Fig. 3.7. The machine initially produces more power in this region, but as

the temperature increases the recorded power output assumes values closer to those

of the previous case and we see the two lines overlap in the plot, since the transport

window broadens to covers the whole spectrum. The efficiency at maximum power

converges to the CA bound, i.e., η
(h)
C /2, more quickly than in the case where JN > 0.

Moreover, the optimal chemical potential increases with temperature, with µ∗ moving

well above the uppermost edge of the ballistic region for large T . Therefore, the strong

thermoelectric response here is due mainly to the band edge.

Nevertheless, the presence of the mobility edge still enhances efficiency. In order to

show this, we compute analogous data for a clean tight-binding wire, {Vn}Nn=0 = 0, and

th = γ as before. We have commented its transmission function already in Fig. 2.3.

In this case, particle-hole symmetry is broken at the edges of the spectrum located at

energies E = ±2th. This leads to two perfectly symmetric points of maximum power,

whose distance from the center of the spectrum at E = 0, one below and the other

above, increases with temperature. As shown in Fig. 3.9, the efficiency saturates

the CA bound at high temperature, while the maximum power is higher than for

the GAAH model due to the larger number of conducting states. However, at low

and intermediate temperatures where the spectral characteristics can be resolved, the

thermoelectric efficiency of the clean wire, due exclusively to the presence of band
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(a) (b)

Figure 3.7: (a) Absolute maximum power and (b) corresponding efficiency at maximum
power as a function of temperature with ∆T/T = 0.1. The solid black lines show results
obtained by optimising the power only over values of µ that give rise to a particle current
flowing from the hot to the cold bath, JN > 0. The dashed blue lines are instead obtained
by restricting the maximisation to JN < 0. The chemical potential yielding this maximum
power is shown in the inset.
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Figure 3.8: The efficiency at maximum power output for JN > 0, indicated by the black
solid line in Fig. 3.7, reaches a minimum at temperature T = 0.5(th/kB). We show the
thermodynamic coefficients at this temperature: (a) electric conductance, (b) thermal con-
ductance, (c) Seebeck factor, and (d) figure of merit. The mobility edge is shown by the red
line, while the dashed black vertical line indicates the chemical potential maximising the
power output µ∗ = 1.14th and used to compute the minimum of the curve in Fig. 3.7.
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(a) (b)

Figure 3.9: (a) Absolute maximum power and (b) efficiency at maximum power, as in
Fig. 3.7 but using a clean (i.e., nondisordered) wire as a working medium. Identical values
for positive and negative current are obtained at symmetric chemical potentials relative to
the center of the conducting region (inset).

edges, is lower than for a quasiperiodic system supporting a mobility edge also.

Our proposal for the quasiperiodic quantum heat engine with mobility edge could be

experimentally tested using ultracold neutral atoms trapped in bichromatic optical

lattices. On this platform, it is possible to engineer one-dimensional quasiperiodic

systems with a mobility edge by various means, e.g. by lowering the primary lattice

depth so that hopping processes beyond nearest-neighbour play a role [52, 53, 68,

107, 121, 122, 125], and the specific GAAH potential in (3.1) has been recently re-

alised [35]. These systems all share similar spectral features and thus should display

thermoelectric properties similar to those studied in this chapter if integrated in the

two-terminal set-up for particle and heat diffusion measurements which has been de-

veloped for cold atoms in a parallel and independent set of experiments [14, 202–205].

For example, if we assume the same nearest-neighbour interaction term th ∼ h× 500

Hz adopted in the laboratory for 40K atoms at 0.15 TF [53], where TF is the Fermi

temperature, our units for temperature read 1 th/kB ∼ 0.1 TF . Working in the linear-

response regime simplifies our theoretical analysis, but it determines a very low power

output (t2h/h ∼ 2.0× 10−28 W). Large biases have been demonstrated in the ultracold

atom toolbox for transport measurement [202] and power could then be considerably

increased.
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3.1.3 Dependence on system-bath coupling

The study of the proposed quasiperiodic thermoelectric is characterised by a large

number of parameters to control and tune in order to reach the highest possible

efficiency at finite power output. In the previous sections we show the properties of

the thermal machine computed at an intermediate coupling regime, with γ fixed equal

to th. The analysis of the efficiency is, in fact, independent of this choice. In order

to show this, we compute the Onsager coefficients of the same system keeping the

temperature and chemical potential constant and changing just the strength of the

coupling between the central chain and the reservoirs. We have found that the forms

of L11, L12 and L22 as function of chemical potential remain the same regardless of γ,

up to an overall factor. A change in the coupling constant affects just the magnitude

of the coefficients, as it is evident from the conductance plotted in Fig. 3.10a. The

magnitude initially increases with γ, but, after reaching a maximum at an optimum

γ∗, it drops as the particles begin to be scattered back to the reservoirs without

entering the central region because of the high impedance mismatch. The same kind

of behaviour is observed also for the other coefficients L12 and L22 in all temperature

ranges. Quantities deriving from a ratio of the Onsager coefficients, such as the

thermopower S and the figure of merit ZT , are thus independent of γ, as shown in

Fig. 3.10b. As a consequence, in the limit of large system size it is possible to maximise

the power output of the machine while keeping its efficiency constant, just by tuning

the coupling of the chain to the baths in the set-up. In Fig. 3.10c and Fig. 3.10d we

collect, for different values of γ, results for the efficiency at maximum power η(h)(Pmax)

and the maximum power Pmax at fixed chemical potential µ which gives the highest

value for the electric power output when T = 0.1 th/kB. The corresponding value

of the chemical potential is the same at every γ and the efficiency remains constant

apart from small numerical fluctuations, as expected. We see, instead, the power

rising linearly for small γ, reaching the highest value at γ ∼ 2.0 th, and subsequently

decaying with a power law. The parameter γ can be then fixed without loss of

generality, and, moreover, can be used to control the maximum power output without

affecting the efficiency of the thermal machine.
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(a) (b)

(c) (d)

Figure 3.10: Dependence of the thermoelectric properties on the system-bath coupling
strength γ, fixing the temperature at T = 0.1 th/kB. (a) Electrical conductance as a
function of the distance between the chemical potential and the mobility edge, indicated
by the red line, obtained for multiple choices of γ. All curves have the same form and
differ only in their magnitude. (b) Figure of merit around the mobility edge for different
γ. Since the Onsager coefficients are modified by the same pre-factor, their combination
is γ-independent and the different curves completely overlap. (c) As a consequence of the
same argument, the efficiency at maximum power as a function of the system-bath coupling,
for a fixed chemical potential, µ − Ec = 1.57 th, remains constant with γ is changed. (d)
Maximum power transferred by the machine. It is evident that it is possible to tune the
system-bath coupling in such a way to optimise power without changing efficiency.
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3.2 Phenomenological transmission function

A general property of quasiperiodic one-dimensional models is that their spectrum

exhibits fractal properties, which are reflected in the fine-grained structure of the

transmission function. While these fractal properties depend on the exact choice of

the quasiperiodic potential, the asymmetry of the transmission function and the oc-

currence of bands of ballistic states are generic to many one-dimensional quasiperiodic

systems with a mobility edge. In this and in the following section, we demonstrate

that the behaviour of the thermoelectric coefficients observed above, in particular,

the divergence of thermopower and figure of merit, are generic to any system show-

ing these characteristics, generalising the concept of quasiperiodic thermal machine

beyond the specific potential chosen in Eq. (3.1).

The fractal spectrum of the GAAH model is reflected by the position of the peaks in

the transmission function. Here we show that the fine-grained structure of this fractal

spectrum is unimportant for the physics described above. To that end, we study the

transport properties of the set-up by modelling its transmission function with a series

of boxcar functions of height and width corresponding to the different ballistic regions

of the GAAH model. By construction, these boxcar functions lack any fine structure

whatsoever. In Fig. 3.11a, the boxcar approximation is plotted together with the

exact transmission function from Fig. 3.2b. With this phenomenological transmission

function, we now calculate the transport properties. Fig. 3.11b shows the electrical

conductance G as obtained from the phenomenological approach along with the exact

value of G for the GAAH model, showing excellent agreement up to an overall scale

factor. The factor occurs because, due to the fractal nature of the spectrum of the

GAAH model, the integral of the true transmission function of the GAAH model is

a fraction of that of the boxcar transmission function. Other Onsager coefficients

obtained from the phenomenological model also differ by the same overall factor.

This, in turn, means that quantities defined as a ratio of the Onsager coefficients

show excellent agreement with the GAAH model. This is shown in Fig. 3.11c for the

Seebeck factor, and in Fig. 3.11d for the efficiency at maximum power.

This exercise shows that the physics analysed in previous section is not a specific

property of the GAAH model that we have considered here. Any system with similar

coarse-grained features in its transmission function will show the same qualitative
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(a) (b)

(c) (d)

Figure 3.11: (a) The transmission function for the set-up in the same configuration as in the
main text computed with NEGF (green lines), overlapped by a series of boxcar (black lines)
following its profile. Comparison of (b) the electric conductance, (c) the Seebeck factor and
(d) efficiency at maximum power obtained from the calculated transmission (solid green
line) and from the boxcar approximation (dashed black lines). The position of the mobility
edge is shown by the red line.

behaviour. Such transmission functions are expected in other quasiperiodic one-

dimensional systems with a mobility edge separating ballistic and localised states.

Hence, our results exemplify the thermoelectric properties of all such systems.

3.3 Analytical results in the weak-coupling limit

The phenomenological transmission function can also be arrived at more microscop-

ically in the weak system-bath coupling limit. The particle and heat currents in a

one-dimensional system among two fermionic reservoirs, within the WBL approxima-

tion and in the weak system-bath coupling limit, can be in fact expressed directly as
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a function of the eigenstates of the isolated system [31]:

Je = 2eγ
N∑
ℓ=1

Φ2
LℓΦ

2
Rℓ

Φ2
Lℓ + Φ2

Rℓ

(
fL(Eℓ)− fR(En)

)
, (3.3)

Jq = 2γ
N∑
ℓ=1

Φ2
LℓΦ

2
Rℓ

Φ2
Lℓ + Φ2

Rℓ

(Eℓ − µ)
(
fL(Eℓ)− fR(Eℓ)

)
, (3.4)

where Φνℓ, ν = L,R is the component of the n-th eigenstate on the first (ν = L) or

the last (ν = R) site of the chain. In the linear-response regime, we thus obtain the

Onsager coefficients for reference values of µ and T :

L11 = 2γe2T
N∑
ℓ=1

Φ2
LℓΦ

2
Rℓ

Φ2
Lℓ + Φ2

Rℓ

(−f ′(Eℓ)), (3.5)

L12 = 2γeT
N∑
n=1

Φ2
LℓΦ

2
Rℓ

Φ2
Lℓ + Φ2

Rℓ

(Eℓ − µ)(−f ′(Eℓ)), (3.6)

L22 = 2γT
N∑
ℓ=1

Φ2
LℓΦ

2
Rℓ

Φ2
Lℓ + Φ2

Rℓ

(Eℓ − µ)2(−f ′(Eℓ)). (3.7)

The expressions above are strictly valid only in the weak system-bath coupling regime.

Note that they only depends on the absolute values of the single-particle eigenvectors

of the system at sites where the baths are attached, namely, the first and the last

sites.

In Sec. 2.1, we have described the importance of breaking the symmetry between the

dynamics of the electrons above and below the chemical potential, or, in other words,

the electron-hole symmetry, in order to obtain a good thermoelectric. A simple way

to realise this effect is to put an energy filter on the central system to prevent the

transmission at certain energies. This may be achieved by a band edge or a mobility

edge. Here we analytically demonstrate the enhancement of thermoelectric effects

due to this mechanism. In the weak coupling regime it is easy to verify that they

depend only over the first and the last sites, however, for larger γ, the only error is

an overall multiplicative factor, which is the same for all the currents and Onsager

coefficients (see Sec. 3.1.3). Considerations about quantities defined through ratios of

the Onsager coefficients can be then regarded as generic, since these prefactors cancel

each other.

It is evident that in order to get a coefficient L12 different from zero the eigenstates
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need to behave differently for energy above or below the chemical potential µ. With

this condition, the Seebeck coefficient, which is introduced in Eq. 2.41 and enters

quadratically in the definition of the figure of merit, can assume finite values. If

the spectrum of the system contains an isolated cluster of eigenstates, the strongest

thermoelectric effects arise when the chemical potential is placed at their edges, since

there are no states contributing below or above a certain index ℓ∗ in the sum appearing

in Eqs. (3.5)-(3.7). On the other hand, for a system exhibiting a mobility edge at

Ec = Eℓ∗ the eigenfunctions scale with the system size N as follows:

Φ2
νℓ ∼ e−N if ℓ < ℓ∗,

Φ2
νℓ ∼

1

N
if ℓ > ℓ∗.

(3.8)

The sums can be then split into two parts: the terms for ℓ < ℓ∗ and for ℓ > ℓ∗. The

former terms will go to zero as N increases, while the latter will converge to a finite

value.

We now make the further assumption that the eigenfunctions Φνℓ contribute approx-

imately the same weight for each value of ℓ > ℓ∗ in Eqs. (3.5)-(3.7). The Onsager

coefficients for large enough N can be thus approximated, up to a proportionality

constant, by

L11 ∝ γ
e2T

N

N∑
ℓ>ℓ∗

(−f ′(Eℓ)), (3.9)

L12 ∝ γ
eT

N

N∑
ℓ>ℓ∗

(Eℓ − µ)(−f ′(Eℓ)), (3.10)

L22 ∝ γ
T

N

N∑
ℓ>ℓ∗

(Eℓ − µ)2(−f ′(Eℓ)). (3.11)

We display in Fig. 3.12 the comparison between the exact computation carried out

through the Landauer-Büttiker integrals and the predictions of the above equations.

We notice that the proportionality constant, independent on the system size, is the

same for all three Onsager coefficients. As a consequence, it does not affect quantities

such as the thermopower, the figure of merit or the efficiency. Therefore, we see that

we only require the single-particle eigenvalues of the system to accurately recover the

essential physics, up to a proportionality constant.

Now, we take one further step of approximation. We note that the single-particle
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(a) (b)

Figure 3.12: Comparison between the transport coefficients computed through the exact
Landauer-Büttiker integrals (solid black line), and the approximated forms in Eqs. (3.9)–
(3.11) (dashed blue line). (a) Electrical conductance. (b) Seebeck coefficient. The parame-
ters of the system are the same as in the main text, but with a weak coupling of γ = 0.01 th.
The proportionality factor of 0.06 in (a) is a free parameter, which encapsulates the micro-
scopic details of the eigenfunctions that are neglected in the approximations. The position
of the mobility edge is shown by the red line.

eigenvalues occur in clusters, as evidenced by the ballistic bands in Fig. 3.2b. Due

to quasiperiodicity, these eigenvalue clusters have a finer self-similar structure. We

now choose to completely ignore this finer structure and replace the summations in

Eqs. (3.9), (3.10), (3.11) by integrals over the width of each ballistic band. This

amounts to phenomenologically modelling the transmission function by a series of

boxcar functions, as done in Sec. 3.2. With this simplified assumption, we can derive

closed-form analytical expressions for the contribution from each boxcar function to

the Onsager coefficients L11 and L12. To state the result concisely, we define the

following three functions:

A = tanh

(
µ− E1

2kBT

)
,

B = tanh

(
E2 − µ

2kBT

)
,

C = log

[
cosh

(
µ− E1

2kBT

)
sech

(
E2 − µ

2kBT

)]
.

