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ABSTRACT: The resilience of a system is often assessed using models that consist of numerous
interdependent system components. To better understand the system’s resilience, the performance of
each component needs to be evaluated. Such an evaluation requires significant component-level data
collection and modeling efforts, which are, in some cases, restricted due to privacy or security concerns.
However, the performance of certain system components might be irrelevant for system’s resilience.
This paper presents a method that can identify such irrelevant components. More specifically, we focus
on identifying those components whose vulnerability and recoverability are irrelevant for system’s
disaster resilience, with minimal information on these two component parameters. The presented
method employs a Sobol’ sensitivity analysis using uninformed input distributions to initially rank the
system’s components. An iterative heuristic upper and lower bound search is performed next to identify
the subset of highly ranked components whose vulnerability and recoverability significantly affect
system’s resilience. The efforts aimed at better understanding the performance of system components
that are not in the “important components” subset can be avoided without a major impact to system’s
resilience assessment, simplifying the system model and preventing unnecessary component-level data
collection and modeling efforts. The method is illustrated on a virtual community whose disaster
resilience is assessed in terms of its ability to meet its community resilience goals.

1. INTRODUCTION

Resilient systems can quickly recover from ex-
treme events, minimizing the negative effects of
such events on their users. Analyzing the resilience
of complex systems (e.g., infrastructure systems)
can be challenging as they consist of numerous in-
terdependent components. Characterizing the post-
disaster behavior of such components, as well as
their interdependency, can require extensive data
collection and modeling efforts, which are in some
cases not possible due to privacy concerns. In this
paper, we aim to rank components based on their
importance for system resilience in cases when
minimal component information is available. Such
ranking allows us to guide further data collection

and component modeling efforts, apriori prevent-
ing such efforts for components that are not rele-
vant for assessing system resilience. Furthermore,
such ranking can inform resilience-improving ac-
tions, which should focus on components identi-
fied as important for system resilience. The method
is illustrated on a virtual community supported by
three interdependent civil infrastructure systems.

2. SYSTEM RESILIENCE ASSESSMENT

We use the iRe-CoDeS framework to assess sys-
tem’s disaster resilience (Blagojević et al. (2022b)).
A system is discretized into components whose
supply and demand for various resources are mon-
itored over the post-disaster recovery period. To
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simulate the initial post-disaster change in compo-
nent’s supply and demand, each component is as-
signed an initial damage level that spans from 0
(no damage) to 1 (complete damage). The initial
value of a component’s damage level is conditioned
on component’s vulnerability and the expected in-
tensity of the disaster at component’s location. To
simulate the evolution of component’s supply and
demand during the post-disaster recovery period, a
component recovery model needs to be defined for
each component. The purpose of a recovery model
in iRe-CoDeS is to simulate the decrease of compo-
nent’s damage level over the recovery period, thus
capturing the recovery of component’s function and
the resulting change in its supply and demand. The
recovery model used in this paper is simple and is
characterized by a single parameter constant over
the recovery period: repair rate. The repair rate
spans from 0 to 1. Component’s recovery is simu-
lated by reducing the damage level of a component
by its repair rate at each time step of the recovery
simulation starting immediately following the dis-
aster. Therefore, if the repair rate is 0, the dam-
age level stays at its initial value throughout the re-
covery simulation, while if the repair rate is 1, the
damage level is reduced to 0 in a single time step
regardless of the value of the initial damage level
(i.e., component is repaired in a single time step).
More complex recovery models can also be adopted
in iRe-CoDeS (Blagojević et al. (2022)).

A system in iRe-CoDeS is spatially defined by
localities: geographically localized units that can
contain none, one, or several components. Com-
ponents can either be in a locality (e.g., a residen-
tial building), or between localities (e.g., a pipe).
Components between localities are named links and
transfer resources between components in locali-
ties. The transfer of resources within a locality is
assumed to be direct and unconstrained.

Components’ interdependencies are captured by
simulating the flow of resources among compo-
nents at each time step of the recovery simulation
and constraining components’ ability to operate and
recover based on components’ demand fulfillment.
Apart from capturing components’ interdependen-
cies, the resource flow simulation is used to calcu-

late components’ resource consumption (i.e., how
much of the component’s resource demand is met
by the available supply at a time step of the recov-
ery simulation).

To evaluate system resilience, components’ sup-
ply, demand, and consumption are aggregated on
the system level (Didier et al. (2018)). The percent
of system demand (i.e., the sum of the demand of
all users in a system) met at each time step of the
recovery simulation is used as the system’s mea-
sure of functionality. The iRe-CoDeS framework
can then evaluate the time that a system needs to at-
tain a certain functionality level (i.e., meet a certain
percent of users’ demand), thus evaluating whether
the system fulfills the prescribed resilience goals
(Blagojević et al. (2022a); NIST (2016)).

