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ABSTRACT: Former statistical analyses of bridge collapse data show that concrete bridges collapse 
significantly less frequently than bridges made of steel or wood. Since the main causes of bridge collapses 
worldwide are floods and associated fluvial processes, such as scouring, debris flows, etc. and impacts, 
it is reasonable to assume that the high dead load of concrete bridges leads to an overall more robust 
behavior in these events. This paper will examine whether the IABSE collapse database confirms this 
hypothesis and whether indications of further causes can be identified. For this purpose, the IABSE col-
lapse database is examined using artificial intelligence and machine learning (AI/ML) methods. How-
ever, the AI/ML analysis does not confirm the previous thesis. Possible reasons for the rejection of the 
thesis, such as the representativeness of the data, are also discussed. An extension of the database for 
events with large numbers of collapses is recommended. 

1. INTRODUCTION 
Modern construction standards ensure sufficient 
safety of bridges based on probabilistic ap-
proaches. A check of this approaches can be done 
by evaluating collapses. 

In Proske (2018) several databases on bridge 
collapses were listed. Statistical evaluations of 
such databases can be found e.g., in Wardhana & 
Hadripriono (2003), Cook (2004), Lee et al. 
(2013), Taricska (2014), Zhang et al. (2022). The 
statistical evaluation showed clear differences in 
the collapse frequency depending on the construc-
tion material (Table 1). 

The interpretation of this result leads to the 
thesis that concrete bridges are more robust 
against floods and impacts due to their high dead 
weight. Floods are the main cause of bridge col-
lapses (Proske 2018). The thesis of robustness in 
floods will be tested with the present IABSE da-
tabase and by means of artificial intelligence (AI) 
and machine learning (ML).  

2. DATABASE 
In this paper, the IABSE database of bridge col-
lapses will be used. This database was created 
within Task group 1.5 of the International Associ-
ation of Bridge and Structural Engineering 
(IABSE). The database used contains data on 834 
bridge collapses from 1966 to 2020. For each 
bridge collapse, the database records up to 48 pa-
rameters, although not all information is available 
for each bridge. Parameters include span width, 
year of construction, country in which the bridge 
is located, date of collapse, or construction mate-
rial. 

Table 1 allows a comparison of the number 
of collapses based on the IABSE database and 
other references. The collapse ratios of bridges are 
related to the inventory of bridges and normalized 
to the ratio of concrete bridges. Bridge ratios are 
based on U.S. as-built data, with the number for 
masonry bridges adjusted to European conditions.  

The composite bridges show lower collapse 
frequencies in both the IABSE database and 
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Taricska (2014). However, these bridges are re-
ported separately in Taricska (2014), while they 
are mixed with steel bridges in the IABSE data-
base.  

 
Table 1: Normalized number of bridge collapses; re-
lated to concrete bridges and to the number of 
bridges with a specific construction material in sev-
eral databases, I: IABSE, T: Taricska, L: Lee et al.; 
W. & H.: Wardhana & Hadrpriono 

 

Material I. 
T. 

(2014) 
L. 

(2013) 
W. & H. 
(2003) 

Masonry 0.78 6.80 1.74 2.43 
Concrete 1.00 1.00 1.00 1.00 

Steel, 
Compo-

site 
1.50 5.67 5.15 9.93 

Wood 5.40 6.67 7.59 14.9 
 

3. APPLIED METHODS 
The application of artificial intelligence (AI) or 
machine learning (ML) to the IABSE database 
promises to identify new relationships and con-
firming or falsifying the above-mentioned thesis. 

First, both implicit and explicit feature engi-
neering was performed. Feature engineering is 
generally understood as the selection and prepara-
tion of raw data into features or parameters that 
can be used for supervised learning in AI/ML pro-
cedures.  

Furthermore, the data was checked for erro-
neous or incomplete information. For example, 
for some bridges the exact date of collapse is 
available, for others only the year of collapse, for 
some bridges the main cause responsible for the 
collapse is given, for others not.  

