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ABSTRACT: With the development of measuring instruments and the study of turbulence theory, the 
field measurement of the wind field has become increasingly accurate and refined. Thus, these 
improvements provide us with a new perspective on the old problem, which is how to solve problems 
through the physical mechanism of objective phenomena rather than relying on phenomenological 
experience and statistical results. In the present paper, an observation array was built to measure the near-
surface strong winds in Southeast China. Based on extensive observation data, the stochastic Fourier 
spectrum model of fluctuating wind is verified. Then, under the assumption that the flow is stationary 
and homogeneous, a theoretical model of lateral coherence with a solid physical basis is derived, which 
is a segmentation function corresponding to the different energy ranges in the turbulence energy spectrum. 
This model portrays the coherence between the stochastic Fourier spectrum of two spatial points. It is 
revealed how the evolution of the probabilistic information of fundamental physical quantities affects 
the spatial coherence of the wind field when the wave number is small or the lateral separation is short. 
The theoretical results accord with the measurements well. 

1. INTRODUCTION 
The fluctuating wind speed processes are a typical 
class of stochastic processes. The power spectral 
density (PSD) is an important index of the 
stochastic process, which is one of the 
prerequisites for the stochastic vibration analysis 
of structural wind effects (Li & Zhang, 2004). 
However, the essence of PSD is still the second-
order moment statistical characteristic of the 
stationary process, which is difficult to portray a 
wealth of probabilistic information on fluctuating 
wind speed in the atmosphere. To overcome this 
difficulty, Li (2008) introduced the physical 
mechanism into the modeling of dynamic 
excitation and proposed a stochastic function 
model to express the dynamic excitation, which 
can effectively overcome the limitations of PSD 
and make it possible to solve various problems in 
the study of structural stochastic dynamic systems. 

In this study, it is considered that the wind 
field probabilistic information can be expressed 

by an abstracted stochastic Fourier function 
model from the fundamental physical quantities 
with the help of physical equations. Therefore, 
combined with the stochastic Fourier function 
model and the turbulence theory, a stochastic 
Fourier coherence function model that portrays 
the coherence degree of wind speed at two points 
in lateral displacement is established based on the 
one-dimensional stochastic Fourier spectrum 
model, and a cross-stochastic Fourier spectrum 
model is further established. 

2. STOCHASTIC FOURIER FUNCTION 
MODEL 

If we regard a set of measured wind speed records 
( )x t  as an ensemble of random samples, the 

Fourier transform of each random sample is 
denoted as F  . Then for the corresponding 
measured record, the relationship between the 
average energy W  and F   can be expressed as 
following (Li & Zhang, 2007): 
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If we understand Eq. (1) from the perspective of 
energy decomposition, it can be seen that F   can 
be regarded as a class of spectral decomposition 
of the average energy. If a specific physical 
mechanism is introduced, the Fourier spectral 
density sample (FSDS) can be defined in 
combination with Eq. (1) as 
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where   is a fundamental random variable or 
vector with physical significance that affects the 
development process of the random excitation. 

Further, since the stochastic process  X t  is 

the statistical ensemble of measured samples  x t , 

the statistical ensemble of FSDSs which are 
obtained from all the measured samples after the 
Fourier transform can be abstracted as a stochastic 
function, i.e. the stochastic Fourier function 
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It is easy to demonstrate the relationship between 
the PSD  XS n  and the stochastic Fourier 

function  ,XF n  of a stochastic process: 
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where  E   denotes the expectation operator and 

 p η  is the joint probability density function of 

the fundamental random variable η . 

The random sample  x t  contains 

fundamental physical information. And the 
Fourier transform of the random sample  x t  

provides the FSDS. Then a theoretical abstraction 
of the ensemble of FDSSs provides the random 
Fourier function  ,XF n . Conversely, the 

inverse Fourier transform of a sample ensemble of 

 ,XF n  can also provide the corresponding 

random process samples  x t . Both types of 

description methods have equivalence. More 
importantly, the probabilistic information of the 
fundamental physical quantities is transferred 
through the process, and a probabilistic 
relationship is established between the random 
process samples and the random Fourier function. 

The stochastic Fourier function model in this 
paper is associated with physically significant 
fundamental random variables. And this reflective 
approach not only constitutes an inherent 
connection but also provides the possibility of 
modeling by using a set of measured samples, 
which provides a theoretical basis for a more 
comprehensive way to reflect the probabilistic 
information of fluctuating wind fields. 

