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ABSTRACT: This study proposes an agent-based modeling (ABM) framework for wildfire evacuation 

in damaged transportation settings to support effective evacuation planning. While many existing studies 

applied ABM to community-based transportation evacuation planning during various types of natural 

hazards, the application of ABM to wildfire evacuation has been much less studied. In addition, most 

ABM evacuation simulations did not account for the probabilistic nature of incidents, nor did they 

examine the vulnerability of critical transportation components. This study fills the gap by proposing an 

integrated framework that incorporates hazard modeling, vulnerability assessment, behavioral analysis, 

and ABM to simulate wildfire evacuation in a damaged transportation network. The proposed framework 

is illustrated with the City of Santa Clarita, California impacted by the Rye Fire to demonstrate its 

applicability to a real-world community. The study results include the time-varying number of (a) 

vehicles successfully evacuated and (b) vehicles in the transportation network showing how damaged 

transportation settings could affect traffic congestion during a wildfire evacuation. 

1. INTRODUCTION 

The severity and duration of wildfires are 

anticipated to rise in the future as a result of 

changes in climate and land use (Cova et al., 

2005). As more people are moving to the 

wildland-urban interface (WUI), wildfire activity 

poses an even greater threat to human lives and 

properties and challenges emergency preparation 

(Lee et al., 2022; Ma et al., 2022). Evacuation is 

an important way of reducing human losses 

during a wildfire incident; yet a massive 

evacuation can increase the traffic burden and 

congestion significantly. Reduced transportation 

capacity resulting from wildfire-induced bridge 

damage may further exacerbate traffic congestion. 

To account for substantial uncertainties in traffic 

conditions and human behaviors, wildfire 

evacuation simulation can be an effective means 

of emergency management and evacuation 

planning.  

In recent years, agent-based modeling 

(ABM) has gained great attention in traffic 

modeling and evacuation planning due to its 

ability to capture both individual and collective 

behaviors in a dynamic complex system 

(Cimellaro et al., 2017; D’Orazio et al., 2014; 

Epstein, 1999; Feng et al., 2020; Mas et al., 2012). 

While many existing studies applied ABM to 

community-based transportation evacuation 

planning during various types of natural hazards, 

wildfire evacuation has been less studied 

(Grajdura et al., 2020) due to the complexity of 

rapidly changing and highly uncertain 

microenvironmental conditions during wildfires. 

Most existing wildfire evacuation studies do not 

consider fire analysis or simply utilize elementary 

hazard modeling in their evacuation models 

(Kuligowski et al., 2022; Stasiewicz and Paveglio, 

2021) by assuming that all residents have already 

been forced to evacuate their community 

simultaneously. However, weather analysis and 
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fire propagation models are necessary 

components for a wildfire evacuation simulation 

to account for spatiotemporally varying 

evacuation orders and consequent evacuee 

behaviors. 

Some researchers have attempted to combine 

hazard models with ABM to create more realistic 

evacuation simulations. For example, Beloglazov 

et al. (2016) developed a wildfire evacuation 

model by combining spatiotemporal fire-front 

with evacuation trigger modeling and ABM. 

However, this model still lacked vulnerability 

analysis, and most parameters in the model were 

assumed or determined based on expert opinions, 

which made it hardly reproducible. Given that 

many parts of a transportation system are 

vulnerable to fires, their physical damage and the 

associated reduction in traffic carrying capacity 

due to fires should be considered in a community-

based evacuation model so as to better represent 

traffic conditions and evacuation process during 

the event. To this end, the conventional ABM 

should be integrated with hazard analysis and 

vulnerability assessment of a transportation 

system while being supported by reproducible, 

quantitative data.  

To fill the research gaps in the literature, this 

study proposes an integrated framework that 

incorporates hazard modeling, vulnerability 

assessment, evacuee response modeling, traffic 

simulation, and ABM to simulate wildfire 

evacuation in a damaged transportation network. 