As mentioned above, flooding, or fluvial pro-
cesses are the main cause of bridge collapses. 
Therefore, an additional variable for failure due to 
flooding was introduced. This was chosen as the 
target value. Since the proportion of collapses due 
to flooding is lower in the IABSE database than in 

other databases or publications, the SMOTE pro-
cedure for “Imbalanced Data” was applied. In the 
SMOTE (Synthetic Minority Oversampling Tech-
nique) procedure, collapses due to flooding were 
synthetically expanded.  

The testing and processing involved a con-
siderable amount of time for the present database. 
Overall, this step dominated the total amount of 
work time.  

Subsequently, the dataset was divided into a 
part for training the AI/ML and a part for checking 
the quality of the AI/ML model: 80% of the data 
was used for training and 20% of the data for qual-
ity checking. The data were sampled using Stati-
fied k fold Cross Validation Method. 

For the evaluation of such datasets, several 
bindings of AI/ML tools to higher level computer 
languages are available today, e.g., the Python li-
brary Keras, PyCaret or Imbalanced Learn can be 
used. Therefore, a large number of AI/ML proce-
dures has been applied in this investigation, such 
as K Neighbors Classifier, Decision Tree Classi-
fier, Support Vector Machine, Gaussian Process 
Classifier, Multi-Layer Perceptron Classifier, 
Ridge Classifier, Random Forest Classifier, 
Quadratic Discriminant Analysis, Ada Boost 
Classifier, and others. Classification was used be-
cause the target value flood is binary. 

The AI/ML methods Random Forests Classi-
fier and Extra Tree Classifier proved to be partic-
ularly successful in the study. Both methods are 
based on decision trees.  

For the evaluation of the prediction capabil-
ity of the AI/ML methods, various procedures are 
available and were used, such as the Confusion 
Matrix with sensitivity, specificity, precision and 
accuracy, the area under the receiver operating 
characteristic (ROC) curve, recall and negative 
prediction value.  

4. RESULTS AND INTERPETATION 
First, the correlation matrix was investigated. This 
is necessary to check whether the AI/ML can and 
should be used meaningfully at all. If different 
factors show a high positive or negative correla-
tion value, then a unifactorial statistical correla-
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tion is present, which must be checked for causal-
ity in the following. The use of AI/ML is more 
suitable for highly multi-factorial correlations.  

The correlation matrix already showed the 
impact of data quality on the analysis. There is a 
strong negative correlation between the “start of 
construction” or the “year of commissioning of 
the bridge” and the “age of the component respon-
sible for the collapse”. In fact, for 85 % of all col-
lapses, no value was available for the age of the 
structural element, and when values were availa-
ble, they often referred to the failure of falsework. 
Presumably, the age of the falsework was then 
used, which leads to the negative correlation. In 
this respect, therefore, the interpretation of this 
correlation matrix already requires background 
information on the data. The large positive corre-
lation between “traffic volume” and “roadway 
width” or “number of lanes” seems reasonable. 
The collapse cause “flood” showed only low cor-
relations with the other parameters listed. This ob-
servation forms the basis for the analysis using 
AI/ML. 

The IABSE database has already been inves-
tigated by means of ANOVE in Hingorani et al. 
(2022) related to different models for the estima-
tion of casualty numbers of bridge collapses. 
Thus, the correlation for the number of persons on 
a bridge at collapse and the span or bridge area 
was compared. The correlation values in Hingo-
rani et al. (2022) ranged from 0.12 to 0.22. Using 
the current IABSE-database, a correlation be-
tween casualty numbers and span length of 0.10 is 
computed which seems plausible.  

An initial test of the AI/ML model is per-
formed using the Confusion Matrix. This matrix 
shows the frequency in which the model was cor-
rect as well as the false-positive and false-nega-
tive predictions. The matrix shows that in 82 % of 
the collapses, the AI/ML correctly predicted that 
the collapse was not caused by flooding (specific-
ity). In 1 % of the cases, the AI/ML incorrectly 
predicted that the collapse was caused by flood-
ing. In 7 % of the cases, the AI/ML predicted a 
collapse due to flooding, which had other causes. 
In about 10 % of the cases, the AI/ML correctly 

predicted a collapse due to flooding (sensitivity). 
Especially the second row of the Confusion Ma-
trix shows the high uncertainty of the results. In 
approx. 50 % of the cases the AI/ML was correct, 
in about 50 % of the cases the AI/ML was wrong!  

