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ABSTRACT: Interpretable models play a key role in structural health monitoring (SHM) systems
dealing with time series data. The long short-term memory (LSTM) neural network architecture is
widely used to make time series forecast. Key limitations of the LSTM are that it is a deterministic
model which only provides point-estimates for predictions, and it is a black-box because its results are
not interpretable. The Tractable Approximate Gaussian Inference (TAGI) method allows learning the
network parameters analytically, and accounts for both the epistemic and aleatory uncertainties. In this
paper, we first propose the Bayesian TAGI-LSTM framework which is capable of quantifying the
parameter uncertainties as well as the uncertainties associated with predictions. We then couple
TAGI-LSTM with Bayesian Linear Dynamic Models (BDLM) in a probabilistic manner to create a
hybrid model which can provide interpretable results along with the prediction uncertainties. The
experimental results from SHM case studies show that our method provides a similar predictive
performance compared to standard BDLM models while being interpretable and not requiring feature
engineering nor parameter optimization.

1. INTRODUCTION

Interpretable models play a key role in struc-
tural health monitoring systems (SHM) dealing
with time series data. Interpretable models pro-
vide users with meaningful insights extracted from
the raw data such as the level describing the irre-
versible structural behaviour, the trend describing
its rate of change, and the seasonality for isolating
the reversible effects caused by environmental fac-
tors. Bayesian Linear Dynamic Models (BDLM)
(Goulet, 2017) is a special type of state-space mod-
els (SSMs); this probabilistic method provides in-
terpretable results by decomposing raw data into
reversible and irreversible effects. In BDLM, the
harmonic and non-harmonic reversible effects can
be modelled by periodic components for which the
parameter estimation relies on optimization tech-

niques. The key limitation preventing the scaling of
BDLM to a large number of time series is that it re-
quires feature engineering to define the dependen-
cies between the model’s components. Long short-
term memory (LSTM) (Hochreiter and Schmidhu-
ber, 1997) is a widely used neural network architec-
ture to model time series. LSTM is capable of mod-
elling complex patterns such that it could replace
the existing BDLM’s periodic components, and
automatically model the non-linear dependencies
within and between time series. The key limitation
of the existing LSTM neural networks is that they
either rely on deterministic parameter estimation
which fails to take into account the epistemic uncer-
tainties and only provide point-estimates for predic-
tions, or they rely on gradient-based optimization
techniques that are incompatible with SSMs. As a
result, LSTMs cannot be coupled analytically with

1



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14
Dublin, Ireland, July 9-13, 2023

probabilistic time series models.
The objective of this paper is twofold; first, we de-
velop the Bayesian TAGI-LSTM neural networks
taking into consideration both the epistemic and
aleatory uncertainties. The weight and bias pa-
rameters of TAGI-LSTM are estimated analytically
using Bayes’ theorem instead of the optimization-
based backpropagation algorithm. Second, we cou-
ple TAGI-LSTM with BDLM in a probabilistic
manner resulting in a novel hybrid model inheriting
the best features from both methods. Our hybrid
model provides interpretable results along with the
prediction uncertainties while not requiring feature
engineering nor parameter optimization.

The paper is organized as follow: Section 2 re-
views the BDLM and TAGI methods as well as the
LSTM architecture which are the foundations for
this work. Section 3 introduces the methodologies
for the TAGI-LSTM neural network and the hybrid
model which couples TAGI-LSTM with BDLM.
Section 4 compares these new models with BDLM
on two SHM case studies.

2. RELATED WORK

In this section, we review BDLM, LSTM, and
TAGI, which are the three methods that we build
upon, along with a review of the applications of
LSTM in SHM.

