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Abstract—The damping ratio is a significant factor influencing
the dynamic behaviour of a structure. The safety, serviceability
and habitability of a structure are all impacted by the damping
ratio. Damping ratio does not relate to a unique physical phe-
nomenon like mass or stiffness and in practice, design analysis re-
lies on estimates of damping ratios from empirical measurements
of similar structures. Overestimates of the damping ratio arising
from uncertainty in estimates can lead to structures experiencing
acceleration responses during wind and seismic events that could
potentially cause human discomfort. Full-scale testing provides
the most accurate insight into the actual damping ratio of a
structure. Where full scale testing is performed, acceleration
signals are recorded and assessed using modal identification
techniques to identify the characteristic modal parameters such
as natural frequency and damping ratio. However, this form
of testing is not without errors which may arise as a result of
response conditions during monitoring, the modal identification
methods applied, the duration of acceleration signal processed
and the sampling frequency of the acceleration signal.

This paper considers real ambient acceleration response sig-
nals of different lengths and sampling frequencies obtained from
a full-scale monitoring campaign. The influences of signal length
and sampling frequency on the natural frequencies and the
damping ratios calculated using two different modal identification
methods are investigated. Outputs from signal lengths of 12
hours, 1 hour, and 10 minutes are compared as well as sampling
frequencies of 20Hz, 10 Hz and 5Hz. The two modal identification
methods used are the Bayesian Fast Fourier Transform (BFFT)
and a composite method of Analytical Mode Decomposition
(AMD) and the Random Decrement Technique (RDT) in which
bootstrapping is also performed to identify error in the estimates.

Index Terms—Modal Identification Methods, Damping Ratio,
Ambient Vibration Monitoring, Signal Processing
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I. INTRODUCTION

Advancements in structural engineering including new ma-
terials, construction methods and computational power are
enabling more tall, slender and often unconventional structures
to be built. With this comes the responsibility of designers to
better understand modal parameters and hence the dynamic
behaviour of structures in order to mitigate serviceability
issues which may arise as a result of wind induced motion. The
damping ratio is a significant factor governing the dynamic
response of a structure [1], [2]. Uncertainty in estimates of
the damping ratio can result in excessive dynamic responses
negatively affecting the habitability of a structure with poten-
tial to cause human discomfort.

Empirical values for the damping ratio of different materials
including steel, concrete and composite structures are provided
by design codes and literature [3]–[5]. These values are
typically a result of extensive studies of full-scale acceler-
ation monitoring carried out on in-situ structures. However,
uncertainty still exists in these values due to inter structure
variation and the modal identification techniques employed
in evaluating the damping ratio. Additionally, the different
lengths of signal and sampling frequencies of the acceleration
response which were recorded and processed have found
to impact the estimates of the modal properties [6]–[8]. In
reality, constraints such as cost of monitoring, data storage and
computational effort will likely govern the length and sampling
frequency of a signal used. However, the full influence of
these constraints must be better understood in order to make
decisions on monitoring accuracy, cost and time efficiency that
are compatible with the characteristics of the structural system
being investigated.

The Bayesian Fast Fourier Transform (BFFT) is a modal979-8-3503-4057-0/23/$31.00 ©2023 IEEE



identification technique frequently employed for assessing
damping ratios. This method uses Bayesian theory to iden-
tify natural frequencies, damping ratios and the associated
coefficient of variation (CV) from a structure’s acceleration
response. Another common method for estimating the damping
ratio is the Random Decrement Technique (RDT). The RDT
is often combined with a modal decomposition method such
as Analytical Mode Decomposition (AMD) in order to better
identify closely spaced modes [9]. Here, the AMD and RDT
are combined with a statistical procedure known as bootstrap-
ping in order to identify the error associated with the estimates
of this method. This composite method is herein referred to
as the bootstrapping AMD-RDT.

This paper compares the damping ratio and standard er-
ror estimates obtained through applying these two methods,
bootstrapping AMD-RDT and BFFT, to ambient acceleration
response data recorded by in-situ monitoring of two tall struc-
tures with closely spaced modes. Both methods are applied
to 12 hour, 1 hour, and 10 minute samples from 10 different
signals with a sampling frequency of 5 Hz. 10 minute samples
from 5 different acceleration signals are also compared for a
sampling frequency of 5Hz, 10 Hz and 20 Hz.