In Naser (2021) an AI analysis of a bridge 
collapse and damage database with 299 datasets 
was presented. The AI methods Deep Learning, 
Decision Trees, Genetic Algorithms and Genetic 
Programming were used. As a result, similar error 
values were obtained for Deep Learning and De-
cision Trees as in the present case (40 % to 60 %). 

In the next step, the weighting of the individ-
ual input variables for the two methods, Extra 
Tree and Random Forest are discussed. 

The variable “Crucial Human Error, Force 
Majeure, Inspection Testing Error during Opera-
tion” is named as the most important input varia-
ble for both methods. However, design errors 
should then also occur. Unfortunately, these are 
underrepresented in the IABSE database com-
pared to other studies on human errors in the de-
sign and construction process. A detailed interpre-
tation of the error proportions in the IABSE data-
base can be found in Galvao et al. (2021). “Foun-
dation failure” is recognized as the second most 
important input variable in extra trees. In connec-
tion with the importance of scouring, this finding 
confirms the thesis stated. 

The second parameter in the random forest 
models is the “year of construction”. This could 
be an indication for more stringent design require-
ments regarding floods for bridges. However, 
other studies show the independence of collapses 
due to flooding from age (Montalvo and Cook 
2017). The third parameter, the “number of in-
jured persons”, is also understandable. In Hingo-
rani et al. (2022), it was shown that, on the one 
hand, the number of fatalities in bridge collapses 
due to flooding is low because the bridges are usu-
ally closed during such events. However, it was 
also shown that the probability of survival when 
people are present during flood-induced bridge 
collapse is practically zero. Neither relationship 
was directly evident in the correlation matrix. 
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5. PLAUSIBILITY CONSIDERATION 
The importance of “Crucial Human Error, Force 
Majeure, Inspection Testing Error during Opera-
tion” as the most important input variable for 
bridge collapses during floods for both ML meth-
ods does not seem plausible. According to John-
son (2012), Cheng et al. (2019), the condition of 
bridges has little influence on the resistance of 
bridges to natural hazards, such as floods or flu-
vial processes. For earthquakes there are studies 
which indicate a relationship between bridge con-
ditions and seismic fragility (Zanini et al. 2013).  

Inspection failures appear 96 times as an in-
direct cause of collapse in the IABSE database 
and are thus likely overrepresented for the overall 
bridge collapse population. The weightings allow 
for several interpretations: 

1.  Correlations between inspection and bridge 
condition and flooding occur only at extreme 
values; a so-called tail dependency may exist. 
Therefore, the correlation was not recognized, 
e.g., in Johnson (2012), because mainly dam-
ages and not collapses formed the data basis. 

2.  The parameter of inspection failures is an un-
specific parameter. The data quality, sensitiv-
ity, and specificity of this parameter are not 
sufficient for the investigation carried out.  
Only a small proportion (about 20 %) of 

bridge collapses in the IABSE database relate to 
floods and fluvial processes, although flood data 
was mathematically extended. In fact, however, 
floods are the main cause of bridge collapses, as 
confirmed by an overwhelming number of publi-
cations (Proske 2018, 2022). A proportion of 
50 % of all collapses is often cited.  

Without citing the references in detail, Table 
2 lists several natural events with numerous 
bridge collapses and damages per event as evi-
dence. Overall, Table 2 lists approximately 
10,000 bridges damaged or destroyed. The spe-
cific bridge details of such major events are rarely 
or never found in bridge collapse databases.  

The destruction of a large number of bridges 
during singular flood events is not a peculiarity of 
the last decades as shown in Table 2. In Switzer-

land and Austria, flood events that destroyed doz-
ens of bridges can be traced back over centuries. 
In Graubünden for example, floods in the years 
1570, 1772, 1834, 1839, 1868, 1871, 1910, 1927, 
1951 destroyed in total hundreds of bridges 
(Weidmann 2018). 
 
