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ABSTRACT: Numerical solutions of stochastic problems require the representation of the random
functions in their definitions by finite dimensional (FD) models, i.e., deterministic functions of time and
finite sets of random variables. It is common to represent the coefficients of these FD surrogates by
polynomial chaos (PC) models. We propose a novel model, referred to as the polynomial chaos
translation (PCT) model, which matches exactly the marginal distributions of the FD coefficients and
approximately their dependence. PC- and PCT- based FD models are constructed for the solution of
differential equation with non-Gaussian input and the wind pressure time series recorded at the
boundary layer wind tunnel facility at the University of Florida. The PCT-based models capture the joint
distributions of the FD coefficients and the extremes of target stochastic processes accurately while
PC-based FD models do not have this capability.

1. INTRODUCTION
The solution of a broad range of problems in sci-

ence and engineering involves extremes of random
processes X(t) over finite times intervals, e.g., ex-
treme climate events and design responses of dy-
namical systems subjected to random loads, Grig-
oriu. (2020); Easterling et al. (2000); Grigoriu and
Samorodnitsky. (2015). Yet, most practical meth-
ods for calculating the distribution of the extreme
random variable Xτ = sup0≤t≤τ |X(t)| are based
on the mean rate at which the real-valued pro-
cess X(t) or its absolute value crosses with posi-
tive slope specified levels, Leadbetter et al. (1983),
(Chap. 7), which is available analytically for mean
square differentiable Gaussian processes X(t) and
memoryless transformation of these processes, re-
ferred to as translation processes, Gioffré et al.
(2000). If X(t) does not have these properties,
the distribution of the extreme random variable Xτ

can be approximated from crossing of time series

(
X(t0),X(t1), . . . ,X(tn)

)
defined by the values of

X(t) at a finite set 0= t0 < t1 < · · ·< tn = τ of times
in [0,τ], Naess and Gaidai. (2008). The accuracy of
this approximation depends on the time step and the
properties of the samples of X(t). For example, the
approximation fails if the samples of X(t) are not
differentiable, e.g., the Brownian motion process.

It is proposed to approximate the distribu-
tion of Xτ = sup0≤t≤τ |X(t)| by that of Xd,τ =
sup0≤t≤τ |Xd(t)|, where Xd(t) is a finite dimensional
(FD) model of X(t), i.e., a deterministic function of
time and d < ∞ random variables which has the fol-
lowing two properties. First, the distributions of Xτ

and Xd,τ are similar for a sufficiently large stochas-
tic dimension d. Accordingly, the distribution of
Xτ can be estimated from samples of Xd(t). Sec-
ond, samples of Xd(t) can be generated by standard
Monte Carlo algorithms. In contrast, samples of
X(t) cannot be generated since, generally, stochas-
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tic processes have infinite stochastic dimensions as
uncountable families of random variables indexed
by time.

2. FINITE DIMENSIONAL MODELS
Let X(t) be a real-valued, zero-mean stochas-

tic process on a bounded time interval [0,τ] with
correlation function c(s, t) = E[X(s)X(t)]. Denote
by {λk} and {ϕk(t)}, k = 1,2, . . ., the eigenvalues
and the eigenfunctions of the correlation function of
X(t). It is assumed that c(s, t) is continuous so that
its eigenfunctions are real-valued continuous func-
tion on [0,τ], Kadota. (1967).

The family of FD models of X(t) has the form

Xd(t) =
d

∑
k=1

Zk ϕk(t), 0≤ t ≤ τ, (1)

where the random coefficients {Zk =∫
τ

0 X(t)ϕk(t)dt} are the projections of X(t)
on the basis functions {ϕk(t)}. Simple calculations
show that E[Zk] = 0 and E[Zk Zl] = λk δkl , so
that the zero-mean random variables {Zk} are
uncorrelated. They are independent if X(t) is
Gaussian.

