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ABSTRACT: In the context of reliability assessment, estimating a failure probability associated to a
rare event is a common task. To do so, various techniques have been proposed to overcome traditional
crude Monte Carlo which becomes intractable in such a context. Among others, Subset Simulation is
a widely used technique which relies on “splitting” the rare event probability into a sequence (i.e., a
product) of less rare conditional probabilities associated to nested failure events, easier to estimate. How-
ever, this technique relies on simulating samples conditionally to the failure event by means of Monte
Carlo Markov chain algorithms. These algorithms enable, at convergence, to simulate according to the
target density. However, in practice, it often produces non-independent and identically distributed (i.i.d.)
samples due to the correlation between Markov chains. In the present work, we propose another way
to sample conditionally to the nested failure events in order to get i.i.d. samples which can be required
(e.g., to perform dedicated sensitivity analysis). The proposed algorithm relies on a nonparametric fit of
the conditional joint distribution using a combined kernel density estimation for marginals fitting and the
Empirical Bernstein Copula (EBC). Thus, this new method presents some similarities with “Nonparamet-
ric Adaptive Importance Sampling” but addresses the problem of copula fitting by means of EBC. The
proposed algorithm is tested on three toy-cases and its performances are compared with those obtained
from Subset Sampling.

1. INTRODUCTION

Reliability analysis of a system is often associ-
ated with rare event probability estimation. Con-
sidering that the system’s performance is modeled
by a deterministic scalar function g : Dx ⊆Rd →R,
called limit-state function and a critical threshold on
the system’s output yth ∈R, one can define the fail-
ure domain as Fx := {x ∈ Dx|g(x) ≤ yth}. Uncer-

tain inputs are represented by a continuous random
vector X ∈ Dx assumed to be distributed according
to its joint probability density function (PDF) fX.
In this context, uncertainty propagation consists in
composing the random vector X by the function g
to get an output variable of interest Y = g(X) ∈ R.
A usual risk measure in reliability analysis is the
failure probability, denoted by pf, and defined as
the probability that the system exceeds the thresh-
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old yth:

pf := P(g(X)≤ yth) =
∫
Dx
1Fx(x) fX(x)dx (1)

where 1Fx(·) is the indicator function of the fail-
ure domain such that 1Fx(x) = 1 if x ∈ Fx and
1Fx(x) = 0 otherwise. Rare event problems are
usually solved in the so-called standard normal
space after applying an “iso-probabilistic trans-
formation” which can be either the Rosenblatt or
the generalized Nataf one (Lebrun, 2013). Addi-
tionally, the limit-state function g can be viewed
as an input-output “black-box” model which can
be costly to evaluate (e.g., a complex numerical
model), making the failure probability estimation
nontrivial. When the limit-state function is a costly
computer model, one can build a surrogate model
and use specific active learning methods (see, e.g.,
Moustapha et al. (2022)). However, using surro-
gate models is not always possible for practical en-
gineering applications as they might introduce an-
other level of approximation, which can be pro-
hibitive from safety auditing. Moreover, their val-
idation as well as their behavior with respect to
large input dimension case make also their use quite
complex (see, e.g., (Marrel et al., 2022).

Going back to the rare event estimation litera-
ture, one can consider two major types of tech-
niques for failure probability calculation (Morio
and Balesdent, 2015): (i) Geometric approaches,
such as the first-/second-order reliability method
(FORM/SORM) whose aim is to approximate
the limit-state function by a first-/second-order
Taylor expansion at the most probable failure
point; (ii) Simulation-based techniques such as
the crude Monte Carlo method. Unfortunately,
FORM/SORM methods do not provide a lot of sta-
tistical information as they are purely geometric ap-
proaches. Meanwhile, estimating a rare event prob-
ability by crude Monte Carlo becomes rapidly in-
tractable. To overcome this limit, advanced sim-
ulation techniques have been developed: among
others, one can mention several “variance reduc-
tion methods” such as the non-adaptive and adap-
tive versions of the Importance Sampling (Rubin-
stein and Kroese, 2008) (either parametric, using
the Cross-Entropy method Kurtz and Song (2013),

or nonparametric Morio (2011)) and splitting tech-
niques (Cérou et al., 2012) such as the Subset Sim-
ulation (SS) Au and Beck (2001). In these tech-
niques, the idea is to write the rare event pf as a
product of larger conditional probabilities, each one
of them being easier to estimate. To generate in-
termediary conditional samples, this method uses
Markov chain Monte Carlo (MCMC) sampling,
which presents numerous versions (Papaioannou
et al., 2015). However, MCMC algorithms are
known to be highly tunable algorithms which pro-
duce non-i.i.d. samples, which consequently, can-
not be used for direct statistical estimation (e.g.,
failure probability or sensitivity indices (Da Veiga
et al., 2021).