The contribution to L11 and L22 from a band of ballistic states between E1 and E2 is
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(a) (b)

Figure 3.13: (a) Electrical conductance and (b) Seebeck coefficient at low temperature
T = 0.1 th/kB and γ = 0.01 th. The quantities are computed through the exact Landauer-
Büttiker integrals (solid black line), and the analytical formulae in Eqs. (3.12) and (3.13)
(dashed blue line). The proportionality factor of 6.0 in (a) is a free parameter, which
reflects the fractal structure of the transmission function that is neglected in the boxcar
approximation. The position of the mobility edge is shown by the red line.

then given by

L11 ∝
e2Tγ

N
[A+B] , (3.12)

L12 ∝
eTγ

N
[(E1 − µ)A+ (E2 − µ)B + 2kBTC] . (3.13)

To show the correctness of these results, we plot the conductance G and Seebeck

coefficient S for chemical potentials µ close to the mobility edge. At low temperatures,

only one cluster contributes, and this contribution should match that obtained from

the above analytical formulae, up to a proportionality constant forG. Plots ofG and S

as obtained from the above formula are shown in Fig. 3.13 along with the exact results.

Indeed, we see that G is qualitatively identical up to a proportionality constant, while

S is both qualitatively and quantitatively the same. The Seebeck coefficient starts to

deviate for higher µ due to contributions from the next cluster of ballistic states. This

can be remedied by adding another boxcar function corresponding to the next cluster,

as done in obtaining Fig. 3.11c. This analysis reinforce the conjecture that similar

thermoelectric characteristics will occur in other quasiperiodic systems displaying a

mobility edge.



Chapter 4

Fibonacci heat engine

We proceed with the exploration of the possible application of quasiperiodic potentials

in quantum heat management by focusing on the diagonal Fibonacci chain, introduced

in Sec. 1.4. In this Chapter, we consider its non-interacting limit, and, after a review

of the known results on the anomalous particle and spin transport in the model,

we analyse in Sec. 4.1 the emergence of thermoelectric effects within the approach of

Sec. 2.1. Then, motivated by experiments in molecular nanoelectronics, we investigate

the consequences of introducing incoherent inelastic effects which lead to dephasing.

These can be easily incorporated within our framework through voltage-temperature

Büttiker probes, that are presented in Sec. 4.2. In Sec. 4.3, we discuss how the presence

of dephasing noise from inelastic scattering modifies the highly non-trivial transport

properties of the Fibonacci model, and, in particular, how it can be used to enhance

refrigeration in the device in certain favourable thermodynamic configurations. These

results have been first presented in Ref. [206].

We restate that in the tight-binding diagonal Fibonacci chain the lattice energies

{Vl}Nl=1 assume two alternating values uA or uB, whose sequence is generated by the

Fibonacci substitution rule,

uA → uAuB

uB → uA, (4.1)

while the first neighbour hopping th is constant. Differently from the paradigmatic

AAH, this model escapes localisation, while the quasiperiodicity of the potential in-

95
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duces multifractal spectrum and eigenstates at every uA and uB, in the sense described

in Sec. 1.2.1. Therefore, one may assume control over a single parameter uA = −uB =

u without loss of generality. It is known, since the pioneering study of Abe and Hi-

ramoto [30], that the spectral criticality in this model gives rise to anomalous transport

exponents varying continuously with the potential strength u [207]. We replicate these

results in Fig. 4.1a, where we evaluate the mean square displacement of a wavepacket

initially localised at the center of the chain, ∆x2(t) =
∑

l

[
(l − N/2)2 |Ψl(t)|2

]
. We

consider the isolated chain and compute the unitarily evolved state with the Fibonacci

matrix Hamiltonian Ψ(t) = exp (−itHs/ℏ)Ψ(0). The vector Ψ(t) contains the com-

ponent of the wavepacket over the l = 1, . . . , N site of the chain, and Ψl(0) = δlN/2.

As discussed in Sec. 2.2.3 and Appendix A, in presence of translational invariance

this quantity yields the same information of the spread of correlations connected to

the Green-Kubo electric conductivity. The exponent in the scaling fit ∆x2(t) ∼ tν

can then be employed to discern the transport regime. In particular, ν = 2 points to

ballistic behaviour and ν = 1 to standard diffusion, 1 < ν < 2 implies superdiffusive

transport, and 0 < ν < 1 implies subdiffusive transport. We note that the fits are

performed for times before the boundaries of the system are reached and the curves

saturate. As u increases, we observe that the transport slows down, and correspond-

ingly the saturation happens at longer times. In Fig. 4.1b we show the ν extracted

from the fits of the ∆x2(t) curves, as a function of u. The exponent ν tends to 2 for

u→ 0, and then decreases continuously towards 0 (absence of transport) for increas-

ing u, with two regimes: superdiffusive (α > 1 for u ≲ 1.5) and subdiffusive (α < 1 for

u ≳ 1.5). In Ref. [32], it has been verified that the same exponent can be extracted

from single realisations of the Fibonacci potential. However, here and in the following

we perform the averaging procedure followed in in Refs. [134, 208] and described in

Sec. 1.4 to formally restore translational invariance. Operationally, we consider an

“infinite” sequence with N∞ ≫ N generated directly from Eq. (4.1) and cut out finite

samples of length N starting from the first site, then from the second, etc. Discarding

the reflection symmetric examples and the symmetric partners of the samples already

stored, we can identify N/2 (or (N−1)/2 for odd N) distinct samples to average over.

Spin transport in the open environment has been analysed through a phenomenolog-

ical Lindblad master equation in Ref. [32]. In this setting, multifractality determines

again a scaling of the current that smoothly varies from superdiffusive to subdiffusive
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Figure 4.1: (a) Mean squared displacement ∆x2 of a state initially localised at the middle
of a non-interacting Fibonacci chain of N = 1001 sites is computed in time for different
example values of the potential strength u. The dashed lines in the log-log plot show the fits
∆x2 ∼ tν . We notice the curves saturating at low u as the wavepacket has spread over the
entire system, where the fast dynamics makes the finite size of the system visible at shorter
times. (b) The extracted exponent ν varies continuously with u, indicating anomalous
diffusion.

through standard diffusion with increasing u. However, as in the case of the AAH, it

is highlighted a dependence of the scaling exponents on the number theoretic proper-

ties of the set of chosen N , and the quantitative mismatch with the results from the

isolated chain.

In the context of quantum thermal machines, the multifractality of the spectrum, re-

flected in the transmission function, suggests the possible capability of the Fibonacci

chain as working medium. Therefore, we investigate steady-state thermoelectric trans-

port in the Fibonacci model in presence of both temperature and chemical potential

bias. Arrangements of nucleotides in synthetic DNA molecules generated by the same

Fibonacci substitution rule have in fact already been proposed to realise nanoelectric

devices [131, 132], with related numerical studies mostly limited to electric trans-

port [209, 210]. If we want to consider thermoelectric devices based on this type

of structures, however, we must consider that in single DNA molecules, transport is

characterised by a concurrence of coherent and incoherent mechanisms, determined by

the interaction between conducting electrons and “environmental” degrees of freedom

such as the other electrons, nuclei or the solvent [211–214]. These many-body effects

collectively introduce noise that might consist of loss of phase coherence, and momen-

tum and energy exchange. It has been demonstrated in various contexts that this

noise from the environment can assist transport. The examples of such environmental
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assisted or dephasing enhanced transport include natural photosynthetic complexes

[41, 42, 215–219], molecular junctions [44, 220, 221], photonic crystals [46, 47, 222],

trapped ions [48, 223], and also boundary-driven spin chains at infinite tempera-

ture [49–51]. However, the implications of this effect for thermoelectricity — an

intrinsically finite-temperature phenomenon — have received comparatively little at-

tention. Here we ask if the inevitable presence of dephasing noise due to inelastic

scattering can be used to enhance thermoelectric performance in quasiperiodic quan-

tum thermal machines.

4.1 Coherent thermoelectric transport

We first reproduce the regime of anomalous transport in absence of dephasing within

Landauer’s framework for a two-terminal device. The Fibonacci chain is attached to

a hot and a cold reservoir in WBL approximation in the same configuration where

we studied the GAAH model in Sec. 3.1, and we compute electric and heat currents

in linear response through the transport coefficients and the applied biases. The

existing calculations focus on the infinite temperature case [32], and surprisingly, to

our knowledge, the survival of the anomalous diffusion has not been demonstrated at

finite temperatures. In the following, we work in a regime of intermediate system-

bath coupling, γ = th = 1. However, the choice of γ within linear response and

WBL approximation only rescales the currents without qualitatively affecting the

transport behaviour, as verified in Sec. 3.1.3. From our numerics, we observe that

the self-similar structure of the spectrum in the Fibonacci model is reflected on the

transmission function τLR(E). An example of the transmission function for a chosen

value of Fibonacci potential strength is shown in Fig. 4.2.

The calculation of currents requires an integration over energy of the transmission

function multiplied by the Fermi-Dirac distributions. Due to the near-discontinuous

nature of the transmission, this integration becomes challenging for large system sizes.

Nevertheless, the system sizes we have been able to access are large enough to ex-

tract the asymptotic transport exponents αG and αK , introduced in Eq. (2.106) and

Eq. (2.107). In Fig. 4.3a and Fig. 4.3b, we show Je and Jq as function of system size

N at different Fibonacci potential strengths u = 0.5, 1.0, 1.5, 2.0, 4.0. The thermody-

namic parameters are T = 1.0, ∆µ = 0.1 and ∆T = 0.1. We select different chemical
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Figure 4.2: Example of zero-dephasing transmission function τLR(E) of a single Fibonacci
chain realisation of size N = 200, at u = 2.0. In the inset, we explicitly show the self-
similarity of the structure by zooming on a portion of the energy axis.

potentials for every value of u, since the choice of µ along the energy axis affects only

a pre-factor in the currents and not their scaling exponent, leaving the plots quali-

tatively equivalent. We observe in Fig. 4.3c that the transport exponents αG (blue

dots) and αK (red stars) collapse onto the same trend. We notice that the exponent

αG and αK vary continuously with u, from superdiffusive (αG/K < 1) to subdiffusive

(αG/K > 1) behaviour through normal diffusion (αG/K = 1). In Fig. 4.3d, we show

that this data collapse occurs independently of temperature. Thus, we prove that the

anomalous transport behaviour observed previously at infinite temperature survives

at finite temperatures in both the electric and thermal transport.

The Landauer-Büttiker framework we have adopted has not only the advantage to

allow the study of charge and heat currents at finite temperature but in what follows

it will also allow us to study the effect of dephasing in a systematic way by introducing

Büttiker probes.

4.2 Büttiker probes

The idea of introducing additional electron reservoirs as probes to mimic dephasing

noise was first described by Büttiker [224], and then applied to extended conductors

by D’Amato and Pastawski [225, 226]. The additional reservoirs are treated as con-

ventional baths, which receive particles and re-introduce them into the central system

after scrambling their phase. The probes are “fictitious” in the sense that their par-
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Figure 4.3: (a)-(b) Scaling with N of coherent heat and electric currents in the Fibonacci
model with hopping parameter th = 1 and coupling to the baths γ = 1, for different potential
strengths u, indicated in the color legend. The thermodynamic parameters are T = 1, ∆T =
0.1, ∆µ = 0.1. The chemical potentials are respectively µ = −2,−2.4,−2.8,−3.3,−5.2. (c)
Scaling exponent extracted from the electricG ∼ N−αG (blue dots) and thermal conductance
K ∼ N−αK (red stars) associated to the currents in (a)-(b), at the same parameters. The
dashed line indicates the value of α at which transport is diffusive. The error bars are
given by the asymptotic error in the fits. (d) Scaling exponents for G (dots) and K (stars)
computed in different thermodynamic configurations given by the colors in the legend. We
notice that they do not depend on the thermodynamic configurations.
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ticle distributions are self-consistently determined in such a way to mimic different

types of incoherent scattering processes. We consider again the configuration and for-

malism introduced in Sec. 2.1 to study coherent transport, and, in particular, the total

Hamiltonian of the extended region composed of system and baths is given by the

same Eq. (2.18). However, the index ν covers now both “real” left (L) and right (R)

baths, and the N probes, ν = L,R, 1, ..., N . Each probe n = 1, ..., N is a fermionic

bath with Hamiltonian analogous to Eq. (2.19) and spectral function analogous to

Eq. (2.30), and is coupled to the n-th site of the chain through

ĤFn =
∑
λ

(tλnâ
†
nD̂λn + h.c), (4.2)

with tλn the amplitude for electrons to tunnel from the n-th lead onto the wire. The

electric and heat currents flowing through the system are given by the Landauer-

Büttiker integrals in Eq. (2.2) and Eq. (2.11) extended to multiple terminals

Je =
2e

h

∑
ν

∫
dEτLν(E)[fL(E)− fν(E)], (4.3)

Jq =
2

h

∑
ν

∫
dE(E − µL)τLν(E)[fL(E)− fν(E)], (4.4)

where fL/R(E) are the Fermi-Dirac distributions of the left and right physical reser-

voirs, and fn(E) the occupation probabilities of the probes. The collection of trans-

mission functions τν′ν(E) is found via a generalisation of the NEGF approach to a

multi-terminal set-up. The formula in Eq. (2.28) thus becomes

τνν′(E) = Tr
{
Γν(E)G

†
S(E)Γν′(E)GS(E)

}
, (4.5)

where the NEGF GS(E) was defined in Eq. (2.25). The indices ν, ν ′ = L,R, 1, ..., N

here run over the real left (L) and right (R) baths, and the Büttiker probes (1, ..., N).

Given the structure of the coupling with the central system in Eq. (4.2), the self-

energies of the the probes Σn(E) (n = 1, ...N) are given in WBL approximation by

one constant non-zero element matrices when in lattice basis, [Σn(E)]nn = −iγd/2,
while [Γn(E)]nn = γd. The generalised transmission functions can be then simplified
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as

τLR(E) = γ2 |[GS(E)]1N |2

τnL(E) = γγd |[GS(E)]n1|2

τnR(E) = γγd |[GS(E)]nN |2

τnn′(E) = γ2d |[GS(E)]nn′|2. (4.6)

We assign τνν(E) = 0, since these terms do not contribute to the currents, and

τνν′(E) = τν′ν(E), since the tunnelling process is symmetric. The only formal differ-

ence between real baths and probes is that their occupation fn(E) is not necessary

a Fermi-Dirac distribution with temperature Tn and chemical potential µn as free

parameters, but it is self-consistently determined by imposing some conditions on the

currents flowing towards them,

Je,n =
2e

h

∑
ν

∫
dEτnν(E)[fn(E)− fν(E)], (4.7)

Jq,n =
2

h

∑
ν

∫
dE(E − µn)τnν(E)[fn(E)− fν(E)]. (4.8)

The conditions depend on the type of incoherent effect desired. Incoherent elas-

tic scattering, where the electrons lose memory of their phase but conserve their

energy, is recreated by cancelling the contribution to the electric current at each

energy with the so-called “dephasing probe” [220]. Operationally, this translates

into deriving the occupation of the N probes from the solution of the N equations

τnν(E)[fn(E) − fν(E)] = 0, at each energy E. For the other cases of incoherent

effects, one requires instead the specific form fn(E) = {1 + exp [(E − µn)/kBTn]}−1

and solves the conditions for Tn and µn. When a chemical potential bias is applied

to the system, incoherent inelastic scattering is introduced by setting the net electric

currents towards each probe to zero Je,n = 0, using a “voltage probe” [45, 212, 227].

If a temperature bias is also present, as in the context of thermal machines, we encode

non-dissipative inelastic scattering by further cancelling the heat currents going in to

the probes. In this case, the average transfer of charge and heat from and towards

the probes is zero, but single electrons exchange energy and momentum besides losing

phase coherence. In the following, we implement this so-called “voltage-temperature
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probe” [211], imposing then

Je,n =
2e

h

∑
ν

∫
dEτnν(E)[fn(E)− fν(E)] = 0, (4.9)

Jq,n =
2

h

∑
ν

∫
dE(E − µn)τnν(E)[fn(E)− fν(E)] = 0. (4.10)

These 2N non-linear equations do not posses a proof of existence and uniqueness

of the solution, contrary to the case of the voltage probe [228, 220]. We restrict

then the study to linear response regime, as suggested by the algorithm in Ref. [229],

by Taylor-expanding the Fermi-Dirac distributions of each probe and bath. Once

solved the system of 2N linear equation, we plug the set of solutions {Tn, µn}Nn=1 into

Eqs. (4.3)–(4.4). To extract the transport coefficients, we re-write the physical cur-

rents in Eqs. (4.3)–(4.4) as in Eqs. (2.44)–(2.45). We first calculate electric and heat

currents setting ∆T = 0, ∆µ ̸= 0, and calculate them again a second time, setting

∆T ̸= 0, ∆µ = 0. We see that the first calculation allows extraction of G and Π.

