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ABSTRACT: In practical applications, some random variables follow multimodal distributions, thus, the 
corresponding reliability-based topology optimization (RBTO) should be considered. However, 

conventional reliability analysis methods usually result in large computational error in this case. 
Therefore, this paper proposes an efficient approach to RBTO of continuum structures with multimodal 

distributions combining sequential approximate integer programming with trust region (SAIP-TR) and 
direct probability integral method (DPIM). Firstly, the DPIM is suggested to estimate the failure 
probability and its sensitivity for the structure involving random variables with multimodal distributions. 

Secondly, discrete variable topology optimization based on the SAIP-TR is adopted to obtain clear 
topology configurations. Moreover, since the optimal design in the initial stages will not fail, a two-phase 

strategy is proposed. In the first phase, a deterministic topology optimization is carried out with the worst-
case as the constraint. In the second phase, the optimized result of the first phase is taken as the initial 
design to perform the RBTO. To reduce the number of structural analyses, only a part of representative 

points that contribute more to the calculation of failure probability and sensitivity analysis are concerned 
in each optimization process. Finally, several numerical examples illustrate the high efficiency and 

accuracy of the proposed approach for RBTO, and exhibit the significant difference between the results 
of the RBTO considering multimodal distributions and unimodal distributions. 

1. INTRODUCTION 

Reliability-based topology optimization 
(RBTO), which considers uncertainties through 
the failure probability and seeks to a desired 

design satisfying a specific risk and target 
reliability level (Maute 2014), has gotten more 

and more attentions. In fact, there are many 
practical projects involving random variables that 
follow multimodal distributions. Consequently, it 

is essential to consider the RBTO problems with 
multimodal distributions. 

Among the existing works of the RBTO, the 
mostly used reliability analysis method is the first 
order reliability method (FORM), especially the 

performance measurement approach (PMA). In 
addition, the second order reliability method 

(SORM) is also a common reliability analysis 
method in the RBTO. For more details, the 

interested readers can further refer to the review 

literatures of reliability-based design 
(Valdebenito and Schuëller 2010; Yao et al. 2011). 

However, these conventional methods are no 

longer appropriate for the RBTO considering 
multimodal distributions, because they need to 

transform multimodal random variables into 
standard normal space, which will increase the 
nonlinearity of the limit-state function (Hu and Du 

2019). To date, only a few works (Li et al. 2021; 
Lim and Manuel 2021; Meng et al. 2020; Zhang 

et al. 2020) have been presented to calculate 
failure probabilities under multimodal 
distributions, in which the direct probability 

integration method (DPIM) provided an efficient 
and applicable way for calculating the failure 

probability of multimodal distributions, 
regardless of whether the performance function is 
linear or nonlinear (Li et al. 2021). Hence, it is 
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attractive to introduce the DPIM into the RBTO 
problems involving multimodal distributions. 

Moreover, discrete variable topology 
optimization can obtain a clear topology 

configuration and is more suitable for 
manufacturing (Liu and Ma 2016). Thus, the 
optimized designs obtained by the framework of 

reliability-based discrete variable topology 
optimization (RBDVTO) will significantly 

facilitate engineering manufacturing. Meanwhile, 
a robust discrete variable topology optimization 
algorithm is crucial for the implementation of the 

RBDVTO. Recently, a novel discrete variable 
topology optimization algorithm, sequential 

approximate integer programming with trust 
region (SAIP-TR), was well used in a variety of 
topology optimization problems (Liang et al. 

2020), demonstrating its strong adaptability. As a 
result, this approach enables us achieve a 

satisfactory solution for the RBDVTO problems. 
In this study, a RBDVTO framework is 

developed for continuum structures with 

multimodal distributions, which is based on the 
SAIP-TR and the DPIM. Due to the merit of 

SAIP-TR, the optimal design in the initial stages 
will not fail so that an efficient two-phase 
approach is proposed to reduce the computational 

cost. In the first phase, a deterministic topology 
optimization is carried out with the worst-case as 

the constraint until the performance function 
corresponding to the intermediate design reaches 
the predefined threshold. In the second phase, the 

optimized result of the first phase is taken as the 
initial design to perform the RBTO. To further 

reduce the number of structural analyses, only a 
part of the representative points is considered in 
each optimization process, which relies on the 

finding that structural compliance maintains a 
roughly monotonically decreasing trend over the 

whole optimization process. Finally, the high 
accuracy and efficiency of the proposed method 
are verified by numerical examples. 

