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ABSTRACT: Reliability-based calibration of partial safety factors of structural design codes requires
suitable stochastic models for, among others, live loads. These models need to be compatible with the
design values and exceedance probabilities stated in the same codes. This paper presents a critical review
of the literature on stochastic models for live loads. These models consist of a sum of sustained and
extraordinary loads, modelled as Poisson rectangular wave and spike processes, respectively. The models
and their input parameters are reviewed by comparison to design values of EN 1991-1-1 and ASCE/SEI 7
codes. The main conclusion is that JCSS Probabilistic Model Code parameters are often too conservative
and unrealistic. An overview of some live load statistics used in code calibration is also presented, and
new statistics derived using Monte Carlo simulation are proposed. This study should be relevant for the
development of Eurocodes, as its exceedance probabilities for design live loads are not clear.

1. INTRODUCTION
The principles of three different approaches for
design and assessment decisions with varying levels
of detail regarding the consideration of uncertainties
are outlined in ISO 2394 (ISO, 2015), namely:
risk-informed decision-making, reliability-based
design, and semi-probabilistic design.

The semi-probabilistic approach is considered ap-
propriate for structures for which the consequences of
failure and damage are well understood and the failure
modes can be categorized and modelled in a standard-
ized manner. It is the method of choice for most inter-
national structural design codes, such as the so-called
Load and Resistance Factor Design (LRFD) format
employed in the North American design standards
(ASCE, ANSI, AISC, ACI), or the (slightly different)
format employed in the Eurocodes (CEN, 2002a).

Risk- and reliability-based approaches, on
the other hand, are applied in the calibration of
semi-probabilistic approaches and may be employed
to support the design of special structures with
severe failure consequences or structures that are not
covered by semi-probabilistic design codes.

To perform the reliability-based calibration of the
partial safety factors employed in semi-probabilistic

design codes, such as the one reported in Ellingwood
et al. (1980), suitable stochastic models for both
loads and resistances parameters need to be provided.
While the characteristics of the variable loads acting
on a structure and their effects are arguably the most
important input parameters to a reliability-based
calibration, they are also the parameters for which
we usually know the least.

One such load of particular importance for
buildings is the live load. In this paper, a stochastic
model for live loads is presented and reviewed, by
comparing model results against the design loads
prescribed in EN 1991-1-1 (CEN, 2002b) and
ASCE/SEI 7 (ASCE, 2016) and live load statistics
commonly used in reliability analyses.

2. LIVE LOADS IN BUILDINGS
Live loads consist, according to ASCE/SEI 7 (ASCE,
2016), of all loads produced by the use and occupancy
of the building that does not include construction
or environmental loads (such as wind, snow, rain,
earthquakes) or dead load. These loads are of a
stochastic nature, with variability in both space and
time. As such, there is uncertainty not only about
their maximum intensities within a certain reference
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period but also about the position and time at which
these intensities occur.

The hierarchical stochastic model for live load
in buildings considered in this study was originally
proposed by Peir (1971) and widely applied thereafter
(Peir and Cornell, 1973; McGuire and Cornell, 1974;
Ellingwood and Culver, 1977; Chalk and Corotis,
1980; Harris et al., 1981). It is also described in CIB
Report 116 (CIB, 1989) and the JCSS Probabilistic
Model Code, or PMC (JCSS, 2001).

The fundamental idea of this model consists of
representing the live load as a sum of sustained and
extraordinary (also called transient or intermittent)
stochastic processes. The sustained load corresponds
to the weight of all furniture and its contents, movable
partitions, and working/living personnel regularly
present in the building. It stays “on” for the majority
of the building’s lifetime, and its intensity at a given
point-in-time can be directly measured in a load
survey. The extraordinary load, on the other hand,
corresponds to localized crowding of people or
furniture stacking. It is usually of higher intensity
than the sustained load and acts momentarily, staying
“on” for relatively short periods, in the order of a few
minutes to a few days.

