
14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14 
Dublin, Ireland, July 9-13, 2023 

 1 

Optimal risk-based design of a RC frame under column loss 
scenario 

Lucas da Rosa Ribeiro 
PhD Student, Dept. of Structural Engineering, University of São Paulo, São Carlos, Brazil 

Henrique Machado Kroetz 
Professor, Center for Marine Studies, Federal University of Paraná, Pontal do Paraná, Brazil 

Fulvio Parisi 
Professor, Dept. of Structures for Engineering and Architecture, University of Naples Federico II, 
Naples, Italy 

André Teófilo Beck 
Professor, Dept. of Structural Engineering, University of São Paulo, São Carlos, Brazil 

ABSTRACT: Structural systems may be subject to abnormal loads with small probability of occurrence 
but great intensity, which may lead to local damage, and even loss of loadbearing elements. In this 
context, it is important to design structural systems to avoid disproportionate progressive collapse. In this 
paper, we address the optimal risk-based design of a simple RC frame subjected to sudden loss of an 
internal column. The optimization targets compressive arch, Vierendeel and catenary actions under 
column loss condition, also considering both serviceability and ultimate failure modes under normal 
loading conditions. Since initial damage is associated with large uncertainties, the column loss 
probability is treated as an independent parameter in the optimization. The numerical model employed 
in the analysis combines physical and geometrical non-linearities. Steel rebar behavior is represented by 
an elastoplastic model with isotropic hardening, whereas confined concrete is simulated via a 
combination of Mazars μ model with the modified Park-Kent model. Failure probabilities are evaluated 
by weighted average simulation, and the risk optimization is performed using the Firefly algorithm. 
Kriging metamodels of limit states and reliability indexes are employed to cope with the high 
computational burden. Results show two quite different optimal configurations for beams and columns 
of the frame: a more conventional design is obtained under small column loss probability, whereas the 
optimal solutions clearly benefit from catenary action under large column loss probability since enough 
ductility is provided in terms of ultimate steel strain. These results confirm, in a more practical setting, a 
previous outcome by the authors that the column loss probability is the main parameter controlling 
optimal design of the frames. The transition between optimal solutions mentioned above can be 
associated with a threshold column loss probability, above which designing or strengthening the structure 
to withstand column loss becomes cost-effective. 

1. INTRODUCTION 
Structural disasters due to extreme events raised 
awareness about the need for robust design 
against disproportionate failure due to abnormal 
loads. Progressive collapse happens when an 
initial member failure triggers the failure of its 
adjacent elements, in resemblance to a cascade 

effect, resulting in a final collapse much more 
severe in comparison to the initial event. The 
probability of structural collapse ܲ[ܥ]  due to 
multiple hazards is given as (Ellingwood 2006; 
2007): 

[ܥ]ܲ    = ∑ ∑ ,ܦܮ|ܥ]ܲ ௅஽ு[ܪ]ܲ [ܪ|ܦܮ]ܲ [ܪ   (1) 
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with ܲ[ܪ]  being the probability of hazard 
occurrence; ܲ[ܪ|ܦܮ]  is the conditional 
probability of local damage for a hazard ܪ; and 
,ܦܮ|ܥ]ܲ [ܪ  is the conditional probability of 
collapse for a local damage ܦܮ and hazard ܪ.  

Beck et al. (2020; 2022) uses this formulation 
considering ܲ[ܪ|ܦܮ] ܲ[ܪ] as the probability of 
local damage ௅ܲ஽ , combining column loss and 
intact structure scenarios in a single objective 
function in order to study the cost-benefit of 
considering column loss situations for usual civil 
engineering structures.  

This framework is adopted by Ribeiro et al. 
(2022) in the risk-based optimization of a 
reinforced concrete (RC) frame subjected to the 
sudden removal of its middle column at its first 
story. Since small ductility is considered in terms 
of ultimate steel strain, optimal design against 
progressive collapse consists in enhancing the 
compressive arch action (CAA) mechanism of the 
beams with a slightly increase in the column’s 
robustness. Hence, with beam’s rebar rupture 
occurring either at the instability stage after CAA 
(snap-through) or right at the beginning of 
catenary action (CA), the optimal reinforcement 
decision consists in ensuring that the beam spans 
adjacent to the removed column does not 
surpasses its CAA peak strength, otherwise rebar 
rupture can barely be prevented. 

