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ABSTRACT: State-space models are a type of probabilistic approach used for time series forecasting.
Such models involve unknown parameters for modeling both epistemic and aleatory uncertainties.
Estimating the mean and epistemic uncertainty for the model can be computationally cheap. However,
quantifying the model’s aleatory uncertainty is typically the most computationally demanding task in the
state estimation procedure. This article presents a new analytical Bayesian inference method called the
approximate Gaussian variance inference (AGVI) that allows for online closed-form estimation of the
error variance parameters that are used to quantify aleatory uncertainties. The case studies show that the
AGVI method can exceed the performance of existing approaches in terms of its predictive capacity
while being up to orders of magnitude faster.

1. INTRODUCTION

Engineering problems rely on probabilistic mod-
els for decision making tasks. One such approach
are the state-space models that are often used for
time series forecasting (Goulet, 2020; Murphy,
2012). Such models involve unknown parameters
not only for modeling physical phenomena but also
for quantifying the model’s epistemic and aleatory
uncertainties. In practice, estimating some of these
parameters can be orders of magnitude more com-
putationally demanding than others, and that pre-
vents existing models from being scaled up for
large-scale implementation (Sarkka and Nummen-
maa, 2009).

For instance, estimating the mean and the epis-
temic uncertainty for the hidden state variables is
computationally cheap as an analytical formulation
exist for performing the Bayesian inference. On
the other hand, the aleatory uncertainties are quan-

tified by variance parameters in the process and ob-
servation error covariance matrices, which need to
be known accurately for an exact state estimation
(Mehra, 1970; Duník et al., 2017). In practice, ob-
taining optimal estimates for these unknown error
variance parameters is typically the most compu-
tationally demanding task in the state estimation
procedure. Even though the observation error ma-
trix can be, in many situations, considered to be
known from the measuring instrument specifica-
tions, it still remains a challenge to develop a com-
putationally efficient method which is able to per-
form closed-form online estimation of the process
error covariance matrix Q for multiple time series
(Huang et al., 2020).

In this paper, we present the approximate Gaus-
sian variance inference (AGVI) method for per-
forming online inference of the error variance terms
in the full Q matrix. The layout of this paper is as
follows: Section 2 presents the problem statement,
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Section 3 presents the methodology for the AGVI
method, Section 4 presents two applied examples
showing the application of the method where the
first case study compares the performance of AGVI
with the existing adaptive Kalman filtering (AKF)
approaches (Mehra, 1970) and the second case
study shows its application on real datasets from a
concrete gravity dam. Finally, Section 5 presents
the conclusion drawn from the results obtained us-
ing the AGVI method.

2. PROBLEM STATEMENT
For D time series, the global hidden state vector at

time t is represented by xxxt = [xxx1
t xxx2

t · · · xxx j
t · · · xxxDt ]

ᵀ,
where xxx j

t , ∀ j ∈ {1,2, · · · ,D} refers to the state vec-
tor for the jth time series. Similarly, the global tran-
sition matrix A, the observation matrix C, the pro-
cess error covariance matrix Q, and the observation
error covariance matrix R are assembled block di-
agonally shown by

A = blkdiag[A1, A2, · · · ,AD],

C = blkdiag[C1, C2, · · · ,CD],

Q = blkdiag[Q1, Q2, · · · ,QD],

R = blkdiag[R1, R2, · · · ,RD].

The vector of process errors associated with the D

time series is given by wwwt = [www1
t www2

t · · · www j
t · · · wwwD

t ]
ᵀ,

where www j
t is the process error vector for the jth time

series. Moreover, each of the process error w in www j
t

is modeled as a zero-mean Gaussian random vari-
able such that w : W ∼ N (w;0,σ2

W ). The global
Q matrix associated with the vector wwwt can be pre-
sented as follows

Q =


Q1 Q1,2 · · · Q1,D

... Q2 · · · Q2,D

... · · · . . . ...
sym. · · · · · · QD

 , (1)

where Qi, j ≡ cov(WWW i,WWW j) represents the covari-
ance matrix between the two process errors WWW i and
WWW j belonging to the ith and jth time series, respec-
tively, where i, j ∈ {1,2, · · · ,D}. Also, note that it
is only possible to infer one error variance term σ2

W
for any Qi in the global Q matrix presented in Equa-
tion 1. This is due to the fact that only one un-
known variable can be solved per equation. Hence,

for multiple time series, the task is to infer the one
error variance term associated with any ith time se-
ries as well as the covariance term between any pair
of ith and jth time series.