3. STOCHASTIC MODEL OF 
FLUCTUATING WIND FIELDS 

3.1. One-dimensional stochastic Fourier function  
Richardson proposed the "turbulence cascades" 
model which assumes turbulence is composed of 
vortices in different scales. Based on the turbulent 
motion and energy transport, Kolmogorov further 
divides the turbulent energy spectrum into three 
subranges: the energy-bearing range, the inertial 
subrange and the dissipative range, and assumes 
that the turbulent energy spectrum obeys different 
power laws in different subranges. 

First, both theories and experiments show 
that the energy spectrum in the inertial subrange 
obeys the "-5/3" power law. An expression can be 
derived by the magnitude analysis (Kolmogorov, 
1941): 

   2/3 5/3
1 1 1 1E k k     (5) 

where 1E  is the one-dimensional turbulence 

energy spectrum, 1k  is the longitudinal wave 

number, 1  is the one-dimensional Kolmogorov 

constant, and   is the dissipation rate. 
Then, in the energy-bearing range, it is more 

complicated due to the influence of terrain friction. 
However, several wind tunnel tests and field 
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measurements have shown that the turbulence 
energy spectrum in the energy-bearing range 
obeys the "-1" power law (Tchen & Panchev, 
1998; Kader & Yaglom, 1984). Based on 
experiments, Katul and Chu (1998) suggested the 
transition between the two ranges in the energy 
spectrum is so short that it can be approximated as 
a continuous but not smooth point. 

Based on scientific inference, Li and Yan 
(2011) suggested that there is a distinct 
demarcation point between the energy-bearing 
and inertial subrange in the energy spectrum, 
which is named the demarcation wave number. 
The demarcation wave number can be identified 
by calculating the FSDS on a period of wind speed 
record and restoring the energy distribution of 
vortices in different subranges. Therefore, Li and 
Yan proposed a bilinear-model for the amplitude 
of the stochastic Fourier wave number spectrum 
of longitudinal fluctuating wind speed, by 
considering the relationship between PSD of the 
inertial subrange and the stochastic Fourier 
function as well as the continuity condition: 
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where subscript 1 denotes the one-dimensional 
state; *u  is the shear wave velocity;   is the von 

Karman constant; z  is the height; and ck  is the 

demarcation wave number. 
In the physical background, the boundary 

point between the two ranges can be characterized 
by the demarcation wavelength cl  ( 1/c cl k ). It 

means, vortices with scales larger than cl  

correspond to the energy-bearing range, where 
they derive energy from the main flow; and 
vortices with scales smaller correspond to the 
inertial subrange, where they derive energy from 
the larger vortices and deliver it to the smaller 
vortices in the dissipative range (Figure 1.). 

 

 
Figure 1. Schematic diagram of the power law  

 

3.2. Stochastic Fourier coherence function  

3.2.1. Definition of stochastic Fourier 
coherence function 

In terms of the relationship (4) between the 
stochastic Fourier function and the PSD, it is 
useful to infer the relationship between the cross-
stochastic Fourier function and the cross-power 
spectral density (CPSD) as following: 

       2 2

0
, , dXY XY XYS n E F n F n p 


     η η  

  (7) 

where XYS  is the CPSD and XYF  is the cross-

stochastic Fourier function. Since atmospheric 
turbulence can be regarded as homogeneous and 
isotropic turbulence ideally, the CPSD is 
completely real. Therefore, the cross-stochastic 
Fourier function XYF  is also real. 

Further, let us consider the coherence 
function of homogeneous and isotropic turbulence. 
The coherence function is defined as the ratio of 
the CPSD to the PSD (Welch, 1967): 
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Obviously, the coherence function is absolutely 
deterministic. If the coherence of fluctuating wind 
speed between two points is influenced by the 
fundamental physical quantities, the coherence 
function should be random. Based on scientific 
inference, we can consider the coherence function 
from the perspective of the sampled ensemble, 
then the definition of the coherence function can 
be extended to a random variable. By utilizing the 
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mean relationship and the independence between 
each random variable, we can derive the 
expression of  : 
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Notice that, Eq. (9) can also be applicated to the 
inhomogeneous turbulence field. 

3.2.2. Stochastic Fourier coherence function 
based on turbulence theory 

For a stationary and homogeneous random field, 
the correlation function at any two points A  and
B  is only associated with the displacement vector 
difference A B x x  and the time difference 

A B    . For the sake of simplicity, let the 

mean wind direction be along with the 1x -axis 

(denoted as the longitudinal direction), and the 
line between A and B be along with the 2x -axis 

(denoted as the lateral direction) which is 
perpendicular to the mean wind direction. And the 
distance between the two points is D . The 
geometric schematic is shown in Figure 2.. 