Knowing G and Π, the second calculation allows extraction of S and K. We inves-

tigate then the possibility of dephasing-enhanced transport in the Fibonacci model

in presence of the voltage-temperature Büttiker probes. Henceforth, we will refer

to the system-probe coupling parameter γd as “dephasing strength”. However, the

conditions implemented on the currents mimic incoherent inelastic scattering events,

leading to energy relaxation (at single electron level, but not on average) beside the

loss of phase coherence. It should be noted that this is fundamentally different from

local pure dephasing Lindblad dissipators, most often used in the context of quantum

information, which allow energy transfer even on average.

4.3 Introducing dephasing

4.3.1 Dephasing enhanced transport

A heuristic argument to understand the behaviour of the infinite-temperature con-

ductivity after adding dephasing was introduced in Ref. [50] for spin transport with

dephasing and dissipation modelled via Lindblad equations. Here, we revisit the argu-

ment considering electric current under a voltage bias. As first seen in Eqs. (2.104)–

(2.106), the phenomenological diffusion equation for the electric current induced by a
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voltage bias in absence of dephasing Je = σ(N)∆µ/N , can be generalised to anoma-

lous transport regimes with σ(N) ∼ N1−αG . It is known that sufficient dephasing

changes anomalous transport behaviour to normal diffusive behaviour. For a given

dephasing strength γd, one can associate a characteristic length Nd, beyond which

coherence is quickly destroyed, so that transport becomes diffusive with well-defined

σ(γd). This argument gives

σ(N, γd) ∼

N
1−αG N < Nd

σ(γd) N > Nd

, (4.11)

The behaviour should be continuous across Nd, so that at N = Nd it must hold

that σ(γd) ∼ N1−αG
d . Considering td ∼ 1/γd to be the time between incoherent

scattering events, Nd can be heuristically estimated by the spatial spread of a small

perturbation in the system within this time in absence of coupling to baths [50]. This

gives Nd ∼ γ
−1/(αG+1)
d . As a result, for small dephasing strength, we get the following

dependence of conductivity on the dephasing strength,

σ(γd) ∼ N1−αG
d ∼ γ

(αG−1)/(αG+1)
d . (4.12)

Thus, the dependence of conductance on the dephasing strength is dictated by the

nature of transport in the absence of dephasing. If the transport in the absence of

dephasing is either ballistic (αG = 0) or superdiffusive (αG < 1), in the regime of

small γd, the conductivity decays to zero as γd increases. But in the case of subdif-

fusion (αG > 1), the conductivity increases and consequently reaches a maximum at

intermediate γd before decaying for large γd. Thus, dephasing enhanced transport is

expected in the regime where the transport was subdiffusive in absence of dephasing.

Behavior consistent with above heuristic description has already been observed in var-

ious systems within the framework of local Lindblad equations, which can be thought

to model the infinite temperature limit, and local pure dephasing Lindblad dissipa-

tors [49–51, 230, 231]. This includes a recent study on the Fibonacci model [51]. We

stress again that our set-up is fundamentally different from this class of descriptions.

In the set-up of these previous works, energy exchange with the sources of dephasing

is allowed, even on average. However, in our set-up with the voltage-temperature

Büttiker probes, both electric and heat currents into the probes are zero on average.
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Therefore, neither particle exchange nor energy exchange with the sources of dephas-

ing are allowed on average. Despite this, we expect the heuristic phenomenology of

dephasing enhanced transport given above to hold in our set-up. Moreover, although

the above phenomenology has been discussed in terms of electric conductivity, we

expect to see enhancement of thermal conductivity also as a function of dephasing

strength, before it eventually decays to zero for large dephasing strength.

We now numerically explore the possibility of dephasing enhanced transport in the

our set-up. The number of transmission functions to compute from Eq. (4.6) at every

energy E grows as N2, which limits our study to N ∼ 200. Despite this, we find

that our numerics are well converged at this system size and allow for an accurate

extraction of transport exponents. In Fig. 4.4, we show the diffusive scaling of electric

Je (left panels) and heat Jq (right panels) currents at different γd for potential strength

u = 0.5 (top panels) and u = 4.0 (bottom panels). In the same figures, the dashed line

indicates the value of currents in the coherent case. We verify, as evident in the bottom

panels, that dephasing enhances heat and electric transport at the potential strength

which would otherwise determine subdiffusion, u = 4.0. The plots are realized for

different µ, at T = 1.0, and ∆µ = ∆T = 0.1, but changing the thermodynamic

variables of the leads does not alter the results in any qualitative way.

Next, we look at the electric and thermal conductivities. We extract the conductivities

σ and κ from the linear fits of respectively logG and logK versus − logN up to

N = 200, for different values of γd. While scanning the thermodynamic parameter

space, we notice a remarkably sensitive behaviour of the conductivities to temperature

T and chemical potential µ, which is more evident as we increase the potential strength

u in the subdiffusive regime. In Fig. 4.5 we show σ (in blue) and κ (in red) as a

function of γd for u = 4.0 at different choices of T and µ. In all plots, we see that

both the electrical and the thermal conductivities initially increase with γd, while

they go to zero for large γd, as expected from the heuristic argument above. We

highlight the position of the highest values of σ and κ with continuous vertical lines

of the same color. In Fig. 4.5a and Fig. 4.5b we set the temperature to T = 0.1, and

take two different values of µ, respectively corresponding to the lower and top end of

the spectrum. Surprisingly, we observe the presence of multiple local maxima, whose

heights and positions depend on the choice of µ. The same kind of variety in the

local peaks arises also at intermediate temperatures and for other choices of chemical
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(a) (b)

(c) (d)

Figure 4.4: Electric (a)-(c) and heat (b)-(d) currents in Fibonacci chains of length N at
various dephasing strengths γd, indicated in the legends. The dashed line shows the cor-
responding currents at zero dephasing. Currents become diffusive at any γd ̸= 0, so that
transport slows down in the superdiffusive regime for u = 0.5 (top panel), while is enhanced
in the subdiffusive regime for u = 4.0 (bottom panel). The thermodynamic parameters are
T = 1.0, ∆T = 0.1, and ∆µ = 0.1.
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Figure 4.5: The electric (blue) and thermal (red) conductivities extracted from the scaling
of the conductances up to a length of N = 200, with u = 4.0. The continuous lines highlight
the dephasing strength γd that maximises the corresponding conductivity. The plots are at
different thermodynamic configurations: in (a)-(b), T = 0.1 and µ is taken at two different
points in the energy spectrum, respectively µ = −5.2 and µ = 4.3, while in (c), T = 10 and
the choice of µ becomes irrelevant (for the specific plot we show µ = −5.2). The error bars
on each data point, given from the asymptotic error in the linear fit, are smaller than dot
size and not visible in the plots.

potentials. On the other hand, at high temperatures, a single peak appears for each

conductivity, with position and height independent of µ, as shown in Fig. 4.5c for

T = 10. The presence of a single peak is in consistent with previous findings using

Lindblad dephasing in Ref. [51].

Linear response transport properties of a fermionic system at chemical potential µ and

temperature T are usually governed by the spectrum of the system in the range of the

energies µ±kBT , which is approximately the width of the derivative of the Fermi-Dirac

distribution with respect to µ, as we already noticed in Fig. 2.4a. Thus, if kBT is much

larger than the bandwidth of the system, transport coefficients become independent

of µ. This explains the observed µ independence of high temperature conductivities.

On the other hand, this picture suggests that the presence of multiple µ dependent

peaks at low temperatures is related to the structure of the effective spectrum given

by the collection of transmission functions within the energy window µ ± kBT . We

therefore deduce that the fractal spectrum of the Fibonacci model, which gives the

peculiar near-discontinuous transmission function in the coherent case (see Fig.4.2),

is also the reason for the surprising multiple peaks in the conductivities as a function

of γd. A more microscopic understanding, however, is difficult at finite temperatures.

Instead, in the next subsection we discuss another surprising observation from the

results, the violation of Wiedemann-Franz law.
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4.3.2 Violation of Wiedemann-Franz law

We state again the Wiedemann-Franz law, rewriting Eq. (2.51) in terms of the electric

and thermal conductivities,

κ

σT
=

K

GT
= L. (4.13)

If transport is anomalous, L does not need to be equal to the Lorenz number L0, since

the conductivities may not be well-defined in that case. In the Fibonacci model, we

already find its violation in absence of dephasing, as we expect from the asymmetries

in its transmission function.

We observe that the Wiedemann-Franz law is still violated over a wide range even in

presence of dephasing, when transport becomes diffusive and both the conductivities

are well-defined. This remarkable fact is evident from Fig. 4.5, which shows that even

at relatively low temperature T = 0.1, the thermal and the electrical conductivities

are not proportional to each other. In fact, we find that the maxima in the thermal

and the electrical conductivities arise at different positions in parameter space, at

both low and high temperatures. The violation of the Wiedemann-Franz law as a

function of γd at T = 0.1 is explicitly shown in Fig. 4.6a and in Fig. 4.6b, respectively

for u = 2.0, and u = 4.0. The L ratio is smaller than the Lorenz number for a wide

range of γd, and it is restored to L0 only at γd >> u. At high temperatures, instead,

as in Fig. 4.6c and in Fig. 4.6d the law is violated as expected for the entire range of

γd we have considered.

We further analyse the deviation by visualising L/L0 at different γd as a function of

temperature with any other parameter fixed, for u = 2.0 in Fig. 4.7b and u = 4.0 in

Fig. 4.7a. The violation for small and zero γd can be interpreted considering again the

structure of the transmission functions from the collection of real baths and probes

in the energy window included into transport at each temperature. At small and

zero dephasing, the sharp features of the transmission would prevent the Sommerfeld

expansion necessary to directly derive the Wiedemann-Franz law from Eqs.(4.3)-(4.4)

at low temperatures. As dephasing increases, however, these features are progressively

broadened and the energy windows over which the transmissions are continuous gets

larger, so the ratio L/L0 is restored to 1.

The fact that thermal and electrical conductivities can have maxima at different values
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Figure 4.6: Ratio L = K/GT normalized to the Lorenz number L0 = (πkB)
2/3e2 for

(a) u = 4.0, µ = −5.2, (b) u = 2.0, µ = −3.3, at low temperature T = 0.1, with ∆T = 0.01,
∆µ = −0.01. The dashed line indicates the value at zero dephasing. The blue and red
vertical continuous lines highlight respectively the position of the maxima of electric and
heat current. In (c) and (d) we use the same parameters of the refrigerator configurations
in (b)-(c) of Fig. 4.8: (c) u = 4.0, µ = −5.2, T = 10,∆T = 0.5,∆µ = −1.0, (d) u = 4.0, µ =
−3.3, T = 10,∆T = 1.0,∆µ = −1.0

.
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(a) (b)

Figure 4.7: RatioL/L0 for different choices of γd as a function of temperature at (a) u = 2.0,
µ = −3.3, (b) u = 4.0, µ = −5.2 with constant applied biases ∆µ = 0.01, ∆T = 0.01.

.

of dephasing strength, translates to values of γd where the magnitude of heat current is

maximised at low corresponding magnitude of electric current or vice versa. It is clear

from the expressions for η(h) in Eq. (2.58) and η(r) in Eq. (2.72) that situations where

the magnitude of heat current and the magnitude of electric current are maximised

at different values of γd can be advantageous.

4.3.3 Dephasing enhanced refrigeration

As discussed extensively in Sec. 2.1.3, to make a two-terminal device act as either a

heat engine or a refrigerator, in absence of dephasing, a key ingredient is asymmetry of

the transmission function around the chosen chemical potential. The peculiar trans-

mission function of the Fibonacci model in absence of dephasing, which reflects its

fractal spectrum (see Fig. 4.2), shows that it naturally has this property for various

choices of chemical potentials, and thus can serve as working medium for a natu-

ral refrigerator or heat engine. Introducing incoherent inelastic scattering into the

system makes it difficult to extrapolate the energy-filtering properties of the effec-

tive spectrum, since it is given by the collective transmissions of the fictitious probes.

However, it is still possible to exploit the highly sensitivity of the conductivities to the

dephasing strength to individuate particular thermodynamic configurations to realise

efficient thermoelectric devices.

A particularly interesting case occurs for parameters where the Fibonacci model in

absence of dephasing is subdiffusive and works as a refrigerator. As we have seen in
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previous sections, dephasing will increase the currents in this case, making transport

diffusive. If the system still acts as a refrigerator it will therefore enhance its cooling

rate −Jq. Moreover, if the maxima of electrical and heat currents are different, it can

even increase the coefficient of performance of the refrigerator, by decreasing in mag-

nitude the power input (P = −∆µJe/e < 0). In the following, we demonstrate such

simultaneous dephasing-induced enhancement of both cooling rate and coefficient of

performance in the refrigerating regime. We first scan the parameter space and select

configurations which function as refrigerator. The plots in Fig. 4.8 show the absolute

values of the electric (blue) and heat (red) currents as a function of γd at different

thermodynamic parameters. On the right axis, we also show η(r)/η
(r)
C , whose value

at zero dephasing is indicated by a dashed horizontal line. We observe explicitly in

Fig. 4.8a that electrical and heat currents have maxima at different values of dephas-

ing strength. By definition, the coefficient of performance η(r) is maximised when

the magnitude of heat current is maximum, but the electrical current is away from

its maximum. However, η(r) for this choice of chemical potentials, temperatures and

Fibonacci potential strength (u = 4.0), is always below the value obtained in absence

of dephasing. In Fig. 4.8b, instead, which shows a refrigerating regime for a different

choice of chemical potentials and temperatures at the same value of u, we see η(r)

enhanced by dephasing for a wide range of γd. For u = 2.0, we can also find different

configurations in Figs. 4.8c- 4.8d where the coefficient of performance is enhanced by

the presence of dephasing. Moreover, since u lies in the regime of enhanced transport

(see Fig. 4.3d), the presence of dephasing also dramatically increases the cooling rate

−Jq of these refrigerating regimes.

We conjecture that this highly non-trivial transport behaviour is associated with the

fractal structure of the Fibonacci spectrum. However, it is challenging to find a more

microscopically accurate explanation in presence of dephasing at finite temperature.

In the case of coherent transport, the details of the system are directly connected to the

thermoelectric properties of the non-equilibrium steady state through the transmission

function. Conversely, when dephasing is introduced through the probes, transport is

determined by the entire collection of transmission functions between reservoirs and

probes. This complexity makes the interplay between spectral properties, dephasing,

and transport difficult to understand intuitively. Nevertheless, our numerical results

clearly indicate that thermal and particle transport behave differently with respect
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(a) (b)

(c) (d)

Figure 4.8: Examples of configurations which will function as a fridge, (a)-(b) for u = 4.0
and (c)-(d) u = 2.0, N = 200. The red (blue) dots indicate the magnitude of the heat
(electric) current, with its maximum highlighted by a vertical continuous line in the same

colour. On the right axis, η(r) normalised to the maximum theoretical limit η
(r)
C is shown in

black, and its value at zero dephasing is indicated as a reference with a horizontal dashed
line. Parameters: at u = 4.0 (a) µ = 0, T = 5,∆T = 0.1,∆µ = 0.5, (b) µ = −5.2, T =
10,∆T = 0.5,∆µ = −1., at u = 2.0 (c) µ = −3.3, T = 10,∆T = 1.0,∆µ = −1.0, (d) µ =
2.8, T = 1.0,∆T = 0.01,∆µ = 0.1.
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to dephasing. This opens the possibility of enhancing thermoelectric effects by noise.

