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A line of contacting hard spheres, placed in a transverse
confining potential, buckles under compression or when
tilted away from the horizontal, once a critical tilt angle is
exceeded. This interesting nonlinear problem is enriched by
the combined application of both compression and tilt. In a
continuous formulation, the profile of transverse sphere
displacement is well described by numerical solutions of a
second-order differential equation (provided that buckling is
not of large amplitude). Here we provide a detailed discussion
of these solutions, which are approximated by analytic
expressions in terms of Jacobi, Whittaker and Airy functions.
The analysis in terms of Whittaker functions yields an exact
result for the critical tilt for buckling without compression.

1. Introduction
A line of hard spheres, confined in the transverse direction by a
harmonic potential, buckles when compressed. In an experiment
such a potential is (approximately) realized by confining the
spheres in a horizontal cylinder [1,2]. As a sphere is laterally
displaced, gravity provides an approximately harmonic restoring
force due to the curvature of the cylinder. Figure 1a shows that
upon compression of the line of spheres along the cylinder axis
neighbouring spheres are displaced in opposite (alternating)
directions. They form a zigzag profile whose amplitude is
modulated and becomes increasingly localized with increasing
compression. Figure 1b shows an example of a profile of the angle
between contacting spheres, as defined in figure 1a.

Many stable and unstable equilibrium states exist, with
localization in different places. A further dimension is added to
the problem by the introduction of a longitudinal force on each
sphere, for example, by tilting the system.
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Figure 1. (a) Photograph of a buckled line of N = 10 metal spheres (ball bearings) resting in a horizontal cylinder, between two
stoppers. In such an experiment, the curvature of the cylinder provides an approximately harmonic potential, that is, a restoring force
acting on transversely displaced spheres [1,2]. The angles θn between contacting spheres and the cylinder axis vary along the line.
(Inner cylinder diameter 21.05 mm, sphere diameter D = 6.44 mm, line length L = 61.6 mm, corresponding to a compression
Δ = (ND − L)/D = 0.47 (see also equation (A7)).) Figure (b) shows the corresponding plot of the angle profile θn. The
continuum theory described in this paper yields a continuous profile for ϕ(u) = tanθ(u)). This is shown by the continuous line
in (c), together with the experimental data from (b).
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The discrete nature of the line of spheres is at the centre of the problem under consideration since the
buckling of the line is solely due to sphere displacement. The spheres themselves do not deform; indeed,
in the model which we present they are treated as infinitely hard. Buckling is a consequence of
geometrical constraints.

The description of all this poses an interesting nonlinear problem, for which any predictions may be
readily compared with experiments or contrasted with other phenomena involving the buckling of a
linear chain of particles or rods under confinement. Examples of the latter include the transition of
a linear chain of ions to a zigzag formation as observed in laser-cooled traps [3–9], dusty clusters
[10,11], colloidal particles [12,13], droplets in microfluidic crystals [14], linear chains of magnetic
spheres [15,16], as well as the classical problem of Euler buckling [17], or the buckling of thin rods
confined inside (or on the surface) of a cylinder [18–21].

In earlier papers [1,2,22–25], we engaged in a numerical search for solutions, which were gathered up
in detailed bifurcation diagrams (plots of energy, or another property, as a function of a control
parameter, usually compression). This was done for up to N = 20 spheres [22]. The smooth modulation
of the displacement profile that is generally found for large N (and small compression) invites the
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Figure 2. (a) View of a compressed and tilted linear line of spheres; the maximum of sphere displacement has moved towards the
lower end of the cylinder. (Cylinder and sphere dimensions as in figure 1, chain length 61.56 mm, tilt angle a ≃ 7�.) (b)
Theoretical results from the continuum model (§2), compared with the measured profile, in terms of ϕ(u) = tanθ(u) (cf. figure 1).
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consideration of a continuous approximation, in terms of a profile that is a function of a continuous
variable u, rather than an integer.

A continuous approximation was accordingly developed and applied to the case of a chain compressed
between two movable hard walls, i.e. stoppers [23,25]. For low values of compression, it indeed worked
well; for an example, see figure 1c. Moreover, it proved possible to reduce the differential equation at the
heart of this description to a form that has Jacobi functions as exact solutions [25].

In the present paper, we return to the same theme, but with the inclusion of an additional
longitudinal force acting on the spheres. Since this is readily realized in experiment by tilting the
system, introducing a longitudinal component of gravity, we often refer to it as ‘tilt’.

Previously, we have addressed the effect of tilt where the upper end of the chain is not subject to a
compressive force [2]. In what follows we study the general case, including finite compressive force, using a
continuous theory. The typical form of these results is illustrated by figure 2, to be compared with figure 1.
Remarkably, our analysis leads to further formulations in terms of special functions—the Whittaker and
Airy functions. Hence a transparent description of a wide range of situations, in which tilt and compression
may both be implicated, is possible. To this claim must be added the reservation that when large
amplitudes of buckling are reached, the description is necessarily inadequate, except for qualitative purposes.

The structure of the present article is a follows. In §2, we introduce the nonlinear differential equation of
the continuum model, equation (2.2), and show some sample solutions for specific values of compression
and tilt. In §3, we present several approximations to the equation which allow for analytical solutions in
terms of scaled Jacobi, Airy, and Whittaker functions, respectively. The properties of these solutions are
discussed in §4, examples are shown in figure 4. In §5, we present our results in the form of a phase
diagram; a brief outlook is given in §6. Mathematical details are mostly confined to five appendices.