3. METHOD FOR COMPONENT IMPOR-
TANCE QUANTIFICATION

Figure 1 illustrates the proposed method for com-
ponent importance quantification (Blagojević et al.
(2022)). The method starts by defining system’s re-
silience goals, the disaster scenarios for which the
goals will be assessed, and the construction of the
system model in iRe-CoDeS, as outlined in Blago-
jević et al. (2022b).

To conduct the initial component ranking, we
use the global variance-based sensitivity analysis
(i.e., the Sobol’ sensitivity analysis) (Sobol (1993)).
Such analysis requires that probability distributions
are defined for each variable whose importance is
investigated. This method quantifies the impor-
tance of component’s vulnerability and recoverabil-
ity for system resilience. These component char-
acteristics are represented using variables bounded
between 0 and 1: the initial damage level and the
repair rate. When no further information on such
variables is available, the maximum entropy prin-
ciple (Kapur (1989)) states that a uniform proba-
bility distribution should be adopted to maximize
uncertainty with respect to the available informa-
tion (i.e., the variable bounds). Thus, we adopt a
uniform probability distribution bounded between
0 and 1 for the initial damage level and repair rate
of all components in the initial Sobol’ index-based
ranking.

Sobol’ sensitivity analysis quantifies how much
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Figure 1: Workflow of the proposed component importance quantification method (Blagojević et al. (2022)).

the variance of a model input contributes to the vari-
ance of the model output, attributing a Sobol’ in-
dex to each considered model input. Such contribu-
tions are comparable and can be used to rank com-
ponents. We assume that components whose vul-
nerability and recoverability have a higher Sobol’
index in the initial, uninformed ranking are more
important for assessing system’s resilience. As the
variance of all inputs is the same (i.e., all inputs are
uniform distributions with [0, 1] bounds), the value
of their Sobol’ indices is not due to the difference in
their variance values, but due to other components’
characteristics, such as their connectivity, location,
redundancy, functionality characteristics and sup-
ply and demand values.

Conducting a global variance-based sensitivity
analysis can be computationally expensive as it re-
quires numerous runs of the computational model,
where the number of runs is conditioned on the
number of model inputs (Sobol (2001)). To al-

leviate the computational burden, inputs can be
grouped (Blagojević et al. (2022); Tabandeh et al.
(2022)), thus reducing the number of Monte Carlo
simulations required. Alternatively, a metamodel
can be constructed to decrease the computational
effort of Monte Carlo simulations (Liu et al. (2019))
or use the parameters of the metamodel to calcu-
late Sobol’ indices (Sudret (2008)). This step can
be skipped if the computational effort is not an is-
sue (e.g., high-performance computing clusters are
available or the model is cheap to evaluate).

The initial component ranking presents a ”best
guess” ranking when information on considered
components’ properties is not available and is qual-
itative. The next step in the proposed component
importance quantification method is to conduct an
iterative heuristic upper and lower bound search to
identify how many highly ranked components to
calibrate through further data collection and mod-
eling efforts, and how many low-ranking compo-
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nents to simplify to obtain a reasonably accurate
estimates of system resilience.

The search starts by selecting x highest ranked
components and calibrating the probability distri-
butions of their initial damage level and repair rate
conditioned on the selected disaster scenarios and
component vulnerability and recoverability. The
initial damage level and repair rate of the remain-
ing uncalibrated components are then set to two
sets of constant values constructed to obtain the up-
per and lower bound on the probability distribu-
tion of the considered resilience metric. The up-
per bound probability distribution is obtained by
running Monte Carlo simulations of the system
iRe-CoDeS model where the initial damage level
and repair rate of the x calibrated components are
sampled from their calibrated probability distribu-
tions. The same parameters of the uncalibrated
components are set to constant values that result in
the ”most pessimistic” resilience metric (e.g., the
longest time to recover system functionality). In
contrast, the lower bound probability distribution is
obtained when the parameters of the uncalibrated
components are set to constant values that result
in the ”most optimistic” resilience metric (e.g., the
shortest time to recover system functionality). The
search continues by increasing the number of cal-
ibrated components x following the initial compo-
nent ranking until the difference between the upper
and lower bound probability distribution is insignif-
icant.

The components that remain in the uncalibrated
set can be considered irrelevant for assessing the
considered resilience metric since the most extreme
variation in their initial damage level and repair rate
does not have an appreciable effect on the probabil-
ity distribution of the computed community disaster
resilience metric. Thus, the properties of x’ uncal-
ibrated components do not need to be further cal-
ibrated, obviating the data acquisition and model-
ing efforts. Furthermore, resilience-improving ac-
tions aimed at these components are expected not
to significantly contribute to system resilience. The
computed probability distributions of the consid-
ered community disaster resilience metric for the
considered disaster scenarios can be adopted for

subsequent decision-making.

