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ABSTRACT: To assess the reliability of critical engineering systems like nuclear plants and
infrastructure systems and improve the robustness of design, engineers have to quantify the uncertainties
surrounding the system behavior accurately. However, the complexity of the problem can make standard
reliability analysis algorithms prohibitively expensive, primarily due to the high computational cost of
estimating the system response at each iteration. This cost can be greatly reduced by using multi-fidelity
modeling and machine learning to build a surrogate model to replace the expensive response function.
We propose a general and robust method for building surrogates from multiple Low Fidelity (LF)
models coupled with machine learning to retain accuracy. Our framework first constructs “Corrected
Low Fidelity models” (CLFs) by coupling a High Fidelity (HF) model inferred Gaussian Process
correction term with each of the LF models. It then uses the correction terms to assign model
probabilities to each of these CLFs in an explainable way before using them to assemble the final
surrogate. No assumptions are made about the type of the LF models or their correlation with the HF
model. The proposed surrogate modeling framework is used within the subset simulation algorithm (a
variance-reduced MCMC-based reliability analysis algorithm) for enhanced efficiency. Additionally, an
active learning step is added to the algorithm to adaptively decide when the surrogate is not sufficiently
accurate, at which point the HF model is called and used to refine the surrogate. Through a frame
buckling example, our method is shown to be highly efficient at reducing the expensive HF model calls
while accurately estimating the failure probability.

1. INTRODUCTION
Estimating the failure probability is an essential

component of the risk assessment and design of a
structural system. Theoretically, this is done by es-
timating the following integral

Pf =
∫

x∈ΩF

q(x)dx =
∫

x∈Ω

IΩF (x)q(x)dx, (1)

where x is a random vector of the system’s un-
certain parameters having joint probability density

q(x), and Ω is the set of all possible system states.
ΩF = {x : IΩF (x) = 1}, where the indicator func-
tion IΩF (x) equals 1 for states x that correspond
to failure and is 0 otherwise. To determine failure
for a given x, we evaluate the performance function
g(x); g(x)≤ F corresponds to failure, where F is a
pre-defined failure threshold. This integral is ana-
lytically intractable for most cases, and therefore,
simulation methods are used to estimate it (such
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as Monte Carlo or various variance-reduced Monte
Carlo, e.g., Importance Sampling, Control Variates,
or Subset Simulation). However, for most real-
world structures, evaluating g(x) is highly compu-
tationally expensive, making even simulation meth-
ods impractical. In such cases, surrogate modeling
techniques need to be explored, which replace the
expensive g(x) with a cheaper approximation.

There are broadly two ways to build a surrogate.
One is to use fast-running data-driven approaches
(active learning) to approximate the response, such
as Polynomial Chaos Expansions (Schöbi and Su-
dret (2014)), Neural Networks (Papadrakakis et al.
(1996)), or Gaussian Process Regression (GPR)
(Bichon et al. (2008); Echard et al. (2011)). The
other method is to incorporate information from
multiple levels of fidelity (multifidelity modeling),
where the Low Fidelity (LF) models are less accu-
rate but cheaper than the High Fidelity (HF) mod-
els. This is done using statistical tools like Control
Variates (Gorodetsky et al. (2020)) or Importance
Sampling (Kramer et al. (2019)). Methods that cou-
ple multifidelity modeling with active learning have
also been explored (Zhang et al. (2022)).

In this paper, we present a surrogate modeling
framework that combines information from N LF
models to build a robust and explainable surrogate
for the target HF model. Gaussian Process Re-
gression is used to recover the accuracy lost by us-
ing LF models, and an on-the-fly sufficiency check
is incorporated to ensure that the surrogate is up-
dated whenever the accuracy falls below a pre-
defined threshold. Finally, the surrogate is used
within a Subset Simulation sampling scheme to
build the proposed Low Fidelity Model Combina-
tion (LFMC) algorithm, which is shown to estimate
small failure probabilities efficiently.

2. THEORY & METHODOLOGY
2.1. Background
2.1.1. Subset Simulation (SuS)

Subset Simulation, introduced in Au and Beck
(2001), is a variance reduction technique in which
a small target failure probability is estimated as
the product of larger intermediate failure probabil-
ities, thereby improving the efficiency of the pro-
cess. This is achieved by constructing a sequence of

Figure 1: Visualization of Subset Simulation (adapted
from Figure 7 in Dhulipala et al. (2022))

nested subsets S1 ⊃ S2 ⊃ ·· · ⊃ SNs with associated
intermediate failure thresholds F1 < F2 < · · ·< FNs ,
such that the first subset (S1) coincides with the
full sampling domain, and the intermediate failure
thresholds converge to the true failure threshold F ,
i.e., FNs = F . Here, Ns is the total number of sub-
sets. As shown in Figure 1, the intermediate failure
threshold for subset s− 1 forms the boundary for
subset s.

