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Abstract: The performance of RC structures might deteriorate with time due to environmental stressors (e.g., 5 
chloride ingress and concrete carbonation), compromising structural safety and social sustainability. Many 6 
studies have shown that probabilistic methods are necessary for the performance and reliability assessment of 7 
deteriorating RC structures, considering the uncertainty of environmental changes and material properties. 8 
However, most previous studies only considered the reliability prediction of deteriorated RC structures at the 9 
design stage. Recent studies proved that the inspection results could significantly reduce the uncertainties in 10 
the life cycle assessment of RC structures. Thus, a hybrid Bayesian network (HBN)-based reliability 11 
calculation framework is developed by integrating durability assessment and mechanical assessment of 12 
deteriorated RC structures. Experimentally validated 2D chloride transport models and analytical models are 13 
used to calculate the durability and mechanical properties of RC beams. Also, different dynamic Bayesian 14 
networks are combined into one HBN to perform Bayesian inference. In addition, a low-discrepancy pseudo-15 
random sequence is utilized in building the HBN to improve the efficiency and accuracy of the modeling. 16 
Finally, to demonstrate the performance and detection results of the framework in the life-cycle reliability 17 
analysis of RC structures, the proposed framework is applied to an illustrative case. 18 
 19 
1. Introduction 20 
To date, Bayesian methods have been widely used for probabilistic inference of reinforced concrete (RC) 21 
structures by updating data collected from monitoring systems or field inspections [1]. However, due to the 22 
complexity of actual RC structures, updating and inferring parameters based on traditional Bayesian methods 23 
would be challenging for practical engineering. Therefore, to update the reliability assessment of RC structures 24 
by probabilistic detection data, a graphical model called Bayesian Network (BN) has been widely used [2,3]. 25 
Tran et al. [4–6] also used static BN (SBN) to determine the parameters and uncertainties of the corrosion 26 
initiation probability of RC structures deteriorated under chloride attack, considering the corrosion of steel 27 
reinforcement due to chloride ingress.  28 

However, SBN cannot take into account the time dependencies of the parameters associated with the 29 
aging of the concrete, the surface chloride concentration, the loading, etc. Consequently, dynamic Bayesian 30 
networks (DBNs) have been proposed to handle BN updates and inference under multiple time slices [7,8]. 31 
For example, Guo and Dong [9] developed a generic DBN framework for assessing the durability of RC 32 
structures exposed to the marine atmosphere. Taking into account the uncertainty of climate change and 33 
chloride transport, such a framework can investigate the effect of the investigated concrete cracks on the 34 
durability of the RC structures. Nevertheless, this DBN framework focuses only on the durability assessment 35 
of RC structures, not their mechanical properties. However, limited to the existing DBN technology, the 36 
complex analysis of the life cycle reliability of RC structures will become a challenge because a large number 37 
of relevant parameters will increase the computational burden exponentially. To overcome the drawbacks of 38 
existing BNs related studies, this study proposed a comprehensive Bayesian network-based framework to 39 
achieve life cycle reliability analysis for RC structures in long-term environmental action. 40 

 41 
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2. Hybrid Bayesian Network for Reliability Assessment 42 
2.1.  General DBN for reliability assessment 43 
The proposed reliability assessment framework for RC structures consists of three main phases: durability, 44 
mechanics, and reliability assessment. In the first phase, the main tasks are to capture the corrosion rate icorr, 45 
the reinforcement radius reduction ∆r, and so on [9]. Next, in the second phase, corroded RC beams are 46 
investigated, where the flexural and shear capacity of each section is analyzed to consider the spatial effects 47 
of chloride-induced reinforcement corrosion [10]. Furthermore, the equivalent loading capacity of RC beams 48 
could be obtained by the minimum value of PMu and PVu. Then, taking into account the external load 49 
distribution, the performance function gu can be captured, where the probability of gu≤0 indicates the failure 50 

probability [10].  51 
According to previous studies [10–12], the critical variables (e.g., the chloride content of concrete surface 52 

csurf, chloride diffusion coefficient Dcref, and cross-sectional areas of tension bars at different section such as 53 
A1

t, A2
t, etc.) can be extracted to form a giant DBN, as illustrated in Fig. 1. DBN generally contains a series of 54 

T time-slice BNs and a set of nodes (i.e., random variables) 𝑋 : 𝑋 ,… , 𝑋 , 𝑖 1, . . . , 𝑇 at different 55 
time instants and its joint probability distribution of all nodes over time T is marked as 𝑃 𝑋 :