However, several authors have shown that 
CA can increase the ultimate structural resistance 
for load and displacement values significantly 
greater than those for CAA capacity, being a 
resourceful last line of defense against 
progressive collapse (Adam et al. 2018; Yi et al. 
2008; Lew et al. 2014; Yu and Tan 2013; Sasani 
et al. 2007; Parisi and Scalvenzi 2020). In order to 
investigate how the benefits of every main 
resisting mechanism affects the optimal risk-
based design of a RC frame, an increased ultimate 
steel strain is herein adopted to also ensure rebar 
failure for later stages of CA. 

2. METHODOLOGY 
The RC planar frame considered in this study is 
shown in Figure 1.  

      (a) 
 

 
       (b) 

 

 
Figure 1: RC frame front view (a) and plan view (b). 

 
Span length for beams and columns are 4 m 

and 3 m, respectively. All structural elements 
have cross section width of 200 mm, concrete 
cover of 25 mm, stirrup diameter of 6 mm, 
concrete compressive strength ௖݂

ᇱ  of 45 MPa, 
modulus of elasticity ܧ௖ of 35.5 GPa and concrete 
tensile strength ௖݂௧௠ of 3.33 MPa. Each member 
has longitudinal rebars with yielding strength ௬݂ 
of 511 MPa and modulus of elasticity ܧௌ equal to 
212 GPa. Columns have a spacing between 
stirrups of 100 mm along its entire length. 

It is considered 7.0 kN/m² for both dead load 
and live load, with an additional 2.0 kN/m due to 
non-structural components over the beams. Since 
floors are one-directional, this leads to a nominal 
dead load ܦ௡ of 16 kN/m and live load ܮ௡ of 14 
kN/m.  

4 m 4 m 4 m 4 m 

4 m 4 m 4 m 4 m 

3 m 

3 m 

4 m 

4 m 

4 m 



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14 
Dublin, Ireland, July 9-13, 2023 

 3 

The 6 design parameters to be optimized are: 
beam depth (ℎ஻); area of top and bottom beam 
reinforcements (்ܣ and ܣ஻); stirrup spacing at the 
beams (ݏ௧ ); reinforcement area at the columns 
 and column cross section depth (ℎ௉). These (௉ܣ)
parameters are considered as random variables, 
with only their mean value being optimized. No 
discontinuities are considered along the length of 
the elements, and the same optimal design for 
beam and column is attributed to every beam and 
column, respectively. 

2.1. Risk optimization 
The risk optimization problem follows the 
framework proposed by Beck et al. (2020; 2022), 
but adapted to the RC frame studied herein: 

ா்ܥ  = ெܥ + ௘௙ ூ,ௌாܥ + ௘௙ ூ,஻ாܥ +  

௘௙ ூ,ௌுܥ +  + ௘௙ ூ,ி஺ܥ + ௘௙ ஼௅,ௌோܥ + (2) 

௘௙ ஼௅,ௌுܥ +  +   ௘௙ ஼௅,ி஺ܥ

where ்ܥா is the frame total expected cost; ܥெ is 
the manufacture cost; ܥ௘௙ refers to expected cost 
of failure; and subscripts ܫ  and ܮܥ  stands for 
intact and column loss scenarios, respectively.  

Besides several failure modes being able to 
occur for both scenarios, a handful of the most 
representative ones are chosen. For intact 
structure it is considered serviceability failure in 
terms of maximum displacement of the beams 
 bending failure at the midspan of the beams ;(ܧܵ)
-and flexo ;(ܪܵ) shear failure at the beams ;(ܧܤ)
axial compression failure for the columns (ܣܨ). 
Missing column scenario considers the ultimate 
failure modes of tensile rebar fracture in catenary 
action (ܴܵ) , shear failure at beams (ܵܪ)  and 
flexo-axial compression of columns (ܣܨ). 

SINAPI (2022) database is adopted to 
estimate ܥெ  in Reais (R$), which is then 
converted to Euros (€) considering 1.00 € equal to 
R$ 5.50. Construction cost ܥெ  is composed by 
cost of formwork, obtainment of concrete, 
pouring of concrete, obtainment of steel rebars, 
and placing of steel rebars.  