The progression of successive approximations in our mathematical description is outlined in table 1,
as a guide to the sections that follow, and relevant publications. All experimental and numerical data
shown in the following is for N = 10 spheres (data for higher N contains the same key features [1,22]);
in our analytical expressions N enters simply as a parameter.
2. The continuous formulation
2.1. Differential equation
Equilibrium configurations of contacting hard spheres in a harmonic confining potential (with tilt), as
shown in figures 1 and 2, result from a balance of forces. In appendix A, we show how the force
balance leads to a set of iterative equations for the transverse forces acting on the spheres, and the
angles θn (see figure 1a for notation) between successive lines of contact and the longitudinal



Table 1. Outline of the different scenarios, successive approximations and differential equations discussed in the text (see in
particular §3), together with some relevant references. Examples of profiles for Jacobi, Airy and Whittaker solutions are shown
in figure 4.

scenario

+ τ(    – 1)

discrete system
with tilt τ
compressive force

G(   )�

for τ = 0, φ �� 1
approximation as
reduced equation

φ′′ (  ) = –4φ(  ) + 

(        – 4) φ –φ′′ = 

φ′′ = 

φ′′ = 

φ

φ

linear approximation
for 0 < τ << 1
approximation by Whittaker equation

for 0 < τ << 1, τ N/    << 1
approximation by
Airy equation

+τ

resulting in compression, �

equation

difference equations,
Iterative numerical solutions
for forces and displacements

differential equation

differential equation

linear differential equation

Airy function solutions

linear differential equation

Whittaker function solutions

numerical solutions

–1

Jacobi function solutions

appendix A
references [1,22,23]

§2, appendix B
equation (2.2)
(for τ = 0: reference [25])

§3.1, §4.1
equation (3.1)
reference [25]

§3.2, §4.2
equation (3.4)
(briefly in reference [2])

§4.3,
appendix E
equation (3.6)

section and references

φ(  )

1+φ2(  )

φ3

2

–4 + 1

1 � �1 – – 4 τ

continuous
approximation
compressive force G(   ) = + τ
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direction. These discrete equations have been solved numerically using the shooting method [1,22–25],
and the solutions produce the angle profiles, θn.

In the absence of tilt, the discrete equations were also reformulated as a second-order differential
equation [2,23,25] for which it is convenient to use as dependent variable ϕ(u), where

fðuÞ ¼ tan uðuÞ: ð2:1Þ
The variable u replaces the index n in the discrete formulation. In appendix B, we derive the differential
equation in the presence of tilt as

f00ðuÞ ¼ �4fðuÞ þ fðuÞ
GðuÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2ðuÞ

q ; ð2:2Þ

see also equation (B 5). In this ‘full continuum equation with tilt’, the axial component of the
(dimensionless) compressive force G(u) varies linearly with position u, GðuÞ ¼ Gþ tu (see also
appendix A, figure 12). Here G is the magnitude of the compressive force (in the axial direction) at the
(possibly elevated) end (u = 0) of the chain of N spheres and τ is the dimensionless tilt parameter.
(In the experiments, τ is proportional to the sine of the angle of tilt; see equation (A1).) We note that
for the case considered here there are only repulsive forces, so G(u), and in particular G is never negative.

Equation (2.2) is the foundation of this paper. We will examine its solutions for the hard-wall
boundary conditions ϕ(0) = ϕ(N ) = 0 (which corresponds to hard walls that are perpendicular to the
cylindrical axis, see figure 1) and given values for compressive force at the upper (elevated) end, G,
and tilt τ.
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Equation (2.2) was previously only presented and analysed in this form for the case τ = 0, where
Jacobi functions provide approximate solutions [25]. The presence of tilt (i.e. a finite value for τ) leads
to further (approximate) analytical solutions, now in terms of Airy and Whittaker functions. (One
displacement profile involving a Whittaker function was shown already in [2], but all mathematical
background was omitted at the time.)
publishing.org/journal/rsos
R.Soc.Open

Sc
2.2. Compression
In contrast to our experimental set-up, where we fix compression by choosing the distance between the
two stoppers at the ends of the chain, here we compute profiles for given tilt τ and various values G,
evaluating compression Δ from the profile ϕ(u) via

D ¼ N �
ðN
0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2ðuÞ

q ; ð2:3Þ

see also appendix C, equation (C1).
As with experimental data, we can thus plot quantities of interest such as peak position or peak

height as a function of compression.
 i.10:230293
2.3. Numerical results
Before proceeding to analytic approximations, it is instructive to briefly show numerical results for
solutions of the full equation, equation (2.2). The equation is solved using for example Mathematica,
with the required boundary conditions ϕ(0) = ϕ(N ) = 0.
2.3.1. Numerical results for compression only

Figure 3a shows examples of profiles of ϕ(u) for N = 10 in the absence of tilt (τ = 0), computed for several
values of the compressive force G. The profiles are symmetric around the centre of the chain.