The FD models Xd(t) have two notable proper-
ties. First, they are defined on the same probability
space as X(t) so that their samples are paired with
those of X(t). Second, for given time t, the random
variables Xd(t) converge in mean square to X(t) as
d→ ∞ since

E
[(

Xd(t)−X(t)
)2]

=
∞

∑
k=d+1

λk ϕk(t)2→ 0,

as d → ∞ by Mercer’s theorem, Mercer. (1909).
This convergence implies the converges in prob-
ability of Xd(t) to X(t) and, therefore, in distri-
bution. This observation and Theorem 18.10 of
van der Vaart. (1998) imply that the finite dimen-
sional distributions of Xd(t) converge to those of
X(t) as d→ ∞.

3. FD-BASED ESTIMATES OF EXTREMES
Denote by Fτ and Fd,τ the distributions of

the extremes Xτ = sup0≤t≤τ |X(t)| and Xd,τ =
sup0≤t≤τ |Xd(t)| of X(t) and Xd(t) in the bounded
time interval [0,τ]. We give conditions under which

Fd,τ converges to Fτ as d→ ∞. Under these condi-
tions, Fτ can be estimated from samples of Xd(t)
provided that d is sufficiently large. This is es-
sential in applications since samples of Xd(t) can
be generated by standard Monte Carlo algorithms
while samples of X(t) are not available. For sim-
plicity, we assume as in the previous section that
X(t) is real-valued. Extension to vector-valued pro-
cesses is straightforward.

Property 1. If X(t) has continuous samples and its
correlation function c(s, t) = E[X(s)X(t)] is con-
tinuous, the finite dimensional distributions of
Xd(t) converge to those of X(t) as d → ∞ and
∑

∞
k=1 λkCk < ∞ with Ck = supt∈[0,τ]ϕk(t)2, then the

distribution Fd,τ of sup0≤t≤τ |Xd(t)| converges to
the distribution Fτ of sup0≤t≤τ |X(t)| as d→ ∞.

It can be shown by using the Theorem 8.2
in Billingsley. (1968) that this property holds.
The practical implication of this property is that
the distribution of the extreme random variable
sup0≤t≤τ |X(t)| can be estimated from samples of
FD models Xd(t) of X(t) provided that d is suffi-
ciently large. This is essential in applications since
the distribution of sup0≤t≤τ |X(t)| is available ana-
lytically in special cases of limited practical interest
and samples of X(t) cannot be generated.

Property 2. If X(t) is a Gaussian process with
continuous samples and its correlation function
c(s, t) = E[X(s)X(t)] is continuous and if the fi-
nite dimensional distributions of Xd(t) converge to
those of X(t) as d → ∞, then the sequence of ran-
dom variables sup0≤t≤τ |Xd(t)−X(t)| converges to
zero in probability as d→ ∞.

The proof is based on arguments similar to those
used for the previous property. This means that the
“bad” subset

Ωd(ε) = {ω ∈Ω : sup
0≤t≤τ

|Xd(t)−X(t)|> ε}

of the sample space Ω on which the samples of
X(t) and Xd(t) differs by more than any ε > 0 can
be made as small as desired by increasing d since
P
(
Ωd(ε)

)
→ 0 as d→∞. Accordingly, most of the

samples of X(t) can be represented by the samples
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of Xd(t) for a sufficiently large stochastic dimen-
sion d.

4. PC AND PCT MODELS

Our objective is to construct models of the ran-
dom coefficients Z = (Z1, · · · ,Zd)

T of Xd(t) in (1)
from its samples which are accurate in the sense
that their joint distributions match the joint distribu-
tion of Z, and efficient, i.e., standard Monte Carlo
algorithms can be used to generate samples of these
models.

The Rosenblatt transformation Rosenblat-
t. (1952) shows that the components of
Z = (Z1, . . . ,Zd) can be related to the compo-
nents of, e.g., a vector G = (G1, . . . ,Gd) with
independent standard Gaussian variables, by the
mapping

Z1 = F−1
1 ◦Φ(G1)

Zk|Zk−1, · · · ,Z1 = F−1
k|k−1,··· ,1 ◦Φ(Gk), (2)

where Fk is the distribution of Zk, Fk|k−1,··· ,1 is the
distribution of Zk|Zk−1, · · · ,Z1. If the mapping in
(2) is available, samples of Z can be obtained from
samples of G, which can be generated by standard
algorithms. Since the conditional distributions in
the mapping G 7→ Z are available analytically only
in special cases, they have to be constructed numer-
ically in most applications. Their construction from
the joint distribution of Z is computationally de-
manding and the resulting conditional distribution-
s are likely to be unsatisfactory, particularly when
dealing with heavy tail distributions. The construc-
tion of the conditional distributions Fk|k−1,··· ,1 from
data is not feasible when dealing with high dimen-
sional vectors and relatively small data sets.