In the stochastic model discussed herein, the
sustained load Q(t) and the extraordinary load P(t)
are represented as a Poisson rectangular wave process
(Figure 1a) and a Poisson spike process (Figure 1b),
respectively. The total live load, denoted by L(t),
is given by the sum of both processes (Figure 1c).
A brief description of the stochastic models for
sustained and extraordinary loads is given in the
sequence. For more details, the reader is referred to
Peir (1971).

2.1. Sustained load model
The arbitrary point-in-time load intensity wi j(x,y) on
an infinitesimal area ∆A at a particular location (x,y)
on the jth floor of the ith building can be expressed
as (Peir, 1971):

Wi j(x,y)=m+Vi j+Ui j(x,y), (1)

where m is a deterministic overall mean intensity for
the whole population of buildings within the same
use category; Vi j is a zero-mean random variable;
and Ui j(x, y) is a zero-mean stochastic field. The
random variable V can be thought of as a sum of
two other independent zero-mean random variables

(a)

(b)

(c)

Figure 1: Schematic time histories of the (a) sustained,
(b) extraordinary, and (c) total live load in buildings

Vi j = Vbld(i) + Vf lr( j), the former representing the
building-wide spatial average of building i from
m and the latter representing the deviation of the
floor-wide spatial average of floor j from m+Vbld(i).
The stochastic field Ui j(x,y) accounts for the local
spatial variation within floor j. From this point
onwards, the subscripts i and j will be omitted for the
sake of simplifying the notation.

While the point load intensities are of little practi-
cal interest by themselves, Equation 1 can be used to
deduce the characteristics of more relevant quantities,
such as load effects. Let S be the load effect caused by
the stochastic field W (x,y). Assuming linear elastic
behaviour, S can be written as:

S=
∫∫

A
W (x,y)I(x,y)dydx, (2)

where I(x, y) is the influence surface for the
considered effect; and A is its influence area1.

Furthermore, we can define the uniform load
intensity that would produce the same load effect S
as the original stochastic field W (x,y)when applied
over the influence area A. This equivalent uniformly
distributed load (or EUDL for short) is given by:

Q=

∫∫
AW (x,y)I(x,y)dydx∫∫

AI(x,y)dydx
. (3)

It can be shown that E[Q]=m. The variance of the
EUDL, however, will depend on the autocovariance

1Not to be confused with tributary area. The influence area
is “that floor area over which the influence surface for structural
effects is significantly different from zero” (ASCE, 2016), and it
is usually two times the tributary area for beams and four times
the tributary area for columns.
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of the stochastic field W (x, y). It is reasonable to
assume that, if the load intensity at a particular
location is higher than the floor average, it is likely
that the load intensity at a nearby point would also
be high – or, in other words, that the fieldW (x,y) has
a generally positive correlation that tends to vanish
as the distance separating the points increases.

Three different autocorrelation functions were
examined by Hauser (1971). However, fitting one
such exponentially decaying correlation function to
load survey data shows that the distance over which
the correlation is significantly different from zero is
usually small (Peir and Cornell, 1973; Choi, 1990).
This indicates thatW (x,y) can usually be regarded as
an uncorrelated field (white noise). This assumption,
which is a reasonable simplification as long as
the influence area A is not too small, leads to the
following upper bound on the variance of the EUDL:

Var[Q]=σ
2
V +σ

2
U min

[
A0

A
,1
]

κ, (4)

where σ2
V is the variance of the random variable V ;

σU is the variance of the stochastic field U(x,y); A0 is
a reference area; and κ is a peak factor that depends
solely on the shape of the influence surface. The ratio
A0/A accounts for the fact that the variance of the load
intensity is smaller for larger areas. Note that the term
min[A0/A,1] in Equation 4 is added to avoid the vari-
ance going to infinity as the influence area becomes
increasingly smaller. The peak factor κ is given by:

κ =A
∫∫

AI2(x,y)dydx

[
∫∫

AI(x,y)dydx]2
. (5)

Usual values of κ range between 1 and 3. The
PMC (JCSS, 2001) presents some influence surfaces
with values κ =2.0 and κ =2.4 but does not explain
to which effects they correspond. McGuire and
Cornell (1974) give the following values for κ: 2.20
for column loads, 2.76 for beam midspan moments,
and 2.04 for beam end moments.