The present work proposes a new rare event esti-
mation method, adopting the same sequential struc-
ture as SS while using a strictly different sampling
mechanism to generate conditional samples. This
method intends to fit the intermediary conditional
distributions with a nonparametric tool called the
Empirical Bernstein Copula. Contrarily to SS, the
proposed method named “Bernstein adaptive non-
parametric conditional sampling” (BANCS), gen-
erates i.i.d. samples of the intermediary condi-
tional distributions. For instance, a practical use
of such i.i.d. samples can be to estimate ded-
icated reliability-oriented sensitivity indices (see,
e.g., Chabridon et al. (2021); Marrel and Chabridon
(2021)).

In this paper, Section 2 will recall the methodol-
ogy of subset sampling and probabilistic modeling.
Then, Section 3 will introduce the BANCS method
for rare event estimation. Section 4 will apply this
method to three toy-cases and analyze the results
with respect to SS performances. Then, the last
section present some conclusions and research per-
spectives.

2. BACKGROUND

2.1. Subset sampling

Subset sampling splits the failure event Fx into
an intersection of k# intermediary events Fx =

∩k#
k=1F[k]. Each are nested such that F[1] ⊃ ·· · ⊃

F[k#] = Fx. The failure probability is then ex-
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pressed as a product of conditional probabilities:

pf = P(Fx) = P(∩k#
k=1F[k]) =

k#

∏
k=1

P(F[k]|F[k−1]).

(2)
From a practical point of view, the analyst tunes
the algorithm by setting the intermediary probabil-
ities P(F[k]|F[k−1]) = p0,∀k ∈ {1, . . . ,k#}. Then,
the corresponding quantiles qp0

[1] > · · ·> qp0
[k#]

are es-
timated for each conditional subset samples X[k],N
of size N. Note that the initial quantile is estimated
by crude Monte Carlo sampling on the input PDF
fX. Following conditional subset samples are gen-
erated by MCMC sampling of fX(x|F[k−1]), using
as seeds initialisation points the n = N p0 samples
given by A[k],n = {X( j)

[k−1] ⊂ X[k−1],N |g(X( j)
[k−1]) >

q̂α

[k−1]}n
j=1. This process is repeated until an inter-

mediary quantile exceeds the threshold: q̂p0
[k#]

< yth.
Finally, the failure probability is estimated by:

pf ≈ p̂f
SS = pk#−1

0
1
N

N

∑
j=1

1{g(x)≤yth}(X
( j)
[k#],N

). (3)

In practice, the subset sample size should be
large enough to properly estimate intermediary
quantiles, which leads Au and Beck (2001) to rec-
ommend setting p0 = 0.1. SS efficiency depends
on the proper choice and tuning of the MCMC al-
gorithm (Papaioannou et al., 2015). Our work uses
the SS implementation from OpenTURNS1 (Baudin
et al., 2017) which integrates a component-wise
Metropolis-Hastings algorithm. As an alternative
to generating samples on a conditional distribution
by MCMC, one could try to fit this conditional dis-
tribution.

2.2. Multivariate modeling using copulas
The Sklar theorem (Joe, 1997) affirms that the

multivariate distribution of any random vector X ∈
Rd can be broken down into two objects:

1. A set of univariate marginal distributions to
describe the behavior of the individual vari-
ables;

1https://openturns.github.io/www/index.html

2. A function describing the dependence struc-
ture between all variables, called a copula.

This theorem states that considering a random vec-
tor X ∈Rd , with its distribution F and its marginals
{Fi}d

i=1, there exists a copula C : [0,1]d → [0,1],
such that:

F(x1, . . . ,xd) =C (F1(x1), . . . ,Fp(xd)) . (4)

It allows us to divide the problem of fitting a joint
distribution into two independent problems: fitting
the marginals and fitting the copula. Note that when
the joint distribution is continuous, this copula is
unique. Provided a dataset, this framework allows
to combine a parametric (or nonparametric) fit of
marginals with a parametric (or nonparametric) fit
of the copula. When the distribution’s dimension
is higher than two, one can perform a parametric
fit using vine copulas (Joe and Kurowicka, 2011),
implying the choice of multiple types of paramet-
ric copulas. Otherwise, nonparametric fit by multi-
variate kernel density estimation (KDE) presents a
computational burden as soon as the dimension in-
creases (Chabridon et al., 2021). Since univariate
marginals are usually well-fitted with nonparamet-
ric tools (e.g., KDE), let us introduce an effective
nonparametric method for copula fitting.