 

 
Figure 2. The geometric schematic 

 
For a zero-mean stationary random process 

in a homogeneous random field, the cross-
correlation function of two points is 

    2, ,ij ijR R D  e   (10) 

where the first subscript i  denotes the velocity 
component along i  direction at point A , the 
second subscript j  denotes the component along 

j  direction at point B , , 1, 2,3i j  ; 2e  denotes 

the basis vector along 2x -axis. 

If we assume that the mainstream vorticity is 
much larger than the fluctuating vorticity, and 
there is no significant variation in a short distance, 
then we can adopt the Taylor "freezing 
assumption" to transform the time and space 
dimensions, which is expressed mathematically as 
the cross-correlation function of two points being 
equal to the cross-correlation function by taking 
the time-lag 1 /U  . The Fourier transform of 

Eq. (10)gives the CPSD in lateral displacement: 
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According to turbulence theory, the correlation 
function of two points can also be derived from 
the energy spectrum tensor  ijE k  by a three-

dimensional Fourier transform in the wave 
number domain: 

    2 1 dij ij
iR De U E ee    k xk k   (12) 

where k  is the wave number vector;  ijE k  is the 

energy spectrum tensor, which can be represented 
by the three-dimensional energy spectrum  E k  

(Batchelor, 1953): 
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i j
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k kE k
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where 
22k  k , ij  is the Kronecker notation. 

To introduce the stochastic Fourier function 
model, it is worth defining the three-dimensional 
stochastic Fourier spectrum  ,F k  similar to Eq. 

(4) for a transition, i.e., 

    2 ,E k E F k       (14) 

Considering the relationship between  E k  and 

the one-dimensional energy spectrum  1 1E k  in 

turbulence theory. we know that both  E k  and 

 1 1E k  obey the same power law. Therefore, 
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combining with Eq. (4) and Eq. (14), we can infer 
that  ,F k  and  1 1,F k  also obey the same 

power law. 
Substituting Eq. (12), (13) and (14) into Eq. 

(11) and combining the relationship between XYS  

and XYF  in Eq. (7), and considering the mean 

relationship as a connection, the expression of the 
cross-stochastic Fourier function corresponding 
to each statistical sample is established. 

For engineering, the effect of longitudinal 
fluctuating wind speed is considered generally, 
therefore the situation when 1i j   is analyzed. 

Considering the power law of the  ,F k  

discussed above, and utilizing the handbook of 
mathematics (Abramowitz, 1968) and the polar 
coordinate, the expression of 11F  is 
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where  vJ   denotes the first-class Bessel 

function of order v , 2 2
2 3K k k  . 

Substituting Eq. (15) into Eq. (9), a distinct 
expression for the stochastic Fourier coherence 
function of the longitudinal fluctuating wind 
speed in the lateral distance is derived. 

Since the transition of the “-1” power law and 
“-5/3” power law in the energy spectrum is 
considered as a continuous but not smooth point 
(Katul & Chu, 1998),  1 1,F k  is a segmentation 

function and is not derivable at demarcation wave 
number ck . Consequently, 11  derived from 

 1 1,F k  is discontinuous, which is not consistent 

with the real physical situation. Therefore, a 
dimensionless function    expB B   in 

exponential form is considered to make the 
segmentation function continuous: 
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where  vK   denotes the second-class Bessel 

function of order v ,     denotes the gamma 

function. 
It can be seen that the stochastic Fourier 

coherence function is derived on the theoretical 
basis of homogeneous and isotropic turbulence. 
For the atmospheric boundary layer turbulence, it 
tends to be more anisotropic due to the friction by 
buildings and vegetation, etc. When the scale of 
the structure is much larger than the turbulence 
integral scale L  (i.e. D L , where L  is along 
the longitudinal direction), some correction needs 
to be considered. In this study, we define the 
modified one-dimensional wave number 1k  to 

replace the one-dimensional wave number 1k : 

  
2

2

1 1

2 D
k k D

D L

     
  (18) 

where L  is calculated by the formula (ESDU): 

   0.3
/ ,10m 200mref refL z L z z z    (19) 

witth the reference height 10mrefz   and the 

turbulence integral scale 100mrefL  . 

4. VERIFICATION 

4.1. Statistics of fundamental random variables 
In this paper, field measurements of near-surface 
strong winds in Southeast China were carried out, 
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where an observation array consisting of four 
towers and twelve ultrasonic anemometers were 
employed (Figure 3.). The lateral displacement 
can be 30m, 60m, 90m, 120m, 150m and 180m 
according to the permutations and combinations. 