Table 2: Large scale natural events with heavy 
bridge losses (grey: flood) 

 

Year Country 
Description of 
Bridge dam-

ages and losses 
Cause 

1947 USA Heavy Losses  Flood 

1952 U.K. 
28 destroyed or 

damaged 
Flood 

1964-1972 USA 
383 destroyed 
or damaged 

Flood 

1970 
East- 

Pakistan 
924 destroyed 
or damaged 

Typhoon 
and 

Flood 

1976 Japan 
233 destroyed 
or damaged 

Typhoon 
and 

Flood 
1985 USA 73 destroyed Flood 
1987 USA 17 destroyed Flood 

1989 USA 
< 10 destroyed 

or severely 
damaged 

Earth-
quake 

1993 USA 
110 destroyed; 
2,400 damaged 

Flood 

1994 USA 
170 on highway 

destroyed or 
damaged 

Earth-
quake 

1995 Japan 

27 with severe 
damages and 
partial col-

lapses, 60 % in 
the area with 
small/median 

damages 

Earth-
quake 

1998 
Bangla-

desh 
400 damaged Flood 

1998 
Central 
America 

up to 92 on 
main routes 

and at least 200 

Hurri-
cane 
Mitch 
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small in Hon-
duras de-

stroyed, 126 in 
Costa Rica 

damaged, 300 
in Peru se-

verely damaged 

und 
Flood 

2000 
Zimba-

bwe 

26 destroyed or 
severely dam-
aged, further-

more in 
Mozambique, 
Botswana und 
South Africa 

damaged 

Zyklon 
Eline, 
Flood 

2002 Saxony 
> 15 destroyed, 
> 450 damaged 

Flood 

2004 

Indone-
sia, 

Southeast 
Asia 

Destruction of 
many in coastal 
areas, hundreds 
washed away, 
many in Banda 
Aceh destroyed, 

70 to 100 in 
North Sumatra 

destroyed 

Tsunami 

2005 USA 70 destroyed 
Storm 

Katrina/ 
Flood 

2008 China 

Large number 
destroyed 

(landslides), 
4,840 damaged 

Earth-
quake 

2009 U.K. 
7 destroyed;  
72 damaged 

Flood 

2009 Taiwan 
> 20 destroyed; 
200 on highway 

damaged 

Typhoon 
Morakot/  

Flood 

2010 Chile 

30 closed, se-
vere damages 
on 19, slight 
damages on 
about 100 

Earth-
quake 

2010-2011 
Australia 
Queens-

land 

89 severely 
damaged 

Flood 

2011 USA 
326 to 389. 
damaged,  

40 destroyed, 
Flood 

2011 Japan 

> 300 de-
stroyed, ap-

prox. 3,200 hit 
by wave 

Earth-
quake 

und Tsu-
nami 

2012 
Afghani-

stan 
400 destroyed Flood 

2013 
USA, 

Colorado 

40 on highway 
destroyed, fur-
ther 20 dam-

aged 

Flood 

2013 
India, 

Uttarak-
hand 

21 destroyed Flood 

2014-2019 
Papua-

New 
Guinea 

285 destroyed 
or damaged 

Flood 

2015 U.K. 
131 to 244 de-

stroyed or dam-
aged 

Flood 

2016 Japan 128 damaged Flood 

2016 
Neu Zee-

land 

904 affected;  
2 severely dam-

aged 

Earth-
quake 

2017 Peru >100 destroyed Flood 
2017 Nigeria > 10 destroyed Flood 
2018 Turkey 12 destroyed Flood 
2019 Iran 84 destroyed Flood 