For a given failure mode, the expected cost 
of failure ܥ௘௙  is given by the product of a cost 

multiplier ݇  times ܥெ  times the probability ௙ܲ 
that the considered failure mode occurs. Thus, for 
column removal scenarios, the probability of local 
damage ௅ܲ஽   also multiplies ݇ × ெܥ × ௙ܲ . The 
multipliers ݇ are chosen according to the order of 
severity of each failure mode and regarding the 
real-life ratio between the cost of the building and 
the cost of reconstruction after failure (Beck et al. 
2020; 2022). Therefore, ݇ is assumed equal to 5 
for ܵ20 ,ܧ for 30 ,ܧܤ for ܴܵ, and 60 for the brittle 
and severe failure modes ܵܪ and ܣܨ. 

Considering ࢊ = {ℎ஻, ,஻ܣ ்ܣ , ௧ݏ , ,௉ܣ ℎ௉} as a 
vector of random design variables within a design 
domain ࣞ , the cost-benefit analysis is done by 
solving the optimization problem given by: 

 find ࢊ∗ 

 which minimizes ்ܥா(ࢊ)  (3) 

 subject to ࢊ ∈ ࣞ 

The meta-heuristic firefly algorithm (FA) is 
used for the risk optimization process due to its 
efficiency for highly nonlinear problems and its 
simple formulation (Yang 2008; Yuan-Bin et al. 
2013). Initially, a total of 9000 fireflies are 
generated over the entire design domain, and only 
the 100 brightest are kept in further 100 iterations. 
The light absorption coefficient ߛி஺ is kept equal 
to zero, ensuring that all fireflies are able to see 
each other and thus favoring the convergence to 
the global optima. The attractiveness coefficient 
଴ߚ

ி஺ is set proportional to the brightest firefly, and 
the randomization coefficient ߙி஺  is set to 0.2 
over all iterations. 

2.2. Reliability analysis 
The weighted average simulation method 
(WASM), proposed by Rashki et al. (2012), is 
used to estimate the failure probabilities ௙ܲ. This 
is a very appropriate technique for optimizing 
random design variables since estimating ௙ܲ 
depends only on the indicator function ܫ(࢞) and 
the weight index ܹ(࢞)  for ݊௦௣  sample points, 
with ࢞  being the random variable vector. 
Therefore, changing the mean value of the 
candidate for optimal design only requires the re-
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evaluation of the weight index ܹ(࢞) , thus 
allowing the usage of the same sample over the 
entire process. 

 ௙ܲ =
∑ ூ(࢞ೖ) ௐ(࢞ೖ)

೙ೞ೛
ೖసభ

∑ ௐ(࢞ೖ)
೙ೞ೛
ೖసభ

 (4) 

Table 1 shows details for all random 
variables (RVs) herein considered. A sample with 
8 million points is used to estimate every ௙ܲ for 
2000 optimal candidates, which are generated via 
Latin Hypercube Sampling over ࣞ. These optimal 
candidates are used to elaborate a metamodel for 
every ߚ = ଵ൫ିߔ− ௙ܲ൯, reducing even further the 
computational burden to compute ்ܥா. 

 
Table 1: Uncertainty modelling. 

RV Distr. Mean CoV 
Beam depth 

(ℎ஻) Normal To be 
optimized 0.01 

Bottom beam 
reinf. (ܣ஻) Normal To be 

optimized 0.05 

Top beam 
reinf. (்ܣ) Normal To be 

optimized 0.05 

Stirrup 
spacing at 
beams (ݏ௧) 

Normal To be 
optimized 0.05 

Column 
depth (ℎ௉) Normal To be 

optimized 0.01 

Column 
reinf. (ܣ௉) Normal To be 

optimized 0.05 

Concrete 
strength Lognormal 45 MPa 0.12 

Yielding 
strength Normal 511 MPa 0.05 

Concrete    
self-weight Normal 25 kN/m³ 0.05 

Ultimate 
steel strain Normal 0.20 0.14 

Dead load Normal 1.05 ܦ௡ 0.10 
50-year live 

load Gumbel 1.00 ܮ௡ 0.25 

Arbitrary 
point in time 

live load 
Gamma 0.25 ܮ௡ 0.55 

Model error Lognormal 1.107 0.229 

2.3. Structural analysis 
The position-based finite elements (FE) of 2D 
layered beams proposed by Coda and Paccola 
(2014) are used herein. Each beam span is 
discretized into 15 FE with a fifth-degree of 
approximation, and each column into 3 FE with 
the same degree. A total of 15 layers with 1 
integration point each is used to discretize the 
cross-sections, being 13 for concrete and one for 
each rebar reinforcement.  

