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ABSTRACT: The problem of time-dependent reliability arises in engineering practice due to the 

degradation of structural material properties over time and the involvement of time-dependent loads. For 

time-dependent reliability analysis (TRA), outcrossing rate method is one of the main methods with the 

key issue of solving the outcrossing rate. Recently, EPHI2 method has been proposed as an advanced 

outcrossing rate method that can efficiently computes outcrossing rate by means of a two-component 

parallel system model. However, EPHI2 method will lead to unstable results, due to its sensitivity to time 

intervals. Therefore, a new method called EPHI2+ is proposed in this paper, which has a more stable 

expression for the outcrossing rate. To show the corresponding improvement of EPHI2+ method, the 

comparison of the outcrossing rate results obtained by EPHI2 and EPHI2+ methods was shown. The 

application of EPHI2+ method for TRA is investigated by two numerical examples and it is found that 

EPHI2+ method can be applied effectively with sufficient stability and accuracy.

1. INTRODUCTION 

The purpose of structural reliability analysis is to 

evaluate the probability that an engineering 

structure completes the expected function during 

its service life. Since the material properties and 

external loads of structures are significantly time-

dependent and stochastic, it is necessary to 

conduct time-dependent reliability analysis (TRA) 

on actual engineering structures. 

The computational approaches of TRA can 

be generally classified into two categories, which 

are sample-based methods and analytical methods. 

Monte Carlo simulation (MCS) is a widely used 

sample-based method with high accuracy, but also 

has a high computational cost, especially when 

dealing with highly reliability structures. In order 

to alleviate the huge computational cost of MCS, 

an extreme value-based approach is proposed 

(Wang and Chen 2017), in which the time-

dependent reliability problem is transformed into 

a time-independent one using the substitution of 

the limit state function (LSF), and the extreme 

value of LSF. 

For analytical methods, TRA can be related 

to the outcrossing rate of the response crossing a 

specified threshold to reach the failure domain 

(Rice 1944). The solution of outcrossing rate is an 

essential problem for this method. Due to the 

difficulty of calculation, outcrossing rate method 

can only be applied to several special cases 

(Breitung and Rackwitz 1982). Thus, PHI2 

method was proposed and widely applied as an 
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alternative method (Andrieu-Renaud et al. 2004), 

which defines the outcrossing rate through the 

classical two-component parallel system 

reliability model. In most cases, the time-

independent reliability calculations in PHI2 

method are based on FORM or SORM, but when 

finite elements are involved, the moment method 

has a higher efficiency (Zhang et al. 2021). 

However, PHI2 method is sensitive to time 

intervals and computationally inefficient 

(Andrieu-Renaud et al. 2004), which are due to 

the limitations of finite differences as well as 

numerical integration, respectively. To avoid 

these two drawbacks, PHI2+ (Sudret 2008) and 

EPHI2 (Li et al. 2022) methods have been 

proposed. PHI2+ method replaces the finite 

difference with a derivative method to derive an 

analytic expression for the outcrossing rate, which 

has better stability than PHI2 method, but 

inaccurate values may occur in some cases (Li et 

al. 2022). In order to avoid the numerical 

integration in PHI2 method, EPHI2 method is 

proposed, which is a new outcrossing approach 

with explicit model. Compared with PHI2 method, 

EPHI2 method has higher computational 

efficiency, but the derivation also involves finite 

differences, which leads to EPHI2 method being 

sensitive to time intervals. That is, too large value 

of time interval will make the finite difference 

inaccurate, while too small value will lead to 

instabilities. Therefore, there is no such 

outcrossing rate method that is both accurate and 

stable. 

In the present paper, a new method with a 

more stable and accurate expression of the 

outcrossing rate is proposed, which solved the 

problem of sensitivity to time intervals and is 

referred to as EPHI2+ method. The remainder of 

this paper is organized as follows. First, a brief 

review of the time-dependent reliability statement 

is presented. Then, the proposed EPHI2+ method 

is described, with the stable expression for the 

outcrossing rate derived and procedure for TRA 

summarized. Third, two numerical examples are 

introduced to investigate the applicability of 

EPHI2+ method in TRA. Finally, the findings are 

summarized. The results show that EPHI2+ 

method is sufficiently accurate and has a high 

stability with insensitivity to time intervals. 