In particular, we have demonstrated a remarkable dephasing-induced-enhancement

of both cooling rate and coefficient of performance simultaneously for autonomous

refrigeration using the Fibonacci chain as a working medium. Although this finding is

specific to certain parameter regimes of the Fibonacci model, we hope that the results

might serve more generally as a conceptual guide for the realisation of new synthetic

systems for nanoscale heat management based on quasiperiodic potentials.





Chapter 5

Dynamics of the interacting Fibonacci

chain

The control reached over the Hamiltonian and the initial conditions in ultracold atom

set-ups has provided an ideal platform where to realise quasiperiodic models and probe

their non-trivial transport properties from the perspective of dynamics. In these ex-

periments, by tuning the relative depths of the optical lattices trapping the atoms, it

is possible to investigate both the non-interacting limit of the models as well as the

effect of many-body interactions. The interacting AAH model has been studied in sev-

eral theoretical works [120, 232–241], and it has been now verified experimentally that

its single particle localisation gives rise to a possible many body localisation (MBL)

phase [53–56]. Differently from the AAH, there is no delocalisation-localisation tran-

sition in the non-interacting Fibonacci model. As discussed in the previous chapter,

the Fibonacci potential induces instead critical behaviour of all eigenstates at every

potential strength. The transport exponents show a smooth crossover from ballistic

to subdiffusive with increase in the potential strength. A natural question, then, is

what happens to the transport behaviour of the Fibonacci model in the presence of

interactions? How do interactions affect the diagram displayed in Fig. 4.1b from the

previous chapter? Different answers to these questions have been proposed in the liter-

ature. In the recent work by Varma and Žnidarič, the dynamics of polarised domain

walls and the boundary-driven Lindblad equation steady-states reveal diffusion at

small interaction strengths [208]. The spectral analysis in Ref. [71] provides, instead,

evidence for a localisation transition at finite potential strength, that would consti-

tute a genuine many-body effect, since the non-interacting model does not exhibit

115
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a localised phase. Finally, a nonequilibrium Green’s functions approach in Ref. [73]

suggests in the Fermi-Hubbard realisation of the model a slow subdiffusive behaviour

at high potential strength, determined by the non-trivial spectral properties of the

model. Motivated by the lack of experimental results at this moment, we focus on

characterising the transport regime of the interacting Fibonacci model with a further

approach, exploiting dynamical quantum typicality (DQT). In Sec. 5.1 we study the

real-time broadening of the expectation values of local number operators, starting

from a nonequilibrium typical state. Via DQT, this quantity is directly related to the

spread of density-density correlations and thereby to classification of transport via

the Green-Kubo formula in the isolated system, as explained previously in Sec. 2.2.3

and Sec. 2.2.4. We complete the observations from the study of the dynamics with a

further investigation respectively on the participation entropy of the system in Sec. 5.2

and the expectation values of both the local occupation and imbalance in the diagonal

ensemble in Sec. 5.3. The results presented in this chapter are based on Ref. [242].

We realise the interacting Fibonacci model by adding a nearest neighbour density-

density term with strength 2∆ to the tight-binding Hamiltonian, where the on-site

energies are generated according to the Fibonacci substitution rule in Eq. (4.1), with

uA = −uB = u,

Ĥ =
N−1∑
l=1

[th(â
†
l âl+1 + h.c.+ 2∆n̂l+1n̂l] +

N∑
l=1

ulâ
†
l âl. (5.1)

The numerical study is performed after recasting the fermionic system into a spin 1/2

XXZ model with external magnetic field, as seen in Sec. 2.2.1,

Ĥ =
N−1∑
l=1

[
th(ŝ

+
l ŝ

−
l+1 + h.c) + 2∆ŝzl ŝ

z
l+1

]
+

N∑
l=1

ulŝ
z
l . (5.2)

We restrict our calculations to the largest sector of the total Hilbert space with fixed

magnetisation ⟨Ŝz⟩ = 0 and N/2 spins up.

5.1 Density-density correlations via typicality

In this section, we study infinite temperature particle transport in the interacting

Fibonacci model through the dynamics of density-density correlations, using the DQT
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approach. As derived in Sec. 2.2.4, the spatial variance or spread of correlations can

be computed as

Σ2(t) = 4
N∑
l=1

(
l − N

2

)2

Ctyp
l (t), (5.3)

Ctyp
l (t) =

1

2

(
nl(t)− nl(0)

)
, (5.4)

where the expectation value of n̂l is evaluated on the typical state |ψs∞⟩ projected

onto the subspace where the site N/2 is occupied,

nl(t) = ⟨ψ̃sN/2|n̂l(t)|ψ̃sN/2⟩ (5.5)

|ψ̃sN/2⟩ =
1√
Cs
n̂N/2 |ψs∞⟩ . (5.6)

Here, the label s indicates vectors in the largest magnetisation sectors. Details on how

to modify the expressions in the DQT approach and find the normalisation constant

Cs are reported in Appendix B. In practice, we compute the real-time broadening of

a density profile initialised in a non-equilibrium configuration presenting a peak at

the center of the chain, on top of a uniform background which corresponds to the

equilibrium value of the occupation, as depicted schematically in Fig. 2.8.

We generate a single typical state by taking a normalised state vector |ψ̃s⟩ with ran-

dom coefficients and apply the operator n̂N/2. We unitarily time evolve this state

and calculate the density profile at each time point, from which both Σ2(t) and the

autocorrelation Ctyp
N/2(t) can be derived. The dynamical typicality approach allows

us to do a long time simulation of a maximum system size of N = 24. We fix the

hopping term th = 1, and the interaction strength ∆ = 0.5, and investigate the nature

of transport as a function of the strength of the potential u. All the results shown

are averaged over the collection of the non-equivalent realisations of the Fibonacci

model at finite generic length, as described in Sec. 1.4 or at the beginning of Ch. 4.

As discussed in Sec. 2.2.3, the relation between the Green-Kubo conductivity and

the spatial variance relies on the translational invariance of the system in the ther-

modynamic limit. Although the Fibonacci model does not exhibit the translational

invariance, it is effectively restored by averaging over the various samples.

In Fig. 5.1a, we show Σ2(t) as a function of t at significant values of u, for N = 24.

As we noticed in Fig. 4.1a in the non-interacting case, for small u, u ≲ ∆, saturation
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occurs at time ∼ N/2 due to the finite size of the system. Power-law fitting of the

data before the saturation yields a superdiffusive exponent, 1 < ν < 2 (see plot

for u = 0.2 in Fig. 5.1a). On increasing u, transport slows down, and therefore it

takes a much longer time to hit saturation. For u ≳ ∆, we see a clear subdiffusive

exponent, 0 < ν < 1 (plots for u = 1.0, 2.0 in Fig. 5.1a) and saturation is not reached

within our simulation time scales and system sizes. The crossover from superdiffusive

to subdiffusive behaviour seems to arise at u ≈ ∆, where from our results there

does not seem to be a clear power-law behaviour before saturation occurs. It is

possible, at best, to fit two different power-laws at two different time regimes, between

5 ≲ t ≲ 10 with ν ∼ 1.1 and between 10 ≲ t ≲ 50 with ν ∼ 0.5. The exponents

obtained from the power-law fits are given in Fig. 5.1b, which shows the crossover

from superdiffusive to subdiffusive transport. At much higher values of u, u ≫ ∆,

Σ2(t) again quickly saturates to a finite, low value: this signals a lack of spreading of

the initially localised quench, ν = 0, thereby pointing at a possible localised regime

(u = 4.0, 8.0 in Fig. 5.1a), which is reminiscent of the results of Ref. [71]. The fits

were performed on the central values of the time axis, neglecting those affected by

the finiteness of the system and the initial transient towards equilibrium behaviour.

We identified such interval comparing its position and its extension at different N ,

since saturation must hit at later times for larger sizes, while the transient region is

independent on the size. Furthermore, for each fit we considered time windows of

increasing widths to verify the stability of the extracted transport exponents.

To highlight the differences between the subdiffusive and the localised regime and to

discuss finite-size effects, in Figs. 5.1c and 5.1d, we show Σ2(t) for respectively u = 1.5

and u = 8.0 at different system sizes. In Fig. 5.1c, the long time power-law growth of

Σ2(t) with a subdiffusive exponent is clear for all three system sizes N = 20, 22, 24.

With increase in system size, the time extent of the power-law growth increases, as

expected, and the power-law exponent also converges (to ν = 0.3). However, the

different system sizes noticeably do not overlap at any time scale. This is due to the

effect of the finite system size coupled with the quasiperiodic potential. As discussed

in Ch. 4 and 3, the results for quasiperiodic systems are dependent on the choice

of system sizes [31, 32, 243], and particularly, for the Fibonacci potential, on how

different the system-sizes are from Fibonacci numbers. This system-size dependence

may be reduced by averaging over samples, but the small number of available samples
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Figure 5.1: (a) Log-log plot of Σ2(t) vs time t at different Fibonacci potential strengths u, for
a chain of N = 24 spins and ∆ = 0.5. The data computed directly from time evolution are
shown with continuous lines. We show the corresponding fits of the form of Eq. (2.124) in
dotted lines; the short-time fits are shown in pink, while the long-time ones are in black. We
notice Σ2(t) growing faster than t at low u, and slowing down as u increases. (b) Exponent
ν extracted from the Σ2(t) as a function of the potential strength u. The crosses correspond
to the fast dynamics (shown in pink in panel (a)), while the dots are relative to the long-time
dynamics (shown in black in panel (a)). The errors of each data point are smaller than the
dot size. (c) Σ2(t) is shown at u = 1.5 for three different system-sizes in linear scale, along
with their corresponding power-law fits. (d) The same quantity is displayed for u = 8.0 at
three different system sizes N = 20, 22, 24 for a longer time in linear scale.
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Figure 5.2: Time evolution of 2CN/2(t) = nN/2(t) − 1
2 evaluated on the typical state pro-

jected over the subspace where the site at the center of the chain N/2 is initially occu-
pied by one particle. At u = 0.2, 0.5, 1.0, 2.0, CN/2(t) decays as t−ν

′
, with respectively

ν ′ = 0.92, 0.78, 0.37, 0.086. The fits are shown in dashed lines. At high u, CN/2(t) does not
seem to show any decay up to the longest simulation time.

limits the kind of averaging that is possible to perform in our system sizes. We note

that, while this behaviour holds for all values of u, it does not affect our ability to

obtain the power-law exponent and that, nevertheless, all the results for the three

different system sizes are of the same order of magnitude. In Fig. 5.1d, this same

size-dependent effect is shown in the localised regime for u = 8.0. Here, we highlight

the presence of oscillations, showing no signs of a power-law growth trend.

Next, we look at the density autocorrelation CN/2(t) and characterise transport in

terms of the exponent ν ′, as in Eqs. (2.149)–(2.150). The plots of 2CN/2(t) = nN/2(t)−
1
2
are shown in Fig. 5.2. We observe oscillations on top of a very clear power-law decay

for u < 4.0. For u ≲ ∆, the power-law exponent is consistent with superdiffusive

transport, 1 > ν ′ > 0.5; for u ≳ ∆, the power-law exponent is consistent with

subdiffusive transport 0.5 > ν ′ > 0. For u ≫ ∆, corresponding to u = 4.0, 8.0 in

Fig 5.2, we do not see any power-law decay up to the longest time scales that we

simulated, thereby suggesting localisation. This is consistent with our results from

time scaling of Σ2(t).

In Ref. [71], the spectral properties of the Fibonacci model are studied as a function

of the potential strength at a fixed interaction strength of ∆ = th. Although the Fi-

bonacci potential shows no localisation in absence of interactions, a transition to MBL

has been predicted. The question, then, is whether this MBL could be seen at lower

interaction strengths. The infinite temperature transport properties at small interac-
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tion are investigated in Ref. [208]. This study gives strong evidence that the presence

of a small interaction makes transport diffusive at all potential strengths u. This again

is very nontrivial, because, in absence of interactions there is a smooth crossover from

ballistic to subdiffusive. The question, then, becomes whether transport can become

anomalous again at intermediate interaction strengths. One parameter point was

shown in favour of this in Ref. [208].

From our investigation at intermediate many-body interaction strength ∆ = 0.5th,

the following picture emerges. For u ≲ ∆, transport is relatively fast. We find some

evidence of superdiffusion in this regime, although the fast transport and the finite

system sizes do not allow us to extract a long time transport exponent. Since our

results are limited to much smaller system sizes than Ref. [208], we cannot completely

rule out the possibility that behaviour becomes diffusive. On increasing u, transport

slows down, allowing us to extract long time exponents. For u ≳ ∆, we find a strong

evidence of subdiffusive transport, consistent with the results at larger values of u in

Ref. [208]. The crossover from superdiffusive to subdiffusive behaviour seems to occur

at u ∼ ∆, where we are unable to extract a single dynamical exponent. On further

increasing u, i.e, for u ≫ ∆, we find evidence compatible with the presence of a

localised phase, as reported in Ref. [71] for higher interaction strength. Subsequently

to our investigation, the existence of a transition to a possible MBL phase at an

intermediate interaction strength has been suggested in a further study [136].

To summarise, our results strongly suggest that anomalous transport survives in the

Fibonacci model in the presence of interactions, and, on further increasing u, i.e, for

u≫ ∆, that the system crosses over to a possible MBL phase. In the next sections, we

investigate the crossover by means of studies of participation entropy and calculation

of observables in the diagonal ensemble.

5.2 Participation entropy

The spectral properties of the Hamiltonian (5.1) have shown evidence of a many-body

localisation transition at finite critical potential strength at ∆ = 1.0 [71]. This phase

would be introduced uniquely by the interplay of quasidisorder and many-body inter-

actions, since localisation is not present in the non-interacting limit of the model. We

perform here an analysis similar to Ref. [71], by computing the Rényi-2 participation
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entropy of the Fibonacci chain with ∆ = 0.5 through exact diagonalisation (ED).

These quantities have been used to characterise localisation both in single-particle

and in many-body interacting systems [114, 244, 245].

Let |ℓ⟩ represent a many-body energy eigenstate. This can be expanded in an arbitrary

basis, which we choose to be the configuration-space or computational basis, as |ℓ⟩ =∑D
k=1 dk |ϕk⟩. The probability pk = |dk|2 indicates the “participation” of the element

|ϕk⟩ from the arbitrary basis {|ϕk⟩}k in the state |ℓ⟩. The second Rényi participation

entropy (PE) is given by

SP2 = − ln
( D∑
k=1

p2k

)
. (5.7)

If the eigenstate is completely delocalised, SP2 / log(D) → 1. On the other hand, if

SP2 / log(D) → D2, then the eigenstate is fractal with a fractal dimension of D2 [246].

For a system showing MBL, the midspectrum energy eigenstates, the region of the

Hilbert space that is sampled by the isolated system at infinite temperature, are

expected to be fractal with a low fractal dimension. For systems which are neither

completely delocalised nor in MBL, SP2 / log(D) for the midspectrum eigenstates may

not converge to a constant. The study of SP2 thereby allows one to capture crossover

to MBL.

In Fig. 5.3, we plot SP2 / log(D) as a function of the potential strength for different

system sizes, N = 14, 16, 18, 20, 22. All the points are obtained from an average

over ∼ 200 midspectrum eigenstates, with the exception of the data for N = 22

that are averaged over ∼ 140 eigenstates. Finally, the PE are averaged over the

nonequivalent realisations of the Fibonacci potential. The midspectrum eigenvalues

and eigenstates are obtained through the shift-invert algorithm [247]. At very low u,

the PE SP2 / log(D) is close to 1, but still shows dependence on the system size. At

larger values of u, SP2 / log(D) decays rapidly with u, and eventually shows a collapse

for the different system sizes. Thus two regimes can be identified, corresponding to

the transport (either superdiffusive or subdiffusive) and absence of transport regimes

found in Sec. 5.1, the latter reminiscent of the many-body localised phase identified

in Ref. [71]. More definitive statements about the transition in the thermodynamic

limit would require a systematic study of the finite size scaling. In the following, we

explore yet another way of characterising the crossover to the localised phase from

finite system sizes.
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Figure 5.3: Participation entropy SP2 / logD associated to the central region of the spectrum
for different Fibonacci potential strength u. The curves are displayed for multiple chain
sizes.