3. A NEW COPULA-BASED CONDI-
TIONAL SAMPLING METHOD

3.1. Empirical Bernstein copula
Copulas are continuous and bounded functions

defined on a compact set (the unit hypercube).
Bernstein polynomials allow to uniformly approxi-
mate as closely as desired any continuous and real-
valued function defined on a compact set (Weier-
strass approximation theorem). Therefore, they are
good candidates to approximate unknown copulas.
This concept was introduced as empirical Bernstein
copula (EBC) by Sancetta and Satchell (2004) for
applications in economics and risk management.
Later on, Segers et al. (2017) offered further asymp-
totic studies. Formally, the multivariate Bernstein
polynomial for a function C : [0,1]d → R on a grid
over the unit hypercube G :=

{
0

m1
, . . . , m1

m1

}
×·· ·×
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0
md

, . . . , md
md

}
,m = (m1, . . . ,md) ∈ Nd , writes:

Bm(C)(u) :=
m1

∑
t1=0

· · ·
md

∑
td=0

C
(

t1
m1

, . . . ,
td
md

) d

∏
j=1

Pm j,t j(u j),

(5)
with u = (u1, . . . ,ud) ∈ [0,1]d , and the Bernstein
polynomial Pm,t(u) := t!

m!(t−m)!u
m(1− u)t−m. No-

tice how the grid definition implies the polyno-
mial’s order. When C is a copula, then Bm(C) is
called “Bernstein copula”. Therefore, the empirical
Bernstein copula is an application of the Bernstein
polynomial in Eq. (5) to the so-called “empirical
copula”.

In practice, considering a sample Xn ={
x(1), . . . ,x(n)

}
∈ Rnp and the associated ranked

sample Rn =
{

r(1), . . . ,r(n)
}

, the corresponding
empirical copula writes:

Cn(u) :=
1
n

n

∑
i=0

p

∏
j=1

1

r(i)j

n
≤ u j

 , (6)

with u = (u1, . . . ,ud) ∈ [0,1]d . In the following, the
polynomial order is set as equal in each dimension:
{mi = m}d

j=1. Theoretically, the tuning parameter
can be optimized to minimize an “Mean Integrated
Squared Error” (MISE), leading to a bias-variance
tradeoff. Formally, the MISE of the empirical Bern-
stein copula Bm(Cn) is defined as follows:

E
[
∥Bm(Cn)−C∥2

2
]
=E

[∫
Rd
(Bm(Cn)(u)−C(u)du)2

]
.

(7)
Then, Sancetta and Satchell (2004) prove in their
Theorem 3 that:

• Bm(Cn)(u) → C(u) for any u j ∈ ]0,1[ if
md/2

n → 0, when m,n → ∞.

• The optimal order of the polynomial in terms
of MISE is: m ≲ mIMSE = n2/(d+4),∀u j ∈
]0,1[. The sign ≲ means “less than or approx-
imately”.

Let us remark that in the special case m = n, also
called the “Beta copula” in Segers et al. (2017),
the bias is very small while the variance gets large.
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Figure 1: Evolution of mIMSE for different dimensions
and sample sizes.

To illustrate the previous theorem, Lasserre (2022)
represents the evolution of the mIMSE for differ-
ent dimensions and sample sizes (see Fig. 1). In
high dimension, the values of mIMSE tend towards
one, which is equivalent to the independent cop-
ula. Therefore, high-dimensional problems should
be divided into a product of smaller problems on
which the EBC is tractable. Provided a large
enough learning set Xn, KDE fitting of marginals
combined with EBC fitting of the copula delivers
good results even on complex dependence struc-
tures. Moreover, EBC provides an explicit expres-
sion, making a Monte Carlo generation of i.i.d.
samples simple. In the following, this nonparamet-
ric tool is used to fit the intermediary conditional
distributions present in subset sampling.

3.2. Bernstein adaptive nonparametric condi-
tional sampling (BANCS) method

This new method reuses the main idea from SS
while employing a different approach to generate
conditional samples. Instead of using MCMC sam-
pling, the conditional distribution is firstly fitted
by a nonparametric procedure, before sampling on
this nonparametric model. As described in Algo-
rithm 1, conditional sampling is done on a distri-
bution composed by merging marginals {F̂i}d

i=1 fit-
ted by KDE, with a copula Bm(Cn) fitted by EBC.
Fig. 2 and Fig. 3 illustrate the nonparametric fit and
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conditional sampling in BANCS method on a two-
dimensional reliability problem (later introduced
as “toy-case #1”). At iteration k, after estimat-
ing the intermediary quantile q̂p0

[k], a nonparametric
model is fitted on A[k+1],n and used to generate the
next N-sized subset sample X[k+1],N . Note that the
BANCS method does not require iso-probabilistic
transform.