2. RBDVTO VIA DPIM AND SAIP-TR 

2.1. Problem formulation 
 

Herein, the minimum structural volume 
design subject to a given constraint on failure 

probability is considered. Based on the SAIP-TR, 
the initial design is chosen as full material and the 

optimized designs in the first few optimization 
iterations will not fail. Therefore, a two-phase 
strategy is adopted to reduce the computational 

cost, i.e., the minimum structural volume design 
under the constraint of the compliance is 

preformed first, and then the RBTO is carried out 
when the structure fails. Specifically, the 
following two types subproblems are 

implemented respectively. 
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where, the compliance constraint in (1) is the 

worst-case, i.e. the maximum value of C(ρ, θq), 
the penultimate term in (1) or (2) is the trust region 
constraint, the parameter rk is the trust region 

radius of the k-th subproblem.  
The failure probability estimated by the 

DPIM in (2) is expressed as  

 ( ) ( )DPIM

1
,

N

f q qq
P g P

=
  − 
 ρ ρ θ  (3) 
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where N is the total number of representative 
points that are adopted to partition the input 

probability space, Pq is the assigned probability of 

the q-th representative point and [·] denotes the 

Heaviside function. g(ρ, θq) is the performance 

function 

 ( , )= ( , )q qg C C−ρ θ ρ θ  (4) 

where, C(ρ, θq) is the structural compliance, and 

its prescribed threshold is C . 

Moreover, the Gaussian mixture model 

(Figueiredo and Jain 2002) is adopted for 
uncertainty modeling of input random variables 

with multimodal distributions. 
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where s denotes the number of Gaussian 
components, αi means the weighted coefficient of 

the i-th Gaussian component, and it satisfies 
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1
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2.2. Relaxed strategy of the SAIP-TR 
Considering the different convergence of the 
optimization formulations (1) and (2), two 

different strategies (Liang et al. 2020) that 
determine the rk are implemented respectively. 

For the deterministic optimization (1), the size of 
the trust region is fixed at every iteration, that is 

 k rr M=  (6) 

where αr is a parameter with a small value, and M 

is the number of elements.  
For the optimization (2), the strategy is to 

adjust the trust region dynamically  
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where k  indicates the reduction or increase of 

objective function, which is defined as  

 ( ) ( )1k k

k V V += −ρ ρ  (8) 

rL and rU denote the lower and upper bounds of the 

trust region radius, and their values depend on the 
specific problem. It should be noted that the trust 

region radius will be updated only when the 
changes of the objective functions are the same for 

two successive iterations, which means the trust 
region expands if the objective function 

converges stably, and shrinks if the objective 
function oscillates.  

Moreover, to make the subproblem in SAIP-

TR feasible, it is necessary to adopt relaxation 
strategy for the constraint target which 

dynamically adjusting the constraint threshold 
during the iterative process is imposed. Because 
the constraints of (1) and (2) are different, thus, 

different relaxed strategies are needed. 
Specifically, for the threshold of compliance, the 

relaxed strategy is defined as follows 
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where, the range of the maximum value of C(ρ, θq) 

to the prescribed threshold C  is divided into NC 

parts, and nc is the number of relaxations. It 

indicates that the value of compliance gradually 
converges to its threshold as the iteration 

progresses. It is worth noting that formula (9) is 
utilized to update the value of compliance, only 
when the objective function of the optimization 

problem (1) converges. 
In addition, the relaxed strategy for the 

failure probability threshold is defined as  
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where kP  represents the threshold of failure 
probability in the k-th iteration, L is a large 
number parameter and is set to be 5×104, the 

parameter s is usually a small positive number. 

2.3. Sensitivity analysis 
As mentioned above, the constraint functions in 
(1) and (2) are the linear approximation of the 
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structural compliance and failure probability 
respectively. Hence, the sensitivity of the 

constraint is crucial to the SAIP-TR. Strictly 
speaking, the accurate discrete variable 

sensitivities should be defined by the finite 
difference operation. However, their 
computational costs are usually unacceptable. In 

this paper, the sensitivity formulation deduced by 
the differential operation is adopted. 

The sensitivity of the structural compliance 
can be derived  
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where ue is the e-th elemental displacement vector, 

Ke is the e-th elemental stiffness matrix, p = 3 is 
the penalization factor, and ρmin = 10-3 is a small 

positive value. Here we assume that the 
interpolation relation between the material 
Young’s module and the element density follows 
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where the sensitivity of the performance function 
can be written as  
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Moreover, to eliminate the checkerboard 

pattern and mesh-dependent phenomenon, the 
following linear sensitivity filter with a user-

defined filter radius R is applied 
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3. STRATEGY OF REDUCING 
COMPUTATIONAL COST 

For the sake of exploring a strategy to reduce 
the number of representative points, we consider 

a cantilever beam as an example. As shown in 
Figure 1, two loads F1 and F2 are applied. The 

Poisson ratio ν = 0.3, 300C = , the parameters of 

random variables are shown in Table 1, and all 

variables are dimensionless. The design domain is 
discretized with 60×30 equal-sized Q4 elements, 

and 1000 representative points is selected.  
 

