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ABSTRACT: Model uncertainties are included in reliability assessments to account for the uncertainty 
introduced by the use of computational models to obtain e.g. resistances and load effects. Often, the 
model uncertainty is modeled as a lognormal variable and is quantified using a dataset consisting of 
measured outcomes from experiments and corresponding outcomes of the computational model. Unless 
the dataset is very large, statistical uncertainty also needs to be included. Approaches for model 
uncertainty quantification include the Bayesian analytical approach, Markov Chain Monte Carlo 
(MCMC) sampling, the maximum likelihood (ML) method, and the method in EN1990:2002 Annex D. 
In this paper, the methods are compared from a theoretical point of view, and a quantitative comparison 
is made based on simulated data. It is concluded that MCMC leads to the same result as the Bayesian 
analytical approach, when non-informative conjugate priors are used. The ML method underestimates 
the model uncertainty for small sample sizes. The method in EN1990:2002 has an inconsistency in the 
modelling and therefore leads to larger variation in the estimated bias and 5% quantile than the Bayesian 
method. This study motivates a change in EN1990 Annex D to the Bayesian approach, as it is equally 
simple, and the change has been included in the current draft PrEN1990:2022.

1. INTRODUCTION 
Model uncertainties need consideration, as 
virtually no engineering models are perfect. Even 
models with a theoretical foundation are based on 
idealizations of reality. Often, engineering models 
are established on a combination of theoretical 
knowledge of the phenomena and data from 
experience or experiments. A model builder is 
often faced with the tradeoff between simplicity 
and accuracy. It is preferred to have a model that 
includes the most important variables, but it 
should not include variables which do not have a 
significant influence on the output of the model. 
There may be parameters which do have an 
influence but cannot be included as they cannot be 
measured. In order to fit an empirical model, data 
is needed. Ideally a large number of experiments 
are performed in a controlled environment, where 
all variables included in the model are measured 
accurately. However, the costs of testing limit the 
number of tests, especially when large scale tests 
are needed. In summary, model uncertainties are 
present due to 1) limited data, 2) omission of 
parameters, and 3) inaccurate functional relations 
in mathematical/computational models. 

Model uncertainties may be estimated as part 
of the process of establishing a mathematical 
model based on data. Then it is usually desirable 
to obtain a model with no bias, and with a small 
model error. In other cases, it is preferred to use 
established models (e.g. from standards), and use 
data to quantify the model uncertainty and bias.  

For many years, Bayesian analysis has been 
recognized as the most coherent approach for the 
modelling and quantification of uncertainties 
(Benjamin and Cornell, 1970; Der Kiureghian, 
2022), and the approach is recommended in the 
JCSS Probabilistic model code (JCSS, 2001). 
Closed form solutions are available for simple 
cases where conjugate distributions exist, for 
example if accurate measurements of calculated 
and measured outcomes are available, and the 
model uncertainty is an additive normal 
distributed variable, or a multiplicative lognormal 
variable. In the normal case, the standard 
deviation of the error is considered constant 
regardless of the size of the theoretical resistance, 
and for the lognormal case, the coefficient of 
variation (COV) is constant, i.e. the standard 
deviation of the error increase linearly with the 
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theoretical resistance. The difference is illustrated 
in Figure 1. 

 
Figure 1:Experimental resistance 𝑟  as a function of 
resistance from the theoretical model 𝑟  for two 
samples of size 100 with respectively normal 
distributed additive model uncertainty and lognormal 
distributed multiplicative model uncertainty.   

 
Although the Bayesian approach has many 

advantages, other methods are also used. Annex 
D in Eurocode 0 (EN 1990, 2002) describes a 
method to estimate characteristic values of the  
resistance based on data accounting for the model 
uncertainty. Here, the COV of the model 
uncertainty is estimated using a Bayesian 
approach, but the bias (referred to as mean value 
correction factor) is found in a different way.  

