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ABSTRACT: The computer models traditionally used for weather and climate prediction have
extremely high computational costs, which impede their use in infrastructure design decisions, scientific
exploration, and uncertainty quantification. While reduced models exist, they have limited utility
because they are unable to reliably emulate the behavior of the relevant detailed models. In part, this is
because their calibration poses a host of difficulties, including chaotic dynamics that prevent the use of
adjoint methods, computational costs that become unreasonable when sampling approaches require
many forward runs, and large existing code bases that require black box approaches. Recently, methods
based on Kalman ensembles have shown promise by providing approximate derivatives of parameters in
black box models in order to reach convergence using relatively few forward model runs. Another set of
strategies for reducing computational costs are multi-fidelity methods, which combine various
resolution model runs. Building on these approaches, and inspired by work in consistency testing for
climate models, we propose an approach that utilizes ultra-short model runs to help improve calibration
performance for reduced models, while still using full length runs to ensure convergence for the relevant
quantities of interest. In contrast to other coarsening approaches, we are able to use the same model
resolution throughout calibration, key when model parameters are resolution dependent. Most
importantly, we show a strong reduction in computational cost on both classical chaotic test cases and
reduced sub-grid models as part of a full global circulation model.

1. INTRODUCTION

The history of computer models used for weather
and climate prediction is deeply intertwined with
the history of computers themselves. From test
problems run on ENIAC (Easterbrook et al. (2011))
to modern versions run on the largest supercom-
puters in the world, these models have consistently
pushed the limits of available processing power.
A single modern long-term Global Climate Model
(GCM) simulation can require hundreds of thou-
sands of core hours, equivalent to weeks on a large
supercomputer. The extremely high computational
requirements prevent the use of such models in
most educational and industrial applications. In the
scientific sphere, these costs preclude activities re-

quiring many model runs, such as uncertainty quan-
tification and exploration of rare events.

These difficulties motivate a long-term goal: to
develop computationally cheaper alternative mod-
els for climate and weather prediction. The devel-
opment and adoption of these less expensive, or re-
duced, models can only occur if their parameters
can be effectively calibrated in a reasonable amount
of time. In this work, we aim to reduce the com-
putational cost of calibration for a specific subset
of reduced models—those that are too expensive
for sampling approaches, exhibit chaotic dynamics,
and that preclude the use of adjoint methods.

Our proposed method incorporates information
from ultra-short simulations, and demonstrates a
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roughly 50% reduction in computation time while
still utilizing long runs to ensure reliable long-term
behavior. Our approach takes advantage of the ac-
cess to highly granular ground-truth data provided
by the expensive detailed model. We integrate
ideas from consistency testing in climate modeling
while building on recent work in Kalman calibra-
tion methods that can handle expensive black-box
chaotic models.

Figure 1: The uppermost temperature field used as
initial conditions for the Held-Suarez GCM. Due to
grid coarseness, many GCM phenomena are captured
using sub-grid models.

2. BACKGROUND
Methods of model reduction vary widely; they

may simplify the modeled systems based on some
domain knowledge, increase the coarseness of spa-
tial or temporal resolution, or replace the model en-
tirely using emulators, like Gaussian Processes, or
even deep-learning methods. Inferring the best pa-
rameters of these models from ground-truth output
is referred to as calibration. If a reduced model can-
not be calibrated effectively it will be of little use.
Instead of using real-world observations as ground-
truth, reduced models may rely on outputs from the
detailed (high-fidelity) model for calibration, which
tends to be much less expensive than direct observa-
tions (Sacks et al. (1989)). Further, detailed model
output can provide a level of numerical, spatial, and
temporal granularity impossible with physical ob-
servations.

Different calibration techniques address unique
goals and constraints. Bayesian sampling methods
like Markov Chain Monte Carlo (MCMC) (Hast-
ings (1970)) require many forward runs of the

model but provide a posterior probability distri-
bution for parameters. Modifications to MCMC,
like Hamiltonian Monte Carlo (HMC) (Duane et al.
(1987)), have been developed to reduce the num-
ber of samples, but instead require gradient infor-
mation from the model. Many stochastic gradient
descent methods exist (Goodfellow et al. (2016))
which rely on the adjoint method to efficiently esti-
mate the gradient. Recently, a group of Kalman in-
version methods, outlined in the next section, have
demonstrated promise for the types of models con-
sidered in this work.