3. METHODOLOGY
This section presents the approximate Gaussian

variance inference (AGVI) method for inferring the
error variance and covariance terms associated with
the multivariate process errors in case of multiple
time series. At first, the core idea behind the AGVI
method is presented through the univariate process
error. Thereafter, the methodology is extended to
the multivariate process errors.

3.1. Univariate Process Error
The main idea behind the AGVI method is ex-

plained through the univariate process error W .
Given that W has a zero mean, it can be shown
by definition that the expected value of the square
of the process error W 2 is equal to the error vari-
ance parameter, i.e., E[W 2] = σ2

W . Considering that
W 2 ∼N (w2;E[W 2],var(W 2)) is Gaussian, the er-
ror variance parameter σ2

W is the same as the mean
for the probability density function (PDF) of W 2,
i.e., E[W 2]. Now, assuming that this mean param-
eter is itself random, obtaining the posterior PDF
of E[W 2] is the same as inferring the error variance
term. In light of this fact, the AGVI method consid-
ers the process error variance term σ2

W = E[W 2] as
a Gaussian random variable W 2 such that

W 2 ∼N (w2; µ
W 2

,(σW 2
)2), (2)

where µW 2 and (σW 2
)2 are the hyper-prior mean

and variance for W 2. Using Equation 2, the PDF of
W can be re-written as

W ∼N (w;0,w2). (3)

Further details regarding the proofs of these state-
ments are provided by Deka (2022).

3.2. Multivariate Process Error
For multivariate process errors, let us consider

the error vector www =
[
w1 w2 · · · wi · · · wD

]ᵀ, where
wi, ∀i ∈ {1, 2, · · · ,D} represents the one process
error term for the ith time series for which the error
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variance term has to be inferred. Given that the pro-
cess error random variable W is assumed to have a
zero mean, the covariance term between ith and jth

process error Qi, j can be shown by

cov(W i,W j) = E[W iW j]. (4)

By leveraging Equation 4, we can formulate the co-
variance matrix ΣΣΣ

WWW by

ΣΣΣ
WWW =


E[(W 1)2] E[W 1W 2] · · · E[W 1W D]

... E[(W 2)2] · · · E[W 2W D]

... · · · . . . ...
sym. · · · · · · E[(W D)2]

 ,
(5)

where var(W i) = E[(W i)2] is the error variance for
the ith time series, and cov(W i,W j) = E[W iW j] is
the covariance term between the two process errors
for the ith and jth time series.

Let us consider that each of the product terms
W iW j in Equation 5 is assumed to be a Gaussian
random variable such that

W iW j ∼ N (wiw j; µ
W iW j

,(σW iW j
)2), (6)

where E[W iW j] = µW iW j
is the mean parame-

ter and var(W iW j) = (σW iW j
)2 is the variance.

There are a total of D · (D+ 1) product terms that
can be represented by the random vector wwwppp =
[(w1)2 (w2)2 · · · wiw j · · · wDwD-1]ᵀ which is as-
sumed to be Gaussian such that

WWW ppp ∼N (wwwppp; µµµ
WWW ppp

,ΣΣΣWWW ppp
), (7)

where µµµWWW ppp
and ΣΣΣ

WWW ppp
represents the mean vector

and the covariance matrix of WWW ppp. Similarly to the
univariate case as shown in Section 3.1, the mean
vector µµµWWW ppp

in Equation 7 is also assumed to be a
Gaussian random variable represented by WWW ppp such
that

WWW ppp ∼N (wwwppp; µµµ
WWW ppp

,ΣΣΣWWW ppp
). (8)

where the random vector wwwppp is

wwwppp =
[
(w1)2 (w2)2 · · · (wD)2 w1w2 · · · wD-1wD

]ᵀ
.