Algorithm 1 Bernstein adaptive nonparametric
conditional sampling (BANCS).

▷ Inputs: ◁
fX, joint PDF of the inputs
g(·), limit-state function
yth ∈ R, threshold defining the failure event
N, number of samples per iteration
m ∈ N, parameter of the EBC fitting
p0 ∈ ]0,1[, empirical quantile order (rarity parameter)
▷ Algorithm: ◁
Set k = 0 and f[0] = fX

Sample X[0],N = {X( j)
[0] }N

j=1
i.i.d∼ f[0]

Evaluate G[0],N = {g(X( j)
[0] )}N

j=1

Estimate the empirical p0-quantile q̂p0
[0] of the set G[0],N

while q̂p0
[k] > yth do

Subsample A[k+1],n = {X( j)
[k] ⊂ X[k],N |g(X( j)

[k] )> q̂p0
[k]}n

j=1

Fit marginals of the subset A[k+1],n by KDE {F̂i}d
i=1

Fit the copula of the subset A[k+1],n by EBC Bm(Cn)

Build a CDF F̂[k+1](x) = Bm(Cn)(F̂1(x1), . . . , F̂d(xd))

Sample X[k+1],N = {X( j)
[k+1]}N

j=1
i.i.d∼ f̂[k+1]

Evaluate G[k+1],N = {g(X( j)
[k+1])}N

j=1

Estimate the empirical p0-quantile q̂p0
[k+1] of G[k+1],N

Set k = k+1
Set total iteration number k# = k−1
Estimate p̂f = (1− p0)

k# · 1
N ∑

N
j=11{g(X( j)

[k# ]
)≥yth}

(X[k#]
( j))

▷ Outputs: ◁
p̂f, estimate of pf

As discussed in the previous section, EBC fitting
is tuned by the Bernstein polynomial of order m,
implying a bias-variance tread off. In Fig. 2 and
Fig. 3, conditional distributions fitted by EBC (blue
and brown isolines) seem to present a slight bias
since they overlay the quantiles. However, reduc-
ing this bias implies decreasing the tuning parame-
ter m, until m = 1, which is equivalent to an inde-
pendent copula. Tools to control the goodness of fit
of nonparametric conditional distributions are also

Figure 2: BANCS on toy-case #1: illustration of non-
parametric fit at the first iteration.

Figure 3: BANCS on toy-case #1: illustration of con-
ditional sampling and nonparametric fit at the second
iteration.

available. As an example, let us consider the fitted
conditional distribution at the first iteration (visi-
ble in Fig. 2). Its quantile-quantile plot in Fig. 4
shows a good fit of the two marginals by KDE.
Then, the goodness of fit of copulas can be eval-
uated by Kendall’s plot, represented in Fig. 5. This
fit is also good, even if a slight bias is again visible.
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Figure 4: QQ-plot for KDE of marginals of the condi-
tional distribution from Fig. 2.
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Figure 5: Kendall plot for EBC on the copula of a con-
ditional distribution from Fig. 2.

4. NUMERICAL EXPERIMENTS
In the following analytical numerical experi-

ments, the intermediary probabilities were set to
p0 = 0.1, allowing a fair comparison with subset
sampling. Then, the subset sample size is set to
N = 104, in order to get a reasonable sample size
n = N p0 = 103 to perform the nonparametric fit-
ting. EBC tuning is setup to minimize the MISE in
Eq. (7): m = 1+n

2
d+4 . In order to take into account

the variability of the method’s results, each experi-
ment is repeated 100 times, allowing the computa-
tion of a coefficient of variation δ̂ =

σp̂f
µp̂f

. Note that
an implementation of the BANCS method and the

following numerical experiments are available in a
Git repository2.

4.1. Toy-case #1: Parabolic reliability problem
Let us define the parabolic reliability problem,

considering the function g1 : R2 → R:

g1(x) = (x1 − x2)
2 −8(x1 + x2 −5), (8)

with the input random vector X = (X1,X2) fol-
lowing a standard 2-dimensional normal distribu-
tion. The reliability problem consists in evaluating:
pf,1 = P(g1(X)≤ 0) = 1.31×10−4.