II. MODAL IDENTIFICATION METHODS

Signal processing of ambient acceleration data is performed
using two modal identification methods in order to identify
modal properties and the respective coefficient of variation
(CV). The two methods are the BFFT which operates in
the frequency-domain and the RDT which operates in the
time-domain. A variation of the RDT which combines the
original method with signal decomposition using Analytical
Mode Decomposition (AMD) and bootstrapping of the signal
is used in order to better identify closely spaced modes and
provide information on the error of the estimates of the RDT
[10], [11].

A. Bayesian Fast Fourier Transform

The BFFT is a common modal identification technique used
to predict the modal properties of a structure from ambient data
and has been investigated extensively [12]–[14]. The BFFT
assumes that both the real and imaginary parts of the FFT of
the acceleration response of a structure experiencing broad-
band excitation will have a Gaussian distribution that can be
described analytically by a set of modal parameters, θ. The
modal parameters contained in θ are the natural frequency f ,
damping ratio ζ, mode shape Φ, entries of the force spectral
density matrix {Sij} and the spectral density of the prediction
error σ2, for any given mode.

This paper considers the BFFT as set out by Au et al. [12].
The FFT data obtained from ambient vibrations is used to
maximise the posterior probability density function (PDF) of
the modal parameters in order to find the most probable value
(MPV) of each of the modal properties.

It is appropriate to approximate the posterior PDF using a
Gaussian PDF for a sufficiently large data set [12]. This is
achieved by letting θ̂ be the MPV that minimises the second

order approximation of the log-likelihood function, L(θ). L(θ)
is then treated as a second order Taylor series about θ̂ with
the first-order term vanishing to optimality of θ̂. The posterior
PDF becomes a Gaussian PDF as shown in Equation (1).

p(θ|{Zk}) ∝ exp

[
− (

1

2
)(θ − θ̂)T Ĉ−1(θ − θ̂)

]
(1)

Where Zk is the joint PDF of the augmented FFT vectors
of the ambient data and is considered a zero-mean Gaussian
vector; Ĉ is the posterior covariance matrix of Zk defined as

Ĉ = HL(θ̂)
−1 (2)

where the Hessian of L at the MPV is HL(θ̂).
The MPV and covariance matrix are the focus of the main

computational effort in Bayesian Identification as they are
critical to the calculation of the Gaussian PDF.

The BFFT enables both a damping ratio and the associated
posterior CV to be identified from an acceleration response.
This enables a better understanding of the uncertainty of the
damping estimate in design processes. However, the BFFT
can be inaccurate when closely spaced modes influence the
measured acceleration response.

B. Random Decrement Technique

The RDT is based on the theory that an ambient, white noise
excitation of a structure will result in an acceleration response
at the nth DOF in the i th mode, xni(t), which consists of
response components due to iinitial displacement xx0ni, the
response due to the initial velocity xẋ0ni and forced response
due to random excitation xFni such that

xni(t) = xx0ni + xẋ0ni + xFni (3)

The RDT estimates the damping experienced by a lin-
ear structural system by using the resulting signature from
combining averaged segments of its response [11], [15]. The
response segments are those from the time history of the
acceleration response which satisfy a threshold condition,
Xpni [11], [16]. In theory, by averaging a large number of
random decrement response segments with identical triggering
conditions, the initial velocity and forced vibration responses
reduce to zero, leaving only the response due to the initial dis-
placement. Essentially the random component of the response
is removed leaving a signal comprised of only the free decay
response of the structure. The RDT was applied in this paper
as described by Ibrahim [13] to obtain the random decrement
signatures defined as

δni(t) =
1

N

N∑
k=1

Xpni(tk + τ) (4)

where N = number of subsamples and τ = t− ti.
The triggering condition, Xpni, is set as the standard de-

viation of the acceleration response as suggested by Tamura
et al. [14]. A “level-crossing, overlapping criterion” is set as
suggested by Zhou et al. [11].



The Hilbert transform is applied to each random decrement
signature δ(t) to approximate the free decay response and
determine the modal damping ratio ζi [17], [18].

C. Analytical Mode Decomposition

The Random Decrement Technique can be inaccurate when
modes are closely spaced together. Hence, it is often combined
with an anterior signal decomposition method [10], [18] Ana-
lytical Mode Decomposition has been found to be effective for
signals with highly coupled modes [9]. This paper combines
AMD with the RDT for modal identification from ambient
data.

AMD decomposes a subsignal into multiple components,
each with Fourier spectra that are non-vanishing over mutually
exclusive frequency ranges separated by a bisecting frequency
ω. Each subsignal is then analysed using the RDT outlined in
Section II-B to extract the free decay response of the structure
and determine its damping ratio. The AMD is applied in this
paper as described by Wen et al. [10]. A brief description of
the method is given here.