Weather and climate models pose a number of
challenges for calibration. First, they often involve
large existing code bases, which are developed by
domain experts and do not support the machinery
required for automatic calculation of gradients. The
Community Earth System Model, the GCM code-
base used in this work, contains over one million
lines of Fortran code. Second, they exhibit strong
chaotic dynamics. This precludes the use of adjoint
methods for gradient calculation (Lea et al. (2000))
and requires the use of long trajectories to ensure
stable ergodic averaging (Strogatz (2018)). Third,
even reduced weather and climate models can still
be computationally expensive, easily requiring 10
minutes to compute a typical trajectory length.

An important inspiration for this work comes
from the field of consistency testing in climate mod-
eling, which seeks to ensure that changes occur-
ring during the development cycle of a large cli-
mate model do not adversely affect the simula-
tion. When changes occur in the scientific model,
compilers, or even hardware, models cannot be ex-
pected to be bit-for-bit equivalent even if they are
scientifically equivalent. Traditionally, consistency
testing has been an onerous process involving sev-
eral multi-hundred year simulations. However, re-
cent work has shown that comparing ensembles of
ultra-short simulations can achieve similar perfor-
mance (Milroy et al. (2018)). These short simula-
tions each simulate just a few hours, resulting in a
vast speedup from traditional approaches.

Many important climate phenomena are unre-
solved at the tractable mesh sizes used in simu-
lations (see Fig. 1). For this reason GCM’s con-
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tain a number of sub-grid models, or physics pa-
rameterizations, for mechanisms like cloud forma-
tion and precipitation. Calibration is particularly
important for these embedded models because of
their complexity and semi-empirical nature (Sten-
srud (2007)). As model resolution changes, the
degree to which a particular phenomena is cap-
tured by the GCM’s core dynamics varies, and so
sub-grid model parameters will also vary. In con-
trast to many existing multi-fidelity methods (Pe-
herstorfer et al. (2018)), our approach uses the same
model configuration and resolution throughout cal-
ibration, circumventing this issue.

3. METHODOLOGY
3.1. Unscented Kalman Inversion

While a multi-time approach could theoretically
be used in a variety of calibration methods, in this
work it was implemented in conjunction with Un-
scented Kalman Inversion (UKI) as described by
(Huang et al. (2021)). This choice was made con-
sidering the unique constraints of weather and cli-
mate models outlined above. UKI is able to treat
models as black boxes, requires sufficiently few
iterations to enable calibration of expensive mod-
els, and seems to function well for chaotic models,
possibly due to the the averaging of the unscented
transform. To make the nature of our modifications
clear we first outline the key steps of UKI here.

UKI adopts the Unscented Kalman Filter to the
purpose of inversion, that is, to determine an un-
known set of parameters θ of a known model G (θ)
by comparing outputs (or statistics of those outputs
like higher moments) of said model to known quan-
tities ytrue (e.g., high-fidelity model outputs or ob-
servations). We denote the full output of the model
as z ∈ RD×T where D is the dimension of the full
model output at each time-step and T is the num-
ber of time-steps. Due to chaotic effects, in ergodic
contexts the time-averaged observations are used:

y = ϕ(z) = ϕ(G (θ)), (1)

where ϕ(z) is known as the observation operator.
For brevity ϕ and the overbar are generally omitted,
yielding y = G (θ).

A traditional Kalman Filter attempts to deter-
mine some underlying true state of a system x ∈RL

Figure 2: A selection of Lorenz ’63 ultra-short trajec-
tories resulting from small perturbations to the model
parameters. At this time-scale the signature exponential
sensitivity of chaotic trajectories has yet to appear.

from observations y ∈RN . Then the system at time
k+1 is described as:

xk+1 =M (xk)+wk, yk+1 =H (xk+1)+vk, (2)

where M and H are known as the process and ob-
servation functions, respectively and wk and vk are
process noise and observation noise, respectively.
In UKI the unknown state x is actually the param-
eters θ ∈ RNθ , now being observed through the
model in question. Instead of time k referring to a
time-step of the model it now refers to an iteration
of the UKI algorithm. Thus:

x = θ , M (θ) = θ +w, H (x) = G (θ)+ v,
w ∼ N (0,Σw), v ∼ N (0,Σv).