The simulation results can be used to identify the 

critical parts of the transportation network for pre-

fire risk mitigation actions, aimed at improving 

evacuation efficiency. 

2. FRAMEWORK DEVELOPMENT 

This study proposes an ABM framework for 

wildfire evacuation in damaged transportation 

settings. The framework integrates wildfire 

simulation and vulnerability assessment with 

ABM to adequately represent both human 

responses during an evacuation and time-

dependent network functionality in microscopic 

traffic simulation. As shown in Figure 1, the 

framework consists of four modules: wildfire 

simulation, vulnerability assessment, evacuee 

response model, and traffic simulation. The first 

module evaluates the spatiotemporal probability 

of wildfire occurrence and generates 

representative wildfire scenarios in probability 

space. Fire Area Simulator (FARSITE) is used to 

simulate a time-dependent fire-front movement 

for each scenario and feed that information into 

the subsequent modules. The second module 

performs a bridge vulnerability assessment to 

evaluate wildfire-induced changes in traffic 

capacity. The third module constructs an evacuee 

response model based on an online survey results 

to predict individual evacuee behaviors as a fire-

front approaches. The fourth module simulates 

traffic conditions by updating traffic demand and 

capacity at every time step. These four 

components allow us to track the movement of all 

residents and vehicles in a damaged transportation 

setting.  

 

 
Figure 1: The proposed ABM framework for wildfire 

evacuation in damaged transportation settings.  

 

Given that the primary mode of mobility in 

wildfire prone areas is private vehicles, this study 

focuses on capturing vehicle use and vehicular 

traffic without considering pedestrian behaviors. 

The final results include time-dependent traffic 

maps to identify the critical parts of transportation 

network that are the most vulnerable to wildfires 

and have the potential to cause traffic congestion 

during an evacuation. Additionally, the total 

number of evacuating vehicles during a given 

time period is obtained, which can be used to 

determine the bridges that need to be strengthened 
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to minimize human losses during wildfire 

evacuation. 

2.1. Wildfire simulation 

The wildfire simulation module consists of two 

stages: wildfire probability estimation and growth 

modeling. The first stage estimates spatio-

temporally varying fire probabilities in the study 

region and generates representative wildfire 

scenarios. The second stage simulates wildfire 

growth for each scenario and records time-

dependent fire-front that will be fed into the 

subsequent modules.  

In the first stage, a community of interest and 

its surrounding areas are defined and divided into 

small grids (e.g., 1km x 1km) to find the 

probabilities of fire that can be propagated into the 

community. As shown in Equations 1-3, a 

generalized additive logistic regression is 

employed to construct a wildfire probability 

estimation model. This model can account for 

spatiotemporal dependence and non-linear 

relationship between independent and dependent 

variables (Preisler et al., 2004).  

𝑙𝑜𝑔𝑖𝑡(𝑃(𝑓)) =  𝑓1(𝑡) + 𝑓2(𝑥, 𝑦) +

𝑓3(𝑟𝑚𝑎𝑥, 𝑟𝑚𝑖𝑛) + 𝑓4(𝑡𝑚𝑎𝑥, 𝑡𝑚𝑖𝑛) + 𝑓5(𝑤𝑠) +
𝑓6(𝑏𝑖)                                        (1) 

𝑙𝑜𝑔𝑖𝑡(𝑃(𝐿𝑓|𝑓)) =  𝑓7(𝑡) + 𝑓8(𝑥, 𝑦) +

𝑓9(𝑟𝑚𝑎𝑥, 𝑟𝑚𝑖𝑛) + 𝑓10(𝑡𝑚𝑎𝑥, 𝑡𝑚𝑖𝑛) + 𝑓11(𝑤𝑠) +
𝑓12(𝑏𝑖)                                   (2) 