Observed data from load surveys show that
the arbitrary point-in-time average load (i.e., the
integration of W (x,y) over an area A divided by A)
shows a distinct skewness where most of the observed
values sit left of the mean and is well fitted by a
gamma distribution (Peir and Cornell, 1973; Corotis
and Doshi, 1977). Since the average load and the
EUDL differ from each other only by a weighting

function I(x,y), it is reasonable to assume that the
EUDL will also be gamma distributed.

As for the temporal variability, it is assumed
that the EUDL remains constant for long periods
until an abrupt change occurs, when it jumps to a
different value (Figure 1a). In reality, the sustained
load exhibits short-term fluctuations due to the
working/living personnel coming in and out of
the building, but these usually have a much lower
magnitude than the overall loading intensity, so
the constant value assumption is justified2. The
occupancy changes can be due to a change of tenant
or a reorganization of the occupied space by the
same tenant and are assumed to be Poisson-arriving
with rate λ . It follows that the occupancy duration is
exponentially distributed with a mean value of 1/λ .

Model parameters m, σU , and σV are calibrated
from load survey data, under the assumption that
the stochastic process is ergodic. The CIB Report
116 (CIB, 1989) presents an overview of many such
surveys dating from 1893 to 1976 and collected in six
different countries, referring to a review by Sentler
(1976), a paper by Chalk and Corotis (1980), and
some early JCSS work. The parameters currently
given by the PMC (JCSS, 2001), presented in Table
1, seem to be mostly based on this report.

2.2. Extraordinary load model
The extraordinary load can be represented as a
concentrated load, but for design purposes, a similar
approach as the one used for the sustained load
is employed, where an equivalently uniformly
distributed load is determined.

While the stochastic model for sustained live load
in buildings is seemingly well established, the same
cannot be said about the extraordinary load. The PMC
(JCSS, 2001) states that the statistical properties of
the extraordinary EUDL can be evaluated in the same
manner as the sustained EUDL. However, only the
input parameters m and σU are given by the PMC
for extraordinary loads, suggesting that the EUDL
variance should be computed as:

Var[P]=σ
2
U,pmin

[
A0

A
,1
]

κ, (6)

2While this is true for most usual buildings, it may not be the
case for buildings used for storage purposes such as warehouses,
where there may be a definite trend of increasing load over time
due to the addition of new goods. For more details on warehouse
load models, the reader is referred to Lenner and Sýkora (2017).

3



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14
Dublin, Ireland, July 9-13, 2023

where the subscript p is used to differentiate from the
sustained load parameters (which will from now on
be denoted by the subscript q).

Furthermore, the PMC states that “the standard
deviation normally gets values in the same magnitude
as the mean value” for the arbitrary point-in-time
extraordinary load, so it is therefore assumed
to be exponentially distributed. This, however,
contradicts the parameters given by the PMC, since
an exponential distribution should have the same
values for the average and standard deviation, and
the PMC gives different parameters for mq and σU,p,
as shown in Table 1. Honfi (2014) used the PMC
model in his study but adopted the (more common)
hypothesis that P is gamma distributed.

This inconsistency seems to have been addressed in
a current draft of the JRC Technical Report: Reliabil-
ity Background of Eurocodes3, by CEN/TC 250/SC
10. In this report, a single parameter mp is given,
and it is stated that P∼Exponential(µp =σp =mp).
Still, the choice for an exponential distribution seems
rather strange, since the maximum extraordinary load
intensity will not become smaller as the influence
area increases, contrary to the live load reduction that
is practised in most structural design codes.