The random variables in the vector wwwppp are assumed
to be independent of each other. The mean vector
and covariance matrix for WWW ppp are

µµµ
WWW ppp

=
[
µ
(W 1)2

µ
(W 2)2 · · · µ

WD-1WD
]ᵀ

,

ΣΣΣ
WWW ppp

=



(σ (W 1)2
)2 0 · · · 0

... (σ (W 2)2
)2 · · · 0

... · · · · · · 0

... · · · . . . ...
sym. · · · · · · (σWD-1WD

)2


.

(9)

Using the prior knowledge for WWW ppp defined in Equa-
tion 9, the first task is to obtain the prior predictive
PDF of WWW ppp

t|t−1, using which we can obtain the co-

variance matrix ΣΣΣ
WWW defined in Equation 5 shown

by

ΣΣΣ
WWW
t|t−1 =


µ(W 1)2

µW 1W 2 · · · µW 1WD

... µ(W 2)2 · · · µW 2WD

... · · · . . . ...
sym. · · · · · · µ(WD)2


t|t−1

,

(10)

where the terms E[W iW j] in Equation 5 are substi-
tuted by the mean parameters of WWW ppp, i.e., µW iW j .
Moreover, we use the Cholesky factorization to en-
sure that ΣΣΣ

WWW
t|t−1 shown by Equation 10 is positive

semi-definite at any given time. This is carried out
by constructing the prior knowledge of ΣΣΣ

WWW
t|t−1 from

an upper-triangular random matrix LLLWWW where the
vector of random variables in LLLWWW is represented by−→
LLLWWW .

Using the prior predictive PDF of WWW , the next
task is to perform the prediction step. For this,
we consider the augmented hidden state vector
hhht−1 = [xxxᵀt−1 wwwᵀ

t−1]
ᵀ such that the PDF of HHHt|t−1 ∼

N (hhht ,µµµ
HHH
t|t−1,ΣΣΣ

HHH
t|t−1) has a mean vector µµµHHH

t|t−1 and

a covariance matrix ΣΣΣ
HHH
t|t−1 defined by

µµµ
HHH
t|t−1 =

[
µµµ
ᵀ
t|t−1 000

]ᵀ
,

ΣΣΣ
HHH
t|t−1 =

[
AΣΣΣt−1|t−1Aᵀ+Q ΣΣΣ

XXXWWW

(ΣΣΣXXXWWW )ᵀ ΣΣΣ
WWW

]
t|t−1

,
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where the covariance matrix ΣΣΣ
WWW defined in Equa-

tion 10 is obtained using the prior knowledge of−→
LLLWWW . The final task is to infer the covariance ma-
trix ΣΣΣ

WWW that needs two update steps. The first step
involves the Gaussian conditional equations which
are used to obtain the posterior PDF of HHH shown by

HHHt|t ∼N (hhht ,µµµ
HHH
t|t ,ΣΣΣ

HHH
t|t). (11)

The second update step consists of several sub-
steps. First, we use the posterior PDF f (wwwt |yyy1:t)
obtained from Equation 11 and the Gaussian
multiplicative approximation (GMA) equations
(Goulet et al., 2021; Deka et al., 2021) to ob-
tain the posterior PDF of WWW ppp

t|t such that WWW ppp
t|t ∼

N (wwwppp
t ; µµµWWW ppp

t|t ,ΣΣΣWWW ppp

t|t ). Second, we use the posterior

PDF of WWW ppp to update our knowledge for WWW ppp where
the posterior mean, variance and covariance terms
are