 
Figure 1: Design domain of the cantilever beam.  

 
Table 1:Distributional parameters of random 
variables. 

 Distribution α μ σ 

F1 Multimodal (0.5,0.5) (1,2) (0.2,0.2) 

F2 Normal — 1 0.1 

E Normal — 1 0.1 

 
In order to find a strategy to screen the 

representative points that have prominent impact 
on the failure probability and its sensitivity, we 

consider the following three different designs to 
study the influence of different topologies on the 
structural compliance. 

 

 
Figure 2: Three different designs for the cantilever 
beam. 

 
Firstly, we rank the structural compliance 

corresponding to Figure 2 (a) in descending order 
to obtain a representative point sequence υ. Then, 

corresponding responses of designs in Figure 2 (b) 
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and Figure 2 (c) are also obtained according to 
sequence υ, and the results are shown in Figure 3. 
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Figure 3: Structural compliance of different designs 
sorted by point sequence υ. 

 
As can be seen from Figure 3, the compliance 

of design (a) presents a monotonically decreasing 
trend, and the compliance of other two designs 

show a roughly monotonically decreasing trend. 
Even though the compliance obtained by design 
(b) and design (c) are not strictly monotonically 

decreasing according to sequence υ, the overall 
trend is the same as design (a). Thus, the first 

several points in sequence υ are exactly the 
representative points that needed to calculate the 
failure probability and its sensitivity. Additionally, 

the representative points corresponding to the 
worst-case under different designs are the same. 

The fundamental reason for the above findings is 
that the random variable space is invariant, and 
the relationship between the random load or the 

random Young’s modulus and the compliance 
herein is monotonic, i.e., the greater the load, the 

greater the compliance, and the greater the 
Young’s modulus, the smaller the compliance.  
Therefore, the representative points involved in 

the actual calculation can be screened out in 
advance and the computational cost will be 

reduced simultaneously.  
Due to the failure probability of the structure 

is still zero or very small at the end of the first 

phase (1), the number of representative points 
required at this time is also very small. Therefore, 

at the beginning of the second phase (2), only a 
small number of representative points N0 are 
needed to calculate the smoothing parameter σ0 

and obtain the initial sensitivity. The magnitude of 
N0 is set to 100 herein. In addition, in order to 

support parallel computation, the following 
strategy in Figure 4 is proposed to adaptively 

update the number of representative points and 
calculate the smoothing parameter during the 

optimization. 

 
Figure 4: Flowchart of the strategy for updating the 
number of representative points and calculating the 
smoothing parameter. 

4. NUMERIACAL EXAMPLES 
Herein, one-half of the MBB beam, 

visualized in Figure 5, is considered, which is 

discretized into 60 × 180 equal-sized Q4 finite 
elements. The Poisson’s ratio of the reference 

material ν = 0.3. The distributional properties and 
parameters of E and F are listed in Table 2. In 
addition, αr is set to be 1.25×10-2, the parameter s 

is assigned 0.5, and the filter radius R = 2. The 
iterative process of topology optimization is 

terminated, when no further improvement of the 
objective function can be achieved (i.e., the mean 
of relative fluctuation of the objective function is 

less than 0.01 in 5 successive iterations) and the 
constraint of the failure probability is satisfied. In 

addition, the number of representative points N in 
each example is selected as 2000. 

 

 

Figure 5: Design domain and boundary condition of 
MBB beam. 
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Table 2: Distributional parameters of random 
variables. 

 Distribution α μ σ 

F 
(N) 

Bimodal (0.5, 
0.5) 

(100, 
150) 

(10, 
10) 

E 
(MPa) 

Normal — 2×105 2×104 

 
As mentioned above, the widely adopted 

FORM needs to transform the random variables 

into standard normal variables, which causes a 
large error in the calculation of failure probability 

when the distributions of random variables are 
multimodal. To this end, this example firstly 
compares the difference between the optimized 

results of the proposed two-phase approach and 
the FORM. Herein, PMA is utilized to evaluate 

the failure probability. In the PMA, the mean and 
standard deviation of the transformed normal 

distribution are 1 1 2 2= =125N    +  and 

( ) ( )2 2 2 2 2

1 1 1 2 2 2= =26.93 N       + + + −  

respectively (Hu and Du 2019). For details, the 

probability density function before and after 
transformation is shown in Figure 6. Given the 

threshold of failure probability and the threshold 
of response function as 0.01 and 4×10-2 J, the 
iteration histories of the optimization process is 

shown in Figure 7. 
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Figure 6: Probability density function curves before 
and after transformation. 