2.1. Bayesian dynamic linear models (BDLM)
BDLM (Goulet, 2017) is a class of SSMs where

the transition and observation models are linear,
and the hidden state vector is assembled from pre-
defined sub-components. BDLM can provide inter-
pretable results by decomposing data into the base-
line hidden states describing the irreversible effect,
and the periodic hidden states describing the re-
versible one. The advantage of BDLM is that it is a
probabilistic method which can provide the uncer-
tainties associated with the predictions as well as
the uncertainties related to the unobserved hidden
states. However, the key disadvantage preventing
BLDM from scaling to analyze thousands of time
series is that it requires feature engineering in order
to define models. For example, the environmen-
tal variables such as water temperature and reser-
voir level typically have a delayed effect on dam re-

sponses such as displacements and crack openings.
In order to take these delayed effects into account
in BDLM, users need to specify the lag time be-
tween the environmental variable and the response,
and manually define the dependencies between the
model’s components. Furthermore, the BDLM’s
parameters are obtained by optimization, and are
considered as having fixed values which does not
allow for adaptation to changing conditions.

2.2. Long-short term memory neural network
(LSTM)

LSTM (Hochreiter and Schmidhuber, 1997) is a
special type of recurrent neural networks (RNNs)
(Rumelhart et al., 1986) designed to model a long-
term memory. The hidden states h and cell states c
act as two memories for LSTM. The hidden states
store information about short-term dependencies,
whereas the cell states encode long-term dependen-
cies. Both long and short-term dependencies are
valuable sources of information when making fu-
ture predictions. LSTM uses a gating system in
order to automatically select which information is
stored in its memories. The gates, cell states and
hidden states of a LSTM cell are defined by the fol-
lowing equations

ft = σ(W fxt +U
fht−1 +b

f ), (1a)

it = σ(W ixt +U
iht−1 +b

i), (1b)
ot = σ(W oxt +U

oht−1 +b
o), (1c)

c̃t = tanh(W cxt +U
cht−1 +b

c), (1d)
ct = ft�ct−1 + it� c̃t , (1e)
ht = ot� tanh(ct), (1f)

where x is the covariate vector, W is the weight
matrix for the input, U is the weight matrix for the
hidden states, b is the bias vector, and the super-
scripts { f , i,o,c} indicate the forget, input, output
and cell gates, respectively; σ(·) and tanh(·) are the
logistic sigmoid and hyperbolic tangent activation
functions; � denotes the element-wise multiplica-
tion operation.

Unlike BDLM, LSTM has the ability to figure
out the dependencies between input and output au-
tomatically without feature engineering. Therefore,
LSTM can be applied to analyze a large number of
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time series. For example, in order to consider the
same delayed effects between the environmental
variables and the dam’s responses as mentioned in
Section 2.1, users only need to include a sequence
of environmental variables as inputs to the LSTM,
and the input-output dependency will be figured out
automatically by the network.

A limitation of LSTM is that it is a deterministic
model so that it cannot be coupled probabilistically
with SSMs in order to provide interpretable results
along with the prediction uncertainties.

2.3. Tractable Approximate Gaussian Inference
(TAGI)

TAGI (Goulet et al., 2021) is a Bayesian ap-
proach for neural networks. Theoretically, TAGI
can be applied to any existing network architec-
tures. In practice, doing so requires developing
specific formulations for each architecture. Goulet
et al. (2021) and Nguyen and Goulet (2022) showed
that the Bayesian TAGI-FNN and TAGI-CNN mod-
els match the performance of their corresponding
deterministic networks trained by backpropgation
while being able to provide predictive uncertainties.
TAGI considers the parameters as well as all vari-
ables in the network as Gaussian random variables.
It applies the Gaussian Multiplicative Approxima-
tion (GMA) in order to analytically approximate the
product of Gaussian random variables as a Gaus-
sian distribution (Goulet et al., 2021). Then, it
leverages the Gaussian assumptions in order to an-
alytically infer the network parameters.

The key advantage of TAGI is that it allows
to perform Bayesian estimation analytically while
other Bayesian methods rely on Monte Carlo sam-
pling or other approximated methods which pre-
vents them from scaling efficiently to large prob-
lems. We will show in this paper that TAGI can be
applied to the LSTM architecture in order to create
a Bayesian LSTM model.