µµµ
WWW ppp

t|t = µµµ
WWW ppp

t|t−1 +KKKt(µµµ
WWW ppp

t|t −µµµ
WWW ppp

t|t−1),

ΣΣΣ
WWW ppp

t|t = ΣΣΣ
WWW ppp

t|t−1 +KKKt(ΣΣΣ
WWW ppp

t|t −ΣΣΣ
WWW ppp

t|t−1)KKK
ᵀ
t ,

KKKt = ΣΣΣ
WWW pppWWW ppp

t|t−1 (ΣΣΣWWW ppp

t|t−1)
−1,

ΣΣΣ
WWW pppWWW ppp

t|t−1 = ΣΣΣ
WWW ppp

t|t−1.

The last sub-step is to update the knowledge of
−→
LLLWWW

using the posterior PDF of WWW ppp for which the mo-
ments are as follows

µµµ

−→
LLLWWW

t|t = µµµ

−→
LLLWWW

t|t−1 +KKKLLL
t (µµµ

WWW ppp

t|t −µµµ
WWW ppp

t|t−1),

ΣΣΣ

−→
LLLWWW

t|t = ΣΣΣ

−→
LLLWWW

t|t−1 +KKKLLL
t (ΣΣΣ

WWW ppp

t|t −ΣΣΣ
WWW ppp

t|t−1)(KKK
LLL
t )

ᵀ,

KKKLLL
t = ΣΣΣ

−→
LLLWWWWWW ppp

t|t−1 (ΣΣΣWWW ppp

t|t−1)
−1.

Both these steps are to be employed recursively
with every new observation; first to obtain the co-
variance matrix ΣΣΣ

WWW and then to use it to update our
knowledge for WWW ppp. The detailed proofs for these
statements are provided by Deka (2022).

4. APPLIED EXAMPLES
This section presents two case studies to demon-

strate the application of AGVI for multiple time se-
ries. The first case study uses a simulated multi-
variate random walk model with a full process er-
ror covariance matrix Q. The performance of the

AGVI method is compared to the adaptive Kalman
filter (AKF) methods, namely the indirect corre-
lation method (ICM) (Mehra, 1970), the adap-
tive limited memory filter (ALMF) (Myers and Ta-
pley, 1976), and the sliding window variational
adaptive Kalman filter (SWVAKF) (Huang et al.,
2020). Each of these AKF methods falls under
separate categories; ICM is a correlation method,
ALMF is a covariance-matching method (CMM),
and SWVAKF is a variational Bayesian method.
The second case study shows the application of
AGVI on real displacement datasets obtained from
a concrete dam in Québec, Canada.

4.1. Case Study 1 – Multivariate Random Walk
Model

This case study is conducted using five simulated
datasets each having 1000 time steps with a full co-
variance matrix Q. The vector of hidden states xxxt
associated with these five time series is given by

xxxt = [xLL1t xLL2t xLL3t ]ᵀ.

The state transition matrix A and the observation
matrix C are defined as A = III3, and C = III3, The Q
and the R matrices are defined as

Q =

 1 −0.5 −0.3
−0.5 2 0.95
−0.3 0.95 4

,
R = 10−4 · III3,

where the off-diagonal covariance terms in the Q
matrix are selected arbitrarily such that it is sym-
metric and positive-definite, i.e., the eigen values
are positive. For AGVI, the prior knowledge for

the augmented hidden states µ̃µµ0|0 = [µµµ0|0; µµµ

−→
LLLWWW

0|0 ] and

Σ̃ΣΣ0|0 = blkdiag(ΣΣΣ0|0,ΣΣΣ
−→
LLLWWW

0|0 ) are initialized by

µ̃µµ0|0 = [000ᵀ3 2 ·111ᵀ3 0.8 ·111ᵀ3 ]ᵀ,
Σ̃ΣΣ0|0 = diag([111ᵀ3 1 ·111ᵀ3 0.5 ·111ᵀ3]), (12)

where 000 and 111 represent vector of zeros and ones,
respectively. The mean vector and the covariance

matrix for
−→
LLLWWW

0|0 = [L11 L22 L33 L12 L13 L23]
ᵀ
0|0 are
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given by