In the limit in which compression Δ→ 0, the peak height varies as ϕmax∼ Δ1/2, with a linear variation
for higher values of compression [23]. The square-root scaling for small compression is obtained by
approximating ϕ(u) as a triangular profile of peak height ϕmax and using D ≃ ð1=2Þ ÐN0 f2ðuÞdu (see
equation (C 2)). We will return to this in §4.1 when discussing analytical solutions of a reduced
equation in terms of scaled Jacobi functions.
2.3.2. Numerical results for compression and tilt

In figure 3b, we show that the presence of a finite tilt results in a shift of the peak away from the centre of
the chain (as seen in figure 2). A detailed discussion of this case will be provided in §4.
3. Approximations of the full equation
The differential equation, equation (2.2), may be reduced by various reasonable approximations,
resulting in forms which have analytic solutions, as summarized in table 1 and shown in figure 4.
These provide insight into the properties of (numerical) solutions of equation (2.2) for different ranges
of compression and tilt (§5).
3.1. The case of small compression in the absence of tilt
We first consider the absence of tilt, τ = 0, for which there is a constant compressive force GðuÞ ¼ G. Taylor
expanding the square root in the denominator of the right-hand side of equation (2.2) to order ϕ2, one
obtains the reduced equation [25],

f00 ¼ ðG�1 � 4Þf� f3

2G : ð3:1Þ

(In [25] this was written in terms of a parameter κ2, defined as k2 ¼ G�1 � 4.)
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Figure 3. Results from numerical solutions of the full equation, equation (2.2), for a chain of N = 10 spheres under compression.
(a) Examples of profiles of ϕ(u) in the absence of tilt (τ = 0) for compressive forces in the range G ¼ ½0:185, 0:257�, resulting in
compression Δ in the range from 0.1 to 0.6. (b) For fixed compression (here Δ = 0.1), the introduction of a finite value of tilt leads
to a shift of the peak away from the centre. Shown as a red dashed line is the limiting case for the absence of a compressive force at
the elevated end (u = 0), i.e. G ¼ 0, at Δ = 0; this is the Whittaker solution, equation (4.2), which we discuss in §4.2.
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By making an appropriate change of variables, f ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðm=ð2m� 1ÞÞð1� 4GÞp

y, and

u ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2m� 1ÞðG=ð1� 4Gp ÞÞx this can be re-written in the form of the Jacobi differential equation

y00 ¼ �ð1� 2mÞy� 2my3, ð3:2Þ
with 0 <m < 1. Its analytical solution y(x) = cn(x|m) is the Jacobi cn function [26,27],

ffiffiffiffi
m

p
is called the

(elliptic) modulus. A detailed discussion of the properties of the scaled Jacobi cn functions, which are
the solutions of equation (3.1), is given in [25]; see also the brief discussion in §4.1 and appendix D.

3.2. Compression and tilt
In the case of finite tilt, τ > 0, analytical solutions in terms of Whittaker or Airy functions are available if
one neglects the ϕ2 term in the denominator of the square root in the full equation, equation (2.2), and
thus considers the linear equation

f00 ¼ �4þ 1
Gþ tu

� �
f: ð3:3Þ

3.2.1. Whittaker equation

By introducing ~u ¼ uþ G=t, we put this in the form of

f00 ¼ �4þ 1
t~u

� �
f: ð3:4Þ

Equation (3.4) is a special case of the Whittaker Equation [28]

d2w
dz2

¼ 1
4
� k

z
þ ðð1=4Þ � m2Þ

z2

� �
w, ð3:5Þ

for z ¼ 4i~u, μ = 1/2, k = 1/(4τ), and renaming w as ϕ.
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In this paper, we concentrate on the case G ¼ 0 (i.e. ~u ¼ u), corresponding to experiments in which the
upper end of the chain is not in contact with the wall. The exact solutions of equation (3.4) for our
boundary conditions can then be written in terms of Whittaker functions, Mk,μ(z) [28]; see §4.2.

TheWhittaker solution defines only a single solution for a given value ofN, resulting in a prediction for the
critical value of tilt, where G ¼ 0, for that givenN. In order to explore the effect of tilt and compression on the
system,wemake a different approximationwhich leads to the Airy equation, as discussed in the next section.

3.2.2. Small tilt and a finite compressive force: Airy equation

For finite G and tN=G � 1, we may retain only the lowest order term in tu=G in equation (3.3), resulting
in:

f00 ¼ 1
G 1� tu

G
� �

� 4
� �

f: ð3:6Þ

By making a change of variable from u to an appropriately defined x (see appendix E) and renaming ϕ as
y we obtain the familiar Airy equation,

y00ðxÞ ¼ xyðxÞ, ð3:7Þ
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which has analytical solutions in terms of the Airy Ai and Bi functions. In appendix E we derive the exact
solutions of equation (3.6) in terms of these Airy functions; we will discuss the properties of these
solutions in §4.3.
 lsocietypublishing.org/journal/rso
3.3. The form of the analytical solutions
Figure 4 shows examples of the special functions used here, over an extended range. One may choose as a
solution (with hard wall boundary conditions) any range between two zeroes (corresponding to the
boundary conditions F ¼ 0 at each end). However, those that have internal zeroes have higher
energies and are not considered here.

In the next section, we explore the properties of the analytic solutions in terms of Jacobi, Airy and
Whittaker functions.
 s

R.Soc.Open
Sci.10:230293
4. Properties of analytical solutions
Analytical solutions result in relationships between the experimental parameters compression, tilt and
the number of spheres, and the observed quantities peak position and peak height. They also enable
us to predict the critical value of tilt for sphere detachment (where Gð0Þ ¼ G ¼ 0).