2.4. Application of BDLM and LSTM in SHM
In the field of SHM, LSTM is a common tool to

predict future structural responses. More specially,
Qu et al. (2019) used a LSTM model to predict
the deformations at multiple locations in a concrete
dam taking into account the interactions between

these locations. Wang et al. (2020) used LSTM
to predict the crack opening development in the
Longyangxia arch concrete dam in China. Nguyen-
Le et al. (2020) combined a LSTM network with
a hidden Markov model to predict the crack prop-
agation in various concrete structures. Li et al.
(2020) combined Loess, extra-trees and LSTM to
predict displacements of concrete dams. Yang et al.
(2020) combined LSTM with attention mechanism
to predict a concrete dam’s deformation. Tian et al.
(2020) used vertical displacement data from multi-
ple sensors located at different locations in a cable-
stayed bridge as inputs for a Bidirectional LSM net-
work to predict the tension in the bridge’s cables.

A common limitation among all the above stud-
ies is that they do not take into account the uncer-
tainties in the network parameters. Instead, they
consider these parameters as fixed values that are
obtained using gradient backpropagation. More-
over, the results are not interpretable so that users
could not distinguish between the reversible and ir-
reversible effects in the data.

3. METHODOLOGY

In this section, we first present the methodology
to build a Bayesian TAGI-LSTM neural network.
Then, we describe how to couple it probabilistically
with BDLM in order to create a hybrid model.

3.1. TAGI-LSTM
We use the same LSTM architecture’s equations

as presented in Section 2.2, but now, we con-
sider the parameters θ as well as all variables in-
cluding the four LSTM gates, the hidden states
H , and the cell states C as Gaussian random
variables. We also consider these random vari-
ables as having diagonal covariance matrices so
that we can maintain the computational tractabil-
ity of the TAGI method. By considering θ as hav-
ing probability distributions instead of having de-
terministic values, we consider the epistemic un-
certainty related to the model’s parameters. Fig-
ure 1 presents the graph for an example of TAGI-
LSTM network having an input layer containing
the covariate x, one LSTM layer, and a fully con-
nected output layer z(O). We denote the marginal
prior knowledge for the forget gate at time t given
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Figure 1: Graphical representation of a TAGI-LSTM
network. Black arrows represent the network forward
connection and red arrows represent the layer-wise
inference procedure.

the data y1:t−1 = {y1, · · · ,yt−1} by the Gaussian
random vector Ft|t−1 ∼ N (µFt|t−1,ΣF

t|t−1), where
µFt|t−1 = E[Ft |y1:t−1], and ΣF

t|t−1 = cov(Ft |y1:t−1).
In the forward step, we propagate the uncer-
tainties from the input covariates x and from
the parameters θ through the LSTM layer up to
the output layer. To this end, we estimate the
prior probability density functions (PDFs) for the
LSTM gates {Ft|t−1,It|t−1,Ot|t−1,C̃t|t−1}, the hid-
den states Ht|t−1 and the cell states Ct|t−1, as

well as the output layer’s hidden states Z(O)
t|t−1 us-

ing Equation 1. Applying Equation 1 requires to
perform multiplications and nonlinear transforma-
tions of Gaussian random variables which do not re-
sult in Gaussian distributions. Following the TAGI
method, we use GMA to approximate the product
of two Gaussian random variables by a Gaussian
distribution. We also approximate the nonlinear
activation functions by their corresponding locally
linearized functions (Goulet et al., 2021). This al-
lows us to analytically estimate the prior predictive
PDFs for all quantities in the network.

The observations y are related to the output
layer’s hidden states z(O) by

yt = z
(O)
t +vt , v : V ∼N (0,ΣV ),

where the observation error vt takes into account
both the precision of the measuring devices as well
as the model’s aleatory uncertainty.

In the backward step, after observing new data

yt , we want to send information from the output
layer back to the input layer in order to update
the prior knowledge about the parameters and hid-
den states which has been obtained from the for-
ward pass. In order to maintain the computational
tractability of the method, we apply a layer-wise in-
ference procedure to obtain the posteriors for hid-
den states and parameters (Goulet et al., 2021).
The backward step is depicted by the red arrows
in Figure 1. We use the Gaussian conditional equa-
tion to estimate the posterior for the hidden states
of the output layer Z(O)

t|t ∼ N (µZ
(O)

t|t ,ΣZ(O)

t|t ), and
apply the Rauch-Tung-Striebel procedure (Rauch
et al., 1965) to obtain the posteriors for the hidden
states Ht|t ∼N (µHt|t ,ΣH

t|t ), and for the cell states
Ct|t ∼ N (µCt|t ,Σ

C
t|t) of each LSTM layer, as well

as θt|t ∼N (µθt|t ,Σ
θ
t|t) for the network parameters.