5.3 Expectation values in the diagonal ensemble

In Sec. 5.1, we obtained finite-time results for the dynamics of the system at different

potential strengths u. In the following, we will instead focus on the asymptotic results

by using the diagonal ensemble, or infinite time averaged state, to investigate the

infinite limit of nN/2(t) of the isolated system initialised in a nonequilibrium state |ψ⟩.
We introduce first the notion of diagonal ensemble and how it is connected to the

mechanism of equilibration in an isolated system.

We consider an isolated system described by the general Hamiltonian Ĥ, its eigen-

states {|k⟩} and corresponding eigenvalues {Ek}, and an arbitrary local observable

Ô. We prepare the system in an initial out-of-equilibrium state |ψ⟩ =∑k ck |k⟩, and
let it unitarily time-evolve according to

|ψ(t)⟩ =
∑
k

cke
−iEkt/ℏ |k⟩ , (5.8)

with ck = ⟨k|ψ⟩. The expectation value of the operator will also evolve in time, as

follows

⟨ψ(t)|Ô|ψ(t)⟩ =
∑
k

|ck|2Okk +
∑
k ̸=m

c∗kcme
i(Ek−Em)t/ℏOkm, (5.9)

with Okm = ⟨k|Ô|m⟩. The system equilibrates with respect to the observable Ô when

the time evolution of its expectation value converges to a stable value given by the
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following long-time average

Ō = lim
t→∞

1

t

∫ t

0

⟨ψ(t′)|Ô|ψ(t′)⟩ dt′. (5.10)

If the spectrum is not degenerate, or, alternatively, does not include an extensive

amount of degeneracies, the phase in the second term of Eq. (5.9) averages to zero in

the long-time limit, thus Ō reduces to

Ō =
∑
k

|ck|2Okk = Tr
{
Ôρ̂DE

}
= ⟨Ô⟩DE . (5.11)

The equilibration value of Ô corresponds to its expectation value in the diagonal

ensemble relative to the initial state |ψ⟩,

ρ̂DE =
∑
k

|ck|2 |k⟩ ⟨k| =
∑
k

|⟨k|ψ⟩|2 |k⟩ ⟨k| . (5.12)

The system is said to have thermalised with respect to the observable Ô if its asymp-

totic value is undistinguishable from the thermal ensemble average,

Ō = ⟨Ô⟩eq . (5.13)

A deep fundamental understanding of thermalisation in isolated systems is still miss-

ing. However, it is now generally accepted that it occurs under a certain set of

conditions on the observable Ô, known as eigenstate thermalisation hypothesis [65],

that will be presented in detail in the next chapter. For the moment, we only mention

that in the MBL phase, instead, systems fail to thermalise, since their many-body

eigenstates localise in the computational basis, and conventional statistical mechanics

breaks down [64].

From the above discussion, we understand how it is possible to infer from expectation

values in the diagonal ensemble if the system reaches absence of transport at high

values of the Fibonacci potential strength u, or rather exhibits a region of slow dy-

namics. However, the computation of ODE requires full ED of the Hamiltonian, so

our results are limited to the system sizes N = 10, 12, 14, 16, 18, up to a maximum of

20 obtained only at u ≥ 2.0.

We focus on the occupation number at half chain n̂N/2, considering the diagonal
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ensemble for the typical state in Eq. (5.6). The occupation of the initial state is 1 by

construction, and it will eventually reach the equilibrium value of ∼ 0.5 in the case of

thermalisation. The results are shown in Fig. 5.4a for different potential strengths as

a function of the inverse of the system size. At low u ≲ 1, the value of the observable

at infinite time decreases with N and we are able to extrapolate the infinite-size

limit result through a fit of the form ∼ 1/Nγ; the fits are shown with dotted lines

in Fig. 5.4a and extrapolate to 0.5, indicating that the system thermalises in the

thermodynamic limit. At larger u, we do not assume a form for the finite size scaling

of nN/2 and thus we do not extrapolate the infinite-size limit.

We also consider the imbalance [52, 53], a density correlation function defined as

I(t) =
4

N

N∑
j=1

⟨ψ(0)|(n̂j(T )− 1/2)(n̂(0)− 1/2)|ψ(0)⟩ , (5.14)

which in the case of initial Néel state, represented in the computational basis as

|ψ⟩ = |↓↑↓↑↓ . . .⟩, can be written as the following operator

Î = [n̂e − n̂o]/N, (5.15)

where n̂e/o =
∑

le/o
n̂l is the number of particles at the even (e) or odd (o) sites. We

compute the initial imbalance I(t = 0) = ⟨ψ|Î|ψ⟩, and derive its infinite time limit

from its expectation values in the diagonal ensemble associated to the Néel state. The

initial value at t = 0 is 1 and will eventually reach the equilibrium value of 0 if there

is thermalisation. We show the infinite-time limit of the imbalance in Fig. 5.4b as a

function of 1/N . The results are similar to those from n̂N/2 and the random typical

state. At low u, it is possible to extrapolate the imbalance in the thermodynamic

limit, giving 0. However, at larger potential strength, namely for u > 4, the data

shows a lack of decay with N , up to the system sizes we have access to, and supports

our results obtained in Sec. 5.1 pointing to absence of transport in the system and

localisation.
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(a) (b)

Figure 5.4: (a) Expectation value of the occupation at half chain n̂N/2 in the diagonal
ensemble associated to the initial typical state, which gives the infinite time limit of the
operator. The dotted lines indicate extrapolation for N → ∞ for the first three values of u,
described by 1/Nγ with γ = 2.81, 2.59, 2.23 for increasing u. (b) Expectation value of the
imbalance Î in the diagonal ensemble for the initial Néel state, with the same color code of
(a). Again, the dotted lines represent the fits 1/Nγ we use to extrapolate the value of Ī in
the thermodynamic limit, with γ = 8.73, 5.47, 1.61 for increasing u.



Chapter 6

Spin helix states in single-impurity XXZ

model

While the previous chapters of the thesis have been focused on exotic potentials ex-

hibiting quasiperiodic order, we return here to a simpler model, which, however, plays

a fundamental role in physics. The anisotropic Heisenberg, or XXZ, model has been

devised to understand ferromagnetic and antiferromagnetic behaviour, and represents

the archetype to describe strongly correlated systems in quantum mechanics. The

XXZ model is a one-dimensional quantum 1/2-spin chain with anisotropic interac-

tions and zero external magnetic field. The details of this type of Hamiltonian were

first mentioned in Sec. 2.2.1, we write here the one specific to the XXZ model adopting

the same notation,

ĤXXZ =
N∑
l=1

[
ŝxl ŝ

x
l+1 + ŝyl ŝ

y
l+1 +∆ŝzl ŝ

z
l+1

]
, (6.1)

where Jxy has been chosen equal to 1, and ∆ indicates the anisotropy. Even in absence

of disorder or quasidisorder, the competition between coherent and incoherent effects

leads to a rich variety of transport behaviours, dictated by integrability [175]. As

discussed in Sec. 2.2.3, integrable systems exhibit an extensive set of local conserved

quantities, which can determine a non-vanishing Drude weight in the thermodynamic

limit, and, consequently, ballistic transport [248]. These systems possess a under-

lying structure that often allows for analytical treatment, in particular, the XXZ

model was the first physical model to be solved via Bethe ansatz [249, 250]. At zero

temperature, its spin transport properties are thus well understood [250], with a tran-

127
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sition from ballistic in the gapless phase (present only in the ⟨Ŝz⟩ = 0 sector, for

∆ ≤ 1) to insulating behaviour (∆ > 1 in the ⟨Ŝz⟩ = 0 sector). Furthermore, a

finite lower bound for the spin Drude weight has been found analytically in sectors

away from ⟨Ŝz⟩ = 0 for every ∆ at infinite and finite temperature, implying overall

ballistic transport [248, 251]. For the zero magnetisation sector at higher tempera-

tures, most studies tackle separately two regimes. In the so-called weakly-interacting

regime 0 < ∆ < 1, the presence of quasi-local conserved quantities has been formally

established [252], determining again a finite Drude weight and ballistic transport at

infinite temperature. In the strongly-interacting regime ∆ ≥ 1, an impressive amount

of numerical investigations has been conducted in the limit of infinite temperature,

including DQT approach [167, 184], open system boundary-driving [253], generalised

hydrodynamics [254–256], and finite-time tDMRG [257]. The results suggest diffusive

transport, and, at ∆ = 1, superdiffusion with a precise exponent characteristic of

the Khandar-Parisi-Zhang (KPZ) universality class, which has been observed also in

magnetic materials [258], ultracold atoms [259], and quantum digital simulators [260].

The complete dependence of the transport properties on finite temperature and the

nature of the subleading terms in the ballistic regions remain, on the other hand,

subject of open and intense studies [175].

In the last years, some of these investigations have been conducted on physical plat-

forms. The degree of tunability, the length of coherence times, and the ability to

prepare non-equilibrium configurations on set-ups as trapped ions [261], impurity

atoms in diamond [262], and, especially, ultracold atoms [57–59, 75, 263], has reached

a level that establishes these systems as analogue quantum simulators to test the

transport properties of quantum Hamiltonians. The dynamics of the XXZ model has

been recently probed for the first time over a large range of anisotropies in a beautiful

and celebrated experiment performed by Jepsen et al. [75]. Highly non-equilibrium

configurations were prepared by imprinting on the chain of atoms a winding mag-

netisation profile with adjustable wavelength. The so-called spin helix states are pure

states, and display a strong energy dependence on the wavelength of the winding. The

transport regimes reconstructed from the measures, however, are in contrast with the

predictions from linear response theory described above. Indeed, spin helix states are

highly non-trivial configurations not fully investigated yet.

The progress in the experimental platforms has also renewed the interest in equilibra-
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tion and thermalisation in isolated many-body systems [64]. Initially brought away

from equilibrium, they relax again following the underlying microscopic dynamics,

according to the transport behaviour of the conserved quantities, which is dictated

by their conservation laws. For such reason, integrable models will reach equilibrium

in a different way from non-integrable ones. In particular, while integrable systems

retain complete memory of the initial conditions, sufficiently complex Hamiltonians

equilibrate and thermalise to the microcanonical thermal prediction at their initial

energy. This interplay has been investigated in seminal experiments demonstrating

that integrability inhibits thermalisation [60], and that an integrability-breaking per-

turbation is enough to bring the system to thermal equilibrium [67]. The accepted

framework to interpret the process of thermalisation is known as eigenstate thermal-

isation hypothesis. Given the sensitivity of integrability to perturbations, the XXZ

model represents in this context a playground where to systematically investigate the

transition to thermalisation, and the effect on transport.

The presence of a magnetic impurity on a single spin site, in particular, has been

shown to break integrability in the XXZ model [264, 265], while, interestingly, leaving

the high-temperature transport regimes of the system unaltered [265]. Motivated by

the groundbreaking experimental results mentioned above, we aim to probe transport

in the single impurity model when initialised to the same spin helix states prepared in

the laboratory by Jepsen et al.. In particular, in contrast with the integrable case of

the experiment, the single impurity model is expected to thermalise at the energy of

the initial spin helix state, which can be controlled by the winding parameter. Thus,

we wonder if it is possible to exploit thermalisation to numerically extract equilib-

rium dynamical properties at precise energies, which can be selected by preparing the

appropriate spin helix state. Usually, this type of study requires large numerical re-

sources even for pure states, as in the DQT approach, since it is necessary to wait for

equilibration under unitary time-evolution. Here, we circumvent these difficulties via

kernel polynomial method (KPM), which allows to resolve in the frequency domain

physical quantities as correlation functions, from which the equilibrium transport ex-

ponents can be extracted in the limit of zero frequency.

We start in Sec. 6.1 with a theoretical overview on the eigenstate thermalisation

hypothesis, showing its most relevant predictions. We proceed discussing how the

mechanism has been numerically verified on the XXZ model subject to a single mag-
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netic impurity, and the known implications on spin transport. In Sec. 6.2, we describe

in more details the experiment of Jepsen et al., and their results, providing a stronger

motivation for our study. Finally, in Sec. 6.3 we investigate global spectral properties

of the single impurity XXZ model, and dynamical quantities relative to the spin helix

states. We compute all the relevant physical quantities using the KPM, introduced

in Sec. 2.3. We extract transport exponents from the correlation functions in the

microcanonical and diagonal statistical ensembles, and compare with those from the

single spin helix states. The preliminary results exposed in this chapter have not been

published yet, but will constitute the basis for an upcoming article.

6.1 Integrability breaking and thermalisation

The topic of how thermalisation could emerge in quantum systems evolving under

unitary dynamics has fascinated the statistical mechanics community for almost a

century, and still is an intense field of research [266]. The mechanism leading the

isolated system to an asymptotic state undistinguishable from a finite temperature

Gibbs ensemble by local or linear response measurements lacks a rigorous understand-

ing. Neverthless, there has been some progress. In particular, the most established

framework available is the eigenstate thermalisation hypothesis (ETH). ETH is a con-

jecture on the form of the matrix elements of an observable on the eigenbasis, which

would ensure expectation values and correlation functions to coincide with their ther-

mal finite-temperature counterparts. The idea dates back to Von Neumann, when,

reinterpreting quantum mechanically the main notions of statistical mechanics, he

also suggested to focus on physical observables, rather than wavefunctions or density

matrices [267]. A crucial study was published much later by Deutsch, inspired by

Berry [268] and based on random matrix theory, where he reveals a relation between

diagonal elements of matrix observables and microcanonical averages [269]. The cur-

rent formulation, however, was finalised by Srednicki [270].

Given the basis of eigenstates {|n⟩} of the Hamiltonian Ĥ, and the relative eigenvalues

{En}, the ETH can be formulated as an ansatz for the matrix elements of a local

observable Ô,

Onm = ⟨n|Ô|m⟩ = O(Ē)δnm + e−S(Ē)/2fO(Ē, ω)Rnm, (6.2)
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where Ē = (Em + En)/2, ω = Em − En, S(Ē) is the thermodynamic entropy of

the the system, and Rnm a complex or real random variable with zero mean and

unit variance, while O(Ē) and fO(Ē, ω) are two smooth functions. In particular,

since, by continuity, it will not vary over a small energy interval, O(Ē) is related

to the expectation value from the microcanonical ensemble taken at energy E = Ē.

The second term, due to the appearance of the entropy, is exponentially small with

system size, and connected to the dynamical properties of the observable, in particular,

correlation functions will depend on |fO(Ē, ω)|2. It is now generally expected that the

above ansatz will hold for all the observable for which statistical mechanics applies.

Systems that do not thermalise, instead, do not follow ETH. Integrable systems, for

example, which possess extensive sets of local conserved quantities, after equilibration

are described by a generalised Gibbs ensemble [271], thus retaining information about

the initial state. Analogously, systems that display many-body localisation (MBL)

escape thermalisation [64].