 

As the iterative history shows, both methods 
can convergence quickly, but the optimized 
volume fraction is not the same. The volume 

fraction obtained by the PMA is larger than that 
acquired by the two-phase approach, and their 

specific volumes can be referred to Table 3. In 
addition, the failure probability constraint of the 

PMA is always satisfied, and the failure 
probability of the two-phase method converges to 
the target value gradually. 
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Figure 7: Iteration histories of the proposed two-
phase approach and the PMA. 

 
Table 3: Optimal results of the two-phase approach 
and the PMA. 

Method Two-phase 
approach 

PMA 

Volume 

fraction 

0.3412 0.3714 

fP  0.0097 0.0100 

MCS

fP  0.0094 0.0015 

 
Furthermore, the optimized results in Table 3 

and Figure 8 show the topology configurations of 
these two methods are quite different, where more 

detailed features are occurred in the configuration 
obtained by the PMA. Moreover, compared with 
the verification results of MCS, the failure 

probability of the structure obtained by the PMA 
is much smaller than the target constraint value, 

which directly proves that it is difficult to ensure 
the accuracy of the results of the RBDVTO using 
the FORM under multimodal distributions. 
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Figure 8: Topology configurations of the two-phase 
approach and the PMA. 

 
In addition, this example also studies the 

influence of different bimodal distributions on the 
optimal results. Because the Gaussian mixture 
model is adopted to generate the multimodal 

distribution, different bimodal distributions can 
be obtained by changing the corresponding 

weights while the mean and standard deviation of 
a single Gaussian distribution are fixed. Here, 
three cases are discussed: (a) α1 = 0.5; α2 = 0.5, (b) 

α1 = 0.4; α2 = 0.6, (c) α1 = 0.3; α2 = 0.7, where α1 
and α2 are the corresponding weights of a single 

Gaussian distribution respectively, and their 
probability density function curves are shown in 
the Figure 9. 
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Figure 9: Probability density function curves of 
different weights. 

 
According to the two-step approach, the 

optimized results of these three different weights 

are shown in Table 4 and Figure 10. These results 
indicate that different weights have little influence 

on the optimized results when the mean and 
standard deviation of a single Gaussian 
distribution are the same. Their optimized 

topology configurations are roughly the same, and 
their optimized volumes differ very little. 

However, the volume ratio will increase with the 
increment of weight α2. This can be explained 

from the PDF curves in Figure 9: when the weight 
α2 increases, the value at the end of the 
corresponding PDF curve will also augment, 

which means that there is a greater chance to 
obtain a larger load. Therefore, the optimized 

volume fraction will increase with the increase of 
the weight α2 to ensure the safety of the structure. 
Moreover, all the optimized results meet the given 

failure probability constraints, and the accuracy of 
the failure probability can also be guaranteed by 

MCS verification. 
 

Table 4: Optimal results of different cases 

Case (a) (b) (c) 

Volume 
fraction 

0.3412 0.3413 0.3479 

fP  0.0097 0.0097 0.0092 

MCS

fP  0.0094 0.0094 0.0091 

 

 

 

 
Figure 10: Topology configurations of different 
cases. 

5. CONCLUSIONS 
This paper proposes an efficient approach to 

reliability-based discrete variable topology 
optimization of continuum structures with 
multimodal distributions via DPIM and SAIP-TR. 

In order to improve the efficiency of the 
optimization, a two-phase framework is 
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established. This framework is based on the fact 
that the optimized designs in the first few 

optimization iterations dose not fail and the 
finding that the compliance sorted by initial 

decreasing representative point sequence always 
maintains a roughly monotonically decreasing 
trend over the whole optimization process. 

Numerical examples indicate that this 
approach can solve the RBDVTO problems 

efficiently and accurately. Meanwhile, due to the 
differences between probability density functions, 
the results of the RBDVTO considering unimodal 

and multimodal distributions are quite different, 
and it also confirms the necessity of the RBTO 

problems considering multimodal distributions. 
In the future, we will further extend this 
framework to the complex dynamic reliability-

based topology optimization problems. 
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