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ABSTRACT: Quantitative risk analysis has become a common part of geotechnical engineering. In the 
Bayesian context, we fuse prior beliefs about adverse outcomes with the Likelihood of observed data or 
modeling outputs to form updated beliefs about risk. The prior beliefs and the likelihoods are equal con-
tributors to our qualifications of risk, especially in the context of sparse information, which is common 
in geotechnical projects. In domains such as dam safety, seismic hazard assessment, and flood damage 
reduction Bayesian priors have come to depend on subjective probabilities derived by quantifying engi-
neering judgment. These may be poorly-informed and based on personal experience. Questions arise of 
validation and calibration of these priors and how to understand the role of reference priors. 
 
1. INTRODUCTION 
Every practitioner of Bayesian analysis recog-
nizes the importance of prior probabilities. Yet, IJ 
Good (1983) famously estimated that there are 
46,656 varieties of Bayesians, and thus one pre-
sumes as many approaches to priors. Bayes Rule 
describes how a prior probability (or distribution) 
can be updated to a consistent posterior probabil-
ity after having observed data. Thus, we are con-
fronted with the familiar equation, 

 
 𝑓(𝐴|𝐵) ∝ 𝑓(𝐴)	𝑝(𝐵|𝐴) (1)	

 
in which A is an uncertain entity and B is a set of 
observations, 𝑓(𝐴) is the marginal (prior) proba-
bility and 𝑝(𝐵|𝐴) is the conditional probability 
(Likelihood) of the data. The entity A might be a 
hypothesis, model, parameter, data point, or 
something else. Bayes Rule provides a compact 
way of fusing the prior probability with data to ar-
rive at a logically consistent updated probability. 
As Hacking (2001) noted, ‘Bayes Rule is trivial, 
but it is very tidy’. 

Most applications of Bayesian methods focus 
on the machinery of probability updating rather 
than the meaning of the probabilities. As a result, 
the focus is on the Likelihood model and not on 
the prior probability. It is common to invest 

attention on the detailed stochastic representation 
of the Likelihood while relegating the prior to a 
minimally-informative placeholder. Yet, it is ob-
vious that the prior probability is just as important 
as the Likelihood in drawing inferences, and the 
facility for fusing information of different sorts is 
a principal benefit of Bayesian thinking.  

 
2. TYPES OF PRIOR PROBABILY 
Many approaches to geotechnical priors have 
been suggested. The more common are: 

Empirical priors are those based on pre-ex-
isting information about the inferences in ques-
tion. These might include earlier data, engineering 
modeling, or reasoning from first principles. Such 
priors are in principle available but seem rarely 
used in geotechnical applications. 

Diffuse priors include the uniform, locally-
uniform, and Jeffreys (non-informative). The first 
two are flat over the region of the Likelihood. 
Such locally-uniform priors are used for regulari-
zation of ill-posed problems in data science. The 
Jeffreys prior intends to be invariant to parameter 
transformations. Each of these is suggested to be 
‘objective’. 

Minimally informative priors are those that 
maximize some measure of information. These in-
clude maximum entropy distributions (e.g., 
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Gilbert et al 2016), those which maximize other 
information measures, and Bernardo’s ‘reference 
priors’ which maximize the Kullback-Leibler di-
vergence (i.e., maximum difference) of posterior 
vs. prior.  

Conjugate priors are those closed under mul-
tiplication by the Likelihood. They are chosen, 
principally for convenience, but were popular be-
fore the advent of Markov chain Monte Carlo 
(MCMC) and other numerical methods. Conju-
gate-diffuse priors can be had by assuming a large 
variance. 

Subjective priors are based on personal prob-
abilities reflecting degrees-of-belief. Much has 
been written about this in the geotechnical litera-
ture. One should note that the choice of Likeli-
hood is similarly subjective and equally influen-
tial. 