In other cases, the lack of closed form 
solutions necessitates the use of other approaches. 
Bayesian regression can be performed for model 
fitting and uncertainty quantification using 
discretized distributions or using Markov Chain 
Monte Carlo (MCMC) methods (Schubert et al., 
2020). The maximum likelihood (ML) method is 
also often highlighted as a preferred method for 
estimating model parameters, due to the property 
that the estimated parameters are asymptotically 
normal distributed (Lindley, 1965), and thereby 
the method includes statistical uncertainty 
through the parameter uncertainty. The ML 
method was used for estimating model parameters  
for timber structures (Sørensen et al., 2003), for 
finding parameters in the distribution for cable 

tensile strength (Faber et al., 2003), and for the 
shear capacity for concrete (Melhem et al., 2020). 

In is unclear, to what degree the choice of 
method for uncertainty quantification affects the 
result, and this motivates the current study where 
four methods are considered: Bayesian analytical, 
MCMC, EN1990:2002, and ML. The aim is to 
compare the obtained predictive distributions 
numerically, and explain observed differences 
based on theory. 

2. METHODS 
The notation from EN1990:2002 Annex D is 
adapted here, where the model uncertainty is 
divided into a variable for the bias 𝑏, and variable 
with mean one for the model uncertainty δ, such 
that the probabilistic model for the resistance, r, is 
given as: 

𝑟 𝑏δ𝑟  1  

where 𝑟  is the resistance found using the 
theoretical model. It is assumed that the 
population for the model uncertainty 𝑏𝛿 follows a 
lognormal distribution with mean b and 
coefficient of variation 𝑉 . The task is to estimate 
the predictive distribution of 𝑏𝛿, using a dataset 
of 𝑛  corresponding values of the theoretical 
resistance 𝑟  and resistance found using an 
experiment 𝑟 . In the basis case, it is assumed that 
there is no measurement uncertainty on neither the 
input to the theoretical model nor on the 
experimental resistance. Also, there is no prior 
information on the model uncertainty. 

2.1. Bayesian analytical 
The basic case has a simple analytical closed form 
solution, thus the Bayesian approach provides the 
most accurate and consistent solution. A 
realization of the model uncertainty can be 
calculated for each pair of theoretical and 
experimental resistance: 

𝑏𝛿
𝑟
𝑟

 2  

Because 𝑏𝛿  follows a lognormal distribution, 
ln 𝑏𝛿  follows a normal distribution with 
parameters 𝑚  and 𝑠 , where the 
parameters are estimated as the sample mean and 
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sample standard deviation of ln 𝑏𝛿 . The 
predictive distribution for ln 𝑏𝛿  is then given 
by: 

ln 𝑏𝛿 𝑚 𝑇 ⋅ 𝑠 1
1
𝑛

3  

where 𝑇  follows a Student’s t distribution with 
n-1 degrees of freedom. Consequently, the 
predictive distribution for 𝑏𝛿 is:  

𝑏𝛿 exp 𝑚 𝑇 ⋅ 𝑠 1
1
𝑛

4  

The estimates of b and 𝑉  are calculated 
through the well-known relations between the 
moments and parameters in a lognormal 
distribution. 

2.2. Markov Chain Monte Carlo 
Markov Chain Monte Carlo (MCMC) is a 
sampling-based method for Bayesian inference. 
The strength of the method is that it can be used, 
where closed form solutions do not exist. For the 
basic case, the inference model can be represented 
graphically as in Figure 2. 

 
Figure 2: Graphical representation of the MCMC 
inference model. Full lines represent stochastic 
relationships, dotted lines represent logic 
relationship, and shaded nodes are observed nodes. 

 
The node 𝑏𝛿  has n instantiations; one for each 
set of values in the sample, and it follows a 
lognormal distribution with parameters 𝜇  
and 𝜏 , which are the mean and precision of 
the associated normal distribution for ln 𝑏𝛿 . The 
precision is often used in MCMC as a second 
parameter instead of the standard deviation 
𝜎 , and they are related through 𝜏

1/𝜎 . The node 𝑏𝛿  follow the same 
distribution as 𝑏𝛿 , and is included to directly 
obtain outcomes of the predictive distribution for 
𝑏𝛿. 

Because no prior information is available on 
the parameters, they are given non-informative 
priors. For the mean value, the conjugate 
distribution is a normal distribution, and for the 
precision, a gamma distribution. Appropriate non-
informative priors are therefore the conjugate 
distributions with parameters resulting in a rather 
flat distribution within the probable range of the 
parameter. The values in Table 1 are initially used 
in the comparison study. In the comparison, 10  
samples were used for burn-in, and 10  samples 
were used to estimate the distributions. 