Steel rebar behavior is represented by a 
uniaxial model of isotropic hardening. As for 
concrete, μ-Model (Mazars et al. 2015) is used to 
represent its damage evolution and unilateral 
behavior. Stirrups cannot be explicitly considered, 
but its influence over concrete ductility is 
regarded by considering the resulting uniaxial 
curve from the Modified Park-Kent Model (Park 
et al. 1982) to automatically calibrate the μ-Model 
parameters for each sample point. 

Two structural analyses are performed for 
every sample point: one for the intact structure, 
where an increasing uniform load is applied over 
each beam span; and one for the column loss 
scenario, where the uniform load is increased only 
over the beam spans directly affected by the 
sudden column removal.  

For intact structure it is obtained: the uniform 
load corresponding to a maximum mid-span 
displacement of 7 mm; the uniform load that leads 
to its ultimate beam bending moment; the greatest 
observed shear force at the beams; and the 
maximum acting axial force and bending moment 
at the columns. As for column loss scenario it is 
obtained: the uniform load that leads to the tensile 
rebar rupture; the uniform load correspondent to 
the CAA peak; the greatest observed shear force 
at the beams until CAA; and the maximum axial 
force and bending moment at the columns. Due to 
symmetry in the structural geometry and loading 
conditions, only half of the structure is modelled 
for both scenarios. 

Dynamic effects due to the sudden column 
removal are regarded conservatively by a 
dynamic amplification factor of 2.0 multiplying 
the applied load when evaluating the limit states. 
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2.4. Metamodeling 
Kriging is used to create simplified, yet 

accurate, models for the limit states evaluation 
and reliability indexes in order to perform the risk 
optimization with a significantly reduced 
computational cost.  This technique is used due to 
its known efficiency and robustness for structural 
reliability problems and its great performance at 
multi-dimensional level (Kroetz et al. 2017; 
Kaymaz 2005). 

A sufficient number of support points ݊ௌ  is 
required to make the metamodel accurate in 
comparison to the original. The base of functions 
chosen to generate the simplified model is a cubic 
polynomial with all possible crossed terms. Also, 
the non-isotropic hyperparameters ࣂ  are 
calibrated by the minimization of the reduced 
likelihood function proposed by Dubourg (2011) 
via Firefly Algorithm: 

ࣂ        = arg min
௡ഇ ∋ ࣂ

ℒ(ࣂ)  (5) 

with ℒ(ࣂ) =  ଵ/௡ೞ; ݊ఏ is the number|(ࣂ)ܴ| (ࣂ)ଶߪ
of hyperparameters coordinates to be evaluated; 
 is a (ࣂ)ܴ is the metamodel variance; and (ࣂ)ଶߪ
matrix containing the correlation between pairs of 
support points. 

3. RESULTS 
Table 2 shows the optimal risk-based design for a 
scenario of intact structure ( ௅ܲ஽ = 5 × 10ି଺) and 
for progressive collapse ( ௅ܲ஽ = 1).  

 
Table 2: Optimal risk-based design solutions. 

Parameter Scenario 
Conventional Column loss 

ℎ஻ (mm) 350 320 

 ஻ (mm²) 263ܣ
(~2ϕ10 + 1ϕ12) 

653 
(~2ϕ20) 

 220 (mm²) ்ܣ
(~2ϕ12) 

266 
(~2ϕ12) 

 ௧ (mm) 275 165ݏ

 ௉ (mm²) 440ܣ
(~4ϕ12) 

590 
(~4ϕ14) 