Each of the analytical solutions offers a different, limited perspective on experimental features. Using
Jacobi functions, one arrives at the relation between peak height and compression in terms of elliptic
integrals. Using Airy functions establishes a relation between the position of the profile maximum and
tilt. Whittaker functions enable a prediction of the critical value of tilt at which detachment of the
spheres from the top wall occurs for (low values of) fixed compression.
4.1. Compression only: Jacobi functions
For values of compression D & 0:3, and in the absence of a longitudinal tilt force, solutions of the full
continuum equation are well approximated by scaled Jacobi functions. An example of such a profile
was already shown in figure 4a.

For the case of the hard wall boundary conditions considered here, i.e. ϕ(0) = ϕ(N ) = 0, the solution of
the reduced equation in the absence of tilt (τ = 0), equation (3.1), is given in terms of the scaled Jacobi cn
function as

fðuÞ ¼ fmaxcn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðG�1 � 4Þ
ð2m� 1Þ

s
(u�N=2)

������m
0
@

1
A, ð4:1Þ

where the so-called modulus,
ffiffiffiffi
m

p
, is related to the period of the Jacobi functions, and thus N. The

derivation of this solution, and a discussion of its properties, is found in our recent publication [25],
with further details in appendix D. (In [25], relevant equations and quantities are expressed in terms
of k2 ¼ G�1 � 4 instead of G.)

Figure 5a shows the profile ϕ(u) as obtained from discrete simulations, a numerical solution of the
full continuum equation, equation (2.2), and the Jacobi solution, equation (4.1) for Δ≃ 0.3. For small
values of compression, the maximum value of ϕ increases as fmax /

ffiffiffiffi
D

p
; see figure 5b and appendix

D, equation (D 5).
4.2. Whittaker functions and the critical tilt for detachment
From experiments and numerical solutions for both the discrete system and the full continuum equation
(figure 3b), one finds that (for given compression Δ) there is a critical value of tilt, τc(Δ), beyond which the
spheres detach from the upper boundary, so that the compressive force there goes to zero, i.e.
Gðu ¼ 0Þ ¼ G ¼ 0.

As an example we show in figure 6a the decrease of Gð0Þ ¼ G with tilt for constant compression Δ =
0.10, as obtained from numerical solutions of the full equation, equation (2.2) for N = 10. The critical tilt
for detachment is determined as τc(0.1) = 0.0345. Its variation with compression is shown in figure 6b; we
will show below how the value of the critical tilt for the uncompressed system, Δ = 0, is determined
analytically using Whittaker functions.
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Figure 5. In the absence of tilt and for small compression, scaled Jacobi functions provide good approximate solutions of the full
continuous differential equation, equation (2.2). (a) Profile ϕ(u) for the case of N = 10 with a compressive force G ¼ 0:2435. The
solid black line is a numerical solution for ϕ(u) for equation (2.2). The dashed red line is the analytical solution of the reduced
equation, equation (3.1), in terms of a scaled Jacobi function. Also shown are the data points for the corresponding discrete system
(appendix A). The computed values of compression Δ for the three profiles are Δfull = 0.30, Δdiscrete = 0.30, ΔJacobi = 0.28. (b) The
peak height ϕmax increases with compression. The dashed red line, f

2
max ¼ 0:43D, shows an analytical result for small compression

(equation (D 5)).
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We saw in §3.2.1 that for small ϕ the full equation can be approximated by a special case of the
Whittaker equation, equation (3.4). For G ¼ 0 and the boundary condition ϕ(u = 0) = 0 and a given
value of ϕ0(0) (which is chosen so to obtain a specified compression) its solution is given by

fðuÞ ¼ f0ð0Þ
4i

Mði=4tÞ,ð1=2Þð4iuÞ, ð4:2Þ

where M is the Whittaker function [28] and i is the unit imaginary number. (Here we have used the
property of the Whittaker function, (d/du)M(i/4τ),(1/2)(4iu)|u=0 = 4i). An example of this solution was
shown in figure 4b.

The chosen value of tilt τ in equation (4.2) uniquely determines the distance between the zero of ϕ(u)
at u = 0 and its first zero at a positive value of u. Rephrased in the context of this manuscript: for a
given number N of spheres (requiring ϕ(N ) = 0 for our boundary conditions) there is a well-defined
critical value of tilt, τc, for detachment (i.e. Gðu ¼ 0Þ ¼ G ¼ 0 at τc). This value can be determined
(numerically) from equation (4.2); an upper bound estimate is given by τc < [3(N− 2)]−1 [2].

For the case N = 10, the boundary conditions ϕ(0) = ϕ(10) = 0 are fulfilled for τc = 0.0359. From
figure 6b, we see that this is the critical value of tilt for detachment at compression Δ = 0, i.e. τc(Δ =
0) = 0.0359. For higher values of compression, the value of tilt τc is reduced; see figure 6.

For values of tilt close to detachment, and for small values of compression, the Whittaker solution
serves as an analytic approximation of the numerical solutions of the full equation. Figure 3b
demonstrates this for the case of compression Δ = 0.1.