2. PROPOSED EPHI2+ METHOD 

2.1. Time-dependent reliability statement and 

notation 

The time-dependent LSF is normally expressed as 

G(X, Y(t), t), where t denotes time; X = [X1, X2,..., 

Xn] is an n-dimensional time-dependent random 

vectors; Y(t) =[Y1(t), Y2(t),..., Ym(t)] represents an 

m-dimensional time-dependent random process 

vector. In the outcrossing rate method, failure of a 

structure during the forecast time interval [0, T] is 

interpreted as initial moment failure or 

outcrossing event occurring at least once over the 

forecast time interval. And the outcrossing event 

is defined as G(X, Y(t), t) crossing the limit state 

from the safe domain to the failure domain. The 

corresponding cumulative failure probability 

Pf,c(0, T) is defined as (Andrieu-Renaud et al. 

2004): 

, (0, ) Prob[{ ( , (0),0) 0} { (0, ) 0}]f cP T G N T+=   X Y

  (1) 

where N+(0, T) denotes the number of outcrossing. 

The upper bound of Pf,c(0, T) is approximated by 

(Ditlevsen and Madsen 2007): 

 
, ,

0
(0, ) (0) ( )

T

f c f iP T P t dt + +   (2) 

where Pf,i(0) is the failure probability at initial 

moment; v+(t) denotes the outcrossing rate, which 

can be calculated by (Hagen and Tvedt 1991): 

0, 0

Prob[ ( , ( ), ) 0 ( , ( ), ) 0]
( )= lim

t t

G t t G t t t t
t

t
 +

 →  

  +  +  



X Y X Y

  (3) 

For convenience, G(X, Y(t), t) and G(X, 

Y(t+∆t), t+∆t) are referred to as G1 and G2 

hereafter. 

2.2. Derivation of EPHI2+ method 

Firstly, according to the defining equation of the 

derivative, the following equation can be 

constructed: 
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0

( ) (0)
( ) lim (0)t t

t
h

f h f
t f

h
 +

→

−
= =  (4) 

where h indicates the time interval, f't(.) is the 

derivative of ft(h) with respect to h, and the 

equation for ft(h) is introduced as: 

( ) ({ } { 0})( , ( ), ) 0 ( , ( ), )tf G t t Gh P t h t h=  + + X Y X Y

  (5) 

Following the results of EPHI2 (Li et al. 

2022), ft(h) can be expressed in two ranges: β(t+ 

h)/β(t)≥-G and β(t+ h)/β(t)<-G. Where β(t) and 

β(t+ h) are the time-independent reliability index 

of G1 and G2, normally obtained with FORM or 

SORM. G represents the correlation coefficient 

of G1 and G2, which is obtained by following 

equation: 

 ( ). ( )G t t h  = +−  (6) 

where α(t) and α(t+ h) are unit normal vectors 

corresponding to the linearized margin at fixed 

instants t and t+ h, which are represented as α1 and 

α2 in the following. Also for convenience, β(t) and 

β(t+ h) are referred to as β1 and β2, respectively, 

and G is indicated by . 

For β2/β1≥-, the expression for ft(h) is given 

by: 

1

22 1 0

2 2 20

( ) (1 2 )

(

( ) 2

4

4

)t

P P

f h

P P P



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
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






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= 
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



 (7) 

And for β2/β1<-, ft(h) is expressed by the 

following equation: 
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  (8) 

where  

 0
0

2

2
P

 
 − =

 

 (9) 

 
01

2 2

1 1( ) ( )P    −  −= −  (10) 

 
02

2 2

2 2( ) ( )P    −  −= −  (11) 

 
2 2

1 1 2 2
0 2

2

1

   




+ +
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−
 (12) 

 ( )arccos = −  (13) 