 
3. REFERENCE PRIORS 
While subjectivism is widely talked about, most 
Bayesian analyses in geotechnical applications 
use reference priors. Box and Tiao (1973) used the 
term reference prior for any prior dominated by 
the Likelihood and used as a standard. We adopt 
that meaning. These are chosen by a formal rule 
and intend to be objective. MCMC has motivated 
expanded use of reference priors. For large sam-
ples, asymptotic behavior makes the choice 
mostly unimportant. Obviously, this is not true for 
small samples, and even with large samples the 
choice of reference prior may at times affect the 
posterior (Kass and Wasserman 1996).  
 The obvious questions are: how and in what 
way are priors important, to what extent are refer-
ence priors useful, and when (and how) should in-
formative priors be used? A significant advantage 
of Bayesian thinking is its facility for fusing infor-
mation. This can include qualitative and quantita-
tive data, categorical or scenario findings, and 
subjective information. In most geotechnical ap-
plications, data are sparse. Therefore, the prior 
carries important information for risk analysis.  

 
3.1. Frequentist results in Bayesian clothing 

Using a reference prior may yield Bayesian results 
which differ little from frequentist results, except 
in interpretation: (1) confidence intervals of the 
frequentist method may be numerically like the 
Bayesian credible intervals, (2) the maximum 
Likelihood estimate of the frequentist method will 
be the same as the mode of the Bayesian distribu-
tion, and (3) the Likelihood ratio of the frequentist 
method will be the same as the Bayes Factor of the 
Bayesian. Thus, to what purpose is Bayesian anal-
ysis? One could invoke Fisher’s fiducial concept 
and use the frequentist results as if they were prob-
abilities (Zabell 1992). 

Uniform priors follow the Principle of Insuf-
ficient Reason arising from symmetry and classi-
cal probability. While intuitively appealing, the 
principle is not invariant to how sample space is 
partitioned. It is widely used in hypothesis testing 
for prior probabilities. Non-informative priors are 
attributed to Jeffreys (1931) who held that proba-
bility is ‘not a matter for personal judgment’. In 
Theory of Probability (1939) he proposed two ref-
erence priors, one for estimation and one for hy-
pothesis testing. For the former he proposed that 
the prior should be invariant under a transfor-
mation of variables. The practical implication was 
to use a uniform prior over 𝜃 for 𝜃 ∈ ℛ: 	
(−∞,∞),	and a uniform prior over 1/𝜃 for 𝜃 ∈
ℛ: [0,∞). For hypothesis testing using Bayes Fac-
tors, he proposed treating the initial probabilities 
of the hypotheses as equal. Use of the reference 
priors meant that two researchers would reach the 
same conclusions from the same data.  

The interpretation of reference priors is two-
fold. On the one hand, they may be taken as a for-
mal representation of ignorance; on the other 
hand, they may be taken simply as a default. Often 
the reference prior is improper in the sense that its 
integral vanishes. While that seems a trivial prob-
lem, it may lead to inconsistencies in high-dimen-
sional problems (Kass and Wasserman 1996). The 
latter are not uncommon in geotechnical applica-
tions. However, this is beyond the present scope. 
A workaround for this problem is to use a proper 
prior which is diffuse in the region of the Likeli-
hood. However, to the extent that the reference 
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prior is simply a default, what does that imply for 
using the posterior probability in risk analysis? 
The reference prior as default may be suitable for 
publishing in journals, but it is likely unsuitable 
for decisions since it is not a fused probability of 
all available information.  

 
3.2. Telling us what we already know 
A poorly-informative prior will not entirely deter-
mine a posterior probability or distribution. Figure 
1 shows the relationship between prior and poste-
rior probability in the search for a site anomaly. 
Does the anomaly exists if undetected (Tang 
1987). The principle of insufficient reason sug-
gests a prior of p=0.5 on 𝐻!: the anomaly exists; 
and p=0.5 on the alternative 𝐻": it does not. The 
anomaly is not found (z). Presume the probability 
of finding an existing anomaly is high, p=0.8. The 
Bayes Factor in favor of H0 given z is thus 
[(1– 0.8) 1.0]⁄  = 0.2.  

 

 
Figure 1. Posterior probability of an undetected 

anomaly given its prior probability. 
 
The posterior probability of H0 as a function 

of the prior probability is shown in Figure 1. What 
is the impact of our choice of priors? We could 
have chosen another prior and the posterior prob-
ability could have been anything from 0 to 1. To 
some extent the Bayes calculation simply reflects 
what we had believed a priori. 