µµµ

−→
LLLWWW

0|0 = [2 ·111ᵀ3 0.8 ·111ᵀ3 ]ᵀ,

ΣΣΣ

−−→
LLLWWW

0|0 = diag([ 1 ·111ᵀ3 0.5 ·111ᵀ3 ]). (13)

For the AKF methods, the hidden states are initial-
ized similarly to Equation 12, where the mean vec-
tor is µµµ0|0 = 0003 and the covariance matrix is ΣΣΣ0|0 =
III3. The hyperparameters for ICM include the sta-
ble Kalman gain (K) and the auto-covariance lag
parameter which are fixed to 0.99 and 1, whereas
for ALMF, the initial Q matrix is chosen as III3. For
SWVAKF, the same parameters are used as pro-
vided in the implementation code (Huang et al.,
2020). Figure 1 compares the true values with the
online hidden state estimates obtained using AGVI
for a subset of elements from the Q matrix, namely
σ2

22, σ2
33, σ12, and σ13. The true values for each

element is shown by the dashed red line and the
estimated values are shown by the black solid line
and their ±1σ uncertainty bounds are shown us-
ing the green shaded region. Table 1 shows the av-
erage RMSE values over five independent runs for

0 10001
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3

t

σ
2 22

(a) σ222

0 10000

4

8

t

σ
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(b) σ233

0 1000
−1

0

1
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σ
12

(c) σ12

0 1000
−1

0

1

t

σ
13

(d) σ13

µ µ± σ

Figure 1: Online estimation of the error variance terms
(a) σ2

22, and (b) σ2
33, and the covariance terms (c) σ12,

and (d) σ13 from the full Q matrix compared to their
true values marked by the dashed red line. The esti-
mated values are shown by the black solid line and
their ±1σ uncertainty bounds are shown using the
green shaded region.

Table 1: Comparison of the average RMSE values for
a subset of elements from the Q matrix as well as the
computational time (s) for each method. The results are
averaged over five independent runs. Each of the meth-
ods are picked from different AKF categories where
AGVI and SWVAKF are Bayesian methods whereas
ALMF is a covariance-matching method (CMM) and
ICM is a correlation method. The variance terms
and the covariance terms are represented by σ2

ii and
σ2

i j, ∀i, j ∈ 1, · · · ,D.

Category Methods RMSE Time (s)

σ2
22 σ2

33 σ13

Bayesian AGVI 000...111555666 000...333333666 000...111555333 0.642
Bayesian SWVAKF 0.170 0.420 0.239 9.426

CMM ALMF 0.206 0.750 0.161 0.056
Correlation ICM 0.217 0.446 0.189 000...000000333

estimating some of the elements chosen arbitrarily
from the Q matrix as well as the average compu-
tational time for each method. The results show
that AGVI outperforms all methods in terms of pre-
dictive capacity for most of the variance and co-
variance terms. In comparison to SWVAKF which
is also both a Bayesian and an online estimation
method, it is more than an order of magnitude
faster. The offline methods, i.e., ALMF and ICM,
are faster compared to the Bayesian online meth-
ods, but can only provide point estimates which in-
hibits these methods in learning sequentially from
data.

Furthermore, the normalized estimation error
square (NEES) metric is used to check for statis-
tical consistency (Bar-Shalom et al., 2004). The
experiments conducted shows that on average ≈ 54
points lie outside the 95% C.I. that is comparable to
the theoretical value of 50. Hence, the method pro-
vides statistically consistent estimates for the error
variance terms. Table 4 in Appendix A provides
the average number of points outside the 95% C.I.
for the different prior initialization. The results pre-
sented here can be reproduced from the public code
provided by Deka and Goulet (2023).
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Figure 2: Plots showing the displacement datasets along X, Y, and Z-axis collected by two sensors from a con-
crete dam in Canada.