𝑃(𝐿𝑓) =  𝑃(𝐿𝑓|𝑓) ∗ 𝑃(𝑓) (3) 

where 𝑃(𝑓) = the ignition probability; 𝑓(∙) = the 

non-parametric smooth function; 𝑡  = the day of 

year; 𝑥 = the latitude; 𝑦 = the longitude; 𝑟𝑚𝑎𝑥 and 

𝑟𝑚𝑖𝑛  = the maximum and minimum relative 

humidity; 𝑡𝑚𝑎𝑥  and 𝑡𝑚𝑖𝑛  = the maximum and 

minimum temperature; 𝑤𝑠  = the average wind 

speed; 𝑏𝑖  = the burning index; 𝑃(𝐿𝑓|𝑓)  = the 

conditional probability of an ignition turning into 

a large fire; and 𝑃(𝐿𝑓)  = the unconditional 

probability that a large fire occurs at a given cell 

and on a given day of year.  

To generate a set of representative wildfire 

scenarios, traditional clustering algorithms (e.g., 

k-means) can be used to cover a wide range of 

plausible scenarios based on historical data. 

Specifically, the k-means clustering algorithm 

divides a dataset into a number of clusters and 

selects a representative scenario from each cluster 

by utilizing Euclidean distance between the time 

series.    

In the second stage, for each representative 

wildfire scenario having a specific ignition 

location and time, wildfire growth is simulated to 

generate spatiotemporal fire-front and time-

dependent fire map. Because FARSITE has an 

iterative simulation structure allowing time-

dependent inputs, it can model wildfire growth 

under heterogeneous weather, fuel, and 

topography conditions, which produces more 

accurate simulation results compared to the other 

software programs. Since the prediction accuracy 

of fire growth at every time step is key to effective 

wildfire evacuation modeling, FARSITE is used 

in the fire growth modeling of this study despite 

its relatively high computational costs.   

2.2. Vulnerability assessment 

Bridges are vital yet susceptible elements in a 

transportation system during wildfire incidents. 

Damage from fires can greatly decrease bridge 

safety and restrict traffic flow. As the post-fire 

traffic capacity of bridges is crucial in evaluating 

the movement of people and vehicles during 

evacuation, understanding bridge functionality 

during fires is essential for evacuation planning 

and management. Therefore, this module includes 

the vulnerability assessment of bridges to 

determine the reduced flow capacity of a 

transportation system during wildfire incidents. 

Bridge vulnerability is often assessed using 

fragility curve, which can be constructed 

analytically through structural analyses and 

evaluations, experimentally based on testing 

results, or empirically based on post-disaster 

reconnaissance data. In some cases, multiple 

approaches are combined to develop a fragility 

curve. This study assumes that bridge damage 

level depends only on bridge material and uses a 

simple relationship between them as shown in 

Figure 2. In this study, five damage levels (DLs) 
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are considered, including superficial damage 

(DL2), slight damage (DL3), partial damage 

(DL4), massive damage (DL5), and structural 

collapse (DL6), in addition to no damage (DL1). 

The mean damage levels are 2.3, 2.6, 2.0, and 4.8 

for concrete, composite, steel, and timber bridges 

(Peris-Sayol et al., 2017). It should be noted that 

this relationship is conditioned on any exposure to 

fire. This simple relationship should be replaced 

with a bridge fire fragility curve once it becomes 

available. 

 

 
Figure 2: Relationship between type of deck material 

and bridge damage level (adapted from Peris-Sayol 

et al., 2017). 

 

After each representative wildfire scenario is 

simulated in FARSITE, the time-dependent 

wildfire perimeter is overlaid with a bridge map 

to identify the bridges affected by wildfire at 

every time step. A specific set of bridges (𝐵′⊂B) 

located in the current wildfire perimeter 

experiences a certain damage level, which is 

determined based on the relationship between 

deck material and DL. This relationship is not 

deterministic because of uncertainties. Thus, the 

DL of a bridge in the subset 𝐵′ is a random 

variable and is determined through Monte Carlo 

simulation (MCS). Bridge damage results in 

reduced traffic flow capacity and subsequently 

affects the flow capacity of the link where the 

bridge is located, as shown in Table 1. 