 1
1

0

arccos





=  (14) 

 2
2

0

arccos





=  (15) 

Since the limit values corresponding to h → 

0 in the above expressions are of significance, the 

following series expansion is used: 

 ( )
2

2

2 1 1 1
2

h
h o h    = + + +  (16) 

 
2 1 1 ( )h o h    = + +  (17) 

Since α is a unit vector, the following series 

of equations can be derived: 

 2 2

1 1 1 11 0    = =  =‖ ‖ ‖ ‖  (18)  

  
2

1 1 1 1 1 0       = +  =  (19) 

Based on Eqs. (6) and (16)- (19), the 

following equations are obtained: 

 ( )
2

2 2

11
2

h
o h = − + +  (20) 

 2

11 ( )h o h − = +  (21) 

In order to obtain f't(0), the derivatives of P0, 

P1 and P2 need to be calculated first. Let us define 

D0, D1 and D2 as the derivatives of P0, P1 and P2, 

respectively. They can be derived as follows: 

 
00

0 0

2
2

2
D

 
 = −

   
 −  −  

   

 (22) 

 2 2 0
1 0 1 0

2

0

1
2

1

( ) ( )D

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 

 −
−

= −  − −
 

  (23) 
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2 2
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D     
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 
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  (24) 

According to Eq. (4), the total derivation is 

based on the premise that h → 0, and thus β0 and 

β′0 can be regarded as β1 and β'1, respectively. 

With this premise, the later equation can also be 

easily obtained by using the finite difference form 

of β'1: 

 1 2 1 ( )h o h   + = +  (25) 

Now, based on Eqs. (12), (21) and (25), 
2 2

0 1 −  can be transformed into the following 

simple equation. Note that in order to get rid of 

the sign of the absolute value in the derivation 

process, β'1 is assumed to be greater than 0 here 

for the time being: 

 1 2 12 2 1
0 1

2
1 11

h

h

   
 

 

+ 
− = = =

 −

 (26) 

Similarly, 2 2

0 2 −  can be approximated 

to obtain a simplified equation: 

 1 2 12 2 1
0 2

2
1 11

h

h

   
 

 

+ 
− = = =

 −

 (27) 

Substituting Eqs. (26), (27)into (23), (24), 

the following equations are acquired: 
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1 1

2
2

2
D

 
 = −

   
 −  −  

   

 (28) 

 1
1 1 1

1

1 ( )D


   


 
 −    


=


−


 (29) 

 
1

2

1

2 1( )D


  


 
−   −  


=


−


 (30) 

Meanwhile, the derivative of φ, defined as Dφ, 

can be got as: 

 
1D =   (31) 

So far, the derivation of all intermediate 

parameters has been completed. Combining Eqs. 

(7) and (8) with Eqs. (28)- (31), the derivatives of 

ft(h) in all cases can be obtained, which are 

defined as Df1, Df2, Df3, Df4, Df5, respectively: 

 
1 2 1 1 0 0( ) 2f P

D
D D D


  


− − − + = −  (32) 

 
2 2 1 1 2 0( ) 2f

D
D D PD


  


− − − + = −   (33) 

 
3 2 1 0( ) 2f

D
D P


  


− − + =   (34) 

 
4 2 1 1 0 0( ) 2f P

D
D D D


  


− − − + = −  (35) 

 
5 2 1 1 2 0( ) 2f P

D
D D D


  


− − − + = −  (36) 

The derivation of the ranges of Eqs. (32)- 

(36) follows. Based on Eq (25), β2/β1≥- can be 

translated into inequality as β'1≥0. Similarly, 

β2/β1<- can be transformed into β'1<0. A more 

detailed classification involves the derivation of 

β0 as follows: 

 
2 2

1 2 11 1 2 2
0 2 2

1

2

1 1

     


 

−+ +
= = =

− −

 (37) 

Thus, the comparison of the value of φ1 and 

φ2 for /4 becomes a comparing of 1  and 

1 22    . Hence, the complete expressions of 

EPHI2+ method are illustrated below, for β'1≥0: 