 
Table 1: Stochastic model. 
Variable Distri-

bution 
Parameter  

1 
Parameter 

2 
𝜇  Normal Mean: 

 𝜇 0 
Precision: 
 𝜏 10  

𝜏  Gamma Shape: 
 𝛼 0.001 

Rate: 
𝛽 0.001 

𝑅 ,   
𝑅 ,  

Log-
normal 

Mean of 
𝑙𝑛 𝑅 : 
 𝜇  

Precision 
of 𝑙𝑛 𝑅 : 

 𝜏  

2.3. EN1990:2002 Annex D 
In EN1990:2002 Annex D (EN 1990, 2002), an 
approach is presented for estimating the 
characteristic value of the resistance based on 
data, such that it accounts for the model 
uncertainty, statistical uncertainty, and physical 
uncertainty. Although the Bayesian approach is 
used when accounting for statistical uncertainty, 
an alternative method is used for the estimation of 
the bias b. 

First, the experiment values 𝑟  are plotted as 
function of theoretical values 𝑟 , in the same way 
as in Figure 1. The mean value correction factor 𝑏 
is then found as the slope of the zero-intercept 
“Least squares” best-fit: 

𝑏
∑ 𝑟 𝑟
∑ 𝑟

5  

For  i=1:n 

𝜇  

𝑏𝛿  

𝜏  

𝑏𝛿  

𝜎  
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This formula is obtained by minimization of 
𝐹 ∑ 𝑏 ⋅ 𝑟  𝑟  w.r.t. b. The error term 
for each data point δ  is now calculated from: 

δ
𝑟
𝑏 ⋅ 𝑟

6  

Subsequently, Δ is defined by: 
Δ ln 𝛿  7  

and 𝑠  is calculated as the sample standard 
deviation of Δ. Next, the coefficient of variation 
of 𝛿 is calculated as: 

𝑉 exp 𝑠 1 8  

As this is the well-known procedure for 
calculating the coefficient of variation of a 
lognormal variable, it is evident from this 
procedure that 𝛿 is implicitly assumed to follow a 
lognormal distribution. However, the sample 
mean of Δ  is not used; instead it is implicitly 
assumed that the mean value of 𝛿 is equal to one.  

In the comparison, the predictive distribution 
for this method is established using Eq. 4 with 
lognormal parameters calculated using the bias b 
and COV 𝑉 . 

2.4. Maximum likelihood 
In the ML method, the distribution parameters are 
estimated such that the probability of obtaining 
the sample is maximized. Therefore, the 
distribution parameters 𝜽  are estimated to 
maximize the likelihood function, which is the 
product over the probability density function 
𝑓 𝑥;𝜽  evaluated in the n sample points: 

𝐿 𝜽 𝑓 𝑥 ;𝜽 9  

For some distribution types, analytical closed 
form solutions exist for the maximum likelihood 
estimate of the parameters. For other 
distributions, optimization algorithms can be used 
to estimate the parameters, based on a sample. In 
both cases it is convenient to use the loglikelihood 
function as it eases the computations for analytical 
solutions and avoids numerical underflow for 
numerical calculations: 

𝐿𝐿 𝜽 ln 𝑓 𝑥 ;𝜽  10  

The maximum likelihood estimates of the 
parameters are found by maximizing the 
loglikelihood function with respect to the 
parameters. The statistical uncertainty (standard 
deviations and correlation coefficients) related to 
the estimated parameters can be estimated based 
on the hessian matrix (consisting of the second 
derivatives of the loglikelihood function in the 
point of the maximum likelihood estimate). 

The hessian matrix for two parameters 𝜃 , 𝜃  
is given by: 

𝑯

⎣
⎢
⎢
⎢
⎡
𝜕 𝐿𝐿 𝜽
𝜕𝜃

𝜕 𝐿𝐿 𝜽
𝜕𝜃 𝜕𝜃

𝜕 𝐿𝐿 𝜽
𝜕𝜃 𝜕𝜃

𝜕 𝐿𝐿 𝜽
𝜕𝜃 ⎦

⎥
⎥
⎥
⎤

11  

The covariance matrix is then given by: 

𝑪 𝑯
𝜎 𝜌 𝜎 𝜎

𝜌 𝜎 𝜎 𝜎
12  

It can be shown that the parameters are 
asymptotically normal distributed, i.e. for sample 
sizes approaching infinity (Lindley, 1965). 