This section develops approximations of the
Rosenblatt transformation for the random coeffi-
cients (Z1, . . . ,Zd) based on polynomial chaos (PC)
and an extension of this representation, referred
to as PCT models. These models of (Z1, . . . ,Zd)
are denoted by ZPC = (ZPC

1 , · · · ,ZPC
d ) and ZPCT =

(ZPCT
1 , · · · ,ZPCT

d ).
The PC models considered here are quadratic

forms of independent standard Gaussian variables

G1, . . . ,Gd defined by

ZPC
k = E[Zk]+

d

∑
j=1

ak, jG j

+ ∑
1≤ j<l≤d

ak, j,l(G jGl−E[G jGl]). (3)

The coefficients {ak, j,ak, j,l} in (3) are determined
by minimizing the objective function

e1(ak, j,ak, j,l)

= g1E[ ||Z−ZPC||22 ]
+g2 max

1≤i1<i2≤d
||hi1,i2(·)−hPC

i1,i2(·|ak, j,ak, j,l)||2

+g3(||E[ZZT ]−E[ZPC(ZPC)T ]||) (4)

where hi1,i2(·) is the histogram of (Zi1 ,Zi2) and
hPC

i1,i2(·|ak, j,ak, j,l) is the histogram of (ZPC
i1 ,ZPC

i2 )
for given coefficients {ak, j,ak, j,l}. The Matlab
function histcounts2 is used to construct the two di-
mensional histograms of (Zi1,Zi2) and (ZPC

i1 ,ZPC
i2 ).

The error between the two matrices is quantified by
the norm || · ||2, i.e., the absolute largest eigenvalue
of the matrix. We consider the set of all pairs of
components rather than all components to minimize
calculations. The weighting coefficients g1,g2,g3
are such that the components E[ ||Z − ZPC||22 ],
max1≤i1<i2≤d ||hi1,i2(·) − hPC

i1,i2(·|ak, j,ak, j,l)||2 and
||E[ZZT ] − E[ZPC(ZPC)T ]|| contribute equally to
the objective function (4). We set g1 = 0 if Z and
ZPC are not defined on the same probability space
since the mean error E[ ||Z − ZPC||22 ] cannot be
calculated.

The components of the PCT models are defined
by

ZPCT
k = F−1

k ◦FPC
k (ZPC

k ), k = 1, · · · ,d, (5)

where FPC
k is the distribution of ZPC

k for given co-
efficients {ak, j,ak, j,l}. The coefficients {ak, j,ak, j,l}
in (5) are determined by minimizing the objective
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function

e2(ak, j,ak, j,l)

= w1E[ ||Z−ZPCT ||22 ]
+w2 max

1≤i1<i2≤d
||si1,i2(·)− sPCT

i1,i2 (·|ak, j,ak, j,l)||2

+w3 max
1≤i1<i2≤d

||hi1,i2(·)−hPCT
i1,i2 (·|ak, j,ak, j,l)||2,

(6)

where hi1,i2(·) is as in (4), si1,i2(·) is the spec-
tral measure of (Zi1,Zi2), sPCT

i1,i2 (·|ak, j,ak, j,l) and
hPCT

i1,i2 (·|ak, j,ak, j,l) are the spectral measure and the
histogram of (ZPCT

i1 ,ZPCT
i2 ) for given coefficients

{ak, j,ak, j,l}. Spectral measures of (Zi1,Zi2) are
metrics which quantify the likelihood that (Zi1,Zi2)
are simultaneously large, see (5.3) and (5.4)
in Grigoriu. (2019) for definitions and Resnick.
(2007), (Chap. 6) for technical details. We sort the
samples of the two-dimensional vectors (Zi1,Zi2)
and (ZPCT