(3)

Prior knowledge about the parameters is ex-
pressed as θ ∼ N (m0,C0). In our implementa-
tion the artificial evolution error covariance is set
as Σw = C0, a common choice in UKI literature.
The artificial observation error covariance, Σv is set
to reflect variance in model outputs due to chaotic
behavior and thus reflects the scale of simulation
outputs. Based on our use of the hyperparameters
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given in Huang et al. (2021), constant weights are
defined as:

a = min
(

4
Nθ

,1
)
, c0 = c j =

√
a2Nθ ,

W0 = 4−a2 − 1
a2 , Wj =

1
2a2Nθ

.

(4)

A UKI iteration updates the estimated mean (mn)
and covariance (Cn) of θ . It should be noted that
Cn is not a true covariance, but instead functions to
estimate the sensitivity of model outputs to θ . To
avoid confusion we shall refer to it as the approxi-
mate covariance. With that clarification, and start-
ing values and constants established above, a UKI
iteration consists of the following:

1. Predict updated mean and approximate covari-
ance:

m̂n = mn−1, Ĉn =Cn−1 +Σw (5)

2. Generate deterministic ensemble of θ values,
also known as sigma points:

θ
0
n = m̂n,

θ
j

n = m̂n + c j[

√
Ĉn] j,

θ
j+Nθ

n = m̂n − c j[

√
Ĉn] j,

for (1 ≤ j ≤ Nθ ),

(6)

where [
√

C] j is the j’th column of the
Cholesky factor of C.

3. Analyze:

ŷ j
n = G (θ j

n ),

Ĉθ p
n =

2Nθ

∑
j=0

Wj(θ
j

n − m̂n)(ŷ j
n − ŷ0

n)
T ,

Ĉpp
n =

2Nθ

∑
j=0

Wj(ŷ j
n − ŷ0

n)(ŷ
j
n − ŷ0

n)
T +Σv,

mn = m̂n +Ĉθ p
n (Ĉpp

n )−1(ytrue − ŷ0
n),

Cn = Ĉn +Ĉθ p
n (Ĉpp

n )−1(Ĉθ p
n )T .

(7)

Let us summarize the purpose of these steps.
First, the artificial process noise is added to the ap-
proximate parameter covariance. This sets a lower

floor for the spread of the ensemble and helps en-
sure the approximate covariance matrix be positive
definite. Second, using the current approximate co-
variance and mean estimate, an ensemble of param-
eter values is created. Third, the forward model is
run with those parameters. With the model outputs,
the local gradient of parameters to outputs is esti-
mated. Finally, the parameter mean and approxi-
mate covariance estimates are updated.

3.2. Multi-Time Modifications
In order to reduce the computational expense of

the UKI algorithm, we create a second ground-
truth output corresponding to an ultra-short model
run. This can be selected directly from the original
ground-truth trajectory. For clarity, we now distin-
guish between ergodic and ultra-short model runs
as follows:

ytrue = Glong(θ) = G (θ , tlong),

y∗true = Gshort(θ) = G (θ , tshort),

tshort ≪ tlong.

(8)

In the short-time domain we compare trajecto-
ries before chaotic sensitivity has taken over (see
Fig. 2). Because this negates the need for time-
averaging, and because the impact of parameter
changes on trajectories may be relatively small,
ϕ(z) does not apply time-averaging when used for
ultra-short trajectories. Based on this new ytrue∗
we also create a new Σ∗

v to account for scale dif-
ferences between ultra-short and ergodic timescale
outputs.

With these new values, and the ability to run
the model for an arbitrary trajectory length, we can
now run an iteration of the UKI algorithm at either
the ergodic or ultra-short timescale. We briefly de-
scribe alternative methods of combining iterations:

1. Simple Alternating: A simple version con-
sists of running a UKI iteration using the ultra-
short ground-truth, model, and Σ∗

v , then swap-
ping to the ergodic versions for the subse-
quent iteration and back again. Because the
accuracy of ergodic outputs are considered
at every second iteration, this approach helps
provide confidence in the eventual calibrated
parameter values. This approach seems to
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Figure 3: The RMSE loss due to perturbed parameters
(F and c) for ergodic Lorenz ’96 trajectories. Chaotic
dynamics result in noise in the loss-landscape, inhibit-
ing calibration.

work well when the loss-landscapes are rea-
sonably aligned between the short and long
time-domains. It can be less successful if the
sensitivity to different parameters is substan-
tially different at the two timescales.

2. Block Alternating: Alternatively, one can
take multiple iterations at each timescale be-
fore swapping. In our experience, this can help
if the loss-landscape is less well behaved and
the algorithm takes longer to converge to cor-
rect parameter values.