2019 
Zimba-

bwe 

9 accesses and 
4 on main 

roads washed 
away, on local 
tracks approx. 
100 damaged 
or destroyed 

Cyclone 
Idai und 
Flood 

2019 Japan 

one on railway 
collapsed, 

scour on sev-
eral, at least 8 

collapsed 

Typhoon 
Hagibis/ 

Flood 

2020 Japan 
10 on roadway 
and 3 on rail-
way destroyed 

Flood 
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2020 Greece 

Unknown num-
ber destroyed, 

at least 15 
damaged 

Tornado/ 
Flood 

2021 U.K. 2 destroyed Flood 

2021 Germany 
62 destroyed, 
13 severely 
damaged 

Flood 

 
It is true that cases of bridge collapses with 

the same date can be found in the IABSE data-
base. However, sometimes the collapses occur on 
the same date but in different countries on differ-
ent continents. Nevertheless, the database con-
tains seven bridge collapses on November 20, 
2009, in the United Kingdom, two bridge col-
lapses on April 27, 2015, in Russia, and five 
bridge collapses on November 22, 2019, in 
Kenya, with all bridge collapses caused by floods. 
The events in Russia and Kenya are not part of 
Table 2, showing that the table is also not com-
plete. However, the data in the IABSE database 
include only a fraction of the approximately 
10,000 damaged or collapsed bridges mentioned. 

This underreporting is partly due to the col-
lection of data based on daily media, but also due 
to different ownerships of the bridges and the re-
lated problems in collecting the data by third par-
ties. Only in a few cases, such as the 1970 typhoon 
in East Pakistan, does the World Bank have con-
crete damage figures for individual bridges.  

Assuming that the 10,000 bridges damaged 
or collapsed over a period of 50 years, approxi-
mately 200 bridges worldwide are destroyed or 
severely damaged by earthquakes and floods each 
year. Using the estimate that floods causing about 
50 % of all collapses, these 200 bridge collapses 
result in approx. 400 bridge collapses per year 
worldwide. 

Sasidharan et al. (2022) cite 6,000 bridge col-
lapses in the U.S. due to scouring for a period of 
about 150 years. This results in about 40 collapses 
per year in the U.S. alone. Assuming that the U.S. 
contains about 15 % of the world's bridge inven-
tory and that the ratios are comparable worldwide, 

the result is approx. 270 collapses per year world-
wide due to scouring. According to the meta-anal-
ysis of collapses and the graphical representation 
in Proske (2018), the proportion of collapses due 
to scouring is about 20 %. Applying the factor of 
20 % to the 270 annual collapses, one arrives at 
up to 1,350 bridge collapses per year.  

Ashraf et al. (2022) estimates annual bridge 
collapses in the U.S. due to scouring of between 
20 and 100. Using the same assumptions as in the 
previous paragraph, this would yield worldwide 
annual bridge collapses between 667 and 3,333. 

According to the German Federal Statistical 
Office (Destatis 2022), an average of 406 natural 
catastrophes occurred worldwide per year be-
tween 2000 and 2020. Most of these natural dis-
asters were floods, which accounted for the larg-
est share of 36.6 percent. This results in approxi-
mately 160 floods per year worldwide. If we as-
sume that on average 2 to 4 bridges are destroyed 
per flood, this results in 320 to 640 bridges col-
lapses. Floods account for half of all bridge col-
lapses, thus yielding 620 to 1,280 collapses. 

Neither the IABSE databases nor Table 2 re-
flect these numbers. Therefore, factors for un-
derreporting of bridge collapses are introduced in 
various publications (Vogel et al. 2009). Taking 
such a factor into account, gives a collapse fre-
quency of 2 × 10-5 per year per bridge with respect 
to Switzerland. This corresponds to about one 
bridge collapse every three years in Switzerland. 

Spector & Gifford (1986) state that at least 
100 small old bridges collapse per year. Assuming 
this statement refers to the U.S. and that about 
15 % of the world's bridge inventory is located in 
the U.S., this results in 667 bridge collapses 
worldwide per year. Such local collapses on mi-
nor roads also occur in Europe. Considering, for 
example, the collapses due to regional debris 
flows or flash floods, such as in Carinthia and Ty-
rol, Austria, in 2022, with more than 4 bridge col-
lapses, and in Grugnay and Val Stabelchod in 
2018 and Bondo in 2017, Switzerland, with to-
gether more than 6 bridge collapses, this probably 
results in more than one collapse per year on av-
erage also for Switzerland. 
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Thus, correcting the figure of 2 × 10-5 per 
year per bridge with these collapses of small 
bridges results in a collapse frequency of 1 to 2 × 
10-4 per year worldwide (Proske 2018, 2022). Ap-
plying this to the worldwide inventory of 5 mil-
lion bridges yields between 500 and 1,000 bridge 
collapses per year. This agrees remarkably well 
with the previous values and with the value of 1.2 
× 10-4 per year per bridge in Proske (2018, 2022). 
Even the best databases with more than 1,000 col-
lapses over several decades thus cover only a frac-
tion of all collapses. Therefore, the authors sug-
gest linking databases of individual bridge col-
lapses with data from events with many collapses. 