 
Table 1: Link damage state and the associated traffic 

carrying capacity (adapted from Shiraki et al., 2007). 

Link Damage Level Capacity 

(%) 

Free Flow 

Speed (%) 

Superficial damage 100 100 

Slight damage 100 75 

Partial damage 75 50 

Massive damage 50 50 

Structural collapse 0 0 

2.3. Evacuee Response Model 

This module aims to mathematically model and 

simulate individual responses during evacuation 

by considering a series of three events: evacuation 

trigger, decision delay, and preparation time. 

External stimuli, such as evacuation alerts, 

warnings, and orders, serve as evacuation triggers. 

Spatiotemporal fire-front data from Module 1 is 

used to estimate the timing of each trigger at every 

location within the community. Depending on 

individual risk-averse attitudes and 

characteristics, their responses to these triggers 

may vary. Decision delay and preparation time are 

also taken into account when simulating 

individual responses, as these factors may depend 

on individual awareness, beliefs, and priorities. 

We conducted an online survey of residents 

in wildfire-prone areas in the United States, 

specifically in California, Oregon, and Colorado, 

to investigate their evacuation behavior and to 

develop quantitative relationship between 

individual characteristics and their responses 

during evacuation (Lee and Ma, 2022). These 

models will have a significant impact on traffic 

congestion and bottlenecks in Module 4.   

2.4. Traffic Simulation 

Module 4 performs traffic simulation by 

combining the results from Module 2 (the reduced 

functionality of the transportation network) and 

Module 3 (the elevated travel demand patterns) to 

predict traffic conditions during evacuation. An 

activity-based microscopic traffic simulation is 

performed using the Simulation of Urban 

Mobility (SUMO) software because of its 

accessibility and flexibility. 

This module utilizes an ABM to simulate the 

behavior of each evacuee as an agent. Individual 

characteristics and decision rules are assigned to 

each agent based on the survey results obtained 

from Module 3 (Lee and Ma, 2022). These agents 

determine their departure time, evacuation route, 
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and destination before entering the transportation 

network. Real-time information (e.g., fire-

damaged bridges and traffic congestion) may not 

be available to the agents who prefer to use 

traditional maps during an evacuation, which may 

affect their ability to choose optimal evacuation 

routes. The ABM tracks the spatiotemporal 

movements of each agent at every time step.  

The traffic simulation incorporates dynamic 

updates on link capacity and individual agent 

locations to predict traffic flows at the individual 

level and capture traffic dynamics considering the 

collective actions of agents. The ABM framework 

provides time-dependent traffic maps to identify 

critical and vulnerable parts of the transportation 

network that have a high potential for causing 

congestion during evacuation. Additionally, the 

simulation results provide the total number of 

evacuating agents during a given time period, 

which can inform retrofit decisions on bridges to 

minimize human losses during a wildfire 

evacuation. 

3. ILLUSTRATIVE EXAMPLE 

The proposed ABM framework is demonstrated 

using the City of Santa Clarita, California. Santa 

Clarita is located in Los Angeles County and has 

a population of 228,673 as of 2020. The Rye Fire 

is chosen as a scenario wildfire event, which 

broke out on December 5th, 2017, and threatened 

over 1,000 homes in the city. During the fire, 

about 1,300 homes were placed under evacuation 

orders, and both directions of Highway 5 were 

closed. Uncertainties in all four modules are 

considered and propagated throughout the 

framework to simulate evacuation during the Rye 

Fire. 

Figure 3 shows the comparison between the 

simulated fire perimeter during the first day of the 

Rye Fire (December 5th, 2017) and the actual Rye 

Fire perimeter. The simulation is limited to the 

first day because the evacuation order was lifted 

that evening and further wildfire growth 

simulation is not needed for evacuation 

estimation. The similar propagation direction of 

the simulated and actual fires (see Figure 3) 

suggests that the model is able to simulate fire 

growth successfully until human intervention 

occurrs. 