The Whittaker solution also provides an estimate for both peak position and peak height at
detachment. Figure 7a shows numerical results for the displacement of the peak away from the centre
as a function of tilt, at fixed compression Δ = 0.1, as obtained from numerical solutions of the full
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Figure 6. (a) Variation with tilt of the compressive force G ¼ Gðu ¼ 0Þ at the elevated ‘top end’ of the chain, for compression
Δ = 0.1. Detachment of the chain corresponds to G ¼ 0. (b) The variation of the critical value of tilt (where G ¼ 0) as a function
of compression for the full numerical solutions of the continuum equation with N = 10. The red square at Δ = 0 corresponds to the
prediction made from the Whittaker solution.
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equation, equation (2.2). For small values of τ, this is linear in τ. At detachment, the peak remains a finite
distance away from the bottom wall. Shown as a red square in figure 7a is the peak displacement of the
Whittaker solution, equation (4.2), corresponding to detachment at Δ = 0.

The variation of peak height, ϕmax, as a function of tilt for fixed compression is shown in figure 7b.
This too converges to a finite value at the point of detachment, which is well approximated by the
Whittaker solution for this compression. The peak height of a Whittaker profile scales as the square
root of compression Δ, as shown in figure 8.

4.3. Compression and tilt: Airy functions
The Airy function formulation reproduces some of the results fromWhittaker functions, at least qualitatively,
in a much more familiar form. It provides the following approximate solution of the full equation

fðxÞ ¼ c1AiðxÞ þ c2BiðxÞ: ð4:3Þ
Here the variable x is given by

x ¼ t

G2

� ��2=3 1
G 1� tu

G
� �

� 4
� �

, ð4:4Þ

and the constants c1 and c2 are determined from the boundary condition ϕ(0) = ϕ(N) = 0, see appendix E.
The validity of the Airy solution is restricted by the validity of the condition Nt=G � 1 (table 1); all

numerical results in this section conform to that condition.
Figure 9a shows examples of profiles ϕ(u), obtained for fixed values of compression, and several

values of tilt. For small values of tilt τ, the position of the maximum varies linearly with τ (figure 9b).
(The linear variation for small τ was already seen in the numerical solutions of the full equation; see
figure 7a.)

Equation (3.6) (of which equation (4.3) is an exact solution) is linear in ϕ, allowing for a simple scaling
of its solutions to obtain profiles corresponding to different values of compression, Δ. The peak position is
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Figure 7. Results from numerical solutions of the full equation, equation (2.2), for the tilting of a chain under constant compression
(Δ = 0.10). (a) The introduction of tilt leads to a displacement, δumax, of the peak position away from the centre. (For N = 10 as
shown here: δumax = umax− 5.) (b) Variation of peak height with tilt. In each case, the corresponding result of Whittaker
theory (for Δ = 0) is shown by a red square.
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thus only dependent on tilt, but independent of compression. This is shown in figure 9c where we
contrast this behaviour with that of solutions of the full equation.
5. Phase diagram and energy
The results of our investigation can be presented in the form of a phase diagram with axes tilt τ and
compression Δ. The phases that we identified are the straight chain (τc(Δ = 0)), the buckled attached
chain (G . 0), and detached states. All these are marked up in figure 10 for the case N = 10, together
with an indication of the validity ranges of the various analytical solutions for the profiles ϕ(u).

Also indicated in the phase diagram is a straight line (corresponding to constant tilt, τ = 0.025) leading from
the point S (unbuckled tilted chain) to D (buckled chain, at the point of detachment). Knowledge of the
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Figure 9. For small values of both tilt τ, and compression Δ, combinations of Airy Ai and Bi functions reproduce the key feature of
solutions of the full continuum equation, namely displacement of the profile peak away from the centre, in response to the
application of tilt. (a) Profiles for ϕ(u) in terms of Airy functions for fixed compression Δ = 0.1 and varying tilt τ in the range
(0, 0.0045) (for N = 10). (b) Peak displacement δumax (as in figure 7a), as a function of tilt for Δ = 0.1. Blue dashed line:
result from the full equation, equation (2.2). Red solid line: Analytical result involving Airy functions. (c) Peak displacement as
a function of compression for several values of tilt. Blue dashed line from full equation, red solid line: Airy solution.
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compressive force GðDÞ at the elevated end of the chain as a function of compression, Δ, allows
for the computation of the energydifference between two states along that lineusing thework energy theorem

E� ES ¼
ðD
0
GðDÞdD: ð5:1Þ

Figure 11a shows that G decreases with compression and vanishes at Δ≃ 0.795 (for tilt τ = 0.025),
corresponding to detachment. Numerical integration of GðDÞ using the work-energy theorem, equation
(5.1) results in the energy difference E− ES, as shown in figure 11b.

An alternative route to evaluate this energy difference is as follows. The total energy of a line of spheres
has two contributions. Tilting the line away from the horizontal leads to a gravitational energy; it is given by
ES = τN2/2, if the chain is straight (see equation (A 9)). Buckling, i.e. sphere displacement in the transverse
direction, results in a second contribution, associated with the harmonic confining potential. The resulting
expression for the total energy, equation (A 8), is derived in appendix A.
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An equivalent expression for total energy in the continuous formulation is shown in appendix B
(equation (C 4)),

E ≃ 1
8

ðN
0

f2ðuÞ
1þ f2ðuÞ duþ t

ðN
0

uduffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2ðuÞ

q
0
B@

1
CA ≃ D

4
� t

2

ðN
0
uf2ðuÞdu: ð5:2Þ
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This equation allows for the direct computation of the energy from solutions ϕ(u) of the full
continuum equation, equation (2.2). Figure 11b shows that this expression replicates the linear increase
in energy for low compression, i.e. solutions with small values of ϕ.
 lsocietypublishing.org/journal/rsos

R.Soc.Open
Sci.10:230293
6. Outlook
The analysis presented here was stimulated by some simple experiments [1,2,22] and should in turn
provide more systematic investigations. In addition, the generalization of the buckling problem to the
case of elastically deformable spheres (of which bubbles are an obvious case, or hydrogel spheres) has
only been touched upon [1,29]. While it is unlikely to be amenable to the kind of analytic treatment
given here for hard spheres, it must relate to it as a limiting case. Experimentation with bubbles
would also eliminate friction, which may stabilize otherwise unstable structures [2], but is not
included in the theory described here.