For bridge collapses in municipal areas or 
small bridges, the question is whether these struc-
tures still fall under the definition of bridges or are 
already considered culverts. In the latter case, the 
sample size would change. However, even then 
the denominator still contains a significantly 
lower uncertainty than the numerator. 

6. CONCLUSION 
Various databases on bridge collapses exist 
worldwide. Evaluations of these databases allow 
conclusions to be drawn about the causes of 
bridge collapses. Possible causes can be related to 
different loads or different resistance properties, 
e.g., the bridge material. 

In the context of this paper, the thesis was 
discussed whether a significant difference of the 
collapse frequency of bridges exists depending on 
the building material, especially for concrete 
bridges. This thesis resulted, for example, from 
the statistical analysis of the data of Lee et al. 
(2013), Wardhana & Hadipriono (2003), Taricska 
(2014). With the data of the IABSE database this 
thesis could not be confirmed directly - except for 
bridges made of wood. There are several possible 
reasons for this, such as: 

 The thesis is wrong because the data in the da-
tabases of Lee et al. (2013), Wardhana & Had-
ipriono (2003), Taricska (2014) are incom-
plete or not representative. 

 The thesis is correct, but the data in the IABSE 
database are incomplete or not representative. 

 The thesis is correct, but the methods used are 
inappropriate. 
Whether the three databases Lee et al. (2013), 

Wardhana & Hadipriono (2003), Taricska (2014) 
statistically confirm the thesis independently can-
not be determined beyond doubt, because the da-
tabases are probably not independent. Neverthe-
less, the data will not correlate completely, so that 
the three databases allow a stronger support of the 
thesis. As explained, the data in all databases, in-
cluding the IABSE database, are also unlikely to 
be representative. For this reason, local databases, 
such as Cook (2004) are probably better able to 
provide evidence for the hypothesized relation-
ship. The method itself should be able to identify 
correlations. This was also tested on a second da-
tabase which is not part of this paper.  

For the future, the goal must be to link the 
databases of individual bridge collapses (meso 
level) with the statistics of large-scale bridge 
losses (macro level), e.g., the IABSE database 
with the data from Table 2. The question here will 
be how to collect the relevant information. One 
possibility would be to ask the cost centers for re-
construction, e.g., state budget, municipal budget, 
or parliamentary inquiries. 

Furthermore, more detailed data may be re-
quired which is not directly related to the bridges, 
such as flow velocity, flow depth, distance be-
tween abutments and the water, slope etc. Such 
parameters are already used in bridge risk assess-
ments (Pregnolato 2019, Kattell & Eriksson 1998) 
and may be available.  

Whether the higher dead load is the actual 
cause for the apparently significantly lower col-
lapse frequency of concrete bridges could not be 
shown with the procedure. It would also be con-
ceivable, for example, that concrete bridges are on 
average younger than steel, timber or stone 
bridges and were thus designed according to more 
modern standards with higher actions. However, 
Montalvo and Cook (2017) have shown that 
bridge collapses due to flooding are relatively in-
dependent of bridge age. This is true even with the 
observed decreasing number of bridge collapses.  
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Thus, further studies are needed. The paper 
shows that the successful application of AI/ML 
methods is limited by data quality. 

Other publications, such as Pregnolato 
(2019), Kattell & Eriksson (1998), mention other 
highly specific variables for determining the vul-
nerability of bridges to flooding and scour, such 
as flow velocity, distance of river to abutment. 

This means that the databases must be ex-
panded not only in terms of the scope of bridge 
collapses, but also in terms of the scope of the hy-
draulic variables. For such extremely extensive 
databases, evaluation by AI/ML would be virtu-
ally predestined. 
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