 
4. SUBJECTIVE PRIORS 
A great deal has been written about subjective 
probability for geotechnical risk. Bayesian 

thinking demands only that subjective priors be 
coherent. It doesn't demand that they have predic-
tive validity. In geotechnical use, however, the 
subjective prior may strongly affect the posterior. 
One wants the prior to be more than simply coher-
ent: one wants it to be valid and calibrated. Valid 
means the prior reflects an intrinsic degree of be-
lief; calibrated means the prior corresponds to fre-
quencies in the world. The former is philosophi-
cally required; the latter is operational preferred. 
 
4.1. Valid priors  
The validity of subjective priors relies on the elic-
itation protocol and its execution. There is a large 
literature on this topic spread across many disci-
plines (Baecher 2019). It need not take space here. 

 
4.2. Calibrated priors 
When an individual assigns a subjective probabil-
ity, the values are correct to the extent they reflect 
a valid degree of belief. Two individuals may each 
assign a valid subjective probability, and they may 
differ, but they will both be correct. Neither is 
‘wrong’. On the other hand, if a third-party wishes 
to use the expert’s subjective probability as part of 
a prior for decision making, one would like the ex-
pert’s subjective probability also to be calibrated. 
If the expert says, 𝑝 = 0.1 of some event happen-
ing, then over repeated trials, one expects that 
10% of the time that event obtains. Morris (1974) 
talks of this as treating the expert as an instrument 
with a calibration curve. 

Creating an expert’s calibration curve is not 
difficult and provides feedback for improvement. 
The personal calibration curve of Figure 2 for one 
of the authors (GBB) was constructed by making 
many predictions of “almanac” like events in the 
daily news and tracking how often they later hap-
pened: did-happen = 1; did-not-happen = 0. A 
simple logistic regression yields the curve. Here, 
the subject is overconfident. He overestimates the 
probabilities of likely events and underestimates 
those of rare events. The wise third-party would 
adjust this expert’s probabilities accordingly.  

Treating the expert as an instrument, provides 
a logical basis for developing consensus 
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distributions. The respective calibrations for a 
committee of experts can be treated as marginal 
likelihoods in the Bayesian sense. An updated 
consensus probability or probability distribution 
can be formed from the joint Likelihood. Obvi-
ously, some consideration needs to be given to po-
tential correlations among the experts’ opinions, 
which are not uncommon. 

 

 
Figure 2. A personal calibration curve constructed by 

making repeated forecasts of events and recording 
the frequencies with which those events later occur. 

 
4.3. Rare events  
The necessity of expressing probabilities for rare 
events is a common challenge in risk analysis. 
These might be categorized in four sorts. The first 
involves statistical populations with a large de-
nominator, e.g., the background rate of failure of 
all modern dams. The second involves extreme 
values occurring at the tails of other distributions, 
e.g., the occurrence of a large earthquake. The 
third involves events that can easily be subdivided 
into sub-events with more frequent probabilities, 
e.g., the reliability of hydraulic gate systems. The 
fourth involves basic events for which there is no 
statistical history, that are not a tail-events, and 
that cannot be decomposed, e.g., internal erosion 
events are arguably of this type although attempts 
have been made to transpose them into the other 
types. 

An obvious difficulty with assigning proba-
bilities to rare events is that they do not happen 
often, and most people including subject matter 

experts have little intuition for such low numbers. 
Human subjects seem to have reasonably cali-
brated intuition about probabilities in the range 
[0.1,0.9] (Fischhoff, Slovic, and Lichtenstein 
1977), but outside that range our abilities wane. 
None of us—expert or novice—has an intuitive 
sense for probabilities in the range, say, 𝑝 ≤ 0.01 
as frequently appear in dam safety studies, and no 
one should seriously accept estimates of native 
probabilities much smaller than that. Another dif-
ficulty with probabilities for rare events is that 
they cannot be validated because they seldom if 
ever happen. This has been a recurring problem in 
assigning probabilities to malicious attacks.  