 

 
Figure 3: Comparison between the simulated fire 

perimeter (only during the first burning day) and the 

Rye Fire perimeter. 

 

As shown in Figure 4, 11 bridges are located 

within the simulated fire perimeter. It is assumed 

that the damage level of a bridge is normally 

distributed with a mean value shown in Figure 2 

and a coefficient of variation of 0.3. Using MCS, 

the damage level of each bridge is randomly 

sampled from the respective normal distribution. 

To highlight the impact of damaged bridges on 

traffic disruption during a wildfire evacuation, 

one of the extreme scenarios among infinitely 

many possible ones is considered in this case 

study: 5 bridges (Bridges 2, 6, 7, 9, 10) experience 

DL5, while the others are not damaged. 

In the third module of the proposed 

framework, the evacuee response model is 

simulated to reflect diverse individual behaviors 

and responses during an evacuation. To apply the 

evacuee response model developed based on the 

survey data (Lee and Ma, 2022) to the case study, 

detailed information about the properties and 

characteristics of individual residents and 

households in the community is required. 

Whereas demographic information is available 

from the Census dataset, some of the key 

explanatory variables needed to estimate their 

evacuation timing or the use of real-time 

navigation (e.g., risk attitude, wildfire evacuation 

experience) are often not available. Thus, in this 
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case study, we generate a synthetic population of 

the City of Santa Clarita.     

 

 
Figure 4: The locations of bridges within the 

simulated fire perimeter. 

 

The synthetic population of the city is 

generated at the census-tract level using PopGen. 

The synthetic population consists of 83,558 

households and 246,830 residents that closely 

match the marginal distributions of key 

characteristics of the true population. Each 

individual in the synthetic population is given a 

unique ID number and assumed to be in the same 

household as those with the same ID number. 

Each household is randomly assigned to a 

residential building in the same census tract, and 

individuals who work full-time or part-time are 

randomly assigned to workplaces. It is assumed 

that each household forms a decision group and 

shares the same evacuation decision during the 

evacuation process. 

The third module generates evacuation 

timing, decision delay time, preparation time, and 

final destination for all synthetic households 

based on the survey results (Lee and Ma, 2022). 

However, public transportation and returning 

traffic are not considered in this module. 

Therefore, the following assumptions are made: 

(a) households without vehicles are assumed to 

use hypothetical vehicles for evacuation, and (b) 

if some of the household members at the 

workplace bring cars and no vehicles are available 

for the remaining household members at home, 

hypothetical vehicles are assigned to the 

household members at home. These hypothetical 

vehicles can be replaced with public 

transportation and ride-sharing in future studies. 

A total of 162,705 vehicles (actual and 

hypothetical) are used during the wildfire 

evacuation. The vehicles that are about to depart 

are recorded and considered in estimating traffic 

demand in the fourth module at every time step. 

The agent-based traffic simulation is 

performed using SUMO. The network capacity 

from Module 2 and traffic demand from Module 

3 are updated at every time step and used as input 

data in SUMO. The binary logistic regression 

model is used to classify evacuees as navigation 

users or non-navigation users. In the simulation, 

navigation users take the fastest routes, while non-

navigation users take the shortest routes but not 

the fastest route as they may rely on familiar 

routes or conventional maps without real-time 

information. The results of this module include 

the locations of all vehicles at every second during 

the evacuation process, the time series of the 

number of vehicles in the transportation network, 

the number of vehicles that successfully 

evacuated, average speed, etc. 

4. RESULTS AND DISCUSSION 

Figure 5 shows the cumulative number of 

vehicles that have departed, have evacuated, and 

are currently in the transportation network at 

every second during the entire evacuation period 

from wildfire ignition (9:30 am) to the time after 

all evacuation orders were lifted (11:00 pm). The 

black curve in Figure 5 has a series of steps 

because the fire perimeters are recorded at 

discrete time points (i.e., 10 am, 1 pm, 3 pm, 5 pm, 

and 7 pm). The results show that about three-

quarters of vehicles triggered by the updated fire 

perimeter enter the network within 45 minutes, 

which aligns with our previous survey results (Lee 

and Ma, 2022) that around 75% of the respondents 

reported that their evacuation preparation time 

would be less than 45 minutes. The number of 

vehicles in the transportation network (i.e., the red 
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curve in Figure 5) increases in the first 45 minutes 

of each step but gradually decreases as vehicles 

reach their final destinations or leave the network. 