Equations 1a-1e show that there is a connection
between the hidden and cell states at time t−1 and
t. This means that there is a flow of information
through time from the first to the last time steps.
We can leverage this connection in order to perform
smoothing over time (Rauch et al., 1965) for TAGI-
LSTM and the hybrid model presented in the next
section which couples TAGI-LSTM and BDLM .

3.2. Coupling TAGI-LSTM with BDLM
We consider a BDLM model having a level, a

trend and a seasonality hidden state such that the
hidden state vector is z = [zL zT zS]ᵀ ∈ R3 (Goulet,
2020). The linear transition functions for the level
and trend hidden states are given as[

zL

zT

]
t

= A
[

zL

zT

]
t−1

+wt , (2)

where A =

[
1 1
0 1

]
is the transition matrix, wt is

a realization from the independent and identically
distributed (i.i.d.) process errorw :W ∼N (0,Q).
In BDLM, the seasonality can be modelled by ei-
ther the periodic (Goulet, 2017) or the Kernel re-
gression components (Nguyen et al., 2019). How-
ever, obtaining the parameters for these compo-
nents relies on optimization. Here, instead, we use
the TAGI-LSTM network presented in Section 3.1
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to predict the seasonality as

zSt = LSTM(xt ,ht−1,θ), (3)

where xt is the input covariates, ht−1 is the hidden
state vector of the TAGI-LSTM network at time t−
1, and θ is the network parameters. The values of θ
are updated recursively when observing new data.

The posterior PDF for the hidden states at time
t−1 is given asZt−1|t−1 ∼N (µt−1|t−1,Σt−1|t−1),
where µt−1|t−1 = E[Zt−1|y1:t−1] and
Σt−1|t−1 = cov(Zt−1|y1:t−1). The prior knowl-
edge for the hidden state vector at time t is
assumed to follow a multivariate Gaussian
distribution Zt|t−1 ∼ N (µt|t−1,Σt|t−1) where,

µt|t−1 =

µL

µT

µS


t|t−1

,

Σt|t−1 =

var(ZL) cov(ZL,ZT) cov(ZL,ZS)
... var(ZT) cov(ZT,ZS)

sym. · · · var(ZS)


t|t−1

.

(4)

Given that the transition model in Equation 2 is lin-
ear, we can obtain the exact solutions for the means
µL

t|t−1 and µT
t|t−1, the variances var(ZL

t|t−1) and
var(ZT

t|t−1), and the covariance cov(ZL
t|t−1,ZT

t|t−1)

using the prediction step of Kalman filter (Kalman,
1960). The mean µS

t|t−1 and variance var(ZS
t|t−1)

of the seasonality hidden state are obtained by
the TAGI-LSTM one-step-ahead prediction as
presented in Section 3.1. We need to estimate
the cross-covariances cov(ZL

t|t−1,ZS
t|t−1) and

cov(ZT
t|t−1,ZS

t|t−1) for defining the prior distribution
for Zt . In practice, these covariance terms are typi-
cally close to zero, and can theoritically be obtained
through Monte Carlo sampling. However, when
analyzing thousands of time series, this approach
becomes computational prohibitive. Therefore, we
make an assumption that the seasonality hidden
variable ZS is independent from other hidden states
so that cov(ZL

t|t−1,ZS
t|t−1) = cov(ZT

t|t−1,ZS
t|t−1) = 0.

The linear observation equation is given by

yt = Czt + vt , (5)

where C = [1 0 1] is the observation matrix,
and v : V ∼ N (0,σ2

V ) is the observation er-
ror. Using Equations 2-5, we can apply the

Kalman filter to estimate the posterior Zt|t ∼
N (µt|t ,Σt|t). Then, only the posterior ZS

t|t ∼
N (µS

t|t ,σ
S
t|t) is used to update the TAGI-LSTM’s

parameters θt|t ∼ N (µθt|t ,Σ
θ
t|t), the hidden states

Ht|t ∼ N (µHt|t ,ΣH
t|t ), and the cell states Ct|t ∼

N (µCt|t ,Σ
C
t|t) following the layer-wise procedure

presented by Goulet et al. (2021).