Consider that we wish to test the hypothesis 
that the prediction offered by an expert on the 
probability of some rare event is correct, against 
the alternate hypothesis that the probability is 
something different from what the expert as-
signed. Set the hypotheses, 𝐻!: 𝑝 = �̂� and 𝐻": 𝑝 ≠
�̂�, in which  is the expert’s assigned value of the 
probability of the rare event. The test hypothesis 
is that there is no difference between the expert’s 
probability and the population of real dams. The 
alternative hypothesis that the probability is some-
thing other than �̂�. What is our confidence in the 
expert if we observe the rare event?	 
 Consider that we employ an expert to assign 
a probability to a rare event that is part of an event 
tree for a dam safety risk analysis. This might be, 
for example, the existence of an undetected dis-
continuity in an abutment (as in the example 
above). The expert considers the problem and re-
turns with an assessment, “the chance of this rare 
event, in my opinion, is one-in-a-thousand.” We 
take this to mean, .  

Since this is an eminent consultant, we assign 
a high prior confidence to his opinion. Say, we as-
sign a probability to the expert being correct of, 
Pr(𝐻!) = 0.99. Now, the rare event is found to 
obtain. Our posterior probability in the expert’s 
assignment by Bayes Rule reduces to 0.17. Our 
faith in the expert’s assignment has dropped from 
0.99 to 0.17, as should be expected because he or 
she was wrong. On the other hand, for the situa-
tion in which no occurrence is observed, the 

p̂

3ˆ 10p -=
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posterior probability in the expert’s assignment 
increases slightly from 0.99 to 0.995. If the rare 
event occurs, the expert’s credibility is profoundly 
impaired; but if it does not, the expert’s credibility 
remains more or less unchanged. 

 
4.4. Cromwell’s rule and unanticipated data 
Dennis Lindley (1985) invented this rule in re-
membrance of Cromwell’s plea to the Commis-
sioners of the Kirk of Scotland in 1650, ‘I beseech 
you, in the bowels of Christ, consider it possible 
you may be mistaken’. The rule says, ‘it is inad-
visable to attach probabilities of zero to uncertain 
events, for if the prior probability is zero so is the 
posterior, whatever be the data’. The intention is 
to protect against unanticipated data. A prior prob-
ability of 1.0 is similarly inadvisable. The rule is 
obvious, and it may be that in the face of unantic-
ipated data the practitioner simply throws out the 
prior, yet it is reasonable advice. That said, it is 
poor practice to hunt for priors that generate the 
most pleasing posterior distribution. 
 
5. POORLY-INFORMATIVE PRIORS 
In practical geotechnical settings with sparce data, 
both the prior and Likelihood are influential on 
posterior probabilities. The importance of the 
prior spans from weak to strong. A weak prior is 
one dominated by the Likelihood. A strong prior 
is one which dominates the Likelihood.  

Ehrenberg (1986) noted the dilemma: we can 
have ‘a weak […] prior, in which case why bother; 
or a strong prior, in which case why collect new 
data?’ Presuming the priors to be valid, poorly-in-
formed priors create their own challenges. 
 
5.1. Unforeseen conditions  
The validity of the prior is essential when unfore-
seen conditions arise. The decision to go one way 
or other rests on the prior which may be the only 
information upon which to decide before observ-
ing field performance. Differences in opinions at 
this stage can be problematic. An example illus-
trates issues that arise in practice (Hartford, 1994).  
 

 
Figure 3. Pier K Foundation, Malibamatso River 

Bridge, Lesotho. (Hartford, 1994). 
 
 An inherently stiff incrementally launched 
concrete bridge deck was to be constructed across 
a valley where there is a large height differential 
between a short pier founded on the top of the cliff 
and a high pier founded in the valley floor. The 
bridge deck was to be launched from the cliff side, 
across the short pier towards the tall pier. The 
foundation of the shortest pier was unconfined on 
the cliff face and had to withstand the deck 
launching forces as well as long-term vehicle 
loads. The early investigation failed to identify a 
deep-seated, critically oriented failure surface.  
However, stereographic analysis pointed to an ex-
foliation discontinuity cluster with kinematically 
unfavourable orientation for shallow plane failure.  