3. Pretuning: Distinctly, one may first calibrate
in the short-time setting until parameter esti-
mates stabilize, and then use those estimates
as the prior mean for ergodic calibration. One
should use the original covariance estimate to
ensure the ergodic calibration can still explore
the parameter space effectively. In contrast to
the simple alternating case, pretuning can still
work when sensitivity of certain parameters is
substantially different at the two timescales.

Figure 4: The RMSE loss due to perturbed parame-
ters (F and c) for ultra-short Lorenz ’96 trajectories.
Because chaotic effects have yet to dominate, the land-
scape is smooth.

3.3. Multi-Time UKI Challenges and Disadvan-
tages

Many of the issues associated with Multi-Time
UKI concern the introduction of additional hyper-
parameters, and are similar in nature to those found
in the UKI methods itself. Main difficulties include:

1. Estimating Internal Variability of Ultra-
Short Trajectories: Characterizing the inter-
nal variability of short runs of the model, in the
form of Σ∗

v , is important for performance of the
multi-time approach. Authors of the original
UKI paper (Huang et al. (2021)) first suggest
splitting an extra-long model run and estimat-
ing the covariance from those sub-trajectories;
if this approach is ineffective, they then sug-
gest a heuristic of 1-3% of the output magni-
tude. The former approach cannot be applied
for ultra-short trajectories since they do not un-
dergo time-averaging. The latter is applica-
ble but seems to over-estimate variability for
ultra-short trajectories. We have found better
success with 0.01% of the ground-truth mag-
nitude.

2. Poorly Aligned Covariance Between Er-
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godic and Ultra-Short Trajectories: Ultra-
short trajectories, depending on the part of the
domain, can be much more sensitive to certain
parameters. This leads to covariance estimates
that don’t function well when used for ergodic
iterations. Pretuning can be a good alternative
as it does not re-use the covariance matrix.

3. Difficulty Enforcing Strong Prior Distribu-
tions: Similar to traditional UKI, priors over
the parameter space are difficult to enforce.
This is especially true if they involve abso-
lute bounds such [0, 10]. Previous UKI work
involves the use of transforms to ensure only
parameter values within the prior bounds are
used, but this approach can modify the relative
density of the prior distribution substantially.

For the first two categories, there is potential to
develop better adaptive schemes, similar to those
that have been implemented in Bayesian calibration
(Haario et al. (2006)) and gradient based optimiza-
tion (Kingma and Ba (2017)).

3.4. Multi-Time UKI Advantages
The ability of Multi-Time UKI to reduce compu-

tational cost is demonstrated through upcoming ex-
amples; we highlight more conceptual benefits of
the approach here.

Figs. 3 and 4 are created using a multi-scale
(2 level) Lorenz ’96 model (Lorenz (1996)) with a
setup and observation operator as in Cleary et al.
(2021). The loss is the Root Mean Square Er-
ror (RMSE) between model output using true pa-
rameters (ytrue ∈R5) and perturbed parameters (y′),
where

RMSE(ytrue,y′) =

√
1
N

i=N

∑
i=0

(
ytrue,i − y′i

)2 (9)

The relative smoothness of a loss-landscape for
ultra-short trajectories becomes muddied with the
presence of chaotic noise in the ergodic loss-
landscapes. This noise impacts the ability of UKI
to effectively estimate local gradients.

Other key benefits include the ability to utilize
the same resolution throughout calibration, and the

ability to vary the emphasis on ergodic model out-
puts using different approaches highlighted in sec-
tion 3.2.

4. NUMERICAL RESULTS

4.1. Lorenz ’63

Figure 5: Calibration performance for the Lorenz ’63
model using Ergodic UKI (solid lines) and Multi-Time
UKI (dot-dash lines). True parameter values are indi-
cated by horizontal dashed lines.