ℎ௉ (mm) 280 285 
 ெ (€) 3461.96 4136.75ܥ
ா்ܥ  (€) 3488.25 4181.01 

For intact structure, serviceability failure is 
dealt with considering a great ℎ஻  with small ܣ஻ 
and ்ܣ, ensuring an optimal moment of inertia in 
terms of the individual material costs, expected 
cost of failure, and safety. Since beam bending is 
considered only at the midspan, only ܣ஻  has an 
optimal value above lower bound adopted for 
rebar reinforcement ( ~2ϕ12 ). Shear failure is 
dealt with considering a combination of great ℎ஻ 
and large spacing ݏ௧ between stirrups. Even 
though a reduced ℎ஻ with more stirrups (smaller 
 ௧) can lead to a similar performance against shearݏ
failure, greater ܣ஻ and ்ܣ would be necessary to 
avoid serviceability and bending failures, leading 
to a greater cost for similar safety levels. Hence, 
an increased ℎ஻  is chosen due to it being 
advantageous for all adopted beam failure modes, 
allowing smaller longitudinal and transversal 
reinforcement ratios for the beams and leading to 
a minimal ்ܥா . Columns have an optimal depth 
ℎ௉  of 280 mm with the minimal rebar area ܣ௉ 
considered for such members (~4ϕ12). Similar 
safety against column failure is also possible with 
minimal ℎ௉ and greater ܣ௉, but this combination 
is not efficient in terms of ܥெ due to the relative 
costs of concrete and steel.  

Progressive collapse has a slightly reduced 
ℎ஻, increased rebar reinforcement (mostly ܣ஻), a 
significantly reduced ݏ௧  for the beams, and an 
overall increase in the column’s robustness. 
Reducing ℎ஻ serves two purposes: it gets bottom 
and top rebars closer, which reduces their stress 
differences at CA and enhances its ultimate 
capacity; and reduces de CAA peak, leading to a 
smaller shear force acting over the beam. Yet, 
both longitudinal and transversal ratios have to be 
increased in order to ensure safety against steel 
rupture and shear failure. As for the columns, they 
have to get slightly more robust in order to sustain 
the increased axial forces and bending moments 
due to beams being able to reach greater ultimate 
capacity at CA, which can stress the columns 
beyond the capacity of their usual design. Hence, 
weak columns may compromise progressive 
collapse mitigation even if CA is able to be fully 
developed over the double-span. 



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14 
Dublin, Ireland, July 9-13, 2023 

 6 

Table 2 also shows that ்ܥா  is slightly 
greater than ܥெ  for both intact and progressive 
collapse scenarios, meaning that all failure modes 
are satisfactorily mitigated in terms of expected 
cost of failure ܥ௘௙. In contrast, this is not observed 
in Ribeiro et al. (2022) for progressive collapse 
failure modes, which happened due to a lack of 
ductility for steel reinforcement being considered. 
Hence, ensuring that ductility is provided to also 
allow a full development of CA is better, in terms 
of ்ܥா , than relying only on flexural, Vierendeel 
and CAA mechanisms. 

Figures 2 and 3 show the reliability index ߚ∗ 
and expected cost of failure ܥ௘௙

∗ , respectively, at 
the optimal design for each failure mode as ௅ܲ஽ 
increases. This covers scenarios where occurrence 
of an initial local damage due to a triggering event 
is very unlikely and also those of certain event.  It 
should be noticed that for column loss scenario ߚ 
refers to the conditional probability of the failure 
mode occurrence multiplied by ௅ܲ஽. 
 
 

 
 

 

 
Figure 2: Optimal reliability indexes for failure modes 
of intact structure (a) and column loss scenario (b). 

(a) 

 
(b) 

 
Figure 3: Optimal expected cost of failure for intact 
structure (a) and column loss scenario (b). 

 
For conventional design, Figure 2a shows 

that optimal reliability indexes are 3.20 for 
serviceability, 3.70 for beam bending failure, 4.10 
for shear failure and 4.70 for column failure. Since 
greater cost multipliers ݇ are adopted to represent 
the increased severity of shear and column 
failures, the optimization algorithm increases the 
safety margin against these severe modes in order 
to ensure economy. Hence, the best balance 
between safety (increasing ܥெ ) and economy 
(reducing ܥ௘௙ ) is found. This is also true for 
progressive collapse design, with only enough 
safety margin ( ߚ ≈  3.10) against steel rupture 
being kept and greater safety being imposed for 
shear and column failures (Figure 2b). 