Let x(t) ) denote the measured acceleration data containing
a number of frequency components (ω1, ω2, . . . , ωn) where
n is the number of subsignals into which the data is to
be decomposed. The subsignals, xi(t)(i = 1, 2, . . . , n) have
Fourier Spectra X̂(ω) which cover n mutually exclusive
frequency ranges such that (|ω| < ωb1), (ωb1 < |ω| <
ωb2), . . . , (ω(bn−2) < |ω| < ω(bn−1)) and (ω(bn−1) < |ω|).
ωbi ∈ (ωi, ωi+1)(i = 1, 2, . . . , n − 1) are the bisecting
frequencies. Therefore,

x(t) =

n∑
i=1

xi(t) (5)

Each of the modal responses has a narrow bandwidth in the
frequency domain and can be determined by

xi(t) = si(t)− si−t, . . . ,xn(t) = x(t)− sn−1(t) (6)

si(t) = sin(ωbitH[x(t)cos(ωbit)]−cos(ωbitH[x(t)sin(ωbit)]
(7)

where H[.] represents the Hilbert Transform. After applica-
tion of the AMD method to create subsignals of the response
signal, the RDT is applied to obtain the free vibrational
response of the structural system and identify its damping
ratio.

D. Bootstrapping

Whilst use of the RDT is prominent in the literature on
modal identification [11], previous applications of the method
have not provided any measure of the uncertainty in its
damping estimates. To address this deficiency, this paper
incorporates the statistical procedure known as Bootstrapping
within the combined AMD-RDT method to obtain a statistical
measure of the error in the calculated damping ratio values,
and hence, an understanding of the uncertainty of damping

estimates obtained using the AMD-RDT. Bootstrapping is a
computationally expensive statistical procedure which enables
descriptive features of a sample to be assessed. The principle
of bootstrapping is to treat a sample as though it is the
population and randomly sample from this to produce an
empirical estimate of the statistic’s sampling distribution [11],
[19], [20]. The bootstrap procedure is applied in this paper as
first presented by Efron et al. [19] and involves the following
steps:

1) A random independent sample, X = (x1, x2, ..., xn)
with a statistic of interest θ̂ = sX is drawn from an
unknown identical distribution F.

2) The original data is sampled with replacement to create
a bootstrap sample X∗ = (x∗

1, x
∗
2, ..., x

∗
n) with a corre-

sponding estimator θ̂∗ = s(X∗).
3) The bootstrap operation in step 2 is repeated B times

to create a bootstrap ensemble containing B number of
replicates (θ̂∗1 , θ̂

∗
2 , ..., θ̂

∗
B).

4) The histogram of the bootstrap ensemble can be pro-
duced in order to identify the probability density func-
tion and hence calculate the bootstrap mean, θ̄∗, con-
sidered the optimal estimate by the bootstrap method
using Equation (8), assuming a normal distribution.
The standard deviation s∗θ , which can be regarded as
an estimate of the standard error of θ̂ can also be
found using Equation (9) for a normal distribution. The
coefficient of variation can be found using Eq. 10.

θ̄∗ = µ(θ̂∗b ) =
1

B

B∑
b=1

θ̂∗b (8)

s∗θ = σ(θ̂∗b ) =

√√√√ 1

B − 1

B∑
b=1

(θ̂∗b − θ̄∗)2 (9)

CV =
s∗θ
θ̄∗

(10)

III. RESULTS

Table I shows the different signals processed by both modal
identification methods. Two structures of similar height and
construction method were monitored. The two structures in
which the signals being analysed were obtained have a natural
frequency of approximately 0.30 Hz. The Nyquist criterion
requires that the sampling frequency be at least two times
the natural frequency of the highest mode being considered.
Therefore, the minimum sampling frequency considered is 5
Hz. The length of data recorded and sampling rates shown in
Table I were all controlled as part of the in-situ monitoring of
the structures which took place in 2018 for Structure A and
2022 for Structure B.

For structure A, two triaxial accelerometers were in place
at the top of the structure. 12 hours of data sampled at a
frequency of 5 Hz was recorded for 10 different measurements.
This resulted in 40 12 hour long signals. Both one hour and 10
minutes of data were sampled from the middle of the signal



for each measurement. This resulted in a total of 120 signals
for structure one.

Structure B had one triaxial accelerometer recording con-
tinuous data at a sampling rate of 20 Hz for a six month
monitoring duration. From this data, five measurements of
length 10 minutes were chosen where RMS accelerations were
similar to those experienced by Structure A. The five 10
minute long acceleration signals were sampled at 10 Hz and
5 Hz to create a total of 30 signals from Structure B. In total,
150 signals were processed using both modal identification
methods.