4. RESULT
In this section, we compare the performance of

the Bayesian TAGI-LSTM and hybrid models with
BDLM on two SHM case studies.

4.1. Case study #1
In this case study, we compare the predictive per-

formance between TAGI-LSTM and BDLM. The
data used for this case study is the pendulum dataset
CB2 of the ICOLD-BW2022 benchmark (Malm R
et al., 2022) which measures a dam’s radial dis-
placement. The CB2 data is available from 2000
until the end of 2012 with the average frequency
of 1.5 week, whereas the daily data for the reser-
voir’s water level (WL) and the air temperature (AT)
are available from 2000 to 2018. The task consists
in providing daily predictions for the CB2 dataset
from 2013 to 2018.

We build a TAGI-LSTM model which uses the
water level and air temperature as explanatory vari-
ables to predict the CB2 data. We train and test
our model using daily data which means that there
are many missing data points for the CB2 dataset.
When the data for CB2 is missing, we only make
predictions without updating the network parame-
ters. Given the small number of missing data points
in the water level and temperature times series, we
replace their missing values by 0 instead of creating
additional models to predict them. When making
forecast z(O)t at time t, we take into account the de-
pendencies of the past observations by including a
window of L past output’s hidden states z(O)t−L1:t−1
in the covariate vector xt . We also consider the
lagging effects that the temperature and the reser-
voir’s level may have on the displacement by in-
cluding a window of M observations of both covari-
ates as inputs for the LSTM model such that xt =

[xWLt−M+1:t xATt−M+1:t z(O)t−L:t−1]
ᵀ. By contrast, in order to
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account for the same dependencies in BDLM, Deka
(2022) needed to do an extensive exercise of feature
engineering. That is, decomposing the water level
and temperature data into components, and manu-
ally defining the dependencies between these com-
ponents and the dam’s displacement. This approach
becomes unpractical when analyzing a large num-
ber of time series. The standard deviation for the
observation error σV as well as the window lengths
L and M are hyper-parameters of the TAGI-LSTM
model which needs to be learnt from data. We per-
form a grid-search to find the best values for the
hyper-parameters. For each candidate value in the
grid, we train our models with early-stopping (Mur-
phy, 2013) on a subset of training data from 2000
to end of 2009, and report the log-likelihood for
the validation period from 2010 to end of 2012.
The values which maximize the log-likelihood of
the validation set are chosen as the final hyper-
parameter values. Appendix A presents the optimal
hyper-parameter values used in our model.

Figure 2 shows that the TAGI-LSTM model can
not only provide the predictions but also the uncer-
tainties associated with these predictions; and the
TAGI-LSTM model provides a performance com-
patable to that of BDLM while not requiring feature
engineering.

2013 2014 2016 2018

-20
-10

0
10

Time [YY-MM]

C
B

2
[m

m
]

yt µt|t(BDLM) µt|t ± σt|t(BDLM)
µt|t(TAGI-LSTM) µt|t ± σt|t(TAGI-LSTM)

Figure 2: Comparison of predictions on test set be-
tween TAGI-LSTM and BDLM models.

4.2. Case study #2
In this case study, we evaluate the ability of the

hybrid model proposed in Section 3.2 not only at
forecasting but also at decomposing the data into
interpretable components. We compare our model
with BDLM on two daily time series data. The first
data records the displacement (DIS), and the second

data measures the crack opening (CR) at two spe-
cific locations in a concrete dam. The task consists
in forecasting the last year of data (365 data points).
The validation set includes one year of data before
the test set, and the rest of the data before the val-
idation set is used for training. We train our mod-
els on multiple epochs to identify the optimal ones.
The hyper-parameters of the network are presented
in Appendix A. The initial hidden states µ(i+1)