We consider an isolated system with N ≫ 1 degrees of freedom, whose Hamiltonian

is non-integrable and away from a MBL transition. There may be global symmetries,

however, their only effect is to reduce the Hilbert space into independent subsectors,

as discussed in Sec. 2.2.1, such that the following analysis can be carried out indepen-

dently for each of them. We initialise the system in an arbitrary state |ψ⟩ =∑k ck |k⟩,
which will unitarily time-evolve as

|ψ⟩ =
∑
k

cke
−iEkt/ℏ |k⟩ , (6.3)

where ck = ⟨k|ψ⟩. As discussed in Sec. 5.3 in Eqs. (5.9)–(5.11), given a local operator

Ô, the system equilibrates when its long-time averaged expectation value Ō on the

arbitrary initial state converges to a stable value, given by the expectation value on

the diagonal ensemble relative to |ψ⟩,

Ō =
∑
k

|ck|2Okk = Tr{ÔρDE} = ⟨Ô⟩DE , (6.4)

where we reiterate the expression for completeness,

ρ̂DE =
∑
k

|ck|2 |k⟩ ⟨k| =
∑
k

|⟨k|ψ⟩|2 |k⟩ ⟨k| . (6.5)
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As seen in Eq. (5.13), thermalisation implies, instead, that the asymptotic value can

be obtained from a statistical ensemble average,

Ō → Omc(E) = Tr
{
Ôρ̂mc

}
, (6.6)

with Omc(E) the expectation value of Ô in the microcanonical ensemble,

Omc(E) =
1

ρ(E)

D∑
k=1

δ(E − Ek)Okk =
1

ρ(E)

∑
k∗

Ok∗k∗ , (6.7)

where ρ(E) is the density of states, and the indices k∗ are such that the corresponding

eigenergies belong to a small energy window around E, Ek∗ ∈ [E − δEmc, E + δEmc].

The ensemble is characterised by the parameter E, but, equivalently, it can be asso-

ciated to a microcanonical temperature,

β(E) =
dSmc(E

′)

dE ′

∣∣∣∣
E′=E

, (6.8)

with Smc(E) = ln
[
ρ(E)dE

]
the microcanonical entropy given by Boltzmann’s rela-

tion, where ρ(E)dE corresponds to the number of microstates in the small energy

interval dE. Generic systems with short-range interactions satisfy ensemble equiva-

lence, thus other ensemble in statistical mechanics can be used to describe the thermal

expectation value, in particular the canonical state at inverse temperature β(E).

We verify now that Eq. (6.6) can be derived as a consequence of the ETH ansatz.

We invoke Eq. (6.2) in the expression for the asymptotic value Ō from Eq. (6.4), and

obtain

Ō =
∑
k

|ck|2
[
O(Ek) + e−S(En)/2fO(En, 0)Rnn

]
≃
∑
k

|ck|2O(Ek), (6.9)

where the second term is suppressed exponentially because of the factor e−S(Ē)/2. We

observe a dependence on the initial state through the probabilities |ck|2, nevertheless,
independently on the actual values of the coefficients ck, the ETH ansatz leads to

Ō ≃ Omc(⟨E⟩), (6.10)

as long as the |ck|2 are narrowly distributed around the average energy ⟨E⟩ = ⟨ψ|Ĥ|ψ⟩,
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and the energy fluctuations are sub-extensive with the N degrees of freedom of the

system,

δE =

√
⟨ψ|Ĥ2|ψ⟩ − (⟨ψ|Ĥ|ψ⟩)2

⟨E⟩ ∼ N,
δE2

⟨E⟩2
∼ 1

N
. (6.11)

This condition is generally satisfied in systems with short-range interactions. Since

O(E) is a smooth function of the energy, we can Taylor-expand the diagonal elements

of Ô around the mean energy of the initial state,

Okk ≃ O(Ek) ≃ O(⟨E⟩)+(Ek−⟨E⟩)∂O(Ek)
∂Ek

∣∣∣∣
⟨E⟩

+
1

2
(Ek−⟨E⟩)2∂

2O(Ek)

∂E2
k

∣∣∣∣
⟨E⟩
. (6.12)

When we insert the above expression in Eq. (6.9), we obtain

Ō ≃ O(⟨E⟩) + 1

2
δE2∂

2O(Ē)

∂Ē2

∣∣∣∣
⟨E⟩

≃ Omc(⟨E⟩) +
1

2

[
(δE)2 − (δEmc)

2
]∂2O(Ē)

∂Ē2

∣∣∣∣
⟨E⟩
, (6.13)

where δEmc are the sub-extensive energy fluctuations in the microcanonical ensemble,

due to the finite size of the system [65]. From this result, we observe that the ETH

ansatz guarantees thermalisation at the level of expectation values, meaning that the

long-time averaged expectation values will agree to the thermal ensemble prediction

at the energy set by the initial state up to sub-extensive corrections.

The ETH provides further predictions on the two-point correlation functions, and,

consequently, on the dynamical properties of the system at thermal equilibrium. We

consider, initially, the correlation function evaluated on the diagonal ensemble, which

encodes the properties of the system once reached equilibration, starting from the

arbitrary state |ψ⟩,

CDE(t, ψ) = ⟨Ô(t)Ô⟩DE − ⟨Ô(t)⟩DE ⟨Ô⟩DE . (6.14)
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When expanding on the eigenbasis, the expression reads,

CDE(t, ψ) =
∑
k,m

|ck|2e−it(Em−En)/ℏOkmOmk −
(∑

k

|ck|2Okk

)2

=
∑
k,m̸=k

|ck|2e−it(Em−En)/ℏ|Okm|2 +
∑
k

|ck|2(Okk)
2 −

(∑
k

|ck|2Okk

)2

,

=
∑
k

|ck|2Ck(t) + (δODE)
2, (6.15)

where in the second equality we separated the terms m = k from m ̸= k in the sum.

The first term contains, analogously to Ō, a weighted sum over the |ck|2, narrowly
distributed around the average energy ⟨E⟩, of a quantity parametrised by a single

eigenstate, Ck(t). The second constitutes the fluctuation of the operator in the diag-

onal ensemble, (δODE)
2, which can in general be shown to scale as the equilibrium

statistical fluctuations (δOmc)
2 [65]. We apply on the first term the off-diagonal ETH

ansatz from Eq. (6.2),

Ck(t) = ⟨k|Ô(t)Ô|k⟩ − ⟨k|Ô(t)|k⟩ ⟨k|Ô|k⟩ =
∑
m ̸=k

eit(Ek−Em)/ℏ|Okm|2

=
∑
m ̸=n

e−iωt/ℏe−S(Ek+ω/2)
∣∣fO(Ek + ω/2, ω)

∣∣2|Rkm|2, (6.16)

where we wrote ω = Em − Ek and Ē = (Ek + Em)/2 = Ek + ω/2. Since fO(Ē, ω)

is a continuous function, we can perform again a Taylor expansion around ⟨E⟩, and
finally obtain from the last line of Eq. (6.15),

CDE(t, ψ) ≃ Ck(t) +
∂2Ck(t)

∂E2
k

∣∣∣∣
⟨E⟩

(δE)2 + (δODE)
2, (6.17)

where the single eigenstate correlation function is evaluated at the eigenvalue com-

patible with the mean energy of the state |ψ⟩, Ek = ⟨E⟩. From the definition of

expectation values in the microcanonical ensemble given in Eq. (6.7), the correspond-

ing correlation function,

Cmc(t, E) = ⟨Ô(t)Ô⟩mc − ⟨Ô(t)⟩mc ⟨Ô⟩mc , (6.18)

can be written as [65],

Cmc(t, E) ≃ Ck(t) + (δOmc)
2, (6.19)
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where Ck(t) is evaluated at the eigenstate compatible with E = Ek. The ETH thus

implies that thermalisation occurs also at the level of correlation functions,

CDE(t, ψ) ≃ Cmc(t, ⟨E⟩), (6.20)

where ⟨E⟩ = ⟨ψ|Ĥ|ψ⟩, with fluctuations due to the finite system size. Effectively,

correlation functions thermalise to the prediction on a single eigenstate with corre-

sponding eigenenergy Ek = ⟨E⟩.

We conclude the analysis of thermalisation according to the ETH by considering the

fact that it is also possible to define a correlation function over a single generic state,

Cψ(t) = ⟨ψ|Ô(t)Ô|ψ⟩ − ⟨ψ|Ô(t)|ψ⟩ ⟨ψ|Ô|ψ⟩ . (6.21)

We observe, however, that this expression does not recover CDE(t, ψ) when infinite-

time averaged. The diagonal ensemble can be reconstructed, instead, from the follow-

ing [272],

⟨Ô(t+ τ/2)Ô(t− τ/2)⟩ = lim
t→∞

1

t

∫ t

0

⟨ψ|Ô(t′ + τ/2)Ô(t′ − τ/2)|ψ⟩

=
∑
km

|ck|2eiτ(Ek−Em)/ℏ|Okm|2 = ⟨Ô(τ)Ô⟩DE , (6.22)

which, differently from computing CDE(τ, ψ) as in Eq. (6.14), requires a long-time

average for every value of τ .

The occurrence of the eigenstate thermalisation has been verified by a large body of

numerical investigations on strongly correlated systems in the non-integrable regime,

ranging from interacting spin chains [273, 274], to two dimensional Ising model in

trasversed fields [275, 276] and lattice of interacting hard-core bosons [277, 278].

The studies usually involve evaluation via ED of the diagonal [279, 278], and off-

diagonal [276, 280] matrix elements of local operators in the energy eigenbasis. In

particular, from a delicate binning procedure [272, 276], one can extract the smooth

function fO(E,ω), which dictates the dynamics of the correlation functions, and car-

ries information on fluctuation-dissipation relations [65], and the multipartite entan-

glement structure of the energy eigenstates [272].
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6.1.1 ETH in the single impurity model

Notably, thermalisation as prescribed by the ETH has also been demonstrated to occur

in originally integrable systems when subject to local perturbations, in particular,

in the XXZ model with a single magnetic defect [66]. It was already known from

statistical spectral analysis that the presence of a single magnetic impurity away from

the margins of the chain would induce integrability-breaking [264, 281, 282]. The

authors of Ref. [66] have performed a step further and verified ETH on the single-

impurity Hamiltonian,

ĤSI = ĤXXZ + wŝzN/2, (6.23)

featuring a magnetic defect at the center of the chain with field strength w. Specifi-

cally, the diagonal matrix elements of global or locally constraint (with support away

from the impurity) observables in the perturbed eigenstates have been shown to follow

a smooth function of the energy, which corresponds to the microcanonical prediction

for the integrable model [66]. The off-diagonal elements were also found compliant to

the ETH [66], and, more interestingly, characterised in the case of the spin-current op-

erator by a system size-independent |fJN (Ē, ωN)|2/N at Ē ∼ 0 [283]. This behaviour

has been interpreted as a manifestation of previous observation in the single-impurity

model of ballistic infinite-temperature spin transport in linear response regime [265].

Indeed, the emergence of ballistic behaviour in a system fulfilling ETH has gener-

ated some puzzlement, since the expectation on physical grounds is that incoherent

effects and complexity will lead to diffusive incoherent transport. The results have

been reconciled in a picture where the perturbed model inherits statistical mechanics

and transport properties of the integrable model as a consequence of an anomalous

thermalisation [283, 284]. We will not add further details to this concept, since for

our studies we limit to exploit the crucial fact that local observables and dynamical

correlations away from the impurity will thermalise to the statistical predictions of

the unperturbed XXZ model.

6.2 XXZ model on ultracold atoms

Ultracold atoms trapped in optical lattices represent the most promising platform

where to realise spin chain Hamiltonians, and investigate fundamental questions on
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Figure 6.1: Schematic representation of the magnetisation profile of the spin-helix states
realised in the experiment of Ref. [75]. The spin vector winds in the sx − sz plane as a
function of the position along the chain of atoms. In the following, we denote the period of
the winding, or helicity parameter, by λ.

isolated quantum dynamics, many-body localisation, and thermalisation [285]. A

remarkable example is the versatile analogue quantum simulator realised by Jepsen

et al. [75, 286, 287]. The dynamics of the XXZ model Hamiltonian is reproduced on

one-dimensional arrays of ultracold 7Li atoms trapped by optical lattices. The depth

of a lattice controls the rate of spin-exchange, the first term in Eq. (6.1), while the

applied magnetic field in a given direction adjusts the anisotropy parameter ∆. The

details of the set-up allow for a unprecedented degree of tunability, and to explore for

the first time the system over a wide range of parameter values.

In the beautiful experiment described in Ref. [75], the transport properties of the

system are probed by preparing highly non-equilibrium spin-helix states at t = 0,

and letting them evolve according to the intrinsic unitary dynamics, described by

exp (−itĤXXZ/ℏ). A winding magnetisation in the sx − sz plane is thus initially im-

printed along the chain with wavelength λ, henceforth indicated as helicity parameter.

A schematic representation of the resulting magnetic profile is depicted in Fig. 6.1.

Frozen snapshots in time of the expectation values of the local magnetisation along

the chain ⟨ŝzl ⟩ are reconstructed via spin-imaging measures. The characteristic decay

timescale τ of the profile is evaluated as a function of the helicity. The exponent in the

dispersion relation τ ∼ λα yields an indication of the nature of transport, with α = 1

pointing to ballistic transport, α = 2 to a diffusive process, while the in-between val-

ues to anomalous diffusion, respectively superdiffusion (1 < α < 2) and subdiffusion

(α > 2).
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Some of the findings from the experiment are in contrast with the theoretical predic-

tions for the XXZ model. In particular, a smooth increase in α from 1 (ballistic) to

2 (diffusive) occurs for positive anisotropies 0.55 < ∆ < 1, and continues with α > 2

for ∆ > 1, signalling subdiffusion. The studies for long-time linear-response transport

at high temperatures mentioned at the beginning of the chapter indicate, instead,

a sharp transition from ballistic to diffusion at ∆ = 1 [254, 257], where the KPZ

hydrodynamic exponent is expected [258]. The authors argue that the two classes of

results are fundamentally different, since the initial state in the experiment is a pure

state far from equilibrium, and not a highly mixed states. Indeed, these impressive

results give rise to new questions on the far-from-equilibrium dynamical regime, and

the effect of finite temperature.

This experiment can be considered analogous to the numerical simulation performed

in Sec. 5.1 to investigate the survival of anomalous transport in the interacting Fi-

bonacci model, after a quench represented by a peaked density profile over a uniform

background. In that case, however, the nature of the initial pure state, a projected

typical state, allowed us to map the decay of the density perturbation directly to the

correlations evaluated in the thermal ensemble at infinite temperature.

6.3 Results in presence of single impurity

The set-up of the experiment described in the previous section will be now recon-

structed in our framework, adopting the single-impurity Hamiltonian in Eq. (6.23)

rather than the clean XXZ model of Eq. (6.1). As discussed in Sec. 6.1.1, the single

magnetic impurity at the centre of the chain breaks integrability, and ETH is fulfilled.

Global observables and observables away from the impurity thermalise to the predic-

tions of the microcanonical ensemble of the unperturbed clean system, thus yielding

the same dynamical behaviour. In this preliminary study, we focus on the parame-

ter region where the clean model displays diffusive spin transport, fixing ∆ = 1.3 in

Eq. (6.23). Moreover, ideally following the experiment, we will perform our simula-

tions in the full Hilbert space.

The spin helix state in the full Hilbert space can be written as a product state on the
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computational basis,

|ψλ⟩ =
N⊗
l=1

[
cos (πl/λ) |↓l ⟩ − sin (πl/λ) |↑l ⟩

]
, (6.24)

with l is the position index along the chain. The expectation value of the local spin

at site l at time t = 0 is thus,

⟨ψλ|⃗̂sl|ψλ⟩ = − (sin (2πl/λ), 0, cos (2πl/λ)) , (6.25)

where we notice that for λ = 2 the Néel state appears, |ψ2⟩ = |↑1 ↓2 ↑3 ↓4 . . .⟩. Re-

markably, the spin-helix states exhibit a dependence of their mean energy on the

helicity parameter, which effectively allows in numerical and physical experiments to

tune the initial energy of the system. We show it here in Fig. 6.2a for the single

impurity model, Eλ = ⟨ψλ|ĤSI |ψλ⟩, considering N = 24 spins and an impurity field

strength w = 1.58. For the impurity strength w, we follow Ref. [265], where parame-

ters in this range have been shown not to alter the transport regime of the model. The

local density of states (lDOS) ρψλ
=
∑

k|cλk |2δ(E − Ek) also varies with λ, displaying

in Fig. 6.2b a broader gaussian form at lower λ, which progressively shrinks into more

irregular peaks at higher λ. However, since ETH is verified [66, 283], we expect the

the distribution of all the sets {|cλk |2}k to be narrowly distributed around Eλ in the

limit of large system size, and the conditions in Eq. (6.11) fulfilled. The lDOS has

been computed with the KPM, as exposed in detail in Sec. 2.3.1, where we provide a

recipe to compute the moments of its Chebyshev expansion.