:  [8,13]:  56 
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where 𝑃 𝑋 : |𝑋 :   denotes the conditional probability distribution at the i+1-th time slice given the 58 

probability information of nodes at the i-th time slice.  59 
In addition, all continuous nodes must be discretized into discrete nodes to perform exact inference. 60 

Meanwhile, the conditional probability distribution of each node is transformed into conditional probability 61 
mass functions (PMFs), expressed by conditional probability tables (CPTs). Representative samples based on 62 
performance evaluation models of RC structures need to be selected to construct CPTs for each node, whose 63 
main algorithms refer to [11]. In practical BN inference, a frontier algorithm is used to reduce the difficulty of 64 
DBN inference [8]. 65 

 66 

Fig. 1 DBN for reliability estimation of RC structures subjected to chloride ingression (Blue, red, and green zone denote the 67 
durability, mechanics, and reliability assessments, respectively) 68 

 69 
2.2. HBN: simplification of DBN 70 
Although existing strategies could simplify the difficulty in DBN modeling [2,3], the direct implementation 71 
of such a DBN framework is computationally challenging due to the large number of parameters associated 72 
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with different models. Thus, a Hybrid Bayesian Network (HBN) is proposed in this study, as shown in Fig. 2. 73 
Each node in the HBN denotes a sub-DBN and its output nodes. These variables are shared nodes for adjacent 74 
sub-DBNs. Given the inspection results of corrosion-induced crack width ω in the DBNs of 'icorr' and '∆r', the 75 
PMFs of the nodes of icorr and ∆r can be updated. Then, the nodes of icorr and ∆r act as inspection nodes in the 76 
DBNs of 'PMu' and 'PVu'. Meanwhile, the updated PMFs of icorr and ∆r become posterior distributions, i.e., soft 77 
or uncertain evidence [14,15]. The above procedure is also applied to nodes PMu and PVu for reliability update 78 
and evaluation. Besides, an effective strategy is to perform soft evidence-based BN inference to achieve the 79 
above process. The node discretization, the CPT computation, and the inference algorithms of the HBN are 80 
identical to those of the DBN in Section 2.1.  81 

 82 

Fig. 2 HBN for reliability assessment of RC structures subjected to chloride ingression 83 

 84 
3. Reliability assessment models 85 
3.1.  Durability assessment 86 
Realistic modeling of environmental parameters, such as temperature (T), relative humidity (RH), and chloride 87 
deposition, is essential for the durability assessment. Therefore, an environmental model is employed including 88 
seasonal fsea and daily variability fdai, an increasing trend finc, and a random noise ξ, as shown in Eq.(2) [16,17]. 89 

        sea dai inc, ,f ec t f t f t f ec t       (2) 90 

where t is the current time (day); and ec is the characteristic value of exposure conditions. Given the boundary 91 
conditions provided by Eq.(2), the chloride ingress process into concrete could be simulated by the following 92 
equation [17]:  93 

 
2 2
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 (3) 94 

where Cfc is free chloride content (kg/m3 of pore solution); and Dc
* and Dh

* are the apparent diffusion 95 
coefficients of chlorides and moisture (m2/s), respectively. In this stud, Eq. (3) is solved by finite difference 96 
method (FDM) to capture the chloride content of the reinforcement surface cbar [18]. When cbar is beyond 97 
critical value ccr, reinforcement corrosion start, and the corrosion rate is assessed by [19]: 98 

 
 corr bar
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where icorr(t) is the corrosion current density (μA/cm2); Tcon (K) and Rcon (Ohms) are the temperature and 100 
resistance within the concrete; tcorr (year) is the time after corrosion; and 𝜛 is a random variable N(0, 0.3312) 101 
[16]. Besides, the corrosion-induced crack width ω (mm) is evaluated by an empirical model [20]: 102 
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   (5) 103 

where d0 is the initial diameter of steel bars; and Aave(t) is the average residual cross-sectional area of the 104 
corroded steel bar;.ΔAs0 is the reduction of the cross-sectional area once concrete cracks; and ct (mm) is the 105 
thickness of the concrete cover. 106 
 107 
3.2.  Mechanical capacity assessment 108 
A simply supported corroded RC beam is investigated. The total and effective length, cover thickness, and 109 
stirrup spacing of this beam are denoted as l, left, c, and sv, respectively. Considering spatial variability in the 110 
mechanical capacities of corroded RC beams, the beams are separated into m zones concerning the spatial 111 
effects of non-uniform corrosion [21,22]. The corrosion non-uniformity factor R quantifies the non-uniform 112 
reinforcement corrosion following the Gumbel distribution [10,17,21]. 113 