As shown in Figure 3, the sudden change in 
optimal design after ௅ܲ஽ = 10ିଷ happens due to 
increasing expected costs of rebar rupture as ௅ܲ஽ 
grows. This coincides with a reducing reliability 
index for this failure mode as ௅ܲ஽  increases, 
reaching 3.10 at ௅ܲ஽ = 10ିଷ (Figure 2b).  

(a) 

(b) 
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Following Beck et al. (2022), ௅ܲ஽ = 10ିଷ is 
a threshold local damage probability ௅ܲ஽

௧௛ , after 
which it is better, in terms of the safety x economy 
balance, to actually consider a column loss 
scenario when designing. Adding reinforcement 
to mitigate steel fracture increases ܥெ, but using a 
conventional design for ௅ܲ஽ > 10ିଷ  leads to a 
probability of steel rupture so great that the 
resulting ܥ௘௙  becomes much superior than the 
necessary cost of reinforcement to avoid it. 

In addition, optimal design for progressive 
collapse also leads to greater safety margins for 
the intact structure failures modes as well. Figure  
2a shows that for ௅ܲ஽ > ௅ܲ஽

௧௛ there is a significant 
increase in safety for beam bending and 
serviceability failures due to an increasing rebar 
reinforcement. Column safety at intact scenario 
increases since for greater ௅ܲ஽ they are designed 
to withstand greater axial forces and bending 
moments. Shear failure for the intact structure 
initially has a decrease in safety (Figure 2a) and a 
increase in its ܥ௘௙ (Figure 3a), which is due to the 
reduction of ℎ஻  (to enhance CA capacity) being 
greater than the immediate reduction of ݏ௧  (to 
avoid shear failure). However, as ௅ܲ஽ gets close to 
 ௘௙ for shear failureܥ ௧ reduces faster, keepingݏ ,1
close to zero for both scenarios. 

It should be noticed that at ௅ܲ஽
௧௛ only the beam 

optimal design shows a significant change in 
order to mitigate progressive collapse. Increase in 
column robustness happens later, at ௅ܲ஽ = 10ିଶ, 
with reliability index for column failure reaching 
a minimum of 3.90 (Figure 2b). As ௅ܲ஽ increases 
and CA capacity is enhanced, greater axial 
compressive forces and bending moments are 
expected to be imposed over the remaining 
columns of the damaged structure, mostly at the 
ones adjacent to the removed column.  

Therefore, as the optimization leads to beams 
with greater ultimate capacity at CA for 
increasing ௅ܲ஽, starting at ௅ܲ஽

௧௛ = 10ିଷ, the usual 
optimal design for columns is appropriate until 

௅ܲ஽ = 10ିଶ. At later stages, columns have to be 
also increasingly reinforced in order to effectively 
sustain the increased loads due to column removal 
and allow the full development of CA capacity.  

4. CONCLUSIONS 
This study shows how the optimal design of an 
RC frame with enough ductility changes after a 
column loss scenario starts to be more relevant.  

 The risk-based optimization framework is 
able to find the best compromise between 
safety and economy for both conventional and 
column loss scenarios. To that aim, the 
procedures accounts for the relative costs of 
concrete and steel, the amount of each 
material over the frame, and how the resources 
have to be allocated, to provide safety against 
each failure mode. 

 Optimal design under conventional scenarios 
considers a large beam depth to ensure safety 
against all intact structure failure modes, thus 
leading to a smaller amount of both rebars and 
stirrups. 

 Column loss scenario has an optimal design 
fully benefiting from the enhancement of 
ultimate capacity at catenary action, with a 
slightly reduced beam depth and increased 
rebar reinforcement. Columns are also 
reinforced to avoid its premature failure 
before ultimate capacity of catenary action. 
Besides, shear capacity is increased by 
reducing the spacing between stirrups. 

 Optimal design against column loss also 
provides more safety to the intact structure. 

 In terms of risk-based optimal design, 
providing ductility is essential to allow that 
catenary action actually helps to mitigate 
progressive collapse. Flexural, Vierendeel and 
compressive arch action are not enough to 
avoid rebar rupture during or right after snap-
through instability of double-span beams. 

 According to past studies, a threshold local 
damage probability can be defined to consider 
a column loss scenario in design. However, 
while beam reinforcement is immediately 
addressed above this threshold, column 
reinforcement is only needed under greater 
probabilities to avoid premature failure before 
ultimate capacity at catenary action. 
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