A different extraordinary load model was proposed
by Peir (1971). It stems from the distinct charac-
teristic that people tend to gather in small groups.
Therefore, the extraordinary load is represented by a
random number M of groups (or load cells) in random
positions, each group containing a random number R
of people which may vary from cell to cell, and each
person having a random weight Q. Assuming that
M∼Poisson(λM), it is possible to show that:

E[P]=
µQµR

A
λM, (7)

Var[P]=
µ2

Qµ2
R+µRσ2

Q+µ2
Qσ2

R

A
λMκ, (8)

in which λM is the mean number of load cells; A is
the influence area; and κ is the peak factor defined
in Equation 5.

Different expressions have been proposed for the
mean number of load cells λA (McGuire and Cornell,
1974; Ellingwood and Culver, 1977; Choi, 1991). In
the present study, the expression given in Harris et al.

3Unpublished, kindly provided to us by M. Sýkora.

(1981) is used, which is itself a slight modification of
the formula given in Ellingwood and Culver (1977):

λ (A)=

√
A−164

9
; A≥400ft2. (9)

For areas smaller than 400 ft2, linear interpolation is
employed from λM =6.24 at A=400ft2 to λM =4.90
at A=300ft2 to λM =3.44 at A=200ft2.

Even though this model was conceived with the
behaviour of groups of people in mind, it can also be
used for situations other than crowds (e.g., extraor-
dinary load due to a remodelling or repair work, in
which the weight of a cell may represent a particularly
heavy item or a cluster of items). Harris et al. (1981)
employ Equations (7) and (8) independently for
three different types of extraordinary load – furniture
stacking, usual crowding and emergency crowding
– each one with its own set of parameters.

The distribution of this arbitrary point-in-time
EUDL can be assumed to be gamma (Peir, 1971). As
for the temporal variability, much like the sustained
load, the extraordinary load process (Figure 1b) is
also assumed to be Poisson-arriving with rate λp, so
that the interval between occurrences is exponentially
distributed with an expected value equal to 1/λp. The
duration dp of each pulse is considered deterministic,
but may also be represented by an exponential
distribution.

Owing to its exceptional and transient nature, it
is difficult to collect data about extraordinary loads.
Input parameters for this type of load are, therefore,
mostly estimated based on questionnaires submitted
to building occupants, or simply empirically chosen
based on engineering judgement and experience.
Suggested parameters given by the PMC (JCSS,
2001) are presented in Table 1, and parameters for
the multiple extraordinary load model of Harris et al.
(1981) are given in Table 2.

2.3. Total live load
The maximum sustained or extraordinary load in
a reference period T can be analytically computed
using well-known expressions for Poisson processes
(Melchers and Beck, 2018). The behaviour of the
total live load stochastic process L(t) =Q(t)+P(t)
(Figure 1c), on the other hand, is much more involved,
since its maximum may not coincide with the maxima
for each process. Still, the overall maximum can

4



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14
Dublin, Ireland, July 9-13, 2023

be estimated using an analytical model presented
in Chalk and Corotis (1980), which combines
three possible load cases that could lead to this
maximum, each weighted by its respective likelihood
of occurrence. Complete analytical probability
distributions for the total time spent above a fixed
barrier level, the number of barrier upcrossings and
the duration of a single upcrossing are also derived in
great detail in Corotis and Tsay (1983). In this paper,
however, all live load statistics are obtained using
Monte Carlo simulation (MCS).

3. RESULTS
To demonstrate the use of the stochastic model,
statistics for the 1-year and 50-year extreme value
distributions (L1 and L50) of the total live load EUDL
are derived via Monte Carlo simulation (MCS) using
104 samples. Both the PMC (JCSS, 2001) (using
Equation 8 and assuming a gamma distribution) and
Harris et al.’s (1981) multiple extraordinary loads
model were considered for the extraordinary part
of the load. The peak factor was adopted as κ =2.0,
and influence areas up to 500 m2 were considered.
The 50-year extremes are well-fitted by a Gumbel

distribution. For more details on the simulation
procedure, the reader is referred to Costa et al. (2023).