i1 ,ZPCT
i2 ) according to their lengths such

that the first sample is the furthest to the ori-
gin and construct the spectral measures from the
top 10% of these samples. The Matlab func-
tion histcounts2 is used to construct the two di-
mensional histograms and spectral measures of
(Zi1,Zi2) and (ZPCT

i1 ,ZPCT
i2 ). We consider the set

of all pairs of components rather than all com-
ponents to minimize calculations. The weighting
coefficients w1,w2,w3 are such that the compo-
nents E[ ||Z − ZPCT ||22 ], max1≤i1<i2≤d ||si1,i2(·)−
sPCT

i1,i2 (·|ak, j,ak, j,l)||2 and max1≤i1<i2≤d ||hi1,i2(·) −
hPCT

i1,i2 (·|ak, j,ak, j,l)||2 contribute equally to the objec-
tive function (6). We set w1 = 0 if Z and ZPCT are
not defined on the same probability space since the
mean error E[ ||Z−ZPCT ||22 ] cannot be calculated.
The second and third terms of e2(ak, j,ak, j,l) quan-
tify differences between the dependence structure
of Z and ZPCT . The third term is an approximate
metric for the differences between the joint distri-
butions of Z and ZPCT while the second term mea-
sures the differences between the tail dependence
of these random vectors.

Example 1. Let X1(t),X2(t), 0 ≤ t ≤ τ , be real-
valued processes defined by the differential equa-

tions

Ẍ1(t)+α1Ẋ1(t)+β1X1(t) = κ1V (t),
Ẍ2(t)+α2Ẋ2(t)+β2X2(t) = κ2V (t) (7)

with the initial conditions Xi(0) = 0 and Ẋi(0) = 0,
i = 1,2, where αi,βi,κi > 0, i = 1,2 are constants.
The input is the translation process V (t) = F−1 ◦
Φ(W (t)), where F is the Gamma distribution func-
tion with the shape parameter ν and scale parameter
1, W (t) is the stationary solution of dW (t) =
−ϑ W (t)dt+

√
2ϑ dB(t), ϑ > 0, and B denotes the

standard Brownian motion.
From Grigoriu. (2021), (Chap. 2), the solution of

(7) is

Xi(t) =
∫ t

0

κi

ψi
e−αi(t−u)/2 sin(ψi(t−u))V (u)du, (8)

where ψi = (βi−α2
i /4)1/2, i = 1,2.

Our objective is to construct FD models for the
vector-valued process

(
X1(t),X2(t)

)
. Since (7) has

to be solved numerically, V (t) and
(
X1(t),X2(t)

)
are defined and calculated at a finite set of times,
e.g., the equally spaced times ti = i∆t, i =
1, . . . ,n, where ∆t = τ/n denotes the integration
time step. Denote by η = (V (t1), . . . ,V (tn)) and
ζi = (Xi(t1), . . . ,Xi(tn)), i = 1,2, the discrete ver-
sions of the input V (t) and of the processes Xi(t),
i = 1,2. The random vector η admits the represen-
tation η = ∑

n
k=1 Zkvk, where {vk} are the eigenvec-

tors of the covariance matrix E[ηηT ] and the ran-
dom coefficients {Zk} are defined sample by sam-
ple by projection, i.e., Zk(ω) = ηT (ω)vk, ω ∈ Ω.
The corresponding FD model is ηd = ∑

d
k=1 Zkvk,

d≤ n. Since the differential equations (7) are linear,
their solutions to η and ηd are linear forms of {Zk}
denoted by ζi = {ζi, j} and ζd:i = {ζd:i, j}, i = 1,2,
j = 1, . . . ,n.

The thin solid lines of the top and bottom panel-
s of Fig. 1 are estimates of P(‖ζi‖ > x) for i = 1
and i = 2 which are obtained directly from data,
where ‖ζi‖ = max1≤ j≤n |ζi, j|. These probabilities
are viewed as truth. The other lines of the figure are
calculated from samples of ζd:i (heavy solid lines),
ζ PC

d:i (dotted lines) and ζ PCT
d:i (dashed lines) for the

first and second components (top and bottom panel-
s). The heavy solid lines are the closest to the truth.
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Figure 1: Estimates of the target probability P(||ζi|| >
x) based on data (thin solid line), FD model (heavy
solid line), finite dimensional PC model (dotted line)
and finite dimensional PCT model in logarithmic scale
(dashed line) for ζi = (Xi(t1), . . . ,Xi(tn)), i = 1,2 (top
and bottom panels).