Two priors with different implications arose 
from the borehole data. One favoured doing noth-
ing, while the other favoured intervention. Further 
study was not an option as the bridge was under 
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construction. The complexity of the decision in-
volved: a) how well calibrated the experts were, 
and b) how the decision-maker perceived this cal-
ibration. The experts’ priors when transformed to 
the decision-maker’s priors do not retain their 
uniqueness.  

Whether the prior is in fact separated from the 
consequences of failure also becomes an issue, 
although from a risk perspective it should not be.  
During launching, deformations that exceeded de-
sign threshold were twice observed. Work 
stopped and construction was altered to mitigate 
the effects before proceeding on a “see what hap-
pens” basis. Data obtained during drilling the 
foundation improvements permitted updating of 
the priors, and a Monte Carlo simulation led to the 
conclusion that the probability of failure was ‘re-
mote’.   

Predictions in site investigation and geotech-
nical construction involve feedback concerning 
the accuracy of the predictions when the “hypoth-
esis” is tested in the field.  This points to the need 
for predictions related to what will happen, rather 
than vague statements of possibly or probably 
(Lambe 1973).  Decisions are definitive, probabil-
ities in contrast are often impossible to validate.  

 
5.2. Internal erosion 
The above example illustrates different experts 
with different beliefs.  The “rightness” of the be-
liefs remained unresolved. The subsequent case of 
Coursier Lake Dam involved internal erosion in 
an earth dam already experiencing distress 
(BCHydro, 1995). Two groups of experts were 
engaged. Group A comprised specialists in design 
and construction. Group B comprised specialists 
in monitoring and field data interpretation.  

Four potential failure mechanisms were iden-
tified, and a common event tree of binary nodes 
was developed reflecting the common beliefs of 
both groups. Consensus probabilities were as-
signed during a workshop (Table 1). The overall 
results were in general agreement, as a factor of 
two in geotechnical reliability was deemed incon-
sequential.  Reliance on a common event tree 

presumably contributed to the similarity. How-
ever, both results were alarmingly high.   

Upon investigation, the two Groups had 
adopted different diagnostic strategies when inter-
preting the same information. Group A empha-
sized causal reasoning from borehole logs, field 
conditions, and laboratory data. Group B empha-
sized instrumentation records, response times, and 
trends. Of the 18 paths to failure in the event tree, 
just four were assigned similar probabilities. As 
an example, the groups disagreed completely on 
the probability that internal erosion in the founda-
tion would occur. Group A considered it very un-
likely (𝑝 = 0.1); Group B considered it very likely 
(𝑝 = 0.9).   
 

 
Figure 4. Coursier Lake Dam and reservoir after de-

commissioning (courtesy BC Hydro). 
 
The embankment was eventually repaired 

and returned to service.  Shortly after reaching full 
reservoir, performance concerns again emerged to 
reveal a new sinkhole outside the repaired section. 
Forensic deconstruction revealed previously un-
known features which controlled the performance 
of the structure. Poorly-informative priors can 
generate similar prior probabilities, but for rea-
sons which are exceedingly different. Later updat-
ing by Bayes Rule must be influenced not only by 
the probabilities, but also by the causal reasoning 
leading to those probabilities. 
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Table 1. Consensus probabilities of event tree nodes 
by the two expert groups. 

Failure mechanism Group A  Group B  
Erosion of embankment 0.49 0.23 
Erosion of foundation 0.13 0.13 
Piping around outlet 0.08 0.03 
Piping into drains 0.002 0.01 
Total probability of failure 0.70 0.40 

 
6. CONCLUSION 
Bayesian approaches to data analysis and risk 
modeling in geotechnical practice are reasonably 
accepted by specialists. Rapid advances in the use 
of Bayesian models are clearly underway. The 
present purpose is not to disparage that progress. 
The widespread use of reference priors has been 
useful in research but is less useful on practical 
projects. In the field, data are sparse and the 
poorly-informed priors based on sometimes un-
enumerated expert opinions are important. The 
capacity of Bayesian methods for fusing priors 
with other qualitative information and with data 
from multiple sensor types is among the strengths 
of the approach. It is important that these priors be 
valid and calibrated. Attention to the issues of 
poorly-informed priors in practical problems is an 
important frontier for continuing development of 
the Bayesian approach. 
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