Each intermediate failure probability Ps|s−1 is de-
fined as the probability that a sample drawn from
subset Ss−1 also lies in subset Ss, i.e., a point from
Ss−1 crosses Fs−1. P1 is defined similarly with re-
spect to S1 and F1. Thus, the target failure probabil-
ity is calculated as

Pf = P1

Ns

∏
s=2

Ps|s−1, (2)

Often the intermediate failure thresholds are set
adaptively by selecting a target intermediate failure
probability and constructing the threshold such that
the intermediate probability matches this target.

2.1.2. Gaussian Process Regression (GPR)
Gaussian Process Regression is a numerical

modeling technique that uses a given set of observa-
tions of a function to predict the function response
at any non-observed point and specifies a Gaussian
distribution centered at the predicted value to model
the uncertainty associated with the prediction. This
is done by approximating the target function (g(x))
as the realization of a Gaussian Process (G (x)) with
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chosen covariance kernel K. For a set of observed
points X= {x1,x2, . . . ,xn} with observations g(X),
the Gaussian distribution associated with the pre-
dicted response of a “new” point x∗ is given by

G (x∗)∼ N (µG (x∗) ,σG (x∗))

µG (x∗) = K (x∗,X)K (X,X)−1 g(X)

σG (x∗) = K (x∗,x∗)

−K (x∗,X)K (X,X)−1 K (X,x∗)

(3)

where K (X,X) denotes the block matrix whose
(i, j) th element is K

(
xi,xj

)
such that xi,xj ∈X, and

K (X,x∗) and K (x∗,X) denote similar block ma-
trices (Rasmussen and Williams (2005)). To fully
specify K, the required hyperparameters are learned
by minimizing the negative marginal log-likelihood
L , where

L ∝
1
2

log | K (X,X) |

+
1
2
(g(X))T K (X,X)−1 g(X)

(4)

2.2. Theory
2.2.1. Surrogate Formulation and Assembly

The surrogate is formed by adding a GP correc-
tion term to each LF model and assembling the cor-
rected predictions. Thus, for each LF model Li(x),
i ∈ {1,2, . . . ,N}, a Corrected Low Fidelity (CLF)
model Si(x) is formed by applying an independent
GP correction term Gi(x) that models the difference
between Li and H, i.e.,

Si(x) = Li(x)+Gi(x) , ∀i ∈ {1,2, . . . ,N} (5)

Here, x denotes the vector of all inputs. The
GP correction terms are also used to assign a local
model probability pi(x) to each CLF. This is done
based on the hypothesis that the “best” model is the
one that has the greatest probability of being closest
to the HF model (i.e., it has the smallest correction
|Gi(x)|). If Li has associated local cost τi(x), then
a cost-biasing function γ(τi(x)) can be constructed,
and the cost-biased correction (i.e., γ(τi(x))|Gi(x)|)
is considered instead. Thus, pi(x) is the probability
that Si(x) has the smallest cost-biased correction.

This can be calculated as

pi(x) =
∫

∞

0

[
fi(z)∏

j ̸=i

{
1−Fj(z)

}]
dz

where j ∈ {1,2, . . .N}
(6)

fi(z) =

[
exp

(
− (z−µi(x))2

2σ2
i (x)

)
+ exp

(
− (z+µi(x))2

2σ2
i (x)

)]
σi(x)

√
2π

(7)

Fi(z) =
1
2

[
erf

(
z−µi(x)√

2σi(x)

)
+ erf

(
z+µi(x)√

2σi(x)

)]
(8)

erf(z) =
2√
π

∫ z

0
e−t2

dt (9)

where µi(x) = γ(τi(x))E [Gi(x)] and σi(x) =
γ(τi(x))

√
Var [Gi(x)]. A detailed derivation of

Equation 6 is presented in Chakroborty et al.
(2022), along with deeper discussions about the
method.

Once the probabilities have been calculated, they
are used to assemble the CLFs into the final sur-
rogate S(x). Three assembly methods have been
considered here: Low Fidelity Model Averag-
ing (LFMA), Low Fidelity Deterministic Selec-
tion (LFDS), and Low Fidelity Stochastic Selection
(LFSS). These assembly procedures are defined as

S(x) =


∑

N
i=1 pi(x)Si(x) LFMA

Sk(x) s.t. pk(x) = max{pi(x)} LFDS
Sk(x) with probability pk(x) LFSS

(10)
Note that the LF models and the HF model need

not have the same set of inputs. In the general case,
the vector of inputs for Li can be termed xLi and that
for H can be called xH . Then, x =

{⋃N
i=1 xLi

}⋃
xH .