0 and

Σ
(i+1)
0 at the i+ 1th epoch are the smoothed esti-

mates µ(i)
0|T and Σ

(i)
0|T at the ith epoch with T being

the last training time. In order to make a fair com-
parison with BDLM models, we retrain our models
with the full training data including the validation
data with the optimal number of epochs previously
obtained. We build a separate BDLM model for
each dataset where each model has a local level, a
local trend, a Kernel regression, and an autoregres-
sive component. Figure 3 compares the predictions
on the test set of the crack opening time series be-
tween our method and BDLM where it shows that
our hybrid model provides more accurate predic-
tions. Figure 4 compares the predictions on the
test set as well as the hidden states between our
model and BDLM for the displacement time series.
It shows that our model is capable of decompos-
ing the data into interpretable components. Table 1
reports the test Root Mean Square Error (RMSE)
performance for the two methods. It shows that our
hybrid model provides similar results compared to
BDLM while relieving the burden of performing
optimization and feature engineering. Figures 4c-
4f show that our model provides smaller uncertain-
ties for the level and trend hidden states compared
to those obtained by BDLM. This is because we

98-01 00-01 02-01 04-01 05-120

0.5

1

Time [YY-MM]C
ra

ck
op

en
in

g
[m
m

] yt µt|t(Hybrid) µt|t ± σt|t(Hybrid)
µt|t(BDLM) µt|t ± σt|t(BDLM)

Figure 3: Comparison of predictions on test set be-
tween our hybrid model and BDLM for crack opening
time series.
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02-12 06-03 09-07 12-10 16-02−10

−5

0

Time [YY-MM]

D
is

pl
ac

em
en

t
[m

m
]

(b) Prediction on test set from BDLM

02-12 06-03 09-07 12-10 16-02−12.53

−4.83

2.86

Time [YY-MM]

zL

(c) Level component from hybrid model

02-12 06-03 09-07 12-10 16-02−12.53

−4.83

2.86

Time [YY-MM]

zL

(d) Level component from BDLM

02-12 06-03 09-07 12-10 16-02−1.43

−1.12

−0.84 ·10−3

Time [YY-MM]

zT

(e) Trend component from hybrid model

02-12 06-03 09-07 12-10 16-02−1.23

−1.04

−0.84 ·10−3

Time [YY-MM]

zT

(f) Trend component from BDLM

02-12 06-03 09-07 12-10 16-02−4

0

5.51

Time [YY-MM]

zS

(g) Seasonality component from hybrid model

02-12 06-03 09-07 12-10 16-02−4

0

5.51

Time [YY-MM]

zK
R

(h) Kernel regression component from BDLM

Figure 4: Comparison of predictions and hidden states between our hybrid model and BDLM for displacement
time series.

train our model over multiple epochs, and the un-
certainties of these hidden states reduce with re-
spect to the number of epochs. Figures 4g-4h show
that the seasonality modelled by TAGI-LSTM can
capture long and short-term variations, whereas the
one modelled by the Kernel regression component
is smoother.

Table 1: RMSE performance of our hybrid model and
BDLM on test set for displacement and crack opening
time series.

Dataset Hybrid BDLM

Displacement 0.688 0.368
Crack opening 0.027 0.036

5. CONCLUSION

In this paper, we combined the existing LSTM
architecture and the TAGI method to create the
Bayesian TAGI-LSTM neural network. We showed
that the TAGI-LSTM network takes into account
both the epistemic and aleatory uncertainties. We
also showed that TAGI-LSTM can automatically
figure out the input-output dependencies without
requiring feature engineering. This aspect is the
key to enable analyzing a large number of time se-
ries. The parameters of TAGI-LSTM can be learnt
analytically using Bayesian inference. This allows
coupling TAGI-LSTM with BDLM in a probabilis-
tic manner. The results from case studies showed
that the hybrid model can decompose data into in-
terpretable components while providing the predic-
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tive uncertainties.
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A. APPENDIX

Table 2: Network architecture and hyper-parameters

Case study #1 Case study #2
Dataset CB2 DIS CR

# LSTM layer 1 1 1
# LSTM nodes 50 100 100
# optimal epoch 29 50 15
L 35 365 365
M 21 - -
σV 0.2 0.3 0.2
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