A major limitation of the present work is its breakdown at large buckling amplitude, which entails
transitions to states that we have termed ‘doublets’ [23], where second-neighbour contacts arise. One
may then envisage a phase diagram of the type shown in figure 10 which in addition to the straight
and buckled phases also includes the doublet states, and, for soft spheres, a compressed straight
phase. We intend to determine the corresponding phase boundaries in due course.

Finally, all the solutions presented in this paper are lowest energy solutions, corresponding to the
‘ground state’ of the buckled chain. Higher energy solutions exist [23], but were not considered here.

Data accessibility. The computations given in the paper were made using Mathematica. Use the following link to
download the Mathematica file for the relevant computations: https://www.dropbox.com/s/i2uhvxh21ye0u29/
continuumDescriptionOfBucklingSpheresMATHEMATICA.nb?dl=0. This file can be run using Mathematica 13 to
reproduce our calculations. For those without access to Mathematica, we provide a pdf print out of the Mathematica
file: https://www.dropbox.com/s/bc38p4v9g5hwlfq/continuumDescriptionOfBucklingSpheresMATHEMATICA.
pdf?dl=0.

The data are provided in electronic supplementary material [30].
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Appendix A. Modelling the discrete system
In our model, a line of N contacting identical hard spheres is compressed between hard walls, as in figure
12. Displacement of a sphere by a distance Rn away from the central axis results in a transverse restoring
force fn with magnitude k Rn, where k is a force constant.

In experiments with hard spheres, placed at the bottom of a horizontal cylinder, the restoring
transverse force is provided by gravity, as a transversely displaced sphere experiences the curvature of
the cylinder. It can be shown that for the magnitudes of transverse displacements encountered in such
a set-up, the restoring force is approximately linear in this displacement, with a force constant k given
by k = 2 mg/(d−D) [2]. Here m and D are, respectively, sphere mass and diameter, d is the cylinder
diameter, and g is acceleration due to gravity.

We introduce non-dimensional quantities by defining rn =Rn/D, where D is the sphere diameter. The
dimensionless transverse force Fn is defined as Fn = fn/(kD). Inserting for fn leads to Fn = rn; in our non-
dimensional formulation the transverse force Fn acting on a sphere equals its transverse displacement rn,
a positive quantity.

In a line of spheres which is tilted by an angle α with respect to the horizontal, each sphere of mass
m experiences a tilt force mgsinα along the axial direction. In the following, we introduce the

https://www.dropbox.com/s/i2uhvxh21ye0u29/continuumDescriptionOfBucklingSpheresMATHEMATICA.nb?dl=0
https://www.dropbox.com/s/i2uhvxh21ye0u29/continuumDescriptionOfBucklingSpheresMATHEMATICA.nb?dl=0
https://www.dropbox.com/s/bc38p4v9g5hwlfq/continuumDescriptionOfBucklingSpheresMATHEMATICA.pdf?dl=0
https://www.dropbox.com/s/bc38p4v9g5hwlfq/continuumDescriptionOfBucklingSpheresMATHEMATICA.pdf?dl=0
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non-dimensional tilt variable τ by

t ¼ mg sina
ðkDÞ : ðA1Þ

The axial component of the compressive force between contacting spheres depends on the position of
a sphere within the line, according to,

Gn cos un�1 ¼ Gþ tðn� 1Þ, ðA2Þ

from the condition of force equilibrium. G is the magnitude of the compressive force exerted by the wall
on the sphere, n = 1 at the (possibly) elevated end of the line.

Transverse force balance for the displaced nth sphere is expressed as

Fn ¼ Gn sin un�1 þ Gnþ1 sin un ¼ ðGþ tðn� 1ÞÞ tan un�1 þ ðGþ tnÞ tan un, ðA3Þ

and we thus obtain

tan un ¼ Fn � ðGþ tðn� 1ÞÞ tan un�1

Gþ tn
: ðA4Þ

The centres of contacting spheres are separated by their diameter. Hence in our dimensionless
variables the radial distances and forces are given by

Fn þ Fnþ1 ¼ rn þ rnþ1 ¼ sin un: ðA5Þ

Rewritten in terms of ϕn = tanθn, the two iterative equations are thus

fn ¼ Fn�ðGþtðn�1ÞÞfn�1
Gþtn

and Fnþ1 ¼ fnffiffiffiffiffiffiffiffiffi
1þf2

n

p � Fn,

9=
; ðA6Þ

These equations can be used in a shooting method to find solutions for a specified value for G [22,23].
The hard wall boundary condition for sphere n = 1 requires the first angle θ0 to be zero (thus also ϕ0 = 0),
with an arbitrary F1. Using equation (A 6), we proceed iteratively to (Fn+1, ϕn+1). ϕN corresponds to the
contact of the Nth sphere with the wall, which can be made equal to zero (corresponding to θN = 0,
see figure 12) by adjusting the value of G [22,23].