As explained in Sec. 6.1, it is possible to assign to each energy E a microcanonical

inverse temperature β(E) = 1/kBT (E), the characteristic parameter of the statistical

ensemble towards which the system will thermalise, with E the energy of the initial

state. The relation is defined through the density of states (DOS) and the micro-

canonical entropy, as indicated in Eq. (6.8). The DOS of the single impurity model,

computed via KPM, is displayed in Fig. 6.3a. The method allows to obtain the result

without any binning procedure, directly as a smooth function on an arbitrarily set

of points, including the Eλ shown earlier in Fig. 6.2a. Therefore, we can derive the

microcanonical temperature T (λ) = T (Eλ) as a function of the helicity. Within ETH,

we can probe microcanonical expectation values, or, equivalently, canonical expecta-
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Figure 6.2: (a) Mean energy of the spin helix state, Eλ = ⟨ψλ|ĤSI |ψλ⟩, as a function of
the helicity. A clear dependence is shown, that, in the context of ETH, allows to tune the
microcanonical predictions at which the observables will thermalise, once the system has
been initialised with |ψλ⟩. (b) Local densities of states for three different spin helix states.
These quantities have been obtained directly as smooth functions of the energy from the
KPM, using NC = 280 moments. In both figures, N = 24, ∆ = 1.3, w = 1.58.

tion values, given the equivalence of the ensembles, at respectively arbitrary energy

or arbitrary temperature, by choosing the helicity of the initial state. We observe in

Fig. 6.3b that the divergence in temperature occurs approximately at λ ∼ 3.94, which

corresponds to the energy where we have the largest availability of states, or, in other

words, where the DOS and the microcanonical entropy reach their maximum.

We verify now explicitly the occurrence of thermalisation at the level of the observable

expectation values, according to ETH. We imagine to initialise the system with |ψλ⟩,
and let it evolve. We imagine also to follow the evolution with time of the expectation

value of the local observable Ô. After a certain amount of time has passed, Ô has

reached the equilibrium value, given by its expectation value in the diagonal ensemble

of the initial state,

ODE(ψλ) =
∑
k

|cλk |2|Okk|2. (6.26)

Since ETH is fulfilled, ODE(ψλ) will correspond to the value of the smooth function

Omc(E), yielding the microcanonical expectation value, evaluated at energy E = Eλ.

In our framework, we do not need to wait for long times, since the KPM evaluates

directly expectation values as functions in the energy domain, as exposed in detail in

Sec. 2.3.2. Therefore, we can directly probe the microcanonical expectation values at

different energies by tuning the helicity. Indeed, we observe in Fig. 6.4a that for a local

observable away from the impurity, Ô = ŝzN/4, the ODE(ψλ) computed at different
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Figure 6.3: (a) DOS for the single-impurity model with ∆ = 1.3, w = 1.58, obtained
via KPM using NC = 80 moments, and R = 1 random state to perform the stochastic
evaluation of trace. (b) Microcanonical temperature obtained from the DOS through the
relation in Eq. (6.8), evaluated over the set of spin helix state mean energies. This determines
T (λ) = T (Eλ) as a function of the helicity.

helicities (violet dots) lie on the continuous microcanonical prediction (green solid

line). Moreover, in this case the microcanonical prediction for the single impurity

model agrees with that for the clean unperturbed model at the same parameters

∆ = 1.3, N = 24, but w = 0 (dashed black line). If we consider the local magnetisation

at the site where we placed the defect, Ô = ŝzN/2, we still verify thermalisation to

Omc(Eλ), however, this does not correspond anymore to the same microcanonical

expectation values of the unperturbed XXZ model. Finally, we mention that, since in

the context of ETH Omc(E) is a continuous function, we can obtain the expectation

value of the diagonal ensemble of Fig. 6.4 from

ODE(ψλ) =

∫
dEρψλ

(E)Omc(E), (6.27)

which yields the same result of Eq. (6.26) [193].

We finally focus on the correlation functions, in order to extract indications on the

dynamics of the system, as performed in Jepsen et al. experiment. In this calculation,

the KPM demonstrates its full capability. Instead of evaluating a correlation function

C(t) in time for long times, we study its Fourier transform in the frequency domain,

C(ω) =

∫
dteiωtC(t). (6.28)

The KPM returns directly the function at all frequencies, and the limit on the time
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(a) (b)

Figure 6.4: Thermalisation at the level of the observables implies that the expectation value
in the diagonal ensemble associated to the initial state ODE(ψλ) (violet dots) corresponds
to the microcanonical prediction at the initial energy Omc(Eλ) (continuous green line). We
show this correspondence on a series of different helicities for ∆ = 1.3, w = 1.58. (a)
The local observable is away from the impurity Ô = ŝzN/4, in this case the microcanonical

prediction is the same as in the clean model (dashed black line). (b) Observable on the
impurity site, Ô = ŝzN/2. All the quantities are evaluated via KPM, with NC = 300 for

ODE(ψλ), and NC = 100 for Omc(Eλ) (R = 50 in (a), while in (b) R = 1). Calculations are
performed in the full Hilbert space at N = 24 spins.

scale translates into a problem of resolution of the Chebyshev expansion, which is

related to the number of moments used. As discussed in Sec. 2.3, features at energy

scales smaller than ∼ 1/NC will not appear in the KPM approximation. The advan-

tage is that a single calculation gives the possibility of extracting transport exponents

in ω. Via Fourier tranform, a power law scaling for long times translates into a power

law scaling at small frequencies. In particular, the exponent ν ′ in the correlation decay

described in Eq. (2.150), and used in Fig. 5.2 to distinguish the transport regimes of

the interacting Fibonacci model in the previous chapter, becomes ν ′ω = 1− ν ′ in the

scaling for small ω [175]. Therefore, we classify the transport regime of the process

according to the scaling exponent of the correlation for ω → 0, following [288, 289],

C(ω) ∼ ω−ν′ω


0 < ν ′ω < 1/2 superdiffusion

ν ′ω = 1/2 diffusion

1/2 < ν ′ω subdiffusion.

(6.29)

We study three different correlation functions for local observables, all encountered

in the discussion on ETH of Sec. 6.1. The Fourier transform of the correlation in

the microcanonical ensemble Cmc(ω,E) depends also on the mean energy parameter,
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while the one from the diagonal ensemble CDE(ω, ψ) depends on the initial state. In

addition, we consider the Fourier transform of the correlation function evaluated on

a single state as in Eq. (6.21), Cψλ
(ω). In Sec. 2.3.3, we have provided extensive

details on the procedure to compute these quantities, while here we limit to comment

the results. We focus on a local observable away from the impurity, in order to probe

equilibrium dynamical predictions equivalent to those of the unperturbed XXZ model.

We assume in the following Ô = ŝzN/4.

In order to corroborate the above discussion, we show in Fig. 6.5 the correlation

function in the microcanonical ensemble as a function of ω, for a fixed energy Ēλ = 1.8,

at different numbers of Chebyshev moments. We notice that, increasing NC , we

reach perfect overlap between the different orders of the KPM approximation at the

extremes of the frequency axis, while we cannot capture the central peak. From the

scaling in Eq. (6.29), it is in fact evident the presence of a divergence at ω = 0. The

KPM approximations model this divergence with a narrower and narrower Gaussian

as NC increases, never reaching convergence. We observe from the log-log scale of

Fig. 6.5b that it is possible to individuate a range of small frequencies where the

curve converges, and that can be in principle fitted by a power law. However, we

detect the curve becoming less and less regular, with increasing oscillations as we

add more moments. This is a finite-size effect: the KPM approximation has hit a

number of moments NC where it is able to resolve the discreteness of the energy levels

in the spectrum, which appear continuous at all scales only in the thermodynamic

limit. In the following, we perform the power law scaling by compromising between

the extension of the frequency window where we have convergence, and the quality

of the curve. In general, this has lead us to use the data from the approximation for

NC = 400 Chebyshev moments on the frequency range where it shows convergence

with the NC = 800 approximation, for example ω ∼ 0.25− 1 in Fig. 6.5.

Within ETH, we can extract equilibrium dynamical predictions in an energy resolved

way, using the diagonal ensemble of the spin helix state with appropriate helicity. In

this preliminary phase of the study, we start by investigating the transport properties

at infinite-temperature. Therefore, we select from Fig. 6.4 a spin helix state whose λ

corresponds to the divergence in temperature, in particular, λ1 = 3.94, and compute

the correlation function in the diagonal ensemble. Analogously to the case of the
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Figure 6.5: Example correlation function for ŝzN/4 in the microcanonical ensemble as a

function of ω, and fixed energy Ēλ = 1.8, for ∆ = 1.3 and w = 1.58. The number of
moments used in the KPM is shown in the color legend. We observe in (a) in linear, and
(b) log-log scale, that the divergence at ω = 0 cannot be captured. As evident in (b), it
exists a window of small frequencies where the approximation has reached convergence, but
it is subject to more oscillations for increasing number of Chebyshev moments NC , due to
finite-size effects. In order to perform a power law fitting, we need to compromise between
extension of the convergence window and quality of the curve. We have used a single random
state in the stochastic evaluation of trace R = 1.

expectation value in Eq. (6.27), we can verify the equivalence

CDE(ω, ψλ) =

∫
dEρψλ

(E)Cmc(ω,E). (6.30)

As expected, we see it overlap in Fig. 6.6a with the microcanonical correlation at

the corresponding energy Eλ1 = −0.38, with fluctuations due to the finite size. In

Fig. 6.6b, we derive from a power law fitting transport exponent ν ′ω in agreement

with previous theoretical studies indicating diffusion at ∆ > 1 [167, 184, 253]. We

also observe a good agreement between the exponents extracted in the two different

ensembles, ν ′ω = 0.50 for the diagonal, and ν ′ω = 0.52 for the microcanonical, which

manifests ETH directly in the dynamical properties of the system.

We conclude our exploratory study with a calculation of the correlation function on

the single helix state, which yields information on the far-from-equilibrium dynam-

ics. We choose, in particular, the same λ1 corresponding to infinite microcanonical

temperature. Since the limited amount of moments available up to now does not

allow to properly verify convergence, we are not able to draw definitive conclusions

yet. However, we observe in Fig. 6.7 indication of a transport exponent indicating,

rather than diffusion, subdiffusion. We have obtained ν ′ω = −1.22 fitting the KPM
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Figure 6.6: (a) Overlap between the correlation function in the diagonal ensemble
CDE(ω, ψλ1), and in the microcanonical ensemble at fixed energy, Cmc(ω,Eλ1), for the
system at ∆ = 1.3 and w = 1.58. The helicity λ1 = 3.94 corresponds in Fig. 6.2a to
Eλ1 = −0.38, and in Fig. 6.3b to infinite temperature. (b) In log-log scale, we fit the func-
tions from KPM (indicated by markers) with power laws C(ω) ∼ ω−ν′ω , represented by the
solid lines. We have used R = 1, NC = 400.

approximation with NC = 200 moments, and ν ′ω = −1.24 with NC = 300. This re-

sult, despite non-conclusive, seems in striking contrast with the infinite-temperature

equilibrium predictions, and leaves open the question of spin dynamics in regimes

far-from-equilibrium.

However, we have showed that our methodology, exploiting ETH and spin helix states,

allows for the extraction of transport exponents in an energy resolved way. Further-

more, we have established the KPM as a powerful method to investigate far-from-

equilibrium dynamics. In the future, we will continue developing these results by

investigating other regions of the parameter space, with ∆ < 1 and ∆ = 1, and by

systematically exploring the dependence of the transport exponents on the helicities.

Moreover, we would like to perform a scaling analysis with system-size, to analyse the

effect of the fluctuations in the results, included in the ETH formulations.
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Figure 6.7: Correlation function evaluated on the single spin helix state at λ = 3.94 for
a XXZ spin chain at ∆ = 1.3 and w = 1.58. The KPM approximations obtained with
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The solid lines represent the power law fits Cψλ1

(ω) ∼ ω−ν′ω respectively for NC = 200
(yellow line), and NC = 300 (black line). The exponents suggest subdiffusive behaviour.



Conclusions

We have dedicated most of the thesis to the study of non-equilibrium particle and heat

transient and steady-state transport properties of Hamiltonians subject to quasiperi-

odic potentials.

It has been known for long time that such models display uncommon properties as

multifractal spectrum and critical eigenstates, which can lead to a localisation tran-

sition in one-dimension, mobility edge, or anomalous diffusion. However, they have

gathered increasing attention only in recent years, because of the experimental reali-

sation on ultracold atoms trapped in optical lattices, and their relevance in modelling

synthetic DNA sequences, which are candidates for the assemblance of molecular elec-

tronic junctions.

Quasiperiodic models are now established as primary examples to explore the regime

of anomalous transport and its consequences [32, 176, 231, 290]. In particular, it has

been shown that multifractality, present also at the critical point of Anderson transi-

tion [291], prevents in these systems the agreement between the two standard ways of

classifying transport behaviour, via time scaling of the spread of correlation in the the

isolated system at thermodynamic limit, and via system size scaling of conductance

in the steady-state of the open system [176]. However, previous studies in literature

were essentially limited to particle or spin current, with little investigation on the

heat or energy transport, and the implications of quasiperiodicity for thermoelectric

effects.

Therefore, we have analysed coupled heat and electric currents in the tight-binding

limit of quasiperiodic models in a two-terminal configuration, standard in mesoscopic

physics. We have worked in Landauer-Büttiker framework with NEGF, which ap-

pears to represent the most effective formalism, given the simple structure of the

147
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Hamiltonian matrices, the finite-temperature character of the phenomenon, and the

possibility to incorporate dephasing from incoherent scattering. We have fully char-

acterised thermoelectric effects in linear response regime, and demonstrated the large

capability of these systems as working medium in quantum thermal machines, due,

essentially, to the asymmetries in the transmission function. The asymmetry can also

be drastic in case of a mobility edge, as in the GAAH model, where it acts as energy

filter on a wide range of values for the thermodynamic variables. The discontinuities

in the transmission function provoke large deviations from the Wiedemann-Franz law,

which usually constraints to small values the figure of merit quantifying the efficiency

of the heat-to-work-conversion. We intuitively map the fragmented structure of the

transmission function to the fractality of the spectrum, that seems to have an impact

even when these features are effectively broadened in presence of incoherent scattering

from Büttiker probes. Despite the suppression of the anomalous transport in favour of

standard diffusion, we have found in the Fibonacci chain a non-trivial dependence of

the thermal and electric conductivities on the strength of the dephasing from these in-

coherent scattering events, different from clean or disordered models [50]. Non-trivial

results have also been found in a subsequent study similar to ours on the AAH and

GAAH models [292]. There is, however, a lack of complete quantitative understanding

of this picture. Earlier studies have shown an analytical relation between multifractal

indexes and dynamical properties in the quasiperiodic models, in particular, with the

diffusion exponents of an initially localised wavepacket in the isolated system [207].

Future studies could be dedicated towards establishing a similar more fundamental

link between the structure of the transmission function and quasiperiodicity. The po-

sition of the singularities appearing in the transmission, in fact, are directly connected

to the divergences in the figure of merit through the Wiedemann-Franz law. Further-

more, even in presence of ballistic states, we have obtained a low power output, due to

the structure of the transmission. The analysis of the thermal machine performance

could be then extended to far-from-equilibrium scenarios in order to assess the full

non-linear response of the system in presence of large bias, which would considerably

enhance the power. Outside of linear response regime, the ability to tune the trans-

mission profile of quasiperiodic systems by changing their Hamiltonian parameters

could prove crucial in obtaining high efficiency at finite power output [39].