4. CASE STUDY: VIRTUAL COMMUNITY
WITH THREE INTERDEPENDENT
CIVIL INFRASTRUCTURE SYSTEMS

The proposed component importance quantifica-
tion method is illustrated on a virtual community
consisting of a building stock and three interde-
pendent infrastructure systems exposed to a seismic
hazard (Figure 2). The application of the proposed
component importance quantification method on
the electric power supply system in the same virtual
community is presented in Blagojević et al. (2022).
In this paper, we focus on the cellular communica-
tion system.

Community resilience goals are defined in terms
of the percent of user demand that needs to be met
within a certain time following a disaster. The
communication system’s resilience goal is achieved
once 90% of community demand for communica-
tion services is met. The demand for communi-
cation services is assumed to increase immediately
after the disaster due to an increase in emergency
calls and return to its pre-disaster level after 10 days
(Blagojević et al. (2022b)).

The community iRe-CoDeS model simulates the
recovery and interdependency between the build-
ing stock and the three supporting interdependent
infrastructure systems. The building stock consists
of 9 building stock units (BSUs), each housing 400
inhabitants. The electric power supply system con-
sists of electric power plants (EPP) producing elec-
tric power and a network of electric power trans-
mission lines (EPTLs) transferring electric power
to users. Potable water facilities (PWFs) produce
potable water transferred to the BSUs through a
network of potable water pipes (PWPs). Cooling
water is supplied by the cooling water facilities
(CWFs) and transferred using a network of cooling
water pipes (CWPs). Finally, the cellular communi-
cation system consists of Base Station Controllers
(BSCs) that wirelessly control Base Transceiver
Stations (BTSs). BTSs wirelessly provide commu-
nication services to the people in the virtual com-
munity.

These infrastructure systems are interdependent
since their components require resources provided
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Figure 2: Virtual community set-up. Components in localities are Electric Power Plants (EPPs), Building Stock
Units (BSUs), Base Station Controllers (BSCs), Potable Water Facilities (PWFs), Base Transceiver Stations
(BTSs) and Cooling Water Facilities (CWFs) (Blagojević et al. (2022)).

by other infrastructure systems to operate: for ex-
ample, BSCs require cooling water and electric
power to operate, BTSs require the BSCs con-
trol services (also called high-level communica-
tion) and electric power provided by the EPPs
and transferred through EPTLs, while EPPs require
cooling water and communication services (called
low-level communication) provided by the BTSs.
Such interdependencies are defined to illustrate the
ability of the iRe-CoDeS framework to simulate
cascading failures among interdependent compo-
nents and are described in detail in Blagojević et al.
(2022b).

In total, 88 community components located in
or between 21 localities are considered in the re-
silience analysis. Their Sobol’ indices are calcu-
lated by running 1,780,000 individual Monte Carlo
runs of the community iRe-CoDeS model exposed
to an M7.0 earthquake. The simulations are ran on
the ETH Euler High-Performance Computing clus-
ter, while a minimal repair rate of 0.002 is adopted
to prevent excessively long recovery times, result-
ing in a maximum component recovery time of 500
days. Component importance ranking for the time
needed to meet 90% of demand for communication
services is shown in Figure 3, presenting mean val-
ues and 95% confidence intervals of the community

components’ total Sobol’ index values for 30 (out
of 88) components with the highest total Sobol’ in-
dex values. The component ranking is presented
in terms of Sobol’ index values for component re-
pair rates. Similar ranking is obtained when initial
damage level Sobol’ indices are used. The compo-
nents are labeled on the x-axis. For example, EPP
301 refers to the electric power plant at locality 301,
and Bridge (301, 302) refers to the bridge connect-
ing localities 301 to 302.

The direct suppliers of communication services,
the BTSs, are not ranked among the most important
components: the BTS with the highest Sobol’ index
is 19th in the initial component ranking. This can
be explained by the BTSs redundancy: 11 BTS are
operating independently of each other and can meet
the user’s communication demand. However, the
components supporting the operation of BTSs (i.e.,
the CWFs, BSCs, and EPPs) are not as redundant
(e.g., there are only 4 CWFs, 2 BSCs, and 2 EPPs)
and are thus identified as more important. The ini-
tial Sobol’ sensitivity analysis ranked CWFs and
BSCs as the most important components, identify-
ing the importance of BTSs’ dependence on BSCs,
as well as the BSCs’ dependence on cooling water
provided by the CWFs. The EPPs are important as
they provide electric power to CWFs, BSCs, and
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Figure 3: Total Sobol’ indices of community components regarding the time to meet 90% of demand for commu-
nity communication services (Blagojević et al. (2022)).