4.2. Toy-case #2: Four-branch reliability problem
Let us define the four-branch reliability problem

(originally proposed by Waarts (2000)), consider-
ing the following function g2 : R2 → R:

g2(x) = min


5+0.1(x1 − x2)

2 − (x1+x2)√
2

5+0.1(x1 − x2)
2 + (x1+x2)√

2
(x1 − x2)+

9√
2

(x2 − x1)+
9√
2

 , (9)

with the input random vector X = (X1,X2) fol-
lowing a standard 2-dimensional normal distribu-
tion. The reliability problem consists in evaluating:
pf,2 = P(g2(X)≤ 0) = 2.21×10−4.

4.3. Toy-case #3: high-dimensional reliability
problem

Let us define the higher-dimensional reliability
problem (proposed by Yun et al. (2018)), consider-
ing the following function g3 : R7 → R:

g3(x) = 15.59×104

− x1x2
3

2x2
3

x4
2 −4x5x6x2

7 + x4(x6 +4x5 +2x6x7)

x4x5(x4 + x6 +2x6x7)
, (10)

with the input random vector X = (X1, . . . ,X7), fol-
lowing a product of normal distributions defined in
Yun et al. (2018). The reliability problem consists
in evaluating: pf,3 = P(g3(X)≤ 0) = 8.10×10−3.

2https://github.com/efekhari27/icasp14
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4.4. Results analysis
Results of our numerical experiments are pre-

sented graphically (for 2-dimensional problems) in
Figures 6 and 7, and numerically in Table 1. In
the same fashion as the previous illustrations, the
figures represent the intermediary quantiles q̂p0

[k] es-

timated over conditional samples of size N = 104.
Moreover, samples A[k+1],n exceeding these quan-
tiles are also represented in the same color. Notice
how the last estimated quantile is set to the prob-
lem threshold yth = 0. To capture the dispersion of
BANCS estimation, 100 repetitions were realized.
Let us notice that for each toy-case, BANCS well
estimates the failure probabilities’ orders of mag-
nitude. Yet the numerical values in Table 1 con-
sistently present a positive bias, leading to an over-
estimated failure probability. This bias is partially
explained by the EBC tuning choice and could be
reduced at the expense of a slightly higher variance.

The variance obtained with the repetitions is
quite large. Although, part of it is due to the fact
that the algorithm might compute a different total
number of subsets (e.g., toy-case #1 is either solved
in four or five subsets). Overall, considering the
EBC tuning from Eq. (7), BANCS performs worst
than SS on toy-cases #1 and #2 but performs as well
as SS on the toy-case #3. This might be due to the
fact that toy-case #3 has a higher input dimension.
However, one can note that SS coefficient of vari-
ation is computed by an approximation, tending to
underestimate the true coefficient of variation (see
e.g., Papaioannou et al. (2015)).

5. CONCLUSION
Subset Simulation uses MCMC sampling to gen-

erate its intermediary conditional samples. How-
ever, MCMC algorithms tends to be complex to
tune and does not generate i.i.d. conditional sam-
ples. In this work, a new method is proposed,
replacing MCMC sampling with a simpler proce-
dure. An intermediary conditional distribution is
first fitted by a nonparametric approach, mixing
kernel density estimation for fitting the marginals
and Empirical Bernstein Copula (EBC) for fitting
the copula. Then, the resulting allows to per-
form direct Monte Carlo sampling. This method

Figure 6: BANCS sampling steps on toy-case #1.

Figure 7: BANCS sampling steps on toy-case #2.
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Table 1: Results of the numerical experiments (subset sample size N = 104, p0 = 0.1).

d pref
f p̂f

BANCS
δ̂ BANCS p̂f

SS
δ̂ SS

Toy-case #1 2 1.31×10−4 2.67×10−4 24% 1.30×10−4 9%
Toy-case #2 2 2.21×10−4 4.23×10−4 7% 2.24×10−4 6%
Toy-case #3 7 8.10×10−3 9.32×10−3 15% 8.92×10−3 6%

is named “Bernstein adaptive nonparametric con-
ditional sampling” (BANCS) and is applied to
three toy-cases (two 2-dimensional and one 7-
dimensional) and compared with SS.

The method shows promising results, even
though a small positive bias consistently appears.
This issue results from EBC tuning, creating a
bias-variance tradeoff in the copula fit. Theoreti-
cal works offer optimal tuning, allowing us to find
the optimal compromise. In our numerical experi-
ments, an empirical estimation of BANCS variance
is computed over a set of repetitions. BANCS esti-
mated coefficient of variation is higher than SS ap-
proximated coefficient of variation. This work can
be further explored by building an approximation of
BANCS variance and confidence interval. One ma-
jor advantage remains that the samples generated at
each iteration are i.i.d. leading to a possible use of
these samples to perform global reliability-oriented
sensitivity analysis (Marrel and Chabridon, 2021)
in order to detect and analyze the most influential
input variables leading to failure.
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