The model results are then compared with the
design values of two major international design
codes: ASCE/SEI 7 (ASCE, 2016) and EN 1991-1-1
(CEN, 2002b). The design loads of ASCE/SEI 7 were
selected by a panel of 25 experienced engineers using
the Delphi method (Corotis et al., 1981). However, it
is stated that the minimum uniformly live load values
prescribed by this standard are generally similar
to the mean of the maximum load in a reference
period T , usually T = 50 years (ASCE, 2016). As
for the Eurocodes, it doesn’t make it clear to which
exceedance probability their design load corresponds.
Some background documents relate the characteristic
value to a 5 % probability of exceedance in 50 years
(CEN, 1996), which seems rather low compared with
the 43 % exceedance of the mean value of ASCE/SEI
7 (if a Gumbel distribution were to be assumed).
Some studies refer to the 98 % fractile of annual
maximum loads (Honfi, 2014), corresponding to a
50-year return period, similar to what the Eurocodes
adopt for the characteristic value of climatic actions.

Another controversy that should be pointed out is
Table 1: Live load parameters for some major occupancies given in the Probabilistic Model Code (JCSS, 2001)

Sustained load (q) Extraordinary load (p)

A0 mq σV,q σU,q 1/λq mp σU,p dp 1/λp
Occupancy [m2] [kN/m2] [kN/m2] [kN/m2] [years] [kN/m2] [kN/m2] [days] [years]

Office 20 0.50 0.30 0.60 5 0.20 0.40 0.3 1–3
Residential 20 0.30 0.15 0.30 7 0.30 0.40 1.0 1–3
Hotel room 20 0.30 0.05 0.10 10 0.20 0.40 0.1 1–3
Patient room 20 0.40 0.30 0.60 5–10 0.20 0.40 1.0 1–3
Classroom 100 0.60 0.15 0.40 10 0.50 1.40 0.3 1–5
Retail 100 0.90 0.60 1.60 1–5 0.40 1.10 1.0 1–14

Table 2: Multiple extraordinary load model parameters given by Harris et al. (1981)

Furniture stacking (P1) Usual crowding (P2) Emergency crowding (P3)

(µR,σR) (µQ,σQ) λp (µR,σR) (µQ,σQ) λp (µR,σR) (µQ,σQ) λp
Occupancy [–] [lbf] [per yr.] [–] [lbf] [per yr.] [–] [lbf] [per yr.]

Office (1,1) (500,150) 0.25 (4,2) (150,25) 0.4 (10,5) (150,25) 0.02
Residential (2,1) (142,25) 0.1 (3,2) (150,25) 1.0 (10,5) (150,25) 0.005
Hotel room (2,1) (81,25) 0.5 (3,1) (150,25) 10.0 (10,5) (150,25) 0.1
Classroom (4,2) (222,25) 0.5 (4,2) (150,25) 1.0 (10,5) (150,25) 0.1
Retail (first floor) (8,4) (175,25) 0.2 (6,3) (150,25) 4.0 (10,5) (150,25) 0.1
Retail (upper floors) (5,2) (150,25) 0.2 (4,2) (150,25) 4.0 (10,5) (150,25) 0.1

NOTE 1: Recommended values for the duration dp are 2 weeks for P1, 6 hours for P2, and 15 minutes for P3.
NOTE 2: 1lbf≈4.45N
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the live load reduction (LLR) allowed in both codes.
ASCE/SEI 7 (ASCE, 2016) allows only for influence
area-based reduction for beams and columns alike,
which is more consistent with the stochastic model.
EN 1991-1-1 (CEN, 2002b), on the other hand, allows
for storey-based and area-based live load reduction
(but not both simultaneously). Strangely, for the most
common occupancy types, the recommended formu-
las allow for a reduction of up to 50 % in area-based
LLR (typically used for beams) but only 30 % for
storey-based LLR. This seems counter-intuitive since
the allowed reduction should be larger for columns,
since they support larger areas. Nevertheless, it
should be noted that there is no explicit rule that pre-
cludes the use of area-based LLR for columns as well.