BTSs. The initial component ranking recognized
indirect interdependencies among components, as
well as the importance of components transfering
resources: CWPs are also recognized as important
as they transfer cooling water to EPPs and BSCs.
Some CWPs are more important than others due to
their location and connectivity. The two bridges are
important since they carry the CWPs and EPTLs
across the river in the virtual community’s top left
corner.

The vulnerability and recoverability of highly-
ranked components are estimated by combin-
ing fragility and restoration curves from HAZUS
(FEMA (2012)) with ground motion models. How-
ever, EPTLs are assumed not to be damaged by the
considered earthquake. Details of component mod-
els used to calibrate their probability distributions
are given in (Blagojević et al. (2022)).

The final results of the iterative heuristic upper
and lower bound search in assessing the commu-
nication system’s resilience goal are presented in
Figure 4. The upper and lower bound probability

distribution converged once the probability distri-
bution of the initial damage level and repair rate of
45 highly ranked components were calibrated. All
PWFs and almost all PWPs were identified as ir-
relevant for assessing the resilience of the commu-
nication system. This is reasonable since compo-
nents of the communication system, the BTSs and
BSCs, do not require potable water. However, a
couple of PWPs did end up in the 45 important
components set. The most likely reason for this
is the numerical calculation of Sobol’ indices us-
ing Monte Carlo simulation: a higher number of
Monte Carlo simulations would increase the accu-
racy of Sobol’ index values, most likely reducing
the rank of PWPs. The BSUs were also irrele-
vant as their communication demand is assumed to
change only in the first 10 days following the disas-
ter. In most scenarios, the communication system’s
functionality was restored after this time. Thus
this change in the communication demand did not
significantly affect the time to recover functional-
ity. Parts of the CWP network were also not im-
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Figure 4: Probability distributions of the time that the cellular communication system needs to meet 90% of com-
munity demand when 45 out of the 88 community components are calibrated. The 43 components that are identi-
fied as irrelevant are labelled red in the virtual community layout in the upper right corner.

portant since they were not used to transfer cool-
ing water to users whose operations were important
for recovering the functionality of the communica-
tion system. Thus, the proposed method identified
43 components as irrelevant, preventing unneces-
sary data collection and modeling efforts related to
these components. Furthermore, following the re-
sults of initial component ranking, it is expected
that resilience-improving actions aimed at CWFs,
BSCs and EPPs (e.g., increasing their redundancy
or recoverability) would effectively increase com-
munication system’s resilience.

The upper and lower bound probability distri-
bution of the resilience metric are compared with
the probability distribution obtained once all com-
ponents are calibrated (i.e., All Calibrated in Fig-
ure 4). The three distributions are almost identical,
proving that the iterative heuristic search converged
correctly. The median time to recover the function-
ality of the cellular communication system is esti-
mated to be 21 days, while the 95% quantile is 65
days.

5. CONCLUSION
Assessing resilience of complex systems with

numerous interacting components requires signif-
icant modeling and data collection efforts. This
paper presents a method for ranking components
based on their importance for system resilience
when minimal information on components’ vulner-
ability and recoverability is available. The method
then continues with an iterative heuristic upper and
lower bound search that identifies components im-
portant for assessing system’s resilience and pre-
vents unnecessary data collection and modeling ef-
forts for components that are identified as irrel-
evant. Resilience-improving actions can then be
informed using the proposed method by focusing
on important components and avoiding investments
in components identified as irrelevant. The iRe-
CoDeS framework is used to assess system re-
silience in terms of the time needed to restore sys-
tem’s functionality, where the functionality is mea-
sured as the percent of met user demand. The
iRe-CoDeS framework captures dynamic compo-
nent interdependencies by simulating the flow of re-
sources among components and conditioning their
operation on their demand fulfillment. The method
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is illustrated by assessing component importance
for the resilience of a cellular communication sys-
tem of a virtual community. Apart from the com-
munication system, the operations of the virtual
community are supported by the electric power and
water supply system. The three infrastructure sys-
tems are interdependent, as their components re-
quire resources from other systems to operate. The
initial component ranking based on Sobol’ sensi-
tivity analysis assuming minimal information on
all components, identified the suppliers of cooling
water and electric power, as well as base station
controllers, as the components most important for
restoring the functionality of the cellular communi-
cation system. Thus, component interdependencies
were recognized by the proposed method. The it-
erative heuristic upper and lower bound search then
showed that around half of community components
considered in the resilience analysis are not impor-
tant for assessing the resilience of the cellular com-
munication system, thus preventing significant data
collection and modeling efforts. Additionally, it
is expected that resilience-improving actions that
focus on the components identified as important
will effectively increase system’s resilience. Apart
from identifying irrelevant components and guiding
resilience-improving actions, the proposed method
can also be used to estimate the bounds of proba-
bilistic resilience metrics in cases when the data on
certain components is unavailable due to security or
privacy concerns.
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Blagojević, N., Didier, M., and Stojadinović, B. (2022a).
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