The next best model is ζ PCT
d:i while ζ PC

d:i differs sign-
ificantly from the truth. We prefer ζ PCT

d:i to ζd:i since
the set of samples of ζd:i is defined by the available
data so that it cannot be extended. In contrast, sam-
ples of any size can be generated from ζ PCT

d:i since
its probability law is known.

5. FD MODEL FOR WIND FORCES

FD models are constructed for the vector-valued
wind pressure time series X(t) =

(
X1(t), . . . ,Xm(t)

)
recorded in the wind tunnel of the University of
Florida and these models are used to estimate dis-
tributions of this time series.

Wind tunnel records are used to estimate the
correlation functions of the vector-valued process
X(t), find the eigenfunctions of these functions and
calculate the samples of the random coefficients
{Zi,k} of the FD models of the components of X(t)
by projection as discussed in Sect. 2.

The joint distribution of the random vector whose
components are the random variables {Zi,k} is
obtained by translating polynomial chaos repre-
sentation such that they match exactly the target
marginal distribution, see (5). These models can
be used to generate samples of the random coeffi-
cients {Zi,k} which are used to find the correspond-
ing samples of FD models of X(t).

Let Xi = (Xi(t1), . . . ,Xi(tN))T , i = 1, · · · ,m, de-
note the components of the m-dimensional time
series describing the wind model. The function-
al form of the FD models under consideration is
in Sect. 2. The models, denoted by X IND

d:i , X PC
d:i

and X PCT
d:i , are elements of the space spanned by

the same vectors {vi,k}, but their coefficients dif-
fer. The random coefficients of X PC

d:i are given by
the PC model. The random coefficients of X IND

d:i
and X PCT

d:i have the same marginal distributions but
they are independent for X IND

d:i and dependent giv-
en by the PCT model for X PCT

d:i .
The plots of Fig. 2 are estimates of the dis-

tribution of the fifth component of the vector-
valued time series Xi, i = 1, · · · ,m. The thin sol-
id lines are the probabilities P(‖X5‖ > x), which
are obtained directly from data, where ‖X5‖ =
max1≤ j≤N |X5(t j)|. These probabilities are viewed
as truth. The other lines of the figure are calculat-
ed from samples of Xd:5 (heavy solid lines), X IND

d:5
(dash-dotted lines) , X PC

d:5 (dotted lines) and X PCT
d:5

(dashed lines). The heavy solid lines are the closest
to the truth. The next best model is X PCT

d:5 while
X PC

d:5 differs significantly from the truth. The es-
timates are unsatisfactory for X IND

d:5 , an expected
result since the resulting FD wind model is approx-
imately Gaussian.

6. CONCLUSIONS
Finite dimensional (FD) models, i.e., determinis-

tic functions of time and finite sets of random vari-
ables, have been constructed for a test case and a
wind pressure time series recorded at the UFBLWT
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Figure 2: Estimates of the target probability P(||X5||>
x) based on data (thin solid line), FD model (heavy
solid line), finite dimensional independent model (dash-
dotted line), finite dimensional PC models (dotted line)
and finite dimensional PCT model in logarithmic scale
(dashed line) with second and forth degree polynomial
chaos (top and bottom panels).

facility in Gainesville by using polynomial chaos
(PC) and polynomial chaos translation (PCT) mod-
els to represent their random coefficients. The com-
ponents of PCT models are obtained from those of
PC models by translation, so that they match exact-
ly the target marginal distributions irrespective of
the coefficients in their definition. The optimal val-
ues of the PCT coefficients minimize the discrep-
ancy between the PCT and target joint properties,
which are quantified by joint distributions and spec-
tral measures.

The FD models with PCT random coefficients

are superior to those with PC coefficients in the
sense that the distributions of extremes of PCT-
based FD models are similar to those of target time
series while PC-based FD models exhibit notable
errors.
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