 

 
Figure 3. Xiamen observation array 

 
According to the assumptions in the literature 

(Yan, 2011), the fundamental random variables 
are taken as the ground roughness 0z  and the 10-

minute mean wind speed 10U  at a height of 10 m. 

0z  follows a lognormal distribution and 10U  

follows an extreme type-I distribution. And 576 
sets of 10-minute wind speed records at 20m of 
the P1, P2, P3 and P4 towers in July 2015 were 
chosen to verify the coherence model in different 
lateral directions. The statistical results of the 
fundamental random variables are shown in Table 
1 and Figure 4.. 

 
Table 1: Statistics of fundamental random variables 

Tower 0z  10U  

        
P1 0.6168 0.5756 3.8403 1.8113 
P2 0.6586 0.6668 3.8593 1.8220 
P3 1.7312 0.8889 3.1230 1.4628 
P4 1.1940 1.2798 3.0304 1.3843 

 

 
(a) Histogram of 10U  at P4 

 
(b) Histogram of 0z  at P1 

Figure 4. Statistical histograms of fundamental 
random variables 

4.2. Verification of one-dimensional stochastic 
Fourier function  

The FSDSs of the measurements are calculated 
according to Eq. (2), and the mean and standard 
deviation spectra are counted, respectively. Then 
600 samples of the fundamental random variables 
are randomly generated according to the 
corresponding distribution types by the computer. 
The fundamental random variables are transferred 
through the physical Eq. (6), and FSDSs of the 
model can be obtained to calculate several pieces 
of probabilistic information. In this study, we 
mainly compare the mean and standard deviation 
spectra. 

 

 
(a) Mean spectrum 
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(b) Standard deviation spectrum 
Figure 5. Verification of one-dimensional stochastic 
Fourier function 

 
As shown in Figure 5., the mean and standard 

deviation spectra which are obtained from the 
measurements of the four towers at a height of 20 
m agree well with the model, indicating that the 
proposed one-dimensional stochastic Fourier 
function can reflect the real probability situation 
precisely. Therefore, the probability distribution 
characteristics of the target function can be 
obtained by grasping the probability information 
of the fundamental physical quantities. For the 
clarity of the drawing, the curves of the P2, P3 and 
P4 towers are shifted upward by a factor of 10, 
100 and 1000, respectively. 

4.3. Verification of cross-stochastic Fourier 
function 

According to the permutation and combination, 
we can calculate 6 different distances. For the 
stochastic Fourier coherence function, the mean 
value is verified. The measured coherence 
function is calculated according to Eq. (8) and 
used as the mean value. The computer is used to 
generate 600 samples of the fundamental random 
variables randomly according to the 
corresponding distribution type and the modified 
one-dimensional wave number is calculated by Eq. 
(18). Then the stochastic Fourier coherence 
function samples are calculated by the physical 

equation (16), and the probabilistic information is 
obtained statistically. The empirical coherence 
formula is calculated by using the Davenport 
decay exponential model (Davenport, 1962). 

For the cross-stochastic Fourier function, the 
mean and standard deviation spectra are mainly 
verified. 

 

 
Figure 6. Verification of stochastic Fourier 
coherence function 

 

 
(a) Mean spectrum 
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(b) Standard deviation spectrum 
Figure 7. Verification of cross-stochastic Fourier 
function 

 
From Figure 6. and Figure 7. we can see that 

both the results of the measurement and the 
theoretical model are in good agreement, which 
means the stochastic Fourier function can 
describe the transformation of the probabilistic 
information of fundamental random variables. 

5. CONCLUSION 
This paper investigates the probability evolution 
in the fluctuating wind field and applies the 
stochastic Fourier function to reveal the physical 
mechanism. Some conclusions are as follows: 

(1) The stochastic Fourier function can 
effectively describe the probabilistic information. 
The probabilistic information of FSDSs can be 
obtained by the statistics of the fundamental 
random variables and using the physical equations. 

(2) The stochastic Fourier coherence function 
based on the turbulence theory and stochastic 
Fourier function can not only reflect the 
coherence of wind speed in mean value, but also 
provides more probabilistic information. 

(3) The cross-stochastic Fourier function 
based on the stochastic Fourier coherence 
function is no longer a second-order moment 
statistical characteristic compared to CPSD, but a 
physical model with rich probabilistic information 
from the fundamental physical quantities. 
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