TABLE I
SIGNAL LENGTHS AND SAMPLING FREQUENCIES PROCESSED BY BOTH

MODAL IDENTIFICATION METHODS

Structure Number
of Mea-
sure-
ments

Number
of Ac-
celerom-
eters

Number
of
Modes

Signal
Length

Sampling
Fre-
quency

1 10 2 2 12 Hours 5 Hz
1 10 2 2 1 Hour 5 Hz
1 10 2 2 10 Minutes 5 Hz
2 5 1 2 10 Minutes 5 Hz
2 5 1 2 10 Minutes 10 Hz
2 5 1 2 10 Minutes 20 Hz

Tables II and III display the results from Accelerometer 1 in
the East-West Direction for 12 hours, 1 hour and 10 minutes
of acceleration signal obtained from the ambient excitation of
Structure A processed by the BFFT and Bootstrapping AMD-
RDT respectively. It is worth noting that the measurements
were recorded while Structure A was still under construction.
The structure was fully completed for Measurements 6-10.
Measurement 4 is corrupted by significant noise due to the
on-going construction within the structure.

It can be seen that for both methods, the CV increases
as the duration of the signal is shortened. This effect is
more significant for the BFFT method than the bootstrapped
AMD-RDT. As well as higher CV values, more variation in
the damping estimates from the different measurements is
observed as the signal duration reduces. It is also worth noting
that for the 10 minute length signal the estimates of damping
ratio are on average smaller. Considering fig. 1 and 2 the
increase in error and lower damping estimate as duration is
shortened and becomes more apparent. Where error ribbons
are excluded it is due to their exceedance of the y axis limits.

Tables IV and V display the results from Accelerometer 1 in
the East-West Direction for acceleration signals with sampling
frequencies of 20 Hz, 10 Hz and 5 Hz obtained from the
ambient excitation of Structure B processed by the BFFT and
Bootstrapping AMD-RDT respectively. It can be seen that
for the bootstrapped AMD-RDT method, error increases as
sampling frequency decreases. However, for the BFFT method
it appears that a sampling frequency of 5 Hz is more accurate
than for 20 or 10 Hz. In reality, results from analysing only
a 10 minute signal using the BFFT method appear unreliable
regardless of sampling frequency used. Figure 3 shows how

TABLE II
DAMPING RATIO ESTIMATE AND RELATIVE CV FOR ACCELERATION
SIGNALS OF DECREASING LENGTH PROCESSED BY BFFT METHOD

(STRUCTURE A, ACCELEROMETER 1, EAST-WEST DIRECTION)

12 Hours 1 Hour 10 Minutes
Measu-
rement

Damping
(%)

CV Damping
(%)

CV Damping
(%)

CV

1 1.28 5.4016 0.98 16.0520 2.63 192.6306
2 1.27 5.2950 1.46 25.4000 1.68 64.6500
3 1.31 5.5431 1.48 20.2549 1.12 44.1156
4 1.84 7.9068 2.44 47.2153 4.47 261.4259
5 1.25 6.0806 1.19 17.2040 0.60 26.4774
6 1.25 2.0829 1.51 24.7551 2.54 104.7200
7 1.23 5.2221 1.31 10.3512 1.45 38.8289
8 1.04 5.1723 1.1 18.6407 0.46 22.4415
9 1.16 5.5173 1.39 22.7803 0.88 36.2479
10 1.12 5.3822 0.96 11.3940 0.87 36.1970

TABLE III
DAMPING RATIO ESTIMATE AND RELATIVE CV FOR ACCELERATION
SIGNALS OF DECREASING LENGTH PROCESSED BY BOOTSTRAPPED

AMD-RDT METHOD (STRUCTURE A, ACCELEROMETER 1, EAST-WEST
DIRECTION)

12 Hours 1 Hour 10 Minutes
Measu-
rement

Damping
(%)

CV Damping
(%)

CV Damping
(%)

CV

1 1.23 3.8171 1.11 6.3820 0.43 21.8252
2 2.06 2.2819 1.52 2.8785 0.38 15.2839
3 1.84 5.0447 1.41 9.3000 0.38 18.9790
4 16.68 6.1771 3.26 59.7624 0.9 41.3685
5 1.56 3.1257 1.29 5.1697 0.43 16.5020
6 1.09 2.5871 0.79 7.7255 0.76 14.0143
7 1.07 2.2722 1.07 6.7782 0.25 24.7050
8 1.09 1.9229 1.16 6.9070 0.4 17.3729
9 1.03 2.3142 1.02 8.2471 0.78 13.3704
10 1.14 2.1688 1.16 7.0772 1.15 25.9714