We first consider the 3-dimensional Lorenz ’63
system (Lorenz (1963)), a simplified description of
a fluid warmed from above and cooled from below,
that is one of the most studied chaotic systems. The
Lorenz ’63 differential equations are,

dx
dt

= σ(y− x),

dy
dt

= x(ρ − z)− y,

dz
dt

= xy−β z,

(10)

with parameters θ = (σ ,ρ,β ) ∈ R+. We seek
to recover θtrue = (10,28,8/3) starting from θ0 =
(5,5,5) and C0 = 2I. We define ϕ(z) as

y = ϕ(z) = (x,y,z,x2,y2,z2). (11)

We set tlong = 500 for ergodic iterations, dis-
carding the transient up to t = 20. For ultra-short
trajectories we use tshort = 0.01 without any dis-
card. For the ergodic case, Σv is estimated by split-
ting the ground-truth, ylong, trajectory into 10 sub-
trajectories and calculating covariance between the
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sub-trajectories as in Huang et al. (2021). Process
noise in the ultra-short case (Σ∗

v) is estimated as

Σ
∗
v = (0.0001)Iyshort. (12)

Iterations are handled as in the “Simple Alternat-
ing” case described above, beginning with the ultra-
short iteration. With a computation cost 50,000
times less than an ergodic iteration, for the purposes
of plotting and discussion an ultra-short iteration is
considered zero iterations long. Fig. 5 shows that
Multi-Time UKI requires just 3 iterations to match
the true parameters vs 5 iterations for Ergodic UKI
(using a tolerance of 5%.) This is a substantial 40%
speedup.

4.2. Held-Suarez GCM Test Case

Figure 6: Calibration performance for the Held-Suarez
model using Ergodic UKI (solid lines) and Multi-Time
UKI (dot-dash lines). True parameter values are indi-
cated by horizontal dashed lines.

We now test our method using the Held-Suarez
test case (Held and Suarez (1994)), an ideal-
ized sub-grid parameterization scheme for a GCM.
We adopted the implementation developed for the
Community Atmospheric Model (CAM) in CESM.
The Held-Suarez model provides temperature and
wind-speed derivatives for each grid cell at each
time-step via a Newtonian relaxation to an equilib-
rium field. These derivatives are then used by the
atmospheric solver in a Eulerian spectral-transform
dynamical core.

The Held-Suarez model requires substantial
computational resources to run. A 400-day sim-
ulation takes roughly 6 minutes when running on

96 cores. While substantially less than the multiple
hours required for the full-physics version of CAM
with similar resources, this is still too long to feasi-
bly implement MCMC-type methods.

We calibrate four parameters that control the
equilibrium field and the speed of relaxation,
(κ−1

a ,κ−1
s ,∆Ty,∆θZ). Analogous to the Lorenz ’63

example, we aim to recover true parameter val-
ues θtrue = (40,4,60,10) with prior values θ0 =
(2,2,20,20) and C0 = I. We use y = ϕ(z) ∈ R64

corresponding to temperature values averaged in
the zonal and vertical dimensions. We set trajec-
tories of tlong = 400 days for ergodic iterations, dis-
carding a transient of t = 200 days. We set tshort = 3
hours without transient for ultra-short trajectories.

To constrain the model parameters as

κ
−1
a > 1, κ

−1
a > κ

−1
s > 1

0 < ∆Ty, 0 < ∆θZ,
(13)

we define the following transforms (where θ are pa-
rameters used in the UKI algorithm),

κ
−1
a = 1+ |θ1|, κ

−1
a =

1+ |θ2|+ |θ1θ2|
1+ |θ1|

∆Ty = |θ3|, ∆θZ = |θ4|.
(14)

Once again, iterations are handled with the “Simple
Alternating” case, beginning with the ultra-short it-
eration. Using a 5% tolerance, Multi-Time UKI re-
quires just 3 iterations to match the true parameters
vs 9 iterations for Ergodic UKI (Fig. 6). This is a
substantial 66% speedup. Using a stricter 1% tol-
erance, Multi-Time UKI requires 5 iterations while
Ergodic UKI remains the same, still resulting in a
45% speedup.

5. CONCLUSION
Multi-Time UKI demonstrates tangible opportu-

nities for speedups, even when used with already
performant algorithms. The underlying ideas of
Multi-Time UKI are largely agnostic to the cali-
bration algorithm used, enabling their adaptation to
new developments in the field. While our imple-
mentation of UKI is limited to approximating sen-
sitivities, recent work has opened the door to esti-
mating approximate posteriors using Kalman inver-
sion (Huang et al. (2022)). A Multi-time approach
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could function as a type of preconditioner for such
methods, preventing costs from growing too large.

Adaptive methods to estimate the artificial evo-
lution and observation error covariance, control
the swapping between trajectory lengths, and even
manage instability could all improve performance
while lowering the calibration expertise required.
The adoption of batching methods used in deep-
learning may enable a lower proportion of ergodic
length iterations, in turn allowing for the calibration
of far more complex physics parameterizations.
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