4.2. Case Study 2 – Dam Displacement
For this case study, two displacement datasets are

used which are collected by two sensors from a con-
crete dam in Québec, Canada. Figure 2 shows the
datasets along all three directions, i.e. X, Y, and Z-
axis. The displacement datasets yyyD1

are available
from April 2005 to February 2016 with a total of
9995 points, whereas the datasets yyyD2

are available
from December 2009 to February 2016 with a total
of 5667 points. A test set consisting of 1095 points
is considered for all the datasets shown by the gray
regions in Figure 2. Both datasets yyyD1

and yyyD2
are

recorded with a non-uniform time-step size ∆t. The
most frequent time-step size is 12 hours for both
datasets where the time-step size for yyyD1

varies in
the range of 1 to 2792 hours, and for yyyD2

it varies in
the range of 1 to 1032 hours.

The Bayesian dynamic linear model (BDLM)
components used to model the patterns in the data
are the local trend to model the baseline and the
kernel regression component to model the periodic
pattern. The process errors are modeled by a zero-
mean vector and a full process error covariance ma-
trix Q to be inferred using the multivariate AGVI
method. For handling non-uniform time-step size,
a reference time-step ∆tref is chosen such that it
is the most frequent time-step size in the datasets
(Gaudot et al., 2019). The variance and the covari-
ance parameters in the Q matrix are estimated for

the reference time-step ∆tref, and for any time-step
size ∆t different than ∆tref, these parameter values
are linearly scaled by the ratio between the current
time-step and the reference time-step shown by

Q∆t = Q∆tref · ∆t
∆tref

,

where Q∆t is the updated process error covariance
matrix at the current time-step and Q∆tref is the co-
variance matrix for the reference time-step.

The prior knowledge for the hidden states are
defined using the default values provided by the
OpenBDLM library (Gaudot et al., 2019). The op-
timized values for the kernel length parameters ob-
tained using the Newton-Raphson are provided in
Appendix B. The observation error covariance ma-
trix R is set to 10−6 · III3 such that the process er-
rors model the residuals considering that the mea-
surements from the sensors are exact. As there
are three time series from each sensor, the Q ma-
trix has a size of 3× 3 with three variance terms
and three covariance terms to be evaluated. The
prior mean vector and the covariance matrix for−→
LLLWWW

0|0 = [L11 L22 L33 L12 L13 L23]
ᵀ
0|0, are provided in

Appendix B. Figure 3 shows the online estimation
for one variance and covariance term, chosen arbi-
trarily from the full Q matrix for both datasets yyyD1
and yyyD2 . The estimated values are shown by the
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Figure 3: Online estimation of one error variance and
covariance term chosen arbitrarily from the full Q ma-
trix for both datasets yyyD1 and yyyD2; where the terms are
(a) σ2

33,D1 , (b) σ12,D1 , (c) σ2
11,D2 , and (d) σ12,D2 . The es-

timated values are shown by the black solid line and
their ±1σ uncertainty bounds are shown using the
green shaded region.

black solid line and their ±1σ uncertainty bounds
are shown using the green shaded region.

The predictive performance of using AGVI is
compared with the one obtained using the Newton-
Raphson method where the variance parameters
are learned offline through optimization. Table 2
shows the test-set root mean square error (RMSE)
and log-likelihood values obtained using AGVI and
the Newton-Raphson method for the two datasets
along all three axis. Table 3 compares the two
methods in terms of computational time required,
i.e., optimization time and training time expressed
in seconds. The results show that AGVI has an
accuracy comparable to the Newton-Raphson in
terms of RMSE and outperforms it in terms of log-
likelihood. Moreover, AGVI is orders of magni-
tude more computationally efficient than Newton-
Raphson as it facilitates online learning of the pro-
cess error variance and covariance terms, thereby
avoiding the parameter optimization step. This ex-
ample shows that AGVI is applicable to real case
studies for evaluating the full Q matrix involving
multiple time series.