In addition to that, EN 1991-1-1 (CEN, 2002b)
doesn’t make it clear if the area to be considered in
area-based LLR is the tributary or influence area4.
Both hypotheses are assumed in this study. This
leads to there being two different curves for beams
and columns when the tributary area is used, since
it usually differs from the influence area by a factor
of two for beams and four for columns.

Design code prescriptions are compared to the
98 % fractile of annual maxima and the mode, mean
value and 95 % fractile of 50-year extreme live load
in Figure 2 for office buildings. It is clear that the 5 %
exceedance values are way higher than the design
load given in EN 1991-1-1 (CEN, 2002b). The
Eurocode design loads seem to be closer to the mean
50-year extreme live load.

It is also interesting to note that the mode of L50
is not equal to the 98 % fractile of L1. This occurs
because, contrary to what is assumed for climatic
actions, the annual maxima for live loads are not
fully independent because the average time between
occupancy changes of the sustained load is usually
greater than one year (e.g., 1/λ = 5 years for office
buildings). Thus, we find it to be preferable to define
the characteristic value in terms of L50 instead of L1,
since unlike annual maxima the 50-year extremes
can reasonably be assumed to be independent.

Comparing the results obtained from both models
and with literature results, it would seem that the
JCSS model is somewhat conservative. Though the
results couldn’t be included due to space constraints,
a similar behaviour was observed for the other

4Instead, it refers to loaded area or supported area.

occupancy types listed in Table 1 (these results can be
seen in Costa et al. (2023)). Based on this, it is found
that the JCSS parameters are often unreasonably
conservative and unrealistic.

This is especially true for occupancy types for
which there are very few suitable load surveys, such
as schools and retail areas (Honfi, 2014; Costa et al.,
2023), and for the extraordinary load parameters.
Even for the more extensively surveyed categories,
such as office use, the majority of the data was
gathered more than four decades ago. This points
to the need to carry out new load surveys in a
standardized manner to further support the stochastic
model with more recent data. While some individual
effort using more modern technologies instead of
direct weighing has been made in this sense (Chen
and Li, 2022; Zhou and Chen, 2022), the research
regarding live load surveys is still very limited.

While both extraordinary load models considered
in this study have some degree of subjectivity in the se-
lection of their parameters due to the lack of data, we
believe the model proposed by Peir (1971) (Equations
7 and 8) to be more suitable because it physically rep-
resents the localized crowding of people more appro-
priately. Furthermore, the empirical selection of input
parameters is facilitated since they have more familiar
meanings (average weight of a person/furniture,
average amount of people in a group, etc).

Table 3 shows a review of live load statistics
used in reliability analysis such as code calibration.
The L50 statistic by Holický and Sýkora (2011)
in particular has been frequently used in ongoing
Eurocode calibration, and while it is in agreement
with the 5 % exceedance probability mentioned
in background documents, it is specific for office
use, considers only the sustained load part, and was
derived using approximate analytical expressions.
The authors also present a statistic for 5-year maxima
(L5), where the 5-year reference period corresponds
to the expected time between sustained load renewals
for office use (Table 1) and may not hold for other
uses with different characteristics.

We believe the MCS approach considering both
sustained and extraordinary loads employed herein to
be more suitable to derive extreme live load statistics.
Using Harris et al.’s (1981) multiple extraordinary
load model and appropriately selecting the influence
areas A to be 100 m2 for classrooms and retail and

6



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14
Dublin, Ireland, July 9-13, 2023

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0
0 , 0

1 , 0

2 , 0

3 , 0

4 , 0

5 , 0

6 , 0

Liv
e lo

ad 
(kN

/m
2 )

A  ( m 2 )

 A S C E / S E I  7    L 1  ( 2 %  e x c . )
 E N  1 9 9 1 - 1 - 1  ( i n f l u e n c e  a r e a )    L 5 0  ( m e a n )
 E N  1 9 9 1 - 1 - 1  ( t r i b .  a r e a ,  b e a m )    L 5 0  ( m o d e )
 E N  1 9 9 1 - 1 - 1  ( t r i b .  a r e a ,  c o l u m n )    L 5 0  ( 5 %  e x c . )