Compression Δ is defined as Δ = (N D− L)/D, where L is the total chain length. This results in

D ¼ N �
XN
n¼1

cos un ¼ N �
XN
n¼1

ð1þ f2
nÞ�1=2: ðA7Þ
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The total energy is given by the sum of the energy due to transverse sphere displacement and the
energy due to tilt,

E ¼ 1
2

XN
n¼1

F2n þ t
XN
n¼0

ðn cos unÞ �N
2

 !
¼ 1

2

XN
n¼1

F2n þ t
XN
n¼0

nffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2

n

q �N
2

0
B@

1
CA, ðA8Þ

where we have used cos un ¼ ð1þ f2
nÞ�1=2. For the case of a straight chain (Fn = 0, θn = 0, ϕn = 0), this

reduces to

Es ¼ tN2

2
: ðA9Þ

Appendix B. Transition to the continuous formulation
In a continuum description both the angle θ (or ϕ) and the transverse force F are functions of a continuous
variable u. The approximate continuum representation of the iterative relations, equation (A 6), may then
be obtained as follows, where for the simplicity of the argument we initially set τ = 0.

Using the first of the iterative equations, equation (A 6), we obtain

Fn þ Fnþ1 ¼ Gðfnþ1 þ 2fn þ fn�1Þ: ðB1Þ
Re-expressing the left-hand side using the second iterative equation results in

fnffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2

n

q ¼ Gðfnþ1 � 2fn þ fn�1Þ þ 4Gfn: ðB2Þ

The term in brackets on the r.h.s. may be identified as a central difference approximation of the
second derivative of a continuous function ϕ(u) with respect to a continuous variable u, evaluated at
u = n. A continuum formulation of this equation is thus given by

f00ðuÞ ¼ �4fðuÞ þ fðuÞ
G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2ðuÞ

q , ðB3Þ

G is the compressive force exerted at both ends of the chain (see appendix A).
As in the discrete formulation, the presence of tilt makes the compressive force between contacting

spheres a linear function of the sphere number. We thus replace the constant G by

GðuÞ ¼ Gþ tu, ðB4Þ
to arrive at

f00ðuÞ ¼ �4fðuÞ þ fðuÞ
GðuÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2ðuÞ

q : ðB5Þ

We will call equation (B 5) the full continuum equation with tilt. This is the differential equation that is the
basis of the continuous description used in this article.
Appendix C. Compression and energy in the continuous formulation
It remains to develop corresponding expressions for compression Δ and energy E, for a given profile ϕ(u).
Compression in the discrete representation is given by equation (A 7); in the continuous formulation
(with ϕ = tanθ), this translates into

D ¼
ðN
0
(1� cosðarctanfðuÞÞ) du ¼

ðN
0
(1� ð1þ f2ðuÞÞ�1=2) du: ðC1Þ

For ϕ(u)≪ 1, consistent with the approximation that is the general basis of the continuous formulation,
we obtain

D ≃ 1
2

ðN
0

f2ðuÞ
1þ f2ðuÞ=2 du ≃ 1

2

ðN
0
f2ðuÞdu: ðC2Þ
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An expression for the energy of a solution ϕ(u) of the continuum equation requires an integral
formulation of equation (A 8). Similar to the transition from ϕn to ϕ(u) we introduce a continuous
function F(u) with respect to a continuous variable u, which corresponds to Fn when evaluated at u =
n. Using the linear interpolation F(u + 1/2)≃ (1/2)(F(u) + F(u + 1), together with equation (A 6) we
obtain an approximate expression for the displacement F(u + 1/2) in terms of ϕ(u),

F2ðuþ 1=2Þ ≃ 1
4

f2ðuÞ
1þ f2ðuÞ : ðC3Þ

Using the expression for the total energy in the discrete case, equation (A 8), we can write its
equivalent for the continuum formulation as

E ¼ 1
2

ðN
1
F2ðuÞduþ t

ðN
0

uduffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2ðuÞ

q
0
B@

1
CA ≃ 1

8

ðN
0

f2ðuÞ
1þ f2ðuÞ duþ t

ðN
0

uduffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2ðuÞ

q
0
B@

1
CA: ðC4Þ

We note that for the case of the straight chain (ϕ(u) = 0 for 0≤ u≤N) this expression reduces to Es = τN2/2,
i.e. the same expression as in the discrete case (equation (A 9)).

For ϕ(u)≪ 1, and correct to order ϕ2, we thus obtain

E ≃ D

4
þ t

2
N2 �

ðN
0
uf2ðuÞdu

� �
, ðC5Þ

where we have used equation (C 2) for compression Δ.
If we approximate ϕ(u) by a triangular profile, equation (C 5) can be evaluated to give the following

expression for the energy difference between straight and buckled chain,

E� Es ≃ D

4
ð1� 2tNÞ, ðC6Þ

to lowest order in compression Δ and tilt τ.
Appendix D. Compression only: properties of Jacobi functions solutions
For values of compression D & 0:3 solutions to the full continuum equation are well approximated by
scaled Jacobi functions, as discussed in detail in [25]. The following provides a summary, together
with two new results related to compression Δ and compressive force G.