      ave minR t A t A t  (6) 114 

Based on the assumptions of planar sections and perfect bond behavior, their flexural capacities Mu,k(t) 115 
and shear bearing capacity Vk(t) at each zone can be calculated by Eqs.(7) and (8), respectively [10,21,23]. 116 
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where b, h, and h0 are the cross-sectional width, total height, and effective height, respectively; fc is the concrete 119 
compressive strength (MPa); fy0 is the yield strength of uncorroded tension bars; At

k(t) is the equivalent cross-120 
sectional area of tension bars in the k-th zone [21]; ft is the concrete tensile strength; λs is the shear-to-span 121 
ratio; fyv0 is the yield strength of uncorroded stirrup bars; nsv is the number of stirrup legs; At

k(t) is the equivalent 122 
cross-sectional area sum of stirrup bars in the k-th zone; and 𝐴 , , 𝑡  (k=1, 2, ..., m; w= 1,2, ..., nsv) is the 123 

minimum cross-sectional area (mm2) of the w-th stirrup bar of the k-th zone. 124 
 125 
3.3.  Time-dependent reliability assessment 126 
To implement time-dependent reliability analysis, the performance functions g(𝜽, t) is built given ultimate 127 
limit state (ULS), and corresponding to critical load Pu:  128 
 ( , ) ( , ) ( , )u ug t P t S t      (9) 129 

in which 𝜽 is the vector of all input variables; and Pu (𝜽, t) and S (𝜽, t) are the ultimate capacities and external 130 
load at a given instant t and 𝜽, respectively. In addition, considering the first passage issue, the time-dependent 131 
failure probability pf,u(t) could be described as the probability that gu(𝜽, t) reaches the critical value within an 132 
investigated time interval [0,t], i.e., Eq.(10). In BN based reliability, pf,u(t) is computed by the PMF of binary 133 
distributed gu(𝜽, t).  134 

     , ( ) Pr , 0, 0,f u up t g t     (10) 135 

4. Numerical case 136 
To illustrate and study the efficiency of the developed framework, it is assumed that a simply supported RC 137 
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beam with a cross-section of 150 × 300 mm has been located on the west coast of the Yellow Sea since 2010 138 
[17]. The parameters of the beam geometry and reinforcement layout are listed in Table 1. Furthermore, Table 139 
2 lists the distribution types and parameters of isolated parent nodes in all sub-BNs.  140 
Table 1 Geometry parameters and reinforcement of RC beams 141 

Parameters Value Parameters Value 

Total length l 5400 mm Effective length left 5000 mm 
Effective section height h0 275 mm Stirrup spacing sv 250 mm 
Section width b 150 mm Number of tension bars nt 3 
Initial diameter of tension bars dt0 20 mm Number of compression bars nt' 2 
Initial diameter of compression bars dt'0 12 mm Number of stirrup bars nsv 2 
Initial diameter of stirrup bars dsv0 6 mm Number of zones m 20 

 142 
Table 2 Distribution types and values of parent nodes in HBN 143 

Parameters Distribution μ δ Ref 

Baseline of chloride deposition csurf0 (wt% of cement) Gaussian 0.65 0.1 [17] 
Reference coefficient of chloride diffusion D0(10-11 m2/s) Lognormal 1.6 0.1 [24] 
Cover thickness c (mm) Gaussian 25 0.05 [25] 
Critical chloride content ccr (wt% of cement) Lognormal 0.4 0.1 [26] 
Resistance of concrete cover Rc(kΩ) Lognormal 25 0.1 [16] 
Compressive strength of concrete fc (MPa) Gaussian 25 0.15 [26] 
Yield strength of longitudinal bars (MPa) Gaussian 360 0.05 [27] 
Yield strength of stirrup bars (MPa) Gaussian 220 0.05 [28] 

Note: μ and δ are the lower and upper bounds for the uniform distribution value, while μ and δ are the mean and coefficient of variation (COV) for other distributions. 144 

4.1. HBN establishment 145 
The priori information of all nodes in the HBNs needs to be determined through representative samples. Thus, 146 
the good lattice points-based point selection method is employed to generate 610 representative samples based 147 
on the distribution information in Table 2 [11,29]. To reduce the analysis burden, the number of time slices, 148 
nodes, and links in HBN is appropriately reduced. Consistent with previous studies [11], the time intervals and 149 
the number of time slices are preset to 3 years and 18, and the number of discrete statuses for each node is set 150 
to 8 except for node gu. Since RC beams are separated into m zones, there are a large number of random 151 
variables associated with the cross-sectional area of the corroded reinforcement (Ak

t and Ak
s, k=1, 2, ..., m). 152 

Thus, sensitivity analysis is implemented to investigate the contributions of each spatial zone to the mechanical 153 
performance of RC beams. As illustrated in Fig. 3, the probability of ULS occurrence in each zone is calculated 154 
based on 610 representative samples over 50 years. As shown, flexural failure events are concentrated at the 155 
mid-span of the RC beam. In contrast, the shear damage events are concentrated near the supports of the RC 156 
beam, which is consistent with mechanical behavior [30,31].  157 