The realisation of quasiperiodic potentials on ultracold atoms trapped in optical lat-
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tices, whose relative depths can tune the strength of interactions, has naturally offered

a versatile testbed where to investigate the interplay between many-body effects and

quasidisorder, in particular the possible emergence of a many-body localisation (MBL)

phase, and how it would be fundamentally different from the same phenomenon in-

duced by random disorder [239]. In particular, indications of a MBL transition have

been experimentally observed in the interacting AAH model [53–56], which would

belong to a new type of universality class [70]. The Fibonacci model is more difficult

to realise on the same platform, although a theoretical proposal was recently sug-

gested [293]. Therefore, there have not been opportunities to experimentally probe

the dynamics in the interacting version of the model, and verify how many-body in-

teraction terms affect the anomalous diffusion. On the numerical and theoretical side,

there have been only few works exploring the problem, whose findings do not reconcile

in a unified picture. A MBL transition was predicted at increasing values of the po-

tential and fixed interaction strength [294], while at small interactions strong evidence

were found of transport becoming diffusive [208]. Both results are not intuitive, since

in absence of interactions the model exhibits no localisation and a smooth crossover

from ballistic to subdiffusive. Indeed, a slow subdiffusive dynamics was observed in

the Fermi-Hubbard realisation of the model, induced by the multifractality of the

spectrum [73].

The question, then, is whether transport can become anomalous again at intermediate

interaction strengths. We have contributed towards filling the gap by investigating

in this regime density-density correlations at infinite temperature using the dynami-

cal quantum typicality approach. Our findings provided strong evidence of a possible

crossover to MBL with increasing Fibonacci potential, preceded by a regime of anoma-

lous subdiffusive transport. However, more definitive results on the occurence of MBL

would require the study of larger systems up to longer times, which is beyond cur-

rent state-of-the-art numerical techniques. Given the peculiar spectral properties of

this class of models, a study of the energy dependence of the transport properties

is a very promising direction for a subsequent investigation, for example using open

system techniques [295, 296]. Moreover, all present studies of transport properties

are limited to infinite or zero temperature [72, 208, 297], while the finite temperature

transport properties are other interesting but challenging directions for future work.

This study has inevitably lead our interests closer to the physics of many-body systems
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beyond the specific case of quasiperiodic potentials. Driven by the technical advances,

there has been a renovated combined theoretical and experimental strive towards

the fundamental topics of thermalisation, and non-equilibrium phenomena [64]. In

particular, we were inspired by the experiment conducted by Jepsen et al. on their

analogue simulator of quantum Hamiltonians based on ultracold atoms [75]. Here,

dynamical aspect of the XXZ model were probed by preparing initial spin helix states,

exhibiting a winding magnetisation pattern with adjustable wavelength or helicity.

Their exciting results, in contrast with the predictions of linear response regime,

inspired us to build a numerical experiment which employs the same type of spin helix

states. We focus, however, on the XXZ model with a local magnetic impurity, which is

known to break integrability, thus fulfilling the eigenstate thermalisation hypothesis

(ETH) while preserving the infinite-temperature transport properties of the clean

model [66, 265]. Within ETH, the mean energy of the initial state, here controlled by

the helicity, sets the energy or microcanonical temperature of the statistical ensemble

the system will thermalise to. We expose in the thesis our first results, showing

that it is possible to extract the infinite temperature exponent from the equilibrium

dynamical properties of the spin helix states, by tuning the appropriate helicity. We

use the kernel polynomial method (KPM), a powerful technique we have been recently

gotten acquainted with, that allows to investigate the dynamical quantities in the

frequency rather than time domain. In the same framework, we are also able to

examine the far-from-equilibrium dynamics, evaluating the correlation functions on

the single spin helix states. All of these considerations are part of a preliminary study,

that we are currently corroborating with more systematic calculations, and extending

to test the properties of the system at finite microcanonical temperatures.

In conclusions, we have demonstrated that, despite living in one-dimension, quasiperi-

odic models display an extremely rich transport behaviour, which offers possibilities

for practical applications in quantum thermal machines, and also a testbed where

to explore fundamental questions on how localisation transitions arise in presence of

many-body interactions. Their full potential for quantum thermodynamics remains to

be uncovered. On the other hand, we have studied thermalisation on the XXZ model

in presence of an integrability-breaking term, when probed by spin helix states, and

exploited this mechanism to propose a scheme to extract its transport properties. In

doing so, we have proved the KPM to be a promising technique to investigate different
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dynamical regimes in quantum many-body systems.
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M. Aidelsburger, Phys. Rev. Lett. 122, 170403 (2019).

[54] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen, M. H. Fischer, R. Vosk,
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[56] H. P. Lüschen, P. Bordia, S. Scherg, F. Alet, E. Altman, U. Schneider, and
I. Bloch, Phys. Rev. Lett. 119, 260401 (2017).

[57] S. Hild, T. Fukuhara, P. Schauß, J. Zeiher, M. Knap, E. Demler, I. Bloch, and
C. Gross, Physical Review Letters 113, 147205 (2014).

[58] T. Fukuhara, A. Kantian, M. Endres, M. Cheneau, P. Schauß, S. Hild,
D. Bellem, U. Schollwø”ck, T. Giamarchi, C. Gross, I. Bloch, and S. Kuhr,
Nature Physics 9, 235 (2013).

http://dx.doi.org/10.1103/PhysRevLett.112.130601
http://dx.doi.org/10.1039/c1ee02497c
http://dx.doi.org/10.1039/c1ee02497c
http://dx.doi.org/10.1039/C3CS35444J
http://dx.doi.org/10.1063/1.4869329
http://dx.doi.org/10.1063/1.4869329
http://dx.doi.org/10.1103/physrevb.85.155327
http://dx.doi.org/10.1103/physrevb.85.155327
http://dx.doi.org/10.1039/C7CP06237K
http://dx.doi.org/10.1039/C7CP06237K
http://dx.doi.org/10.1063/1.4926395
http://dx.doi.org/10.1038/ncomms11282
http://dx.doi.org/10.1038/ncomms11282
http://dx.doi.org/ 10.1038/srep37791
http://dx.doi.org/ 10.1038/srep37791
http://dx.doi.org/10.1103/PhysRevA.97.023606
http://dx.doi.org/10.1140/epjb/e2012-30730-9
http://dx.doi.org/https://doi.org/10.1002/andp.201600298
http://dx.doi.org/https://doi.org/10.1002/andp.201600298
http://dx.doi.org/10.1103/PhysRevB.104.174203
http://dx.doi.org/10.1103/PhysRevLett.120.160404
http://dx.doi.org/ 10.1103/PhysRevLett.122.170403
http://dx.doi.org/10.1126/science.aaa7432
http://dx.doi.org/10.1103/PhysRevX.7.011034
http://dx.doi.org/10.1103/PhysRevX.7.011034
http://dx.doi.org/10.1103/PhysRevLett.119.260401
http://dx.doi.org/10.1103/physrevlett.113.147205
http://dx.doi.org/10.1038/nphys2561


BIBLIOGRAPHY 158

[59] U. Schneider, L. Hackerm’̆’ller, J. P. Ronzheimer, S. Will, S. Braun, T. Best,
I. Bloch, E. Demler, S. Mandt, D. Rasch, and A. Rosch, Nature Physics 8, 213
(2012).

[60] T. Kinoshita, T. Wenger, and D. S. Weiss, Nature 440, 900 (2006).

[61] S. Trotzky, Y.-A. Chen, A. Flesch, I. P. McCulloch, U. Schollwöck, J. Eisert,
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124, 100602 (2020).

http://dx.doi.org/10.1119/1.3671068
http://dx.doi.org/10.1017/cbo9780511619915
http://dx.doi.org/10.1103/revmodphys.93.025003
http://dx.doi.org/10.1088/1742-5468/ab02f4
http://dx.doi.org/10.1016/0031-8914(69)90185-2
http://dx.doi.org/10.1016/0031-8914(71)90226-6
http://dx.doi.org/10.1103/physrevb.73.085117
http://dx.doi.org/10.1103/physrevlett.117.040601
http://dx.doi.org/10.1103/physrevlett.117.040601
http://dx.doi.org/ https://doi.org/10.1016/j.aop.2019.167998
http://dx.doi.org/10.1103/PhysRevLett.102.110403
http://dx.doi.org/10.1103/PhysRevE.97.062129
http://dx.doi.org/10.1209/0295-5075/88/10004
http://dx.doi.org/10.1209/0295-5075/88/10004
http://dx.doi.org/10.1103/physrevlett.99.160404
http://dx.doi.org/10.1103/physrevlett.111.010401
http://dx.doi.org/10.1103/physrevb.57.8340
http://dx.doi.org/10.1103/physrevb.59.2284
http://dx.doi.org/10.1103/physrevb.83.165402
http://dx.doi.org/10.1103/physrevlett.114.116602
http://dx.doi.org/10.1103/physrevlett.114.116602
http://dx.doi.org/ 10.1103/physrevb.98.075127
http://dx.doi.org/ 10.1103/physrevb.98.075127
http://dx.doi.org/10.1103/physreve.105.055310
http://dx.doi.org/10.1103/physrevlett.124.100602
http://dx.doi.org/10.1103/physrevlett.124.100602


BIBLIOGRAPHY 164

[194] I. Papaefstathiou, D. Robaina, J. I. Cirac, and M. C. Bañuls, Physical Review
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Appendices

A Spread of wavepacket in the noninteracting sys-

tem

In this appendix, we show how the spread of correlation defined in Eq. (2.120) reduces

to the mean square displacement of a initially localised wavepacket from Eq. (2.126) for

one-dimensional non-interacting systems. We consider then a non-interacting tight-

binding Hamiltonian ĤS as in Eq. (2.12), which can be written in matrix form HS on

the lattice basis as done in Eq. (2.13). We diagonalise the Hamiltonian,

ΦTHSΦ =D, D = diag{Eℓ}Nℓ=1, (A.1)

where the single-particle eigenvectors are found from the columns of the matrix Φ,

and the eigenvalues from {Eℓ}ℓ. In the new basis, the Hamiltonian reads,

ĤS =
N∑
ℓ=1

EℓÂ
†
ℓÂℓ, (A.2)

where Âℓ =
∑N

p=1Φpℓâp are the fermionic annihilation operators in the eigenbasis.

The two time density correlation at finite temperature β and chemical potential µ

can be simplified as follows

Cpq(t) = ⟨n̂p(t)n̂q⟩eq − ⟨n̂p⟩eq ⟨n̂q⟩eq

=
N∑

ℓ,ℓ′=1

ΦℓpΦℓqΦℓ′pΦℓ′qe
it(Eℓ−Eℓ′ )/ℏ[1− f(Eℓ′)]f(Eℓ), (A.3)
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after applying the Wick’s theorem,

⟨â†p(tp)âq(tq)â†m(tm)ân(tn)⟩ = ⟨â†p(tp)âq(tq)⟩ ⟨â†m(tm)ân(tn)⟩

+ ⟨â†p(tp)ân(tn)⟩ ⟨âq(tq)â†m(tm)⟩ , (A.4)

and the following relations

⟨â†p(tp)âq(tq)⟩ =
N∑
ℓ=1

ΦℓpΦℓqe
iEℓ(tp−tq)/ℏf(Eℓ)

⟨âp(tp)â†q(tq)⟩ =
N∑
ν=1

ΦνpΦνqe
iEℓ(tp−tq)/ℏ(1− f(Eℓ)) (A.5)

with f(E) = {1 + exp[β(E − µ)]}−1 the Fermi-Dirac distribution. Now, we take the

infinite temperature limit β → 0 of Eq. (A.3), and shift the labels to consider the

correlation between the middle of the chain q = N/2 and the p = l + N/2 as in

Eq. (2.121),

Cl(t) =
1

4

N∑
ℓ,ℓ′=1

ΦℓlΦℓN/2Φℓ′lΦℓ′N/2e
it(Eℓ−Eℓ′ )/ℏ

=
1

4

( N∑
ℓ′=1

Φℓ′lΦℓ′N/2e
−itEℓ′/ℏ

)( N∑
ℓ=1

ΦℓlΦνN/2e
itEℓ/ℏ

)
=

1

4
|Ψl(t)|2, (A.6)

where

Ψl(t) =
N∑
ℓ=1

ΦℓlΦℓN/2e
−itEℓ/ℏ. (A.7)

The dynamics of each Ψl(t) corresponds to evolution according to

i
dΨl(t)

dt
=

N∑
r=1

[HS]rpΨp(t), (A.8)

starting from the initial condition Ψl(0) = δlN/2. Thus, from Eq. (A.6) we derive that

the two time density correlation at infinite temperature we use to classify transport

in the interacting system is directly proportional to |Ψl(t)|2 in single-particle systems:

|Ψl(t)|2 = 4Cl(t). (A.9)
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Physically, |Ψl(t)|2 gives the probability of finding a particle at site p, after initializing

the system with a single particle located at site N/2. From above, and Eq.Eq. (2.120),

we see that, for a noninteracting system, Σ2(t) = ∆x2(t). But unlike ∆x2(t), Σ2(t) is

well defined also in the presence of interactions.

B Density correlations in the half-filled sector

The quantum dynamical typicality (QDT) approach for the density-density correlation

reviewed in Sec. 2.2.4 does not make use of the fact that the quantum spin Hamiltonian

under study is number conserving. For a large enough number conserving system, the

biggest contribution to the density-density correlation in Eq. (2.147) comes from the

half-filled sector. It is plausible that in such case, one can completely restrict the

calculation to the half-filled sector, thus saving computational resources and pushing

forward the system size. In complete analogy to Sec. 2.2.4, we define a typical state

in the half-filled subsector

|ψs⟩ = 1

Ds

Ds∑
k=1

ck |ϕsk⟩ , Ds =
N !

(N/2)!(N/2)!
, (B.1)

where {|ϕsk⟩}D
s

k=1 is an orthonormal basis in the half-filled sector. The new normaliza-

tion constant Cs in

|ψ̃sN/2⟩ =
1√
Cs

|ψsN/2⟩ , |ψsN/2⟩ = n̂N/2 |ψs⟩ , (B.2)

is given by

Cs = ⟨ψsN/2|ψsN/2⟩ = ⟨ψs|n̂N/2|ψs⟩ ≈ ⟨ψs|n̂N/2|ψs⟩

=
Tr[n̂N/2]

Ds
=

(N − 1)!
N−1
2

!N−1
2

!

N
2
!N
2
!

N !
=

1

2
. (B.3)

As before, we have

|ψ̃sN/2⟩ ≈
√
2 |ψsN/2⟩ . (B.4)
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However, the background occupation of sites q ̸= N/2 is now less than 1/2, as it is

possible to notice by reproducing the result of Eq. (2.145) in the half-filled sector:

nsr(0) = ⟨ψ̃sN/2|n̂r|ψ̃sN/2⟩ ≈ 2 ⟨ψsN/2|n̂r|ψsN/2⟩

= 2 ⟨ψs|n̂rn̂N/2|ψs⟩ ≈ 2⟨ψs|n̂rn̂N/2|ψs⟩

= 2
Tr[n̂rn̂N/2]

Ds
=

(N − 2)!
N−2
2

!N
2
!

N
2
!N
2
!

N !

=
1

2

(
1− 1

N − 1

)
. (B.5)

Finally, in analogy with Eq. (2.147), we are able to define

Cs
l (t) =

1

2
(nsl (t)− nsl (0)), l ̸= N/2

≈ 1

2

[
nsl (t)−

1

2

(
1− 1

N − 1

)]
, (B.6)

where nsl (t) is the expectation value of the operator n̂l at time t, starting from the

initial state given by |ψ̃sN/2⟩. For a large enough system, we expect Cs
l (t) ≈ Cl(t). By

directly comparing simulations performed for a short time interval on a chain of size

N = 20 both in the total Hilbert space and in the largest sector at half-filling, we

have confirmed our conjecture.
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