2 1 1 0 0 1 2

2 1 1 2 0 1 2

( ) 2 2
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( ) 2 2

P

t

P
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D D

D
D D





     
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
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
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

  (38) 

For β'1<0: 

2 1 0 1 1 1
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P
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     
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  (39) 
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2.3. Time-Dependent Reliability Analysis 

Procedure Based on the Proposed Model 

With a defined outcrossing rate v+(t), TRA can be 

easily conducted through EPHI2+ method. The 

procedure of EPHI2+ method is presented in 

Figure 1, which includes the following six steps: 

1. Construct time-independent LSF G1 and G2 at 

t and t+ Δt, respectively. And replacing Y(t) 

with the associated random variable. 

2. Calculate the instantaneous failure probability 

Pf,i(0) at the initial moment t = 0. 

3. Calculate unit vectors α1, α2 and reliability 

indexes β1, β2 corresponding to G1 and G2, 

respectively. In Steps 2 and 3, FORM or 

SORM is applied. 

4. Determine v+(t) according to the proposed 

EPHI2+ method, as given in Eqs. (38) and (39) 

5. Repeat steps 1- 4 with a new moment t and t+ 

Δt, until v+(t) is calculated for all time 

moments. 

6. Calculate Pf,c(0, T) based on Eq. (2). 

 

Construct LSF G(X, Y(t), t)

Calculate Pf,i(0)

Determine dt to discrete [0,T] and Δt for Y(t) 

Construct G1 and G2 at t and t+Δt

Calculate α1, α2 and calculate β1, β2  

Calculate v
+
(t) using Eqs. (38) and (39)

t=T

Yes

No

t=t+dt

Cholesky Decomposition

FORM or SORM

FORM or SORM

Evaluate Pf,c(0,T) using Eq.(2) 

 
Figure 1: Flowchart of EPHI2+ method 

3. ILLUSTRATIVE EXAMPLES 

3.1. Example 1: Steel bending beam 

 

 
Figure 2: Corroded bending beam in Example 1 

 

In the first example, a steel bending beam is 

investigated, as shown in Figure 2. The steel 

bending beam is subjected to a time-dependent 

pinpoint load F(t) at mid-span and a time-

independent self-weight distributed load, while 

the cross-section decreases with time due to 

corrosion. The limit state considered is dominated 

by the ultimate bending capacity of the section at 

the mid-span, and the corresponding LSF as G(X, 

Y(t), t), is given by (Andrieu-Renaud et al. 2004): 

2 2

0 0 0 0( 2 )( 2 ) ( )
( , ( ), )

4 4 8

st
y

b t h t b h LF t L
G t t f

  − −
= − −X Y

  (40) 

where b0 and h0 are the initial width and height of 

the beam, respectively; f
y
 is the yield stress of the 

steel; L =5m is the length of the bending beam; 
st
 

=78.5kN/m3 is the weight density of the steel; and 

 =0.03mm/a is the corrosion rate. 

 
Table 1: Random variables and random processes for 

Example 1 
Parameters Distributions Mean COV Autocorrelation 

f
y
 (MPa) Lognormal 240 0.1 N/A 

b0 (m) Lognormal 0.20 0.05 N/A 

h0 (m) Lognormal 0.04 0.1 N/A 

F(t) (kN) Gaussian process 3.5 0.2 Eq.(41) 

 

The statistics of the random quantities in this 

example are listed in Table 1, where F(t) is a 

stationary Gaussian process with an 

autocorrelation function given as: 

 
2

( ) expF

t
t



  
 = −  

   

 (41) 

where  =1 month is the correlation length. 

The time-dependent reliability of the beam is 

evaluated over a period of 20 years. As a 

comparison, the precise values of the time-
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dependent reliability of steel bending beam is 

investigated using PHI2, PHI2+, EPHI2, and 

EPHI2+ methods. the MCS method (with 106 

samples for each moment) is also applied as a 

reference for accuracy. 