In the comparison, an optimization algorithm 
is used to estimate the parameters and the hessian 
matrix. The predictive distribution is established 
numerically by assuming a multivariate normal 
distribution for the parameters. Then samples 
from the predictive distribution can be drawn by 
first drawing from the multivariate distribution for 
𝜇 ,𝜎 , and then from 

𝑏𝛿 ~𝑙𝑜𝑔𝑛 𝜇 ,𝜎 . 

3. COMPARISON OF METHODS 
In this section, the four methods will be compared 
through numerical studies, and the results will be 
discussed. First the methods are compared using a 
single sample, and next the methods are compared 
based on simulations. 
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3.1. Comparison for one sample 
Initially, a sample of size 𝑛 10 was generated 
with a coefficient of variation 𝑉 0.15 and 𝑏
1. Figure 3 shows the (𝑟 , 𝑟 )-plot for the random 
sample, and the bias found using each method is 
shown with a line. Figure 4 shows the cumulative 
distribution function for the predictive 
distribution found using each method, and Figure 
5 shows the lower part of the figure, to clarify the 
differences. For this random sample, the 
EN1990:2002 method results in a value of b 
which is smaller than for the other methods, 
whereas the other methods leads to similar values 
of b (b is the slope in Figure 3 and the 
mean/median in Figure 4). Looking also at the 
COV of the distribution function, it is seen that the 
Bayesian method and MCMC lead to very similar 
results, whereas the ML method has a smaller 
COV. The effect on the 5% quantile can be seen 
in Figure 5, where EN1990:2002 gives a 4.9% 
smaller characteristic value, and ML gives a 3.2% 
larger value. Nothing in general can be concluded 
by looking at just one sample, except that the ML 
and EN1990:2002 clearly can lead to different 
results than the Bayesian methods. 

To examine the effect of the prior 
distributions used in MCMC, Figure 6 shows the 
found predictive distributions, when flat priors are 
used instead of the conjugate priors. It is seen that 
here the distribution for the Markov chain does 
not converge to the Bayesian analytical predictive 
distribution. It has been verified with additional 
random samples that the MCMC method 
converges towards the Bayesian analytical 
solution, when the conjugate priors are used, 
whereas an error is seen when inappropriate 
diffuse priors are used. The reason is that the 
priors also are used as sampling distributions. The 
MCMC method will not be included in the 
simulation-based evaluation, because it converges 
to the same distribution as the Bayesian analytical 
solution, and it is time demanding to run each 
analysis. 

 
Figure 3: Sample with n=10 and lines indicating the 
bias estimated using each method.  

 
Figure 4: Cumulative distribution function for the 
model uncertainty. 

 
Figure 5: Lower part of the cumulative distribution 
function for the model uncertainty. 
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Figure 6. Cumulative distribution function for the 
model uncertainty, when flat priors are used in 
MCMC. 

3.2. Comparison using simulations 
For comparison of the approaches, a range of 
outcomes of the theoretical model 𝑟  is defined on 
a uniform grid of n values from 1 to 10. 
Realizations of the model uncertainty are 
generated from a lognormal population with mean 
𝑏 1  and coefficient of variation 𝑉  equal to 
10%, 15%, and 20%. Experiment outcomes 𝑟  are 
generated by multiplying each value from the 
theoretical model by a random outcome of the 
model uncertainty drawn from the population. For 
each random sample, the distribution and 5% 
quantile of the model uncertainty 𝑏𝛿  was 
estimated using the Bayesian approach, the ML 
method, and the method in EN1990:2002. 

To investigate for systematic deviations 
between the methods, 1000 random samples was 
simulated from the same assumed population, and 
the bias b, the uncertainty 𝑉 , and the 5% quantile 
in the predictive distribution for the model 
uncertainty was found for each sample using each 
method. The mean and coefficient of variation of 
the estimated b, 𝑉 , and 5% quantile values were 
calculated and are shown in Figure 7 to Figure 12 
as function of the sample size n. 