Generally, most vehicles triggered by the previous 

fire perimeter are evacuated successfully before 

the next fire perimeter is updated. Severe 

congestion is observed specifically between 1 pm 

and 5 pm due to elevated travel demand and 

massive bridge damages. Although two bridges 

(Bridges 2 and 9) are severely damaged after 5 pm 

(see Figure 4), their impact is minimal possibly 

because the previously damaged bridges located 

on I-5 already created congestion. Finally, the 

smooth blue curve in Figure 5 indicates a stable 

evacuation rate throughout the simulation. 

 

 
Figure 5: The cumulative number of vehicles that 

have departed and evacuated and the number of 

vehicles currently in the transportation network. 

 

The ABM framework has the advantage of 

tracking the locations and travel speeds of 

individual vehicles at every second, which helps 

identify when and where severe traffic congestion 

occurs. Figure 6 shows a traffic map at 10:36 am, 

the time when severe traffic is first observed. The 

red colors in Figure 6 indicate that the network 

segments in red experience heavy traffic and 

should be considered for pre-fire risk mitigation 

efforts to facilitate wildfire evacuations in the 

future. In addition, the vulnerability assessment in 

the framework can identify bridges that are most 

likely to experience severe damage. This 

information will provide useful guidance for 

transportation risk managers or local government 

officials about which parts of the transportation 

network are vulnerable to fires and cause severe 

congestion during a wildfire evacuation. While 

the results of this case study are specific to the Rye 

Fire, by taking a fully probabilistic approach, the 

framework can provide quantitative data to 

support more effective pre-fire mitigation actions 

that can be applied to a wide range of plausible 

wildfire scenarios. 

 

 
Figure 6: Traffic map at 10:36 am (average speed of 

15.6 mph). 

5. CONCLUSIONS 

Effective community-based transportation 

evacuation planning is an important issue for state 

and local policymakers at great risk of wildfires in 

the United States. Evacuation is considered to be 

the second line of defense if the first course of 

defense (i.e., wildfire countermeasures) cannot 

prevent wildfire risks to communities. 

Underestimation of this issue and ineffective 

planning could result in catastrophic human losses 

during a wildfire. An evacuation simulation 

model may assist a well-developed evacuation 

plan and ultimately could save human lives. 

This study proposed an ABM framework for 

wildfire evacuation in damaged transportation 

settings by integrating wildfire simulation, 

vulnerability assessment, evacuee response 

modeling, and traffic simulation to predict traffic 

conditions during an evacuation and identify the 

critical parts of the transportation network for pre-

fire risk mitigation actions. ABM allowed the 

framework to generate both disaggregated-level 

and aggregated-level outputs. By combining the 

aggregated-level outputs with the disaggregated-

level ones, we can assess the overall network 

performance during an evacuation while 

identifying bottlenecks and the critical network 

segments that may experience heavy congestion. 

The proposed framework also introduced 
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damaged traffic settings to the evacuation process 

and showcased how the reduced network capacity 

impacted evacuation efficiency, especially when 

combined with the elevated travel demand. 

To improve the accuracy of the model 

estimation and broaden its applicability, we will 

release most of the restrictive assumptions and 

address the current limitations of this model.  

Future works include (a) introducing public 

transportation and returning traffic, (b) modeling 

carpool behavior to remove hypothetical vehicles, 

(c) determining evacuation zones based on the 

combined effect of wind and fire propagation 

directions, (d) modeling vehicle detour due to 

road closure, and (e) taking a fully probabilistic 

approach. 
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