For the case of the hard wall boundary conditions considered here, i.e. ϕ(0) = ϕ(N ) = 0, the solution of
the reduced equation in the absence of tilt (τ = 0), equation (3.1), is given in terms of the scaled Jacobi cn
function as

fðuÞ ¼ fmaxcn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðG�1 � 4Þ
ð2m� 1Þ

s
(u�N=2)

������m
0
@

1
A: ðD1Þ

The so-called modulus
ffiffiffiffi
m

p
, is related to the period of the Jacobi functions, with

N ¼ 2KðmÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2m� 1ÞG
ð1� 4GÞ

s
, ðD2Þ

where K(m) is the complete elliptic integral of the first kind.
The peak value ϕmax of the variable ϕ (at u =N/2) is given by

fmax ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m
ð2m� 1Þ ð1� 4GÞ

r
for 0 , m � 1: ðD3Þ

(In [25] the above expressions were written in terms of the quantity κ2, with k2 ¼ G�1 � 4).
For small values of compression, we can derive an analytical expression for the variation of ϕmax with

compression Δ. From equation (C 2), we obtain D ≃ 1=2
ÐN
0 fðuÞ2 du. This integral can be evaluated

analytically for our scaled Jacobi, resulting in

D ¼ f2
max

N
2KðmÞ

EðmÞ þ ðm� 1ÞKðmÞ
m

, ðD4Þ
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where K(m) and E(m) are the complete elliptic integrals of the first and of the second kind, respectively.
By combining equations (D 2) and (D 3), we obtain a solution for m = 1/2, resulting in

D ¼ f2
maxN

Eð1=2Þ
Kð1=2Þ � 1=2
� �

: ðD5Þ

A further analytical result is available for the value of the compressive force G at Δ = 0. At zero
compression, the amplitude ϕmax = 0, requiring the product mð1� 4GÞ to be zero, from equation (D 3).
The case G ¼ 1=4 corresponds to the limit N→∞, a finite value for N thus requires m = 0. Using
equation (D 2), we obtain

GðD ¼ 0Þ ¼ 4� p

N

� 	2� ��1

: ðD6Þ
R.Soc.Open
Sci.10:230293
Appendix E. Relation to the Airy equation
To study the variation of the displacement peak for small compression, Δ, we found it sufficient to
consider a linearization of the full equation, equation (B 5), in both ϕ and τ,

f00 ¼ 1
G 1� tu

G
� �

� 4
� �

f: ðE1Þ

By introducing a linear change of variables from u to x via

x ¼ t

G2

� ��2=3 1
G 1� tu

G
� �

� 4
� �

, ðE2Þ

and renaming ϕ = y we can rewrite this linearized reduced equation as

y00ðxÞ ¼ xyðxÞ: ðE3Þ

This is the Airy differential equation which has analytical solutions in terms of the Airy Ai and Bi
functions,

yðxÞ ¼ c1AiðxÞ þ c2BiðxÞ, ðE4Þ
with constants c1 and c2.

We want to find a solution ϕ(u) which is zero at the two endpoints u = 0 and u =N. Expressed in terms
of y(x) this corresponds to (from equation (E 2)) y(x1) = y(x2) = 0, with

x1 ¼ t

G2

� ��2=3 1
G� 4
� �

and x2 ¼ t

G2

� ��2=3 1
G 1� tN

G
� �

� 4
� �

: ðE5Þ

It remains to fix the constants c1 and c2 in equation (E 4). From the boundary condition y(x1) = 0, we obtain

c2
c1

¼ �Aiðx1Þ
Biðx1Þ ¼ �Aiðx2Þ

Biðx2Þ , ðE6Þ

and we can thus write the solution y(x), equation (E 4), as

yðxÞ ¼ c1 AiðxÞ �Aiðx1Þ
Biðx1Þ BiðxÞ

� �
: ðE7Þ

The constant c1 can be expressed in terms of compression, Δ, as follows.
For ϕ≪ 1 compression, Δ, is given by equation (C 2) as

D ¼ 1
2

ðN
0
f2ðuÞdu ¼ f ðt, GÞ

ðx2
x1
yðxÞ2 dx, ðE8Þ

with the prefactor f ðt, GÞ ¼ ð4� ð1=GÞð1� ðtN=GÞÞÞ=2ðt=G2Þ1=3. For our Airy function solution, equation
(E 4), this integral over y(x)2 can be computed analytically to result in

D ¼ f ðt, GÞ(y0ðx2Þ2 � y0ðx1Þ2): ðE9Þ
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Compression is thus expressed in terms of the slopes y0(x) at the two endpoints, x1, x2. Using our solution
for y(x), equation (E 7), this results in

D ¼ c21f ðt, GÞ Ai0ðx2Þ � Aiðx1Þ
Biðx1Þ Bi

0ðx2Þ
� �2

� Ai0ðx1Þ � Aiðx1Þ
Biðx1Þ Bi

0ðx1Þ
� �2

" #
, ðE10Þ

and thus provides an expression for the constant c1 in terms of compression Δ, tilt τ, compressive force G
and sphere number N. We can revert from y(x) to ϕ(u) via equation (E 2) and thus have obtained an
analytical solution of the linearized reduced equation with tilt, equation (E 1), in terms of these
parameters (figure 9). (Note that from experimenting with Mathematica we find that (for given N) not
all pairs of ðt, GÞ lead to solutions which fulfill the boundary conditions y(x1) = y(x2) = 0, with x1, x2
defined in equation (E 5).)
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