2.2.2. On-the-fly Sufficiency Check
This active learning strategy is adapted from the

U learning function developed by Echard et al.
(2011) and integrated into SuS for reliability analy-
sis. At each point x, the subset-dependent U func-
tion is calculated, which is defined as

Us(x) =
|S (x)−Fs|

σ (x)
(11)
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where s is the subset index and Fs is the correspond-
ing failure threshold. S (x) is the assembled surro-
gate model (Eq. (10)), and σ (x) is the associated
standard deviation at x, which can be calculated by
noting that the surrogate at a point is a Gaussian (for
LFDS/LFSS) or a linear combination of Gaussians
(for LFMA) (Eq. (10)). If Us ≤ UT (a predefined
threshold usually taken to be 2), then the surrogate
is deemed insufficient. In this case, H(x) replaces
S(x) as the predicted response at x, and the surro-
gate is refined. This refinement is described in more
detail in section 2.3.

2.3. Methodology

Repeat 
 timesNs

Repeat 
 timesNpts

Draw  from the current 
intermediate subset

x

Evaluate   pi(x)
∀i ∈ {1,2,…, N}

[LFMA / LFSS / LFDS] 
Evaluate  S(x)

Evaluate  Us(x)

Is  
sufficient?

S(x)

Yes No

Evaluate  H(x)

CONTINUE

Train/Retrain  Gi(x)
∀i ∈ {1,2,…, N}

Add this  to 
training data

x

Evaluate  and 
associated COV once 

all the samples 
( ) have 
been generated

Pf

Ns × Npts

Generate initial 
training set

Figure 2: LFMC Algorithm Flowchart.

The Low Fidelity Model Combination (LFMC)
algorithm utilizes the formulation described above
to build a surrogate that approximates the target
response function for use within a SuS sampling
scheme to conduct reliability analysis efficiently.

First, a small number of samples are generated;
all the models (LFs and HF) are evaluated at these
points, and all GP correction terms are trained with
this as the initial training data. After this, samples
are generated in accordance with the SuS frame-
work, with the LFMC surrogate being used to es-
timate the response. In each subset, a total of Npts
sample points are generated. For each new sample
point, first, all the GP correction terms are evalu-
ated for both the mean prediction and the standard
deviation. These are used to assign the model prob-
abilities for each CLF at that point (Eq. 6). Then
the surrogate is evaluated: If the LFMA assembly
scheme is used, all the LF models need to be eval-
uated, but if LFDS/LFSS is used, only the selected
LF model needs to be evaluated for the surrogate
(Eq. 10). Once the surrogate response has been
evaluated, the subset-dependent U value is evalu-
ated (Eq. 11). (The standard deviation of the sur-
rogate is also necessary to compute at this point.)
The intermediate failure probability required for the
U value is computed as the π̃ th quantile of the sys-
tem responses of the samples generated within the
subset thus far, where π̃ is the pre-selected target
intermediate failure probability per Au and Beck
(2001). If the response is found to be insufficiently
accurate, the HF model is evaluated, and the point
is added to the training data for the associated GP
correction term/terms to be refined. The final sub-
set (s = Ns) is reached when the π̃ th quantile of the
system responses ≤ F , and here the Us value is cal-
culated using FNs = F , the true failure threshold.
Figure 2 presents a simplified flowchart for the al-
gorithm.

Once all the points are generated, the following
estimators can be used to estimate each intermedi-
ate failure probability, which are combined accord-
ing to Eq. 2 into the final failure probability.

P1 =
1

Npts

Npts

∑
l=1

P
(1)
l (12)

Ps|s−1 =
1

Npts

Npts

∑
l=1

P
(s)
l , ∀s = {2,3, . . . ,Ns} (13)

P
(s)
l =

{
Φ(Us (xl)) if IFs,S (xl) = 1
Φ(−Us (xl)) if IFs,S (xl) = 0

(14)
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The coefficient of variation (COV) estimator is
presented in Chakroborty et al. (2022), along with
the derivations for both estimators.

3. EXAMPLE APPLICATION

Figure 3: An illustration of the frame configuration and
associated collapse modes.

To showcase the performance of our algorithm,
we apply it to an analytical rigid-plastic portal
frame example adapted from Xu et al. (2022). Fig-
ure 3 depicts the frame subjected to vertical and
horizontal loads PV and PH as well as its possible
collapse modes. Failure occurs when any one of the
collapse modes occurs; the corresponding response
function can be written as

g(x) = min


M1 +2M3 +2M4 −PH −PV

M2 +2M3 +M4 −PV

M1 +M2 +M4 −PH

M1 +2M2 +2M3 −PH +PV

(15)

where M1,M2,M3,M4 are the moment capacities
at the plastic hinges formed at points 1,2,3,4,

respectively (as shown in Figure 3), and x =
{M1,M2,M3,M4,PH ,PV}. The response function it-
self is the HF model, while each of the four indi-
vidual collapse modes is taken as LF models L1,
L2, L3, and L4. Two cases are considered: (a) A 6-
D case, where all four moment capacities and both
load variables are taken as random variables, and
(b) A 2-D case, where the moment capacities are
constants and only the load variables are stochastic.
Table 1 lists the variables for both cases.