Figure 7 and Figure 8 show that all methods 
lead to estimates of b and 𝑉  that are consistent in 
the sense that the mean estimates converge to the 
population values for increasing n. However, 𝑉  
is systematically underestimated for the ML 

method for sample sizes below 25-30. Figure 9 
and Figure 10 show that the COV of the estimates 
decrease with increasing sample size, and for 𝑉  
all methods lead to same uncertainty on the 
estimate. For the bias b, the ML method has the 
same precision as the Bayesian method, whereas 
the EN1990:2002 method has a lower precision, 
i.e. the COV of the estimate of b is systematically 
larger. 

Figure 11 and Figure 12 show the effect on 
the estimated 5% quantile of the model 
uncertainty. It is seen that the Bayesian method 
and EN1990:2002 lead to same mean of the 
estimated 5% quantile, whereas the ML method 
systematically leads to larger values, but 
approaches the correct values for sample sizes 
larger than 25-30. The COV of the estimated 5% 
quantile is systematically larger for the 
EN1990:2002 method than for the Bayesian 
method, and slightly smaller for the ML method. 

3.3. Discussion 
Generally, the Bayesian analytical approach is 
considered the most consistent and accurate 
approach, thus the other methods are compared to 
this.  

The ML method underestimated 𝑉  for 
sample sizes less than 25-30. The reason is that 
the ML method finds the most likely values of the 
parameters, i.e. the mode values. The correct 
posterior distribution for the standard deviation of 
the model uncertainty is not symmetric, as the 
inverse of the squared standard deviation follows 
a gamma distribution, and consequently the 
squared standard deviation follows an inverse-
gamma distribution. Here, the mode value is 
smaller than mean value, thus the ML method 
underestimates 𝑉 . However, for a sample size 
approaching infinity, the gamma distribution 
approaches a normal distribution, and the mode 
approaches the mean. Therefore, the estimate of 
𝑉  approaches the correct value, as the sample 
size approaches infinity.  
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Figure 7: Mean of estimated bias b. 

 

 
Figure 8: Mean of estimated COV of the model 
uncertainty 𝑉 . 

 
Figure 9: COV of estimated bias b. 

 
Figure 10: COV of estimated COV of the model 
uncertainty 𝑉 . 

 
Figure 11: Mean of the estimated 5% quantile. 

 

 
Figure 12: COV of the estimated 5% quantile. 
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For the method in EN1990:2002 Annex D, 
the COV of the estimate of the bias b is larger than 
for the other methods. The explanation can be 
found in the way the b is estimated. The estimate 
of b is the least squares best-fit to the slope in the 
𝑟 , 𝑟 -diagram. This would be appropriate for a 

normal distributed additive error, but it is 
inconsistent with the assumption of a lognormal 
distribution for the error term δ. With the current 
least squares approach, too much weight is put on 
the points with large theoretical resistance at the 
expense of points with lower theoretical 
resistance. The issue is that with the applied 
method for estimating the bias b, the error term δ 
will generally not have a mean value equal to one, 
but this is also implicitly assumed. 

4. CONCLUSIONS 
It is concluded that the Bayesian analytical 
approach is most correct and efficient and that the 
MCMC converges to the same results, but only if 
the appropriate conjugate priors are used. In the 
maximum likelihood method, the estimated 
parameters are assumed to follow normal 
distributions as commonly done, and the 
parameter uncertainties are estimated based on the 
Hessian matrix. Because the maximum likelihood 
method identifies the mode value of the 
parameters instead of the mean, and because the 
standard deviation does not follow a normal 
distribution, this approach consistently leads to 
slightly non-conservative results for small sample 
sizes.  

The method in EN1990:2002 estimates the 
coefficient of variation of the model uncertainty 
in correspondence with a Bayesian approach 
implicitly assuming a lognormal distribution for 
the error term. However, the bias is found using 
the least squares best fit, which is inconsistent 
with the lognormal assumption. The quantitative 
analysis reveals that the current method in 
EN1990:2002 does not systematically lead to a 
higher or lower estimated 5% quantile compared 
to the Bayesian approach, but it leads to a higher 
variation of the estimate. Since the Bayesian 
analytical approach is equally simple and more 
consistent, this work has motivated a proposal for 

changing the method in EN1990 annex D, which 
is included in the current draft PrEN1990:2022. 
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