For PHI2 and EPHI2 methods, Δt is chosen 

to be 0.008 years, aiming to satisfy ρF(Δt) between 

0.99 and 0.995. For PHI2+ method, the value of 

Δt is suggested to be 0.01 (Sudret 2008). Since 

the expression of EPHI2+ method is stable, the 

smaller value of Δt is much better, so Δt is taken 

to be the same value as in PHI2+ method. 

In EPHI2+ method, the calculation of v+(t) is 

based on the estimation of the time instant 

reliability indices β1, β2 and each unit vector α1, 

α2. Firstly, the limit state functions G1 and G2 are 

constructed at Δt and t+ Δt. Since G1 and G2 in 

this example are not strongly nonlinear, FORM is 

used. After Pf,i(0) is easily obtained, a 

decomposition of the time-dependent random 

process F(t), which is represented by two random 

variables {Fx1, Fx2} with correlation coefficients, 

is required. Then, {Fx1, Fx2} is represented by two 

independent normal variables {u1, u2} based on 

the Cholesky decomposition as follows: 

 
( )1 2

1 2

2

1

1 2

700 ( ) 1 ( ) 3500

700 3500

693.034 98.5012 3500

x

F F

x

F
t u t u

F

u

u u

 
   =  + −  +    

+ 
=  

+ + 

 

  (42) 

Based on Eq. (42), G1 and G2 can be 

calculated as: 

( )( ) ( )
2 2

0 0 1 0 0
1

2 2 700 3500

4 4 8

st
y

b t h t u L b h L
G f

  − − +
= − −

  (43) 

  

( )

2

0 0

2

2
1 2 0 0

2 ( ) 2 ( )

4

693.034 98.5012 3500

4 8

y

st

b t t h t t
G f

u u L b h L

 



− +  − + 
=

+ +
− −

  (44) 

Based on FORM, α1, α2, and β1, β2 can be 

easily obtained. ρG for PHI2 and EPHI2 methods 

can be acquired by Eq. (6). Then the outcrossing 

rate v+(t) can be calculated by using PHI2, PHI2+, 

EPHI2 and EPHI2+ methods, respectively. The 

results of the time-dependent failure probability 

are presented in Figure 3. 

 

 
Figure 3: Changes of time-dependent cumulative 

failure probability for Example 1 

 

To compare the stability of each method, Δt 

is chosen as other values, from 8 × 10-5 to 8 × 10-

2 years. Then, by repeating the above steps for 

different values of the time intervals, the 

outcrossing rate can be calculated for the initial 

instant t = 0. The comparison results of each 

method are shown in Figure 4. 

 

 
Figure 4: Sensitivity of the outcrossing rate with 

respect to time interval for Example 1 

 

From the results represented in Figure. 3 and 

Figure. 4, it can be found that: 

1. The cumulative failure probabilities obtained 

with EPHI2+ method are always close to those 

of PHI2, PHI2+, and EPHI2 methods during 
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the considered prediction intervals. The 

relative error between EPHI2+ method and 

MCS is within 1%, which demonstrates the 

accuracy of EPHI2+ method. 

2. For all values of the time interval, the 

outcrossing rate calculated by EPHI2+ 

method remains almost the same, while PHI2 

method as well as EPHI2 method shows 

sensitivity to changes in the time interval, 

such as the instability of the numerical values 

that occur when the interval Δt decreases. This 

indicates that EPHI2+ method has sufficient 

stability and is insensitive to time intervals. 

3.2.  Example 2: Corroded pipeline joint 

The second example considers the time-

dependent reliability of a corroded pipeline joint 

with operating pressure (Gong and Frangopol 

2019). The diameter (D) of the pipe joint is 324 

mm, the nominal wall thickness (wtn) is 4.32 mm. 