Variable
6-D Case 2-D Case

Distribution Value/Distribution
M1 N (1.0,0.15) 1.0
M2 N (1.0,0.15) 1.0
M3 N (1.0,0.15) 1.0
M4 N (1.0,0.15) 1.0
PH N (1.5,0.45) N (0.0,1.0)
PV N (1.5,0.45) N (0.0,1.0)

Table 1: List of Random Variables. (N represents a
Gaussian random variable, with parameters mean and
standard deviation, respectively.)

Quantity Method Value

Pf (COV)

6-D SuS 5.94E-3 (0.13)
6-D LFMA 7.15E-3 (0.14)
6-D LFDS 5.56E-3 (0.13)
6-D LFSS 7.12E-3 (0.13)

# HF Calls
(% of total)

6-D SuS 6000 (100%)
6-D LFMA 357 (5.95%)
6-D LFDS 227 (3.78%)
6-D LFSS 298 (4.97%)

R2 Value
6-D LFMA 0.9949
6-D LFDS 0.9894
6-D LFSS 0.9948

Table 2: Results for 6-D Case. (6000 total samples
generated for each method.)

Tables 2 and 3 compare the failure probability
calculated by the LFMC algorithm to that calcu-
lated by Subset Simulation (for both cases) and
Crude Monte Carlo (CMC) (for the 2-D case only).
The results clearly show that LFMC is able to ac-
curately estimate the failure probabilities to a com-
parable coefficient of variation (COV) level using
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Quantity Method Value

Pf (COV)
2-D CMC 1.60E-3 (0.025)
2-D SuS 1.22E-3 (0.056)

2-D LFDS 1.64E-3 (0.059)
# HF Calls
(% of total)

2-D CMC 1E6 (100%)
2-D SuS 60,000 (100%)

2-D LFDS 245 (0.41%)
R2 Value 2-D LFDS 0.9961

Table 3: Results for 2-D Case. (60,000 total samples
generated for SuS and LFDS, 1 million samples gener-
ated for Crude Monte Carlo (CMC).)
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Figure 4: Comparison between exact failure boundary
and failure boundary predicted by the LFMC - LFDS
surrogate for the 2-D case.

only a small fraction of HF calls compared to SuS
or CMC. Figure 4 shows that the surrogate built
by LFMC can accurately capture the failure sur-
face. This is supported by the R2 values presented,
which prove that the surrogates are excellent ap-
proximations of the target response function. Fig-
ure 5 illustrates the explainability of the probability
assignment scheme: in LFDS the LF model with
the maximum probability is selected, and the sur-
rogate is clearly calling the LF model associated
with the nearest collapse mode limit surface. Note
that for regions far away from any of the collapse
mode limit surfaces, the model selection is not as
accurate. This is because the algorithm does not
prioritize the accuracy of the surrogate in these re-
gions, as they are not important for predicting fail-

ure. Thus, the GP correction terms are not refined
for these regions, which decreases the accuracy of
the probability assignment.
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Figure 5: Samples drawn by LFMC - LFDS colored by
LF model call. Initial training set is removed. The con-
tour of the failure surface is added, with each branch
color-coded to the corresponding LF model.

4. CONCLUSIONS
Reliability analysis is often infeasible for real-

world problems due to the large computational
cost of evaluating the system response using highly
accurate HF models. To circumvent this issue,
less accurate but cheaper LF models or data-driven
machine-learned regression models can be used to
estimate the system response. We present here a
general surrogate modeling framework that com-
bines information from multiple LF models in an
explainable and robust way, and couples it with GP
correction terms to recover accuracy. The method
makes no assumptions about the relationships be-
tween the LF models and is shown to be accu-
rate and highly efficient - reducing the number of
HF model calls necessary by ∼ 2 orders of magni-
tude compared to standard SuS. Further, the vari-
ance associated with the algorithm’s predictions is
similar to standard SuS, and the surrogate created
by the method closely mimics the target response
function. The algorithm has been shown to work
for moderate dimensionality. However, since GPs
are used for the correction terms and the probabil-
ity calculation, LFMC suffers from the same draw-
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backs as does GPR: for high-dimensional prob-
lems, the efficiency is greatly reduced, as the GPs
will require large amounts of data to be sufficiently
trained.
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