Fig. 1. BFFT estimated damping ratio and error for varying signal length



Fig. 2. Bootstrapping AMD-RDT estimated damping ratio and error for
varying signal length

TABLE IV
DAMPING RATIO ESTIMATE AND RELATIVE CV FOR ACCELERATION

SIGNALS OF DECREASING SAMPLING FREQUENCY PROCESSED BY BFFT
METHOD (STRUCTURE A, ACCELEROMETER 1, EAST-WEST DIRECTION)

20 Hz 10 Hz 5 Hz
Measu-
rement

Damping
(%)

CV Damping
(%)

CV Damping
(%)

CV

1 54.57 11628.5900 22.37 7576.2810 3.65 82.5249
2 18.34 257.8367 29.19 931.3229 2.2 55.1128
3 9.58 122.0319 40.51 1486.2700 2.71 64.1948
4 21.28 331.2505 35.82 1240.8010 12.81 774.4459
5 10.67 83.7595 19.76 1849.0980 2.15 47.6114

TABLE V
DAMPING RATIO ESTIMATE AND RELATIVE CV FOR ACCELERATION

SIGNALS OF DECREASING SAMPLING FREQUENCY PROCESSED BY
BOOTSTRAPPED AMD-RDT METHOD (STRUCTURE A, ACCELEROMETER

1, EAST-WEST DIRECTION)

20 Hz 10 Hz 5 Hz
Measu-
rement

Damping
(%)

CV Damping
(%)

CV Damping
(%)

CV

1 0.58 8.3047 0.81 6.6526 0.58 9.3936
2 0.2 13.0829 0.29 13.0693 0.27 18.0217
3 0.35 8.8420 0.72 12.7818 0.64 14.1042
4 0.35 9.6616 0.42 8.7910 0.32 14.3642
5 0.34 10.2591 0.37 11.1355 0.34 14.7228

significant the error on some estimates is. In comparison, fig.
4 appears to show that the bootstrapped AMD-RDT method
can provide consistent estimates of damping and error for 10
minutes of a signal at all sampling frequencies. A significant
advantage of this finding is that the bootstrapped AMD-RDT
is a suitable modal identification method for processing signals
which are shorter, enabling effective identification of damping

ratios of structures where data acquisition is limited by time,
noise or sampling frequency constraints. The implications of
this are far-reaching with possible application of the AMD-
RDT method throughout structural health monitoring of build-
ings, bridges and mechanical systems alike.

Fig. 3. BFFT estimated damping ratio and error for varying sampling
frequencies

Fig. 4. Bootstrapping AMD-RDT estimated damping ratio and error for
varying sampling frequencies



IV. CONCLUSION

This paper compared damping ratio estimates from 150
different ambient acceleration response signals. The signals
were obtained from in-situ ambient vibration monitoring of
two structures of similar construction materials and heights
using triaxial accelerometers. The signals varied in length
and sampling frequencies. Two different modal identification
methods, the BFFT and bootstrapping AMD-RDT were used
to estimate the damping ratio from each signal.

It was found that the error in damping ratio increased as
signal length decreased. This was more pronounced for the
BFFT method. The Bootstrapped AMD-RDT method showed
a slight increase in error as sampling frequency was reduced
but was capable of producing reliable results. The BFFT
method was not well suited to a low-sampling frequency or
short signal length.

It is clear that using the bootstrapped AMD-RDT method,
consistent estimates of damping ratio can be obtained for
a shorter signal length (10 minutes) and lower sampling
frequency (5 Hz). This is beneficial as the bootstrapped AMD-
RDT method can be computationally expensive. Compara-
tively, the BFFT method is not reliable for small amounts
of data, but is more efficient and it is not difficult to apply
this method to long signals. Results are more accurate when
a longer signal and higher sampling frequency are used,
regardless of method.

In practice, the length and sampling frequency of a signal
used will be influenced by constraints such as cost of moni-
toring, data storage and computational effort balanced against
the modal parameter accuracy required for specific structural
design or analysis activities. The AMD-RDT has been shown
to provide accurate modal identification where signal length
i.e. time and sampling frequency, are limited. This finding
enables more confident application of the AMD-RDT to a
range of signals obtained through Structural Health Monitoring
which have been constrained. Further sensitivity analyses will
enhance this research and enable better informed decisions on
the balance of these constraints for optimised accuracy.
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