 158 

Fig. 3 Probability distribution of ULS occurrence caused by non-uniform corrosion over 50 years 159 

Besides, according to the sensitivity results, the 9th to 12th zones (i.e., A9
t to A12

t) are of interest for 160 
flexural failure, and the 1st and 20th zones (i.e., A1

s and A20
s) are of interest for shear failure. All nodes in 161 

HBNs are discretized into discrete nodes, and their CPTs are computed accordingly [11]. 162 
 163 
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4.2. Inference results 164 
The width ω of corrosion-induced concrete crack could be detected at several inspection instants (e.g., 3, 12, 165 
21, 30, and 39 years). Also, possible inspection results of corrosion-induced concrete crack width ω (mm) are 166 
assumed: 𝜔1∈ [0, 0.1], 𝜔2 ∈ [0.2, 0.3], and 𝜔3∈ [0.5, 0.6] [11]. The HBN is used to infer critical parameters 167 
of the structural performance of RC beams subjected to different inspections. For the sake of the comparisons, 168 
the mean of discrete nodes is used and calculated by Eq. (11) [11].  169 

      1
1

0.5
xn

k k x
k

E x d d P k


     (11) 170 

in which [d1, d2, …,𝑑 ] is the discretization scheme of the target node x; and Px(k) is the PMF of x at its k-171 

th interval. Fig. 4 displays the mean values of PMu and PVu under different inspection results, where the mean 172 
value of PMu over time is higher than PVu. As shown, the mean values keep decreasing with time, and those of 173 
PMu and PVu with the 3rd year inspection of 𝜔2 decrease the fastest among all scenarios, with maximum 174 
reductions of 9% for PMu and PVu compared to no inspection. Besides, for the 21st-year inspection, the mean 175 
values of PMu and PVu decreased much more slowly than in other scenarios, with a maximum increase of 7% 176 
and 5% for PMu and PVu compared to no inspection. The above results indicate that early inspection of 177 
moderate-width cracks significantly reduces the mean value of the load capacity.  178 

 179 

Fig. 4 Mean of PMu and PVu subject to different inspection results: (a) PMu; and (b) PVu 180 

In addition, Fig. 5 presents that the effects of inspection results on pf,u are significant. For instance, given 181 
the 3rd year inspection of 𝜔2 and 12th year inspection of 𝜔3, pf,u is maximum 2.11×105% and 1.67×105% 182 
higher than no inspection. Besides, given the inspections of crack width, pf,u decreases with the inspection time. 183 
For instance, pf,u with a 3rd-year inspection of 𝜔1 is maximum 22% lower than no inspection, and pf,u with a 184 
30th-year inspection of 𝜔1 is maximum 95% lower than no inspection. Besides, compared to no inspection, 185 
pf,u with the 12th-year inspection of 𝜔2 is maximum 1.6×104 % higher, while pf,u with the 30th-year inspection 186 
of 𝜔2 is maximum 73% higher.  187 
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 188 
Fig. 5 Time-dependent failure probability pf,u of the beam considering on ULS and different inspection results 189 

 190 
5. Conclusion 191 
This study proposed an HBN-based framework for the reliability estimation of corroded RC structures subject 192 
to chloride ingress. The reliability analysis for RC beams under marine atmospheric environment is utilized to 193 
illustrate the proposed framework, and the following conclusion can be drawn: 194 
(1) Inference results of MBN prove that the proposed framework could use the results of inspections to update 195 
the probabilistic distribution of mechanical capacity and performance functions over time.  196 
(2) For load capacities, results indicate that early inspection of medium-width cracks decreases the mean 197 
values of load capacities by about 9%. In comparison, the small-width cracks raise the mean values of load 198 
capacities by about 5 to 6%. 199 
(3) Considering ultimate limit states, an early inspection of the high level of corrosion-induced cracks might 200 
dramatically increase the failure probability by about 2×105%, and later inspection of small corrosion-induced 201 
cracks might decrease the failure probability by about 95%  202 

In summary, it is practical to use the proposed HBN framework for the reliability assessment of RC 203 
structures developed. 204 
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