Besides the pipeline joint has a nominal specified 

minimum yielding strength (SMYS) of 359 MPa, 

and a nominal maximum operating pressure 

(MOP) of 5 MPa. It is assumed that the joint 

contains a single corrosion defect. The time-

dependent LSF is as follows: 

 ( ) ( ) - ( )bG t p t p t=  (45) 

( )
0.85 ( )

12 68.95 ( )
( ) , 0.8

0.85 ( )
1

( )

y

b

d t
wt d twtp t

d tD wt

M t wt




 
− +

=  
 −
  

  (46) 

2 4 2

2

2 2

( ) ( ) ( )
1 0.6275 0.003375 , 50

( )
( )

( ) ( )
3.3 0.032 , 50

l t l t l t

Dwt Dwt Dwt
M t

l t l t

Dwt Dwt


+ −


= 


+ 



„

  (47) 

where pb(t) and p(t) represent the bursting 

capacity pressure and operating pressure at time t; 

wt and σy are the wall thickness, and yield strength, 

respectively; ξ is a model error; M(t) is the Folias 

factor at time t; l(t) and d(t) are the length and 

depth of the corrosion defect at time t, which are 

assumed as follows (Gong and Frangopol 2019): 

 0( ) ll t l g t= +  (48) 

 
0 ( )( ) gd t d d t= +  (49) 

where l0 and d0 are the initial length and initial 

defect depth, respectively; gl is the length growth 

rate; and dg(t) is a gamma process, which has the 

probability density function as: 

( ) ( ) ( )
1

( ) , ( ) exp ( ) / ( )
at

at

g g gF d t at d t d t at  
−

= − ∣

  (50) 

where Γ(.) is the gamma function; a and β are the 

shape and rate parameters, which are assumed to 

be 4.0×102 and 4.0×103, respectively. dg(t) 

follows equation as: 

 ( ( ) ( ))  g g gd t tt d d t+  = +   (51) 

where dg(Δt) obeys the gamma distribution 

F(dg(Δt)|aΔt, β). The correlation coefficient 

between dg(t) and dg(t+ Δt) as ρd(Δt, t), is 
t

t t+ 
 

(Gong and Zhou 2017). 

The operating pressure is assumed as a 

Gaussian process with the autocorrelation 

function ρp(Δt) = exp(−Δt2/4). The probabilistic 

properties of all the parameters included in this 

analysis are summarized in Table 3. 

 
Table 3: Random variables and random processes for 

Example 2. 

Parameters Distributions Mean COV 

wt Normal wtn 0.015 

σy Normal 1.1SMYS 0.035 

ξ Gumbel 1.297 0.258 

l0 Normal 50(mm) 0.15 

d0 Normal 0.30 wtn 0.15 

gl Weibull 3.0(mm/a) 0.15 

p Gaussian process 1.05MOP 0.03 

 

The results of the cumulative failure 

probability for each method are shown in Figure 

5. 
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Figure 5: Changes of time-dependent cumulative 

failure probability for Example 2 

 

From the results represented in Figure 5, it 

can be found that: 

The results obtained by EPHI2+ method and 

MCS are essentially the same. When dealing with 

several different types of non-stationary random 

processes, the results obtained by PHI2 and 

EPHI2 methods differ significantly from the 

values of MCS, which is due to the fact that the 

time intervals chosen by PHI2 and EPHI2 

methods cannot satisfy the condition for ρd(Δt, t) 

and ρp(Δt) both in 0.99-0.995. And due to the non-

stationary random processes involved, the results 

of PHI2+ method are larger than those of MCS. 

Therefore, EPHI2+ method can be applied with 

accurate and stable results when faced with 

several different types of random processes. 

4. CONCLUSIONS 

A time-dependent reliability method called 

EPHI2+ is proposed, and a stable outcrossing rate 

model is developed. The accuracy and stability of 

EPHI2+ method are investigated by two examples. 

It was found that: 

The time-dependent reliability can be easily 

and accurately calculated with the help of the 

proposed stable outcrossing rate model. Examples 

show that EPHI2+ method can obtain results close 

to those of MCS, which indicates that EPHI2+ 

method has sufficient accuracy. The proposed 

EPHI2+ method is insensitive to changes in the 

time interval, and the examples show that EPHI2+ 

method can obtain more stable results. 
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