(a) JCSS PMC model (JCSS, 2001)

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0
0 , 0

1 , 0

2 , 0

3 , 0

4 , 0

5 , 0

6 , 0

Liv
e lo

ad 
(kN

/m
2 )

A  ( m 2 )

 A S C E / S E I  7    L 1  ( 2 %  e x c . )
 E N  1 9 9 1 - 1 - 1  ( i n f l u e n c e  a r e a )    L 5 0  ( m e a n )
 E N  1 9 9 1 - 1 - 1  ( t r i b .  a r e a ,  b e a m )    L 5 0  ( m o d e )
 E N  1 9 9 1 - 1 - 1  ( t r i b .  a r e a ,  c o l u m n )    L 5 0  ( 5 %  e x c . )

(b) Harris et al. (1981) model

Figure 2: Live load for office buildings using different stochastic models, simulation vs. code values

Table 3: Live load statistics for average point-in-time (Lapt), 5-year (L5) and 50-year (L50) extreme distributions

Bias c.o.v. Exc. probability
Reference Random variable Distribution µL/Lk σL/µL 1−FL(Lk)

Ellingwood and Galambos (1982) L50 (50 years) Gumbel 1.00 0.25 0.43
Szerszen and Nowak (2003) L50 (50 years) Gumbel 0.93 0.18 0.28
Holický and Sýkora (2011) L50 (50 years) Gumbel 0.60 0.35 0.05
Costa et al. (2023) L50 (50 years) Gumbel 0.92 0.25 0.30
JRC Technical Report* L50 (50 years) Gumbel 0.74 0.26 0.094
Present study L50 (50 years) Gumbel 1.00 0.29 0.43

Holický and Sýkora (2011) L5 (5 years) Gumbel 0.20 1.10 0.005

Ellingwood and Galambos (1982) Lapt (instant.) Gamma 0.25 0.55 0.0003
Costa et al. (2023) Lapt (instant.) Gamma 0.21 0.76 0.0015
Present study Lapt (instant.) Gamma 0.20 0.95 0.005
* JRC Technical Report: Reliability Background of Eurocodes (unpublished).

50 m2 for all other occupancies, we get mean 50-year
extreme loads that are consistent with the characteris-
tic loads Lk given in EN 1991-1-1 (CEN, 2002b). The
L50 and Lapt statistics referred to as “present study” in
Table 3 were obtained in this manner, and correspond
to the average of occupancy types listed in Table 2.

As for the arbitrary point-in-time live load (Lapt)
statistics, its mean and variance are practically equal
to those of the sustained EUDL, since the extraordi-
nary load is only “on” for a negligible duration of the
building lifetime. Using the parameters suggested by
JCSS, it is found that for pretty much all occupancies
other than hotel rooms the coefficient of variation of
0.55 reported by Ellingwood and Galambos (1982)
(listed as typical) is reasonable for large loaded areas,
but it may be too low for smaller areas. In this study,
we recommend a c.o.v. of 0.95 for smaller influence
areas, say, up to 100 m2.

4. CONCLUSIONS
This study presents a brief review of stochastic
models for live loads in buildings. Those models are
compared for different occupancy types using Monte
Carlo simulation. The main conclusion is that the
model parameters given by the JCSS Probabilistic
Model Code (JCSS, 2001) are often excessively
conservative, especially for building uses that have
been less extensively surveyed (classrooms, retail
areas) and for the extraordinary load. New and
improved load surveys should be carried out to
validate and expand the existing data since most of
the load surveys used to calibrate model parameters
are now more than 40 years old.

An overview of live load statistics used in code
calibration is also provided. It is shown that the
5 % exceedance probability in 5 years found in
Eurocode background documents is not consistent
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with the minimum design loads currently given in EN
1991-1-1 (CEN, 2002b), which seems to be closer
to the mean 50-year extreme load. With this in mind,
new statistics for the arbitrary point-in-time and
50-year extreme live loads are proposed.
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