Table 2: Root mean square error (RMSE) and log-
likelihood values obtained with the AGVI and the
Newton-Raphson methods for the displacements
datasets yyyD1 and yyyD2 along all three axis.

RMSE Log-likelihood
method AGVI Newton-Raphson AGVI Newton-Raphson

XD1 000...555999888 0.622 −−−111555777666...888 −1585.1
YD1 000...333555 000...333555 −−−555555666...777666 −630.38
ZD1 000...666444 000...666444 −−−111000333111 −1034.1

XD2 000...555777 000...555777 −−−999999222...888111 −1069.2
YD2 000...888444 0.85 −−−111444111444...888000 −2303.9
ZD2 000...111777 000...111777 333777222...333777 361.43

Table 3: Comparison of optimization time (s) and
training time (s) using AGVI and the Newton-Raphson
method.

Optimization Time (s) Training Time (s)
method AGVI Newton-Raphson AGVI Newton-Raphson

yyyD1 0 2894 61 51
yyyD2 0 961 34 26

5. CONCLUSION

This paper presents an analytical Bayesian
method for performing closed-form inference of the
error variance and covariance terms in the full Q
matrix. The case study 1 shows the application of
AGVI for a multivariate random walk model with
a full Q matrix using synthetic data and compares
its performance with the adaptive Kalman filtering
(AKF) methods in the literature. The results show
that AGVI outperforms all methods in terms of pre-
dictive capacity for most of the variance and covari-
ance terms. In comparison to SWVAKF which is
both a Bayesian and an online estimation method,
it is more than an order of magnitude faster. The
case study 2 shows the application of AGVI on
real displacement datasets from a concrete dam in
Canada. In comparison with the Newton-Raphson
method, AGVI has a comparable accuracy in terms
of RMSE while outperforming it in terms of log-
likelihood. However, the online learning capacity
of AGVI makes it computationally efficient com-
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pared to Newton-Raphson which is an offline opti-
mization method. Hence, the AGVI method has the
capacity for online estimation of aleatory uncertain-
ties in state-space models.
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A. CONSISTENCY CHECK IN CASE STUDY 1

Table 4: Average number of points outside the 95%
probability region for the different prior initialization

of
−→
LLLWWW

0|0 such that µµµ

−→
LLLWWW

0|0=[α · 111ᵀ3 β · 111ᵀ3 ]ᵀ while consider-
ing the same covariance matrix as defined in Equation
13. Given that the length of the time series is 1000 and
a 95% confidence interval (C.I.), the number of ac-
ceptable points outside the bounds is 50. Each column
presents the average value computed using five different
runs for one combination of {α,β}.

{1.6,0.6} {1.8,0.8} {2,1} Mean

NEES 50.8 52.4 58.4 53.93

B. PARAMETERS IN CASE STUDY 2
The kernel length parameters for the three

datasets from each sensor are obtained by offline
optimization using the Newton-Raphson method
such that {`XD1 = 0.350, `YD1 = 0.362, `ZD1 =
0.347} and {`XD2 = 0.288, `YD2 = 0.289, `ZD2 =
0.602}.

The prior mean vector and the covariance matrix

for
−→
LLLWWW

0|0 = [L11 L22 L33 L12 L13 L23]
ᵀ
0|0, are given by

µµµ

−→
LLLWWW
D1

0|0 = [1 ·1113 1e-03 ·1113]
ᵀ,

µµµ

−→
LLLWWW
D2

0|0 = [1 1 0.5 1e-03 ·1113]
ᵀ,

ΣΣΣ

−→
LLLWWW
D1

0|0 = ΣΣΣ

−→
LLLWWW
D2

0|0 = diag([ 1e-04 ·1113 1e-02 ·1113]).

8


	Introduction
	Problem Statement
	Methodology
	Univariate Process Error
	Multivariate Process Error

	Applied Examples
	Case Study 1 – Multivariate Random Walk Model
	Case Study 2 – Dam Displacement

	Conclusion
	REFERENCES
	Consistency Check in Case